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Summary—A method is developed for the calculation of the pressure distribution and the aerodynamic forces and
moments acting on a wing at incidence, a wing in (steady) roll and a wing in (steady) pitch. The calculation is based on
the assumption of an inviscid potential flow and is restricted to small incidence and thickness ratio, so that quadratic
terms in the perturbation velocities are neglected. The results are valid, if |1 — M?|. 4? is small compared to 1, 7.e.,
either for any Mach number M for wings of a small aspect ratio 4, or for any aspect ratio for sonic speeds (M ~ 1).
The aerodynamic coefficients and stability derivatives /, and m, for a wing family which is described by the parameters
aspect ratio 4, taper ratio 4, and sweep ratio @ (Fig. 8), are given in the form of charts. The calculation indicates, that
the plan-form of the wing is of similar importance as regards the pressure distribution at sonic speeds as the chordwise
section of a wing at subsonic speeds for wings of larger aspect ratios.

Although the calculation is based on the assumption of an inviscid flow without shock-waves, the results are thought
to be useful for showing the main trends of the behaviour of a wing near the speed of sound. Plan-forms, which show
rapid variations of the aerodynamic properties near Mach number M = 1 according to the potential theory, will have to
be abandoned in favour of other planforms with mere favourable characteristics.

NOTATION
|4 Undisturbed velocity
X%, 9,2 Cartesian co-ordinates
u, U, W Perturbation velocities, caused by the wing
I Air density
M = V]/a,, Mach number
P Static pressure
I = (p—ps)/p, Enthalpy
o Incidence
b, q Angular velocities about the » and y-axis

* R.A.E. Report Aero. 2439, received 11th February, 1952.
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NOTATION—continued

Aspect ratio

Tapér ratio

Wing area

$(x)(ds/dx = 0) Local half-span, equation of leading edge
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Sweep angle of leading (trailing) edge
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1. Imtroduction.—The theory of the lifting surface has been developed by various authors to
such an extent, that we are now in a position to calculate the pressure and the lift distribution
over a wing at either subsonic or supersonic speeds. The calculation is based on the assumption
of an inviscid flow without any vorticity outside the wake. Furthermore it is assumed, that the
disturbances, which are caused by the presence of the wing in a parallel flow, are small enough,
so that it is sufficient to consider only linear terms in these perturbation velocities. Unfortunately
the theory of the lifting surface, as 1t has been developed so far for subsonic speeds, breaks down,
if the Mach number tends to 1. In a similar way many methods developed for supersonic flow,
which are usually based on certain facts, which hold only in supersonic flow, lose their meaning
near the speed of sound.

Thus it seems only natural to try another approach to the problem by starting from a wing
flying at sonic speed and to extend the method later on to cover both subsonic and supersonic
speeds. The present theory applies to wings of any aspect ratio moving with a speed vety close
to the speed of sound, and to wings of small enough aspect ratio at speeds remote from M = 1.
This assumption permits the splitting up of our three-dimensional problem into two problems,
namely to find a solution of the Laplace equation in two dimensions y and z (spanwise and normal
- to the wing span and the flight direction) and secondly to connect all these solutions by means
of an integral equation in ». In other words the wing is divided into strips extending spanwise
(not chordwise, as is usual in the theory of a wing of a not too small aspect ratio at subsonic
speeds) and the solutions for each strip are combined afterwards to give the solution for the wing.

The justification for this method lies in the fact that in the three-dimensional Laplace equation
for a steady flow the term containing the second derivative with respect to x, has the factor
(1 — M?). If non-dimensional co-ordinates are introduced the assumption on which our theory
is based may be put as

11— M2|4? << 1

(4 = aspect ratio). Thus all our results apply either for any wing at sonic speeds (I ~ 1) or
for a wing of a small enough aspect ratio 4 at any speed.

After outlining the fundamentals of the theory in section 2, we shall consider the flat wing of
an arbitrary plan-form at incidence in section 8, the wing in steady roll in section 4, and the wing
in steady pitch in section 5. These results are applied in section 6 to the calculation of the lift
and pitching moment due to incidence, the damping moment in roll (},) and the force (z,) and
pitching moment (#,) due to pitch for a family of wings, which depends.on three parameters
(Fig. 8). We choose the aspect ratio 4, the taper ratio 4 and the ratio @ = tan 4,/tan 4, of the
trailing and leading-edge sweep (4, and 4, respectively), to describe the family, because with
their help, the results for the forces and moments can be presented in a most convenient form
(see Figs. 10 to 18). ‘ :

In order to show the form of the pressure distributions to be expected at sonic speeds, a pressure
plotting is given for two particular wings (section 6.4, Figs. 19, 20 and 21). It shows the large
effect of small changes in the wing plan form. As can be seen from the figures, a fairly slight
rounding off of the leading edge results in a fairing of the pressure distribution.

It may be pointed out, that a theory for a wing of small aspect ratio was first developed by
R. T. Jones!, although on slightly different lines. It covered only the case of a Delta wing and
similar plan forms, where a spanwise section consisted of.only one part. It was applicable also
to a plan form, where the local span reached its maximum in front of the foremost point of the
trailing edge. Jones’ theory was applied by Ribner?® to determine most of the (steady) stability
derivatives for such plan forms. Later on Heaslet and Lomax*®¢ extended the analysis to cover
also the case of a spanwise section consisting of two separate parts, but they succeeded only in
calculating the load over a particular wing plan form, which is shaped in such a way, that the
load distribution over the middle part of the wing is constant, so that no wake is developed there,
‘but only from the outer parts of the wing (compare section 3.4).
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Robinson (revised version of Ref. 7) treated the case of a wing of an arbitrary plan form at
incidence. Unfortunately his numerical results, which are given only for the fully tapered wing
do not agree with ours, probably due to an inaccuracy in the numerical calculation®.

The main features of the pressure and velocity field around a flat wing at incidence «, moving
at a Mach number M = 1, can be summarised as follows. The incoming flow is undisturbed in
front of the Mach wave (Mach plane), which extends from the apex of the wing. The pressure
field produces a load on the front part of the wing, which is bounded by the Mach wave (plane)
extending from the wing tip (region I and II in the adjoining figure). There is no load on the
rear part of the wing behind the tip Mach wave and the pressure is undisturbed everywhere
behind this Mach wave. Between the two Mach waves the pressure varies, but is equal to the
undisturbed pressure everywhere inside the plane z = 0 except for the wing area.

Incidence case. Plane z = 0

_____________ Down- | Side-
Region| Load| wash | wash H(s)
Depending on
I >0 Y |
i >0 const| x,y + | Wing ‘
* O
111 -0 y O
o v @) const| vy o]
v O | %y v {¢" Wake
. #= 0
VI O y y 0
Vi v VI ’ ' £ |
v O xvy o [
#0
VIli 0] y O O

The pressure remains undisturbed except
in regions 1 and IL.

In front of the wing and beside the wing an upwash field is induced. On the wing itself and
this part of the wake, which extends from the outer part of the wing, the downwash is constant
(w = Vo), whereas in region V, the downwash depends on y and varies with x. In region VI,
the downwash depends on the spanwise co-ordinate y and not on the downstream co-ordinate x.
Similarly, the sidewash remains unchanged in region IV, V and VI of the wake; it depends
only on'y. The sidewash is discontinuous between the two faces of the wake, so that the wake
contains a vortex field. The same applies for the wing area I 4 IT - III. We have a sidewash
between the two Mach waves, which extend from the apex and the wing tips, although the
sidewash vanishes in the plane z = 0 outside the wing and wake. The perturbation velocities
which have been created by the wing along the Mach wave, extending from the tip, remain un-
changed in the downstream direction. ‘ '

* Since the completion of this work as R.A.E. Report No. Aero 2439, a paper by H. Mirels'® has appeared, which
covers similar ground, although the numerical results cover only plan forms with constant chord. The author is
indebted to Mr. Mirels for pointing out an error, which occurred in equation (72) in the original version. The error
and the results in figures 14 and 15 have been put right.
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2. Principles of the Theory—2.1. The Equations of Motion.—We consider a thin wing at a
small incidence in a steady parallel flow and apply the linearized potential theory, i.e., we assume
that all perturbation velocities, #, v, w, which are caused by the presence of the wing in the
parallel flow V' (which may be parallel to the s-direction in a cartesian co-ordinate system, see
Fig. 1), are so small that only linear terms in #, v, w need be considered. Since the flow is
irrotational outside the wake, a velocity-potential function exists so that

3¢ 2¢ 8¢ :
:%’ v_ay, w—az. .. - .. . (1)

The Euler equations, which connect the velocities and the pressure p or the enthalpy I, can be
linearized as:

u

ou 0% ol
Vaz=Vw= "%
30 9% oI
D1 0% ol
Vax = Vaxoz:™ &
where
s 4 — p.
L[ F=r 2t L

since the air density p in the denominator may be replaced by its value p,, in the undisturbed
flow within the accuracy of the linearized theory. In the same way we have for the speed of

sound a:

and thus
a a Po
dp =2 = a—fz = L2a1.
The continuity equation can be linearized as

cw , ov  ow  M*Pol
%4“551-}‘8—2—}‘7556:0 .. . .- .. .. (4)
where M = V[a,, is the Mach number of the undisturbed flow. The integral of the Euler equations

(2) is Bernoulli’s equation

0
I-l—Vé%:I—{—V%:IOO. .. . . . (5)
We introduce equation (1) and the first equation (2) in equation (4) and obtain |
0% 0® 0® : o?
a_ﬁ+é?+@)¢_wa—xz¢=o @
By differentiating this equation with respect to ¥ and using (5) we have
oI | o1 | @ |
(I—ZLIZ)EEZ—I—W-{—B—Zé:O. .. . .. .. (7)

Now, we introduce non-dimensional co-ordinates, referring x to the mean chord ¢ and y and 2
to the span b = S/¢ = A¢ (S = wing area, 4 = aspect ratio) and obtain (with x’ = %/¢,
¥ =y/(4e), 2" = z/(4?)):
01 0tf  o9*]
(I—MZ)Azm—!—Wz—[—é—z—,z:O .. .. . . (8)
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and the corresponding equation for the velocity potential . We shall consider only such problems,
for which

|1 — M2|A® <= 1 e

is sufficiently small, so that the first term in the differential equation may be safely neglected
compared with the other two*. Thus the motion of a wing of a small aspect ratio A at any
Mach number or the motion of a wing of any aspect ratio at a Mach number M, which is very
near to 1, is described by the differential equation:

2 82
(@2+8_22 ¢ =0 .. .. . .. . (10)
or
a? o?
<@2+8—22>]’:0' .. .. . .. .o (1
The variable x occurs in these equations only as a parameter.
2.2. Boumdary Conditions—The solutions of the differential equations (10) or (11) have to
satisfy the following conditions:

(a) At a great distance from the wing (y* 4 2* — o) the velocity potential ¢ and the * accelera-
tion potential * I — I, must vanish.

(b) Along the surface of the wing, which may be given by the equation
S(x,y,2) =0 .. .. .. .. .. oo (12)

(in case of a thick wing, both the upper and the lower surface have to be defined), the component
v, of the velocity normal to the surface S must either vanish, or is a function

v, = V . g(x,y)
which is prescribed by the movement of the wing (e.g., in roll or pitch):
1
V .S, S, 4+ ©S, 5=V .glxy . .. .. 13
[(V 4 =) + U5, - w ]\/(Sf—l—sf—i—sz) glx.y) (13)

Here suffixes mean partial derivatives. Strictly speaking this condition (18) should be satisfied
on the surface S = 0 of the wing, but it is well known that within the accuracy of a linearized
theory, it is often sufficient, to satisfy this condition (13) inside the plan form of the wingin the
plane z = 0 (since for points on the wing z is always small compared to A¢).

2.3. Reduction to a Two-dimensional Problem (velocity potential)—Since the differential
equation (10) for the velocity potential ¢ depends only on the two variables y and 2z, we try
to establish a two-dimensional problem with two-dimensional boundary conditions, which is
equivalent to our three-dimensional problem. :

We consider a cylinder with its axis parallel to the x-axis, the contour of which may be given
by the equation

S(y,s) = 0. R ¢ U

# Tn this connection the question arises, whether such an approach is justified, since it may be necessary to retain
second-order terms in the potential equation if equation (9) holds. Experience shows that for a three-dimensional flow
the linearized equation (10) has sensible solutions satisfying all boundary conditions (and the assumptions implied in
neglecting the first term in (7)), provided the incoming flow is merely deflected and the pressure is an anti-symmetrical
function of z. But there are no solutions (producing finite values for the pressure) as soon as thickness is involved. It
is believed that the present calculations give a reasonable solution for the cases treated here, but that second-order terms
may be required in order to allow for thickness effects near sonic speeds.
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Along this contour the normal component may be a prescribed function V . g(v):

. 1 _
{(vsy TwS) 55 .= V- EW)
or, if ¢ denotes the potential of the two-dimensional flow:
1/72¢ - o4 = _ . - '
AGAES T 5.). = &) {\/(syz n 5z2>}§=0- N )

The boundary condition (13) for the three-dimensional problem may be written as

1/70 0
(528 1 505,) = | — S+ aloy) V(82 + 85+ 5

since # can be neglected compared with V.

(16)

0

By identifying (14) with (12) for any fixed value of # and by comparing (15) with (16) we can
see, that our three-dimensional wing flow problem can be reduced to the following two-
dimensional problem :

For any fixed value of %, we have to find a solution of the two-dimensional Laplace equation (10),
which vanishes at a great distance from the surface of the wing (y* 4 £* —o) and which has the
following prescribed values v, = 9¢/on = V . g along the contour S == 0 (or z = 0 respectively)

with :

_ VISP +Si+Sy S,

§= {g(x,y) V(ST + S - VISFE 5 5= .. .. .. (17)
Here g(x,y) is the (non-dimensional) normal component of the velocity as it is prescribed along

the wing surface S = 0 by the movement of the wing. For the wing at a constant incidence
we have g = 0.

This two-dimensional problem can be solved according to well-known methods (compare the
theory of the analytic functions of a complex variable) for any fixed value %, which leads to the
potential function ¢ for our three-dimensional problem. The pressure distribution over the
wing can then be obtained by means of Bernoulli’s equation (5).

It may be pointed out, that the solution of the above-mentioned two-dimensional problem is
not always unique. In certain cases solutions exist for which the normal derivative along the
contour is zero and any such function may be added to the solution of the problem. These
additional solutions often contain such singularities on the surface of the wing which produce
infinite forces and therefore must be excluded. In other cases the nature of the singularity,
which is admissible (e.g., at the sharp leading edge of a wing), is known, which helps to find the
unique solution of the physical problem.

. Another condition, which is useful in this connection, is the so-called non-vorticity condition :
the integral over the tangential velocity v, along any closed path of integration, which does not
intersect the wake, must vanish:

$o,ds=0. .. .. .. .. .. .. (8

This means that the flow outside the wing and outside the wake does not contain any vorticity.
It is obviously satisfied if ¢ is a unique function of y and z everywhere outside and on the surface
of the wing. :

Another condition, in order to obtain a unique solution, is the Kutta-Joukowsky condition.
It has to be introduced if the plane x = const where the two-dimensional problem is solved,
contains points which belong to the trailing edge of the wing. It can best be formulated in the
form : The pressure must remain finite (or bounded) along any sharp trailing edge of the wing.
It will be seen that this is equivalent to the condition that there cannot be a pressure difference
between both faces of the wake.
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In certain cases, e.g., for a unisectional wing (compare Fig. 6) no wake effects occur and the
potential ¢ can very usefully be applied.

However the method runs into serious difficulties. It is directly applicable only to such
(spanwise) sections of the wing which do not contain or touch a part of the wake (see Fig. 2,
section AA). If a part of the wake occurs in the plane # = const where the solution ¢ must be
determined, we have to admit discontinuities of ¢ and the velocities along the wake (since the
wake contains vortices) but these must be chosen in such a way that no pressure difference
occurs between the lower and the upper surface of the wake.

Because of the serious restrictions in the applicability of this method, which is based on the
use of the velocity potential ¢, to the incidence case, we shall describe now another approach to
this problem, which is based on the use of the enthalpy I—sometimes called the ¢ acceleration’
potential function (because of (2)).

2.4. Reduction to a Two-dimensional Problem (acceleration potential)—The enthalpy I is
continuous everywhere outside the wing, and does not show directly the existence of a wake.
We make use of this fact by identifying the potential ¢ of the above mentioned two-dimensional
problem with the acceleration potential I . ¢/} and the contour S = 0 of equation (14) with the
contour S = 0 of equation (12) for any fixed value of x. By differentiating equation (13) with
respect to x and using (2) we obtain the following boundary condition for [:

(a%(%)s + a%(%) S, )0 =

(S50 — % {g(x,y)«/ (8% + S+ SZZ}H — (S,,,, >+ S, %)H. c e (19)

Unfortunately this condition contains the velocities v and w, but fairly often, e.g., in the important
case of a flat wing (6 = dihedral)

S(xy,z) =24 a{x — x) + 8|y] . . .. .. .. (20)

the mixed derivatives S,, and S,, vanish and (19) becomes fairly simple. By comparing (19)
and (15) our three-dimensional problem can be reduced to the following two-dimensional
problem : ’

For any fixed value x we have to find a solution of the Laplace equation (11), which vanishes
at a great distance from the contour S = 0 (y* + 2*— ) and which has the following prescribed
values for the normal derivative ‘

o rI¢ -
n T/):V-g

along the contour S =0 (orz =20 respeétively), where

- ¢.S. ¢ 0 2 2 2
g: li,\/<5‘y2 _{_ Szz) _ \/(Syz + Szz> a__,;c {g(x’y) '\/(Sx + S;v + Sz )}

c

_\m{%@sw_}_%sw}jlszo. L@

The solution I must be continuous and bounded everywhere outside and on the wing surface
S = 0 (or z = 0O respectively), possibly with the exception of the points, which correspond to a
sharp nose. Here only such singularities are admitted, which after the integration over the
wing surface, produce finite forces and moments. 7

8



Since (21) represents only a condition for the x-derivative of the original boundary condition
(13), we have to make sure by an integration over #, that this original condition (13) is also
' satisfied. For a flat wing (equation (20)) this leads by means of equation (2) to :

{ xm%<Vde+SJ~wa<Vde} {Sf—gWJhA&“+$F+Sﬁ . (22)

Here the integration with respect to # must be performed for constant values of y and z (along a
streamline), starting from a point ¥ = — c far ahead of the wing, where all perturbation
velocities are zero, up to a point (x,7,2) on the surface S = 0 (or z = 0 respectively).

As will be seen later on, both conditions (21) and (22) can be satisfied, since the solutlon for
(21) usually contains an arbitrary parameter (depending on #), which can be determined in such
a way, that (22) is also satisfied.

In order to obtain a unique solution for the two-dimensional problem with the boundary
condition (21) we have to introduce again, apart from conditions on the nature of the occurring
singularities which were mentioned above, the non-vorticity condition and the Kutta-Joukowsky
condition. 'The former was already explained in equation (18) and the latter will be applied in
the form, that the pressure must remain bounded along the trailing edge of the wing, so that
no flow round the sharp edge takes place and the flow can smoothly leave the trailing edge.

In the next section we shall apply this method to the problem of a flat wing of thickness ratio
zero at incidence or in roll or in pitch.

3. The Flat Wing of Thickness Ratio Zero at Incidence—\We consider a flat wing with the
thickness ratio zero at a small incidence «. The surface of this wing is defined by

S=zda@—x)=0 .. .. ..o .. .. (23

(see Fig. 2). Since we intend to consider any plan form of this wing, including a swallow-tail
wing, where the wake interferes with the pressure distribution on the wing, we prefer the use
of the enthalpy I to the use of ¢. Thus we have to find a solution of the Laplace equation

L,+1,=0 .. .. .. .. . . . . .y

which vanishes for y* 4 2*— o and satisfies the boundary condition inside the wing plan form
for 2 = 0:

5{%(%)L0:g:—w§ﬁgmwvu+mﬂ} 2

For the wing at incidence o, the normal component along the wing surface is zero

°e=0, E=0. .. .. .. ... (925

For the wing in steady roll (starboard wing going down if 4 > 0) we would have

e—=B, z—0 .. .. . . . . . @
and for the wing in steady pitch (nose going up for ¢ > 0):
g - g
g:—v’ g V .. - .. .. P o . (25C)



Equation (22) becomes now

(J 2(h)a),  — eyl b o) —a—slen) . o @

for points (x, v, 0) inside the wing plan form.

3.1. Pressure Distribution for the Front Part of the Wing —First we consider the front part of
the wing (section A in Fig. 2) where every section of the wing consists only of one part —s <y <s.
We consider the incidence case (g = 0) and have to find a solution I of the Laplace equation (11),
for which the normal derivative 91/0z vanishes along the section y* < s* of the y-axis z = 0,
which is the cross-section of the wing (Fig. 3).

As is well known, any analytical function f, 4 ¢f, of the complex variable

. Z=y+iz .. .. . . .. .. .. .. {27)
is a solution of the Laplace equation (11). Thus the real part (abbreviation 2) of the function
. 1sZ a N
and of its integral is/4/(s* — Z?) are solutions of (11). We put
I [ S '

where 4(x) is areal function of the ‘ parameter’ x. This function I vanishesfor |Z|* = y* 4 2*—a0
and has the appropriate singularities at the leading edge y = + s, 2 = 0*. Since

d 0 19
aZ 8y 10z - " o T " o - 30)
we have
e 1 a — 18

and this function vanishes for any point Z = y of the section y* < s* as can be seen from (28).
Thus the solution (29) satisfies all conditions, and it can be shown (see Appendix I) that this
solution is unique, provided that %(x) can be determined in a unique way.

This is done by means of equation (26). For this purpose we have to remember that both the
‘ half-span’ s and the factor 4 are functions of x. Without any loss of generality we may introduce

h(x):a.H(s)% N )

where the function H(s) is to be determined by means of equation (26).

* The sign of the square root in (28) and (29) shall be fixed in the following way. We put
Z —s=|Z —s|exp i, Z +s=|Z + s|exp id,
where ¢, and ¢, vary between — = and #. Then we have

'\/(Zz _ 52) ___IZZ _ SZ[]/Z GXP Z él_._z*—_%

A (2 — 28 == |22 — |2 exp i (961—;_053 — g)

which means that the sign of the square root along the y-axis z = 0 for y2 < % (¢; = - =, ¢, == 0) is positive on the upper
side and negative on the lower side of the slit.
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Since there is no pressure discontinuity in all planes x = const ahead of the apex (x =0) of
the wing, we have I =1, =0for x < 0 and we may take x = 0 as the lower limit of the integral
in (26). In order to avoid the singularity at the leading edge, we integrate first along a streamline
y = const, £ = const > 0 and go to the limit z— 0 after the integration. Thus we obtain
from (26)

wxy,z) [ ]
— B o | H @ { 7 s — 29 ] dx
* a

[ ‘
.:aoH(s)'%itdsWF—de)rcde' . . .. .. (83

Integration by parts leads to

" .Z Z |
~HOPA ) @ | | — O | =)
*dH(s) A lds
— s 7 {\/(32 — Zz)lf —xdx

Along the first part of the path of integration, which is in front of the wing (see Fig. 2), we
have s* < y?and 4/(s* — Z%)/i = — 4/(Z* — % tends to a real value for z— 0. Along the second
part of the path, which is inside the wing area, we have y* < s* and +/(s* — Z%) /s tends to an
imaginary value, so that in the limit z— 0 only the first part of the integral from s = 0 to the
leading edge s = y contributes to the integral, and we have the condition

w0 vaH(s)

A o ds A/(y*— s

One solution of this integral equation for H(s) is given by . ,
H(s)=H@O0)=1. . . . . . . .. (3%)

This solution is unique, since any other solution must be of the form 1 4 H,(s), where H,(0) =0
(the second term in (34) vanishes for small values of y) and H,(s) satisfies the condition

v dH(s)
Jo ds +/(y* — 5% dy =0

for all values of y inside the plan form (y* <s,?). Thus we have H,(s) = const = H,(0) =0.

ds. .. ... (3

= aH(0) + a

Therefore the solution for I is

I ds s !
H(s)=1.
The sign in (36) applies in the upper half-plane only. Along the wing section z == 0, y* < 5%
the function I is discontinuous, but it is continuous (7 = 0) along the parts y* >- s* of the axis
z = 0. The load distribution over the wing is
AP 41 4as ds o
l:ngZZ_Tﬁ—mH(S)EZ;c’ .- . . .. - (07)
H(s) =

which agrees with the results obtained by R. T. Jones® in a different way.
11



The function I has been determined in such a way that
the downwash condition at any point Q of the wing
N section PR is satisfied, if H(s) at P is properly deter-
y $(%) mined (equation (34)). Thus we satisfy .the boundary

. condition over the whole wing by determining H along
the leading edge AB, where ds/dx > 0. The load is then
known at each spanwise section PN up to BD, where it
tends to zero since ds/dx = 0.

Qy

This process tells us nothing about H(s) for spanwise
sections behind BD. To get this, we use the Kutta-
05 Joukowsky condition, that the load must be zero along

the trailing edge BC, where ds/dx < 0. But equation

R (37), which is the unique solution of our two-dimensional -
problem (see Appendix I), violates that condition as y
‘ tends to s unless to the rear of BD the function H(s)

vanishes.

X There is no load beyond the maximum span:

4as H ds

vV (s* — ¥7) ) Z
(37)
. ds .. ds
H(s) =1, lfd—“x> 0; H(s) =0, lei';C <0

In the general case, where there is a cut-out CDE
in front of the maximum span BD, the form of I will
be chosen (compare section 3.2), so that the same
argument applies with the additional condition, that
I = 0 along the trailing edge CE. The boundary

¢ condition at any point Q of a section PR is satisfied,
if H(s) at P is properly determined. It will be found,
b that H is 1 as before between A and F, but is

different from 1 between F and B. As before we have
H = ( to the rear of BD.

3.2. Pressure Distribution for the Rear Payt of the Wing.—In the rear part of the wing a spanwise
section usually consists of two separate parts — s <y < — # and 7 <<y <s (compare section
BB in Fig. 2). In this case we have to find a function I, which is the real part of a complex
analytic function of Z = y -+ 42, so that the derivative 21/0z vanishes for z = 0 along the two
sections 7* < ¥* < s%. For y = + s, i.e., at the leading edge, the function must behave in the
same way as the solution 7, given in equation (29). Along the trailing edge y = + 7, the Kutta-
Joukowsky condition must be satisfied, 7.e., the pressure must remain bounded there. We shall
satisty this condition by making I equal to the undisturbed conditions (I, = 0) along the trailing
edge, since this is the only possibility of making the pressure equal on both faces of the wake
which extends for # = 0 between — 7 and 7.

12



In order to find such an analytical function, we have to use some results of the theory of the
complex functions (see Appendix I). Here we shall give only the result and show that this solution
satisfies all the boundary conditions. The uniqueness of the solution is proved in Appendix I.

We start with the derivative 91/0z, which is given by

154/ (2% — +*%) o ’LS | 39

[ AR/ Gy 2 v v s 1

The parameter « is real. It depends on the ratio »/s. We introduce

kE=4/(1 —7s9, rfs =4/(1 — k% .. . .. .. (39)
and choose '
E(k
x(s):—% . . .. .. .. .. .. .. (40)
where K (%) and E(k) are the complete elliptic integrals of the first and second kind respectively :

7 /2 dx
K(k) = |, VI = F s y)

» (41)
o(k) = | /(1 — Bsin® x) dy

Since »x tends to zero for £ — 1 or » — 0 equation (38) reduces to equation (28) or (31) for » — 0,
so that 0//0z has the required singularity at the leading edge y = - s.

Since the bracket in (38) is purely imaginary along the sections z = 0, #* < y® <s? the
derivative 07/9z vanishes there, as is required by the boundary conditions.

In order to state the sign of the square roots in (88) it is sufficient to consider the function
\/{( Z9)/(2* — %)}, We put

Z—s=|Z —slexpipy, Z+5=|Z+ s|expig,
Z—v=|Z —vrlexpids, Z+r=|Z+ r|expid,

where the angles ¢, vary between — = and « and define
s — 77
\/ {ZZ — 72} :\/ {

The enthalpy [ itself is given by
I zZ |rZ? (2% — % . 5% az
7T \/( Zz> J 4/ (s Z2 ( & I (43)

as can be seen by differentiating this equation with respect to z (8/9z = ¢ d/dZ), which leads back
to equation (38). The bracket in (43) vanishes for |Z|—w, as can be proved by expanding both
terms for large values of |[Z].

22* 2”exp,,i(¢1+¢2—¢3—¢4—n). e (42)

For Z = s the second term in the bracket vanishes and the first produces the required
singularity at the leading edge. For Z = 7 the bracket vanishes as can be seen, when the integral
is evaluated by means of the following transformation. We introduce

2 7o
SinX:\/{z_zj,z}, k2=1—7—2 .. .. .. .. (44



(x is real for z = 0, #* < y* < s% and have

7 ., saz _ —d |
5= \/(1 — Rk*sin® x) , Vst — 294/ (28 — 79 — V(1 — kzxsin2 x)

and thus
y 4
= — hix) % {cot x -V (1 — R*sin® ) JD\/(I — k*sin® x) dx

_”ﬁvuwﬁgﬁ@y

T~

(45)

‘This function is plotted in Fig. 4 against y for various values of sin~* 2. Along the trailing edge
y =7, x = n/2, the function I tends to zero, as follows from (45) and (40). The Kutta-Joukowsky
condition is satisfied. The enthalpy I becomes zero not only at the trailing edge » = s, but
also along the entire surface of the wake (z = 0, y* < #%), since an integration from Z = 7 along
the axis z = 0, where the integrand is purely imaginary, towards Z = 0 does not change the
value of /. Any other choice for », different from the value given in equation (40), would have
resulted in a value [ different from zero for v = » on the upper surface of the wing and the same
value with the opposite sign on the lower surface of the wing, and there would have been a
pressure difference between both faces of the wake. This is the reason why the second term had

to be included in equation (88) when equation (28) was generalized, although the term with «
vanishes for y —0. '

It may be pointed out that 87/8z in (38) changes its sign, if Z is replaced by (— Z) (which
means according to (42) that the sign of the square-root must be altered at ‘the same time), and
the function I remains unaltered, if Z is replaced by (— Z). The pressure distribution is
symmetrical.

Finally the function

hM=WUMQ% O £

is determined from condition (26). The integration with respect to x is performed along a line
y = const, 2 = const > 0, as in equation (33), which leads to the downwash :

w(x,yz)  (Fo I g 154/ (2% — 7%
— % = OB—Z*V—de:—OLJBH(S)%{W
% .18 ds®
+ \/(82 — Zz)'\/(ZZ ,_—72 E;c dx . .‘ . .. (46)

Here both » and s are functions of . Since 7 and s are prescribed by the plan form,  may also
be expressed as a function of s

7 = ¥(s) .. .. .. .. .. .. . . .. .. (47)
and we have

sV/(Z2—7) 4 {2 — 72} _ v dr|ds
(s* — Z73r _ds»\/lsz—Zz V(s — 2/ (22 — ¥
Thus w/V can be written as

W s ) ! . 4 sz—Vlzj . 41 d7’1/d31‘— .81 }
_I_/’_“fo His) 217 7, N lsP— 22 | T ' Vs7 — 29/ (2" — 1) -

where the integration variable s, occurs also in the functions 7, = #(s,) and %, = #(s,). This
14




equation is now treated in the same way as the corresponding equation (33). When integrating
the first term by parts we obtain:

5 (69,0) = aBH(0) + xH(s) 2 | M/ 5%9}

— ocf:H’(sl) K { z,\/(ii—:%)} s,

s . rdvyfds, — #y.8,
-I—OLJOH(SI)%{i\/(SIZ_Zz)\/(Zz_Hz)}dsl. R 7

Reai 2l Y2-r|2
eqgion —_——
_1ls 3 "2 2
| =0 o3 Sy o-Y
& = o y
O e
a |t I >0 O
Y
dl
S “
I . St o . So
% _r% o—s (%) '
T
I\_>
: ‘ mn <0 A 0o
i=0 | Wake .
- | (z= t 0)

In the limit z— 0 the second term on the right and the integrands vanish for points (x, y, 0)
inside the plan form and thus it is sufficient to extend the integration between s, = 0 and
s =y >0 (see Fig.). When allowing for the proper signs of the square roots (z > 0), we
arrive finally at the condition (z— - 0), which is the generalized equation (34):

7y dryfds,

1 — H(O) + [ H(s) \/ {Lyvz—:é ] ds, — [ H(s, T s \7&; -_31712) ds,.  (49)

It must be satisfied for all points ¥ = s(x) of the leading edge (ds/dx > 0). For the rear part of
the wing (where ds/dx < 0), the boundary conditions are satisfied without introducing a pressure
difference and a load, as was explained in section 8.1. Since H(0) =1 and H' =0, » = 0,
» = 0 along the front part of the wing, we may write instead of (49)

v, [ y* — #,® v 7y dryJds, — #y . Sy
0= [ Hs) J = slz} ds— [ HO) i i s - (50)

where the integration must be extended between the half-span s, = s(c,) and the point v in
question (see Fig. 8).

Since this equation for the function (s) is fairly complicated, we shall determine the solution
by a numerical method (compare -Appendix II).

15



The load distribution on the wing is then obtained from (45) and (32) as

Ap ds . * .
l = L= 4o H (s) %{cot xv/ (1 — R*sin® x) -+ fO\/(l — kP sin® x) dy

]
—’Jvl—stmx)i R .31

) Sz_yz -
sinx = o |51 "

If 7 tends to zero (ie., £ —1, »x — 0, H(s) — 1), we obtain from (51)

ds 1 . y? ‘
I =40 o smxz\/(l—?J O -2

which agrees with equation (37).

where

A

<Y< st

3.3. Forces and Moments for a Flat Wing at Incidence—~—When determining the forces and
moments acting on a wing at incidence, we have to integrate the load distributions equation (51)
and (52) over the area of the wing. We notice, that for a flat wing at incidence only those parts
of the wing, for which ds/dx is positive, produce a pressure difference. The rear parts of the
wing (section CC in Fig. 2) cannot influence the flow and therefore produce no lift. Since we

have I = 0-everywhere on this part of the wing, the Kutta- Joukowsky condition is automatically
satisfied.

Thus it is sufficient to extend our integration only over those parts of the wing, for which
ds/dx > 0. We integrate first in the spanwise direction and have, using equation (51) and (44),

$ $ d {2
[ iay=2]1dy =8uti() S5 | {cot x /(1 — ktsin® )
+ J, V(1 e sin® x) dx

| 7% sin x cos x dx

- %f /(1 ——k251n x) ) 4/ (1 — k*sin® )

These integrals can be evaluated after an integration by parts and we have finally

as ENn as

[ ray=sar() 5 s (1= 2)5 = dmaki(s)s 55 11 — (s)] (53
A second 1ntegrat10n along the chord gives the lift coefficient, if 4 = 4s,*/S denotes the aspect

ratio of the wing (2s,, = maximum value of the local span 2s)

4o
C, — gfsjzozy dx — e [T HS)[1 — #(s)]s ds
Sim S ds

— ada | T O P 2
and the moment coefficient, referred to the apex x = 0 (C,, positive, if nose is turrﬁng upwards) :
—Cu= g |(J1dy)wan =52 ["HGN — wis)s a0)ds. .. .. .. (55)

Here ¢ denotes the standard mean chord, so that — C,/C, gives the distance of the aerodynamic
centre behind the apex in terms of the mean chord ¢. For a straight leading edge we have

s=uxcot4,, S,=c,cot4d, .. .. .. .. .. .. .. (56)
16



(4, = sweep angle of the leading edge) and we may write

rnAac, [ s ds
—Cy= " H(s)[1 — ()] o o5, - N (- 74
If we prefer, to refer C,, to the root chord c¢,, we have to omit the factor ¢,/¢ in (57) and then
— Cy/C, would give the aerodynamic-centre position in terms of the root chord. ‘

3.4. The Induced Velocities Behind the Wing.—After the function H(s) has been determined
according to the integral equation (49), we can use equation (48) for the evaluation of the down-
wash at any point of the space, if we bear in mind that H(s)= 0 for all points behind the plane
% = const which extends from the wing tip (tip Mach wave). Therefore, there is no disturbance
in front of the plane x = 0, which corresponds to the Mach wave, extending from the apex.
We obtain an upwash in front and sideways of the leading edge and a constant downwash over
the wing. For points in the wake, which are in front of the tip Mach wave (region V of the
Fig. in section 1), the downwash depends on x and y, but after the tip Mach wave has been
reached, the velocities, which are induced there, remain unchanged for all -points downstream,
since H(s) vanishes in this region. Thus the velocity field behind the tip Mach wave depends
only on y and z and is independent of x. Here the upper limits in the integral (48) must be
replaced by s, For the outer part of the wake (region IV), the downwash remains constant (V. ).
For delta-shaped plan forms (which are unisectional for every ), the downwash remains constant
(V . &) over the entire wake, since then the regions V and VI disappear.

The spanwise component v of the induced velocity, can be obtained from (2) and (43) in a
similar way to w. After an integration by parts, we have

~ 228 g a JGZZ) e, H) @ | e T s

__.aJ:ﬂ]Y%sQQ% L\/(é;g;}%:)]dbl. . (58)

Again we can see, that no disturbance occurs in front of the apex Mach wave, and that the
conditions at the tip Mach wave remain unchanged for all points downstream. When evaluating
the values for the plane z = 0 we can use the figure and table in section 3.2, which shows that
the lower limit 0 may be replaced in this case by y (the integral vanishes between 0 and y). Along
the trailing edge of the wing, we have y = 7(x), and for region V (see figure in section 1), where
0<y <7(s):

ox, 7(x), 0 s(#) v drijds, — s, . %
) 20 [y R s g,
(%) , 7,2 2 _

— W)H (S1) ,\/<512 — ;2‘> ds, (z=+40). . .. (59)

The same expression is valid for the entire wake in regions V and VI. For region IV
(r(s,) < <s,) we have to use (58) for 2 = 0 with s replaced by s,, and » replaced by 7(s,). The
vorticity in the wake is easily obtained from the sidewash v.

It may be mentioned that the velocity field behind a Delta-shaped wing, where the wake does
not interfere with the wing, is given by the first term in (58). It corresponds to the velocity
field induced by a plate (replacing the wake), which moves in the direction of — z. For the
general case no such simple comparison exists because of the influence of the vortex distribution
in the wake, which in turn is determined by the shape of the wing.
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Now we define a particular wing plan form by demanding (compare Heaslet and Lomax*), that

1/d7/ds:sx(s):sf£{ .. . . .. .. .- .. .. (680)

which can be integrated (see Appendix III) as
Sofs = E(k) — (1 — BHK(R), k= /(1 — /s . .. . .. (81)
For this particular plan form, we have from (50) the solution
CH(s) = H(0) =1
and thus from (59)

7w r(x), £0) =0,

1f the middle part of the wing (or the entire wing plan form) were defined by equation (61), it

would not produce a wake, since there would be no difference between the v-velocities on either
surface of the wake..

4. The Wing in Steady Roll—4.1. Pressure Distribution for the Forward Part of the Wing.—
We have to find a solution I of the Laplace equation, which vanishes at a great distance from
the wing, and satisfies the conditions (24) and (26), where

g=—pyV, g=0. .. .. .. .. .. .. .. (20

We consider first the front part of the wing (see section AA of Fig. 2), and have to find an anti-
symmetrical function 7, for which the normal derivative 91/dz vanishes for z = 0, y* < s
We choose

1 { VA 1 }

A O R by oy T

which vanishes for |Z|—cw. The parameter %,(x) is to be determined later. I contains the
required singularities at the leading edges Z = -+ 5. 'We obtain for the derivative:
o7 I 1s* 1 d 27° — s*
ACYERIOK. { = ZTI = My(x) % {5 s /(5 = 29 |

This function vanishes for any point z = 0, y* < s*>. The signs of the square root are defined
in the same way as in equation (29).

(62)

(63)

Now we use equation (26) for determining the function %,(x). We introduce instead of 4,

s ds
S OO 71

(the 2 is introduced in the denominator, to make H, = 1 near the apex) and obtain for any
point (x, v, 0) inside the plan form:

by ol pop {_@'(222—32) ds
7=l st =y B a5 VT =29 | mod ¥

where the integration is extended over the same path as in section 3.1 (Fig. 2).

Since #{(2)* — s*)/4/(s* — ¥*)} = 0 for points inside the wing and +/(s* —Z% tends to
— 24/(y* — §*) for 2 — 0 and points outside the wing (y* > s?) according to our rule for the signs
of the square root, the last equation is, by means of an integration by parts, equivalent to

%—V:%{yﬂp(m+jZHp'(s)2vi(y;?:s—22)ds}_ (e
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One solution of this equation is
H,(s) = H,0) =1 88

and this is the only solution, as can be shown in the same way as for equation (34).

Thus the load distribution for the forward part of a wing in roll is given by
4
joAp Ly psds Y e

g 7 Vi =)

4.2. Pressure Distribution for the Rear Part of the Wing—In order to find the solution for the
wing in roll for the rear part of the wing, where a spanwise section consists of two parts (z = 0,
2 < y* < s?), we generalize equation (62) in the following way :

I VZE—r) 1
By means of the transformation (44) we have [/V* = — hy(x) #{cot x + 1/¢}. This function

vanishes for |Z|—c and has the required singularity at the leading edge Z = 4 s. Along the
trailing edge Z = - 7 the enthalpy vanishes, so that the Kutta-Joukowsky condition is satisfied.
I is a unique function of y and z, if the sign of the square root is defined in the same way as in
equation (42). The boundary condition (24) is also satisfied, as can be seen from

a%(-;—z)z-—hﬁ(x)%{(Sz_%i;&ﬁyzyﬂ} U

which vanishes for z = 0, 7* < y* < s%.

Finally, we introduce H,(s) instead of /,(x) by means of equation (64) and determine H,(s),
using the boundary condition (26). This leads to
by b 1Z(s* — 7%) ds
B L H.s. 2 {(32 Rt (0)

where the integration is again performed along the path, indicated in Fig. 2. Now we may write
o 1Z(s* — 7% _la iZ(Z" — 1/2)) L iZ(v drjds — s)
(2 — ZBPR(Z% — ) 2 sds\ A/(s* — Z7) sA/(s? — 2N/ (2P —v°) 7

We introduce this expression in equation (70), and obtain, integrating the first term by parts,
for any point (x,»,0) inside the plan form:

Py—p . y2_1/2 yd y y2___7,2
W — B a o JEEE)] + B0+ 5 @3 G ') ds
v y(r drjds — s) ] }
~ [ | = e =ale 1
Here is is sufficient, to extend the integration with respect to s between s = 0 and s =y, as
indicated, since {i.Z[s.~/[(Z* — #}/(s* — Z*)]} = 0 for z = 0 and values of s between y and
s(x) >y. (Compare section 3.2 and the figure in section 3.2.) For the same reason the first

term in this equation vanishes and we have the following condition for H,(s), which must be
satisfied for all points of the leading edge y = s(x) with ds/dx = 0:

(A LR ARANC=IE
by (r drjds — ) '
o Rvir e svic ey L O
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For the same reasons, as were explained in section 8.1, the rear part of the wing, where
ds/dx < 0, does not contribute any load. ‘ ‘

In the forward part of the wing (s < s, ¥ < ¢,) wehave H,(s) =1, » = 0, as shown above
(equation (686)).

Using this result we obtain from (71) for y > s,:

. 302 - y , yz_yz y (Vdf/ds—s) .

'\/<1 R ) o LDHﬁ (s) /\/<y2 _—sz> ds — LOHP(S) V=SV — ds. .. (72)
This integral equation is very similar to equation (50) and can thus be treated by the same method
(compare Appendix II).

The load distribution for the wing is thus given by
47 ds ps Yy — P :
z:~ﬁ:47xﬂp(s)ﬁ-J(m) )
which for » = 0 agrees with equation (67).
4.3. Rolling Moment Due to Roll.—In order to determine the rolling moment due to roll, we

have to multiply the load / by the arm y and integrate over the area of the wing. At first we
integrate spanwise:

f_(z)(x)z.ydy —2 [yt =48 D p fJ(H)y dy .

Using the transformation (44) for Z = y(x real), we have
s 2y 7 /2 .
J,\/(iz — :2>3’ dy = s*k* fo cot y sin x cos x dx

72
= s [ cost x dy = (st — 9
and thus for the rolling moment L due to roll:
L=— 17| [ydyde = — 11 .Tf}jo’"ﬂj)(s)(sz —Msds .. .. (74)
where 2s,, is the maximum value of the local span 2s. For the same reasons as above, in the

incidence case, the integration over s (which takes the place of the integration over x) must be
extended between s = 0 and s = s5,,, We introduce the roll-damping coefficient

oL 1
1, = 50ps./7) pVSs,. .. . . .. . . .. (75)
and obtain (4 == 4s,*/S = aspect ratio):
1 S (s* — 7)s ds
ZP: ——83Af0 Hif’(S)_ Sm4 . . .. .. . .f (76)

5. The Flat Wing in Steady Pitch—5.1. The Pressure Distribution.—The pressure distribution
for a wing in steady pitch which satisfies the boundary conditions (24) and (26) with

x _ 0 ¢
e=—F, g=—ee=% . . . . . . m

is very closely related to the pressure distribution for a wing at a constant incidence. We can
expect to use similar functions for I in both cases and shall therefore deal mmmediately with the
general case that the spanwise section of the wing consists of two parts — s < ¥y < — 7 and
¥ <y < s. For the forward part of the wing we may then put » = 0.
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For the derivative o] /9z we use now the function:

o I gx as , |isy/ (2" —77) 7s%(s)
e =~ FEO G2 | W+ e e

2% — s% . x(s)
) 79

i =
The first term agrees with equation (38) apart from the parameter H,(s). The second term has
been introduced in order to satisfy the boundary condition

o I o
7R 0 Ed) =7

inside the plan form of the wing (z =0, #* < y* < s*. The sign of the square root-shall be
defined in the same way as before in equation (43). Then both brackets in (78) vanish for |Z|— .

It can be verified by differentiation (6/9z = ¢ d/dZ) that (78) is the derivative of
I gx ds Z/\/Zz—yf — . x az
17‘2:_77]‘5(3)%4%[“ =)~ J\/s—zm/(zz—y)
(2P — s*. %) dZ
v [

Here the first term agrees with equation (43), if » is again determined by

%(s)z%, k:\/<1—1i:>. e

The first term produces the required singularity at the leading edge ¥ = 4~ s and vanishes at
the trailing edge ¥ = -+ # and for |Z|—>o. The second term vanishes both for y = 4 s and
y = £~ and for |Z|—c0, but it produces also a pressure difference between both faces of the
wing.

(79)

(80)

Using the transformation (44) we may write equation (80) as
I ds

=~ L 5 @ | cot xy/(1 — e sint x)
dx |

x . E
-+ fﬂ /(1 — B sin® x) dx — f—{fo V(I — Esin® y) [

. 1 * : i E i d
_21;%‘1\/(1 — R*sin’ y) —l‘fg\/(l — k*sin® x) dx —Kj"\/(l - ]zgsmz X>]| )
where
_72 .
N

becomes real on the surface of the wing z = 0, #* < y* << s> The first bracket is plotted against
x in Fig. 4 (incidence case), the second bracket in Fig. 5.

~Finally, we have to determine the ¢ parameter > H,(s) in such a way that the condition (26) is
also satisfied for any point inside the plan form:

gx (%D I J . J 2 —7
V=l VJxH ’ (2—Zz> .
. rdrjds —s . x(s) ] as . Z? — s* . x(s)
T = 22— 7 femedn™ T Vf 1 T = 22—
Here the integration must be performed along the same path as in section 3.1 (Fig. 2),
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The first bracket has been written in a similar way as in the corresponding equation, preceding
equation (48). We integrate the first term by parts and carry out the integration in the first
term of the second bracket. This leads to: ‘

Q/T‘;C g () CH(s) { ¢J<i%>}

v
2wy e @ | (5 =5)]
% J:x)x(s) H(s) 7 { \/zfycfr/_dsszg*\;(y:(i) g } ds

gr _ g Y — st ()
_}__V__.VOﬁ{vwz_sz)\/‘(yz_yz)}dx... L ()

The first term on the right is zero for all points inside the plan form 7* < y* <s®. (Compare
figure and table in section 3.2.) For the same reason it is sufficient to integrate in the second,
third and last term over the part of the path of integration, which is in front of the wing
(0 < s(x) < ). In other words: it is sufficient to satisfy equation (83) for points (x, ¥ = s(x), 0)
of the léading edge only, where ds/dx = 0. Since all the real parts Z{y/[(y*— #*)/(y* — M}
vanish for points inside the wing, equation (83) is then automatically satisfied in any point of
the wing. The Kutta-Joukowsky condition excludes the occurrence of a load distribution of the
type used in the incidence case (equation (48)), in the rear part of the wing, where ds/dx < 0,
since it would introduce an infinite pressure along the trailing edge.

~

ds
7

Thus we have for all points y = s(x) of the leading edge (ds/dx > 0) the condition (y = 0):

¥ d yZ o ,},2
0= £ [ Zut) - (55 o
g v drjds — s . %(s) q( y:— s* . x(s)
RO R e LAV e iy
For the forward part of the wing we have 7 = 0, x(s) = 0 and from (84)

Zdis [x(s) (H (s) — 1)] \Tyzyt?“) ds =0

dx . (84)

or

*(s)(Hyfs) — 1) = ¢
is constant. The enthalpy I on the forward part of the wing is then according to (82):
I glx+cds 1 gs

VET T TV dwsinyg VO
sin x = /(1 — 5%/s%) ,
which should vanish at the apex x = 0 of the wing where the “ local incidence * gx/V vanishes.
Thus we have ¢ = 0 and

His) =1  (S<S). oo e e e (8D)

On introducing this into equation (84) we arrive for s = s, or y = s, at the condition

0= y 2 () Hy (o) ,\/ (H) ds

¥ drlds — s .x
— [ ot Hs) A e s
2(y) [yz % %(S)]
—JCV 1//(}'2—52)'\/(3/2—7/2) dx. . . . o . .. (86)



For a wing with a straight leading edge we have the simpler condition:

v d R — Y (v drjds — s . %(s))
Lo% [s. H,(s)] \/(yz — 32/ ds — Los . H,(s) T — SV — 7 ds

_ F Yy — s%. x(s)
0V (9 — V(Y — ) .
Apart from the term on the right side, equation (87) for the function s.H,(s) agrees with
equation (50) for the function H(s), and can therefore be solved in a similar way (see¢ Appendix II).
In particular, we have for the tail part of the plan form, where s = s, = const, the solution

H, =0, so that only the front part of the plan form s < s, contributes to the first term in (82),
whereas the second term depends on the entire plan form.

ds (y = s9) . . .. .. (87)

5.2. Forces and Mowments on a Wing in Pitch.—In order to obtain the force (— Z) and the
pitching moment M with respect to the apex, we have to integrate the load

L= — 4LV .. .. (88

as given by equation (82), first with respect to the span. Since all the integrals involved occurred
already in the incidence case (compare equation (53)), we can use these results and obtain now

’ _of _ 8qx dsm
ledy—2LZ&Zy—7Hq(s)s%Q[1 x(s)]
8gs [ . w7 n}
R (Ul (1 55)1 (89
From this equation we obtain for the stability derivatives (¢ = mean chord = 2s,,/4)
oz 1
= __ = ___ .. .. .. .. .. .. .. .. 90
= 3 (gEv) p VS 80
and
mo— oM L e

T 0(gclV) pV2SC
the results

C 1" C S d
2§ = gffrayay = G| [P B — 0] 57

14 ¢ n
O e S e
and
—om L L[ tayax
e o ) *
N i T

In both expressions the first integral has to be extended over s between s = 0 and s =3,
(= maximum value of the local half-span), and the second integral, where #(s) and «(s) are
by means of s =: s(¥) functions of ¥, has to be extended over x between ¥ = 0 and » = ¢,
(= maximum value of x for any point inside the wing plan form). The first integral in either
expression depends only on the forward part of the wing, the second integral on the entire
plan form. ’
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5.3. Pitching Derivatives for an Arbitrary Axis Position.—In order to obtain the pitching
derivatives for an arbitrary axis position x = x,, we have to satisfy the boundary condition

wx,y, 0) = —glx — %) .. . .. .. .. . .. (94

inside the plan form of the wing. The resultant load consists of two parts, one corresponding
to the boundary condition w = — gx, which may be denoted by I, and leads to derivatives
%, and s, which are given in section 5.2, and a second load /,., which was obtained above (3.3)

for the constant incidence « = — gx,/VV. Thus we obtain for the stability derivatives z, and m,
for the axis position x,

2,90 1”1@@:%[(;0@05%_%1 [ e dy

{IV_E J VOCS
or
o 8C
—zq:~—zq0—é%"—; L )
and
_om .1 _
2mq7_5_5[(x xo)jzozydx
1 )
= _EJJ (ZO — %Zm (v — %) Ay dx
or
%1 8C 18C, %
e+ 53 ) £ 508 g

6. Resulls for Some Particular Wings—In the following section the results of the preceding
sections shall be applied to some particular plan forms namely the Delta wing, a plan form with
straight edges and unswept trailing edge, and finally a family of wings, which includes the two
preceding cases and consists of wings the plan forms of which (Fig. 8) have straight edges and
can be described by three parameters, e.g., the aspect ratio 4, the taper ratio 1, and the sweep

ratio a. In all these cases we shall give a list of the stability derivatives, as far as they have
been determined above. :

6.1. T'he Delta Wing.—In the case of a Delta wing, the function #(s) is always zero and therefore
#(s) =0, H(s) = 1, Hy(s) = 1, H,(s) = 1. Since s = cot 4, (4, = leading-edge sweep), all the
integrals can easily be worked out. We obtain

— 2, — % %%L — %nA (compare (54))
— M, = — % a;;” = énA (compare (57))
—1,= Blznfl (compare (76))- . .. (97)
— 2, = %ﬂA (1 — gé_’ | (compare (92) and (95))
o, = % A {g _ %’% . % ff} (compare (93) and (96))
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The results have been obtained before by Ribner®. These results also agree with the stability
coefficients for a Delta wing at supersonic speeds (e.g., Ref. 9), if we take there the limiting case
of a wing of small aspect ratio.

6.2. The Cropped Delta Wing.—Now we consider the family of ¢ cropped ’ Delta wings (see
Fig. 6), where the leading edge is swept at an angle 4, and the trailing edge is unswept. The
family can be described by two geometrical parameters, the aspect ratio 4 and the taper ratio 4
(tip chord divided by root chord). Here we have no direct interference between the wake and
the wing (v = 0), and thus «(s) = 0, H(s) = 1, H,(s) = 1, H,(s) = 1. All the integrals for C,,
Cu, and /, can easily be worked out between s = 0 and s = s, according to equations (54), (57)
and (76). This leads to the same results for z, and /, as in the case of the Delta wing (equation
(97)), i.e., these two derivatives are independent of the taper ratio 4. But for m, we obtain a
different answer:

—my = — 3 gk o)

ou 1+ 2

Here only the forward part of the wing (¥ < s, tan 4,) contributes to the forces. For the
derivatives z, and , also the rear part of the wing becomes important.

Since for the front part of the wing
¥ = stan 4, , ¢, = Sgtan 4, .. .. .. .. .. (100)
and for the rear part of the wing (s, tan 4, < x < c,):
s=s5,, .. .. .. .. .. .. .. .. .. (101)

we obtain for an axis position in the apex » = 0 according to (92) and (93) the following integrals :

S e}

¢ 0 Sm230 (1—=%e, Z
R I R I S~ de
STl [ Jo sin Tt a-ne, ¢F ]
We introduce
Sw __ 1 .14+ 2
3 1— 12, E=—5—c (102)
and have (axis at the apex x = 0):
1
—z, =4 T
21+ 2
: (103)
—_ o, = AT 1(] — 2)®
For an arbitrary axis position at » = %, we obtain from (95) and (96):
. zA 2 xo]
2, T[l—ﬂ_f Lo
wA X X
— ny, = 30 + AP 7 [1 + (1 — 1) — gt)(g_jt A — %22> + %E% (1 + /1)?] .
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In order to show the effect of cropping the wing tips on the derivatives, we consider a wing
family with a constant leading-edge sweep 4A,. Thus we express 4 by means of 4,;:

4s 1 A
— ’" 4, .. .. .. .. .. .. (105
(A S R (105)

and introduce the root chord ¢, as reference length, in order to illustrate more clearly the effect
of cropping the tips. This leads to*

— 2y =T “}'cot/ll
i
—~mw—4n i:{_izcot A, Céy—_:?g(ll;ﬁ)zcot/ll
—wfzgilicmAl | . (108)
—zq=2n(T1_-—|:—%2cotAl<1 —~i%°
_Mgzznékr%Jmu4[Of+ (12— 2%(1 1-—z>+2xq

In Fig. 7 the function — m, tan 4, has been plotted against the taper ratio 4 for the axis
positions x, = % ¢,, %, = % ¢, and for the axis position in the aerodynamic centre x, = 2(1 — )¢,

Near 1 = 0 the derivative m, is fairly sensitive to a small alteration of 2, in particular for an
axis position between the apex and the middle of the root chord. The variation of m, with 2
1s nearly linear, if the axis is kept always in the aerodynamic centre.

6.3. A Wing Famaly with Three Geometric Parameters—Finally we consider a wing plan form
with a straight leading and trailing edge, the sweep of which is 4, and 4, respectively. These
two edges (or their extension beyond the wing tip) may intersect at a distance y = s, from the
line of symmetry (y == 0) and the wing tip may be cut along a line y = s,, parallel to the x-axis
so that the wing has the taper ratio 4 (see Fig. 8). We define

5, == ¢, cot A4, .. .. .. .. .. .. .. (107)

and have s, = s, in Fig. 8a (s, < so) and s, = §, in Fig. 8b (s,, = s,). In order to describe the
plan form we shall use the aspect ratio A4, the taper ratio 1 and the ratio (sweep ratio)

__tan 4,
“fand, . - . .. . - .. (108)

These three parameters are most suitable since all derivatives are then proportional to the
aspect ratio 4 and a function of the two remaining parameters 4 and a, as we shall see later on.
The relations between these parameters and the quantities, occurring in the analysis, are

St Bog, S L=2 0 (09)

S, So 1—a

In the limit @ — 0 we obtain the family of cropped Delta wings treated in section 8.2.

* 1f we prefer the use of the standard mean chord ¢, the values of #, and 1, have to be multiplied by ¢,/ = 2/(1 -+ ),
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In order to show the influence of the three geometric parameters, three families, each with
one varying and two fixed values for the three parameters A, 2, and a are plotted in Fig. 9.

The contours of the plan form are given by the equations

Leading edge: x = stan 4, 0<s<s,)
Tip: §=35, ,
_ 110
Trailing edge: ¥y = (¥ —¢,)cot 4, = Y ~  cot 4, (110)
(¢, < x < s, tan 4, + Ac,)
where
1—al-++ 2
A, =_"-T"4, .. .. .. .. .. ..
cot 4, 1 (111)
If s, > §, = s,, we shall need a relation between # and s:
Zzﬁzﬁ.“—%:1@_4> (50 <S<S). .. .. (112
Su SU S[) Sn - SO Cl SO
For the rear part of the wing (s == s, > se), we have to use
r  lrx ,
_:___Q <X .. ... .o(us
- ¢ (¢, < %) (113)

which follows from (110).

6.3.1. Lift and pitching moment dute to incidence—The lift and the pitching moment of a flat
wing of the plan form described in 6.3 at the incidence « can be obtained from equations (54)
and (57). '

For plan-forms, where s,, < S, L.e., 4 > a, we have no interaction between the trailing edge
7(x) and the leading edge s(x). Thus H(s) = 1 and

(;:%Aa .. . .. . . .. . .. (114)
_ (A = a)
B e N 4 8 )

37 1+4l—a
(Cy is referred to the standard mean chord ¢ and the apex x = 0). For s, = §, = s, we have

to determine the function H(s) from equation (50).

First, we consider the case that g = a/(1 — a) is very small. As has been shown in Appendix
IV, the solution H(s) of equation (50), when replotted against the variable

_s—8_l—ars _lrs
¢ = 1)_M : 1),“ L L (118

S, — So a Sy

is in the limit # —0 given by

. 1 Sy — —0
Jm HO) = = T Vs = 9 £ s 2
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For other values of s,/s, = 1 --.4 a numerical method was used to calculate the solution H (s)
of equation (50). The method is described in detail in Appendix IT. The results are given in
Tables 1 and 2 and are plotted in Fig. 10 against sfs, = s/s,, When replotted against
o = (s/s, — 1)/u all the curves nearly coincide with the limiting casez — 0. The biggest difference

occurs for y —oco. Except for the neighbourhood of the wing tip, where the load decreases
- anyhow and a slight inaccuracy does not affect very much the overall results, the difference
between the solution for x — 0 and » = 1 is of the order 0-01. The solution for the constant
chord wing (u — o) decreases first, has a minimum of the order 0-942 and must gobackto H = 1
for s—oc0. The curve for s,/s, = 1-5, which is plotted in Fig. 10, was calculated from equation
(117), since it was felt that this approximation gives sufficient accuracy in this case.

Using these values for H(s) and the function «(s) according to equation (40), we obtain the
coefficients C; and C,, by a numerical integration according to equations (54) and (57). By
extending the integration up to a certain value s = s, a family of wings with varying taper
parameter 1 and fixed values of 4 and a is obtained from each of the curves H (s) in Tig. 10.
Because of the labour involved in determining each of these H-functions, an approximate method
was applied for values of @ between 0 and .

Here it was thought permissible to use the approximation (117) for H(s) and to replace the
function x(s), which is defined by (40), by :

#ls) =1 — o (1-1) L a

$

where %, = 0-85 yields a reasonable approximation of the function (see Tig. 18). Then the
integration in (54) and (57) can be carried out in general terms. We obtain

7 S7 Stm (S, — So) $,8S — S, sds}
—_ v A |:_0 ) 0/7v0 [
CL i 2 sz + 2 js() '\/(sn - S) \/(sn '|_ § —- 230) <1 §S8, — SD> sz

or, when substituting equation (116):

—epa®ipa]T g
Co=aj 1+2j0 v 2)(1 o) do
with ‘
_1rs, _Se_ 4 _. &
07,1—-‘[;(;0 1), p=ol= I (119)
and in a similar way :
. _om 2 s |: T Holh o ]
Cu=agd = 1+3j0 Ty (L= o)L+ o) o |
The evaluation of these two integrals yields the result (A < a < 1) :
Co=old §_ {1 4 Zegu(r/(1 — 0,7 — 1 + sin am)} L. (120)
— — 275 302 - . # 1y —1 Ot _ 2
Cur = O‘mA?{l + 3oop [(1 Q>Sll’l Om o ’\/(1 Gm)

— —M)<1 — V(1 - a))“ .. (121

where S ]_;’.1 .
So 1l —a
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Since the aspect ratio 4 occurs only as a factor and since » and o, are according to (119) directly
connected with 4 and «, the functions C,/4 and — C u/Cr can be plotted as functions of the
taper ratio 1 with 4 as a parameter.

In Fig. 11 and 12 equations (120) and (121) have been used for values of & between 0 and 1.
For @ = § the difference between the approximation (120) and (121) and the rigorous solution
according to (54) and (57), using the exact values for H (s) and x(s), was not noticeable in the
pictures. For the constant chord wing (4 = 1) also a rigorous solution without any approxima-
‘ions was determined by the method in Appendix II.1 and a numerical integration. The gap
for < @ < 1 was filled by interpolation, whereby the curves with the parameter (1 — A)/
1 —a) =s,[s, were employed and the results (120) and (121) were used as a first
ipproximation.

As can be seen from Fig. 11, C, is, for a given aspect ratio 4 and a given sweep parameter «,
ndependent of the taper ratio 2 if 1 > 4, and then C, decreases rapidly with decreasing 4. For
1 constant chord wing (2 = @ = 1) the plan form is better described by the parameter

Sw _1—24 142
So 1l—a 4

vhich is also indicated in the figures.

Atand, .. .. (129

The distance of the a.c. behind the apex in terms of the root chord is plotted in Fig. 12. It
lepends only on the taper ratio 2 and the sweep parameter a. For a given value of «, the a.c.
vhich is in the leading edge for an unswept constant-chord wing, moves backwards with
lecreasing taper ratio 2. In Fig. 9 the position of the a.c. is indicated for various plan forms.
he a.c. position in terms of the standard mean chord is obtained from this picture by a
nultiplication by the conversion factor

c, 2

c 1+

6.3.2. Rolling moment due to roll—The rolling moment due to roll (roll damping) of a flat wing
f the plan form given in Fig. 8 can be calculated from equation (76). Ifs, < 5, we have H, = 1
nd (compare equation (99)):

T

bh=—g54 (@<i)... . . e .. (123)

or §,, > s, the function H,(s) was determined from equation (72) with H,(s,) = 1 according to
re numerical method, described in Appendix II. The parameter values used in the calculation
ere a =0,4, 2, 1 or p =0, 1, 2, 0. The results are given in Tables 1 and 2 and plotted in
ig. 14 as functions of s/s,. The function H,/(1 — ¢*) was replotted against o, in order to
iclude very small values of x, for which H v/(1 — 0% tends to 1. Both pictures can be used
» interpolate additional curves for H,(s). These were checked by the method described in
ppendix II.2. ‘

The results for 7, are plotted in Fig. 15. Since !, is proportional to the aspect ratio A, the
mction — 7,(82/wA) is given as a function of the taper ratio 4 with the sweep ratio a4 as a
irameter.

For a given value of 4 and of the sweep parameter a the roll damping coefficient — 7, is
dependent of 2, if 2 > 4, and decreases rapidly with decreasing 2, if 2 <'a. Curves for constant
tdues of (1 — 2)/(1 — a) = X1 4+ )4 tan 4, are also included in the picture.

8.3.3. Force and pitching moment due to prtch—The force and the pitching moment ‘due to
tch for the same wing plan form follow from equations (92) and (93) after the function H ()
determined from the integral equation (87) with H,(s) =1 for 0 < s <'s,. In Fig. 16 the
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function H,(s) is plotted against s/s, for several values of s,/s, (5,/ss = 2, 3, o are computed ac-
cording to Appendix II, the remainder of the curves are obtained by interpolation and checking

by the method described in Appendix I1.2). The function H,(s) is also plotted against o.

Using these curves we are in a position to carry out the integrations in (92) and (93). We
obtain for s, < S,

AT [l f’”[l 7Y }5@ L
& 27 (2 50+Jcl 2<1+s,,,2) 0] (124)
7w, (3s,} om '] e x dx)|
— — AT oo l LA .. .. .. 5
Ma A252 8502+J01 [2(1+smz> %(7)] ¢’ (125)
with
c :clﬂﬂb c c‘lﬂld
1 yl——a’ ‘0 11_ a
¥ 1—a [x
2 S - (T — A= . .. . ..
s_,”_i—l
5o 1—a

For s, = §, = s, we have three contributions to the integrals, namely one for 0 < s < s, the
second for s, < s < S, where 7 may be considered as a function of s:

4 1(5_-—1> )

s a

and the third for the tail end of the wing, where x is used as a variable:
e =c,(1 — (1 —a) <x <l —Aa)/(1 — a) == G,
and 7 is given by equation (114). We obtain

ab iy [T (1 - u(s)) S

JT
27 ¢ {2s,} s S, 80

CLBO D -]ZE s R0 D -] - o

7 rz 3 2 St 3d
—m =A% {8__3&2 [ (1= 9) S

Sw’Se”
w1 7 s*ds a1 7 % dx
PO = ) S B+ ) = 0] bz
Here all the integrals were determined numerically or graphically. ~ The results are given in
Figs. 17 and 18. For a given value of the taper ratio 2 and a constant aspect ratio A the
derivative — z, increases first with increasing sweep parameter a and then decreases, whereas
the derivative — m, increases all the time with increasing sweep parameter a, except for very

small values of 2. The curves (1 — A)/(1 — @) = s,/s, = const are also indicated for the region
4 < a. They can usefully be employed for interpolation between the calculated curves.

8.4. Pressure Distributions for Two Particular Plan Forms.—In order to show the form of the
pressure distribution over a swept wing at sonic speed, the pressure has been calculated for two
flat wings at incidence «. The plan form of both wings is given in Fig. 19. The first wing
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(cropped wing) belongs to the family considered in 6.3, the adpect ratio is 4 = 2-835, the taper
ratio 2 = 0-4, and the sweep of the quarter-chord line is 4, ,, = 45 deg. The pressure distribution
at a number of chordwise sections (y/c, = 0, 0-2, 0-4, 0-6, 0-8, 0-9) is given in Fig. 20. Then
the plan form was faired according to Fig. 19 in order to avoid the sharp kink at the leading
edge of the tip. (A mathematical expression was not used for the faired leading edge, but both
the shape ¥ = s(x) and the derivative s’(x) must be defined numerically or graphically.) The
pressure distribution of the ‘ faired ’ wing is plotted in Fig. 21. In both cases the approximation
(117) for the function H(s) has been used, which should be good enough, since a =: 0-4747 is
not too big.

A comparison of Figs. 20 and 21 shows, that the fairing has a considerable effect on the pressure
distribution. Instead of the two kinks in the pressure curves, which correspond to the two Mach
waves (at M = 1 a Mach cone degenerates into a plane normal to the undisturbed flow) in Fig. 20,
arising from the tip and the trailing edge of the centre-section, only the last one appears in Fig. 21,
whereas the first one has been smoothed out.

The local aerodynamic centre for the chordwise sections is plotted in Fig. 19 for both plan
forms. Apart from the region of the wing tips, the fairing has not much influence on the a.c.
position. The overall a.c. and the overall C, are practically the same for both wings as can be
seen from Table 3.

Thus the fairing of a plan form can be used in order to ¢ fair * the pressure curves. Whereas
the load of the cropped wing is concentrated on the front part of the wing, the faired wing shows
a more evenly distributed load. In order to avoid the sharp pressure rise along the Mach line
% = ¢,, extending from the kink at thé trailing edge, a similar fairing of the trailing edge near
the middle of the wing may be useful (compare Appendix II.1). It would spread the pressure
rise more evenly over a greater area.

7. Calculation of the Drag.—The induced drag and the drag coefficient C,, (neglecting the
drag Cp, due to friction) can easily be obtained, after the lift coefficient C, has been calculated.
As was shown by Ward?®, the following relation holds:

- 1/0C
’D_CD°+Q5;)a=o°" s

Thus the drag coefficients can be determined using the chart of Fig. 11, provided one can obtain
a reasonable estimate for the drag coefficient C;, due to friction. The latter probably depends
very much on the wing sections and on the wing plan form, since this is responsible for the
formation of shock-waves, which may affect the drag to a great extent.

+ 8. Conclusions.—Theoretical values, based on the assumption of an inviscid potential flow
(linearized with respect to the magnitude of the disturbance caused by the wing), are given for
the lift slope dC;/d«, the pitching moment C, for a wing at incidence, and for the stability
derivatives /,, z,, and m,. The results are valid, if A*(1 — M?) is small compared to 1. All these
quantities are proportional to the aspect ratio 4. For a wing family depending on three
parameters (see Fig. 8) the results are given in the form of charts (Figs. 11, 12, 15, 17 and 18).
These charts can be used to estimate the magnitude of the lift slope, pitching moment, roll
damping /, and damping in pitch m, for a wide range of plan forms. Minor alterations of the
plan form, e.g., rounding off of corners or tips, usually do not affect very much these overall
values, as can be seen in the example treated in section 6.4. But these minor alterations may
have a big effect on the shape of the pressure distribution. A plan form with curved edges
without corners has a much smoother pressure distribution than a plan form consisting of straight
lines linked by sharp corners (compare Figs. 19, 20 and 21). Each corner gives rise to a Mach
cone (which is here degenerated into a plane, normal to the flight direction). In a real flow this
Mach cone may develop into a shock-wave with the associated sudden pressure rise and drag,
whereas it is likely that a rounded leading edge produces a smoother pressure gradient possibly
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without a great increase in drag. Thus the choice of the plan form of the wing becomes equally
important in sonic flight as the choice of the chordwise section in subsonic flight for a wing of a
larger aspect ratio. .

As regards the applicability of these results, which are based on the assumption of a non-viscid
flow without interference of shock-waves, to actual flow problems at transonic speeds it may be
pointed out that this theory will at least show the main trends of the behaviour of a sonic flow
at a small incidence. All plan forms, for which the linearized theory yields pressure distributions
with steep pressure rises, are likely to produce shock-waves and the resultant drag increase and
rapid variation of the aerodynamic characteristics with Mach number near the speed of sound.
Thus such plan forms, where even the potential theory shows rapid variations of the stability
derivatives near M = 1, will have to be abandoned in favour of other plan forms with more
favourable characteristics. These will have to be tested as to their behaviour in a real flow.
Thus the linearized theory, given in this report, will provide a useful tool in the design of transonic
aircraft and the investigation of transonic flow problems. The range of validity is usually
restricted by an incidence of about 4 deg, since, e.g., for a Delta wing at this incidence the flow
tends to break away from the surface near the apex and non-linear effects have to be accounted for.
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APPENDIX I
The Uniqueness of the Solution for the Two-dimensional Problem
In order to show that the solutions of the Laplace equation (11), which we have givenin
sections 3, 4 and 5, are unique, we employ a conformal transformation of the Z-plane (Z = y 4 z)

of Fig. 3 into an auxiliary U-plane.

At first we introduce the 7-plane by

T — ,/C':iz Y &)

- (see Fig. 22) and go from there into the U-plane by means of

%:@nUzva—ymwnzvu—ﬁﬁ

Rrea ] —pst=1— k™. N ¢ 824

Here sn U, cn U = 4/(1 — sn® U), and dn U == 4/(1 — £*sn® U) denote the elliptic functions,
introduced by Jacobi, with the periods (4K, 22K"), ( 4K, 4¢K’) and (2K, 4iK") respectively, where

dx

A
K= K(k) = f VI — FF st x)

and
K' =K'(k) = K(k’)
are complete elliptic integrals of the first kind.

In Fig. 22 points, which correspond to each other in the Z-, 7- and U-plane, are denoted by
the same letter. The entire Z-plane is transformed into the interior of the rectangle B” BB’ B”,
of the U-plane, the point D (U = ¢K’) corresponds to Z = w0, the points A (U = 0) and A’
(U=2K") to the leading edges Z = —-s and Z = -+ s, the points B, B" (U = K,
U=K-+2ZK') and B, B (U= —K, U= — K + 2K') to the trailing edges Z = — 7,
L=+

Since the pressure I = const #{F} must be a continuous function everywhere in the Z-plane
(which is slit along AB and A’B’), with the only exception of the neighbourhood of the leading
edges A and A’ (where the pressure may tend to infinity), the complex pressure function F(U)
must be bounded and continuous everywhere in the U-plane except near A, A’ and their
equivalent points U = 2mK -+ 2nmK’ (m, n = integers). F(U) must have the period 2K along
the real axis in order to ensure continuity of the pressure between both faces B C B’ of the wake.
Since the line #(U) = 0 corresponds to the left-hand section AB of the wing, the line S(U) = 2K’
to the right-hand section B’A’ and so on, the pressure function F(U) or at least its derivative
aF[dU must have the period 4¢K" along the imaginary axis. I itself may take on an imaginary
additive constant if U is replaced by U + 4:K'.

Near U = 0 the function F(U) must behave as U™ and 4F/dU as U~* since only this
singularity leads to the well-known form of a singularity near the leading edge Z = £ S.

Our solution 7 for the wing at incidence (compére equation (43), (45)) may be written as

%:~HH%0%R
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with

e UdnU | (“Tqarr E(k)} | |
F(U)~W4-Jo[dn U~ 2] U O 8
alu KR sn?U’
For the wing in roll (equation (68)) we have the solution
L ) #(F
7ET (%) A{F,}
with
n_cenlU 1 . o
,FP(D)_SHU_]_Z,__--i(dn(U 1K) - 1)
(I.4)
ar, — dnU __ ., e e
oAy tk*sn (U — ¢K') en (U — iK')
Finally for the wing in pitch we have (compare equation (80))
I qx ds gs
—_ I — = N —_ :% _— = @ g
where FF(U) is given in (I.3) and
. v E(k)}
. r 277 .
F,(U) ian U+ [ [dn U~ 2]
ar, _ o e 27— E(k) . L.
it +iRsnUcen U - dn* U K@ (1.5)
1 _ER) g [ -7
=1 &) £snU (sn U — zcn U)

The function dF/dU has the periods 2K and 22K’ and a pole of the order 2 at U==2mK +-2niK’.
Its integral F(U) vanishes for U = 7K’ and the constant » = E/K has been chosen as to make
F(U + 2K) = I(U). Furthermore we have F(U + %K') = F(U) — #i/(2K) so that #Z{F} has
the period 2:K" as required. Since an elliptic function is (apart from an additive constant)
determined in a unique way by the principal part of the expansions at the poles, the only
arbitrary constant is the coefficient of U~* of the expansion at U = 0 which is determined after-
wards by an integral equation. Thus our solution is unique.

The function F,(U) has the periods 2K and 4K’ and poles at U = 2mK + 2nK’. The
integral IF(U) vanishes at U = 7K’ and we have :

F,(U + 2K) = F,(U), F(U + %K') = — F,(U) .

Thus the pressure I ~ %{F,} has a different sign along the right and the left wing section, as

required. Again the solution is determined in a unique way by the principal part of dF,/dU
at the pole.

For the wing in pitch we have to use two functions, one F(U) for the forward part of the wing
with ds/dx > 0 and another function F,(U) for the whole wing. The coefficient of U~? near
U = 0 of the first function F(U) follows in a similar way as for the incidence case from an integral
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equation. The second function F (U) is introduced, to satisfy the boundary condition (79)
9(I/V?/az = g|V along the wing. ~Since this contribution to the pressure function must remain
finite everywhere in the Z-plane (for Z = 4 s may now correspond to a side edge or even a
trailing edge of the wing), we have to take care that no singularities occur inside the rectangle
B” B B’ B”, which means that the singularity must occur in the adjoining rectangle. = Thus the
function dn*U has been introduced in 4F,/dU, so that dF,/dU has the periods 2K and 4K’
and a singularity at U = 2mK 4 (4n — 1)K’ of the order — 2.  Its integral F (U) vanishes
for U = 7K' and we have o

F,(U + 2K) = F,(U)

FAU-+2u@);:EAU)—-;%-+2¢mlu

. o %
ﬂw+mm:mm—%

so that the real part of F, has the period 4K’, and is symmetrical with respect to the line
S(U) = 1K'

APPENDIX II
Solution of the Integral Equation (50)

In this Appendix we shall describe a numerical method for the solution of the three integral
equations (50), (72) and (87) for the functions H(s), H,(s) and H,(s). The equations may be
written in the form (s, <'s)

Jkﬂ@J@:gwgmﬁmwJ@@%;&j%%;ﬂ L (0)
o ) e -5

and

j :0 éﬁ—l s H q(31)> ,\/ C: — :i:) ds; — J :0 $ . Hq(sl)> i’;(f:lﬁls;f)— \/%(13 : i) Zi)l

_ f (s* — s, %) dsy
WV = SV — )

Here », = 7(s;) and %, = x(s,) are for any plan form known functions of s,,

(87)

1. Solution Near s = so,—We consider first the neighbourhood of s =s,, where the influence
of the trailing edge comes in first. We may assume there that the leading edge is straight and the
trailing edge may be either curved or straight (# = 1) and have thus for the right half-wing
(v >0): - '

o 31>:,.80 _l_ (% - C,)Bl B
w ' . . P (II].)

r—o 0 <m<1)

CT

7, = SoB, .

so that (B,, B,, B; are suitable constants)
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S; — S\ $; — So\*
7/]_ == S(]B2< t 0> —_ S(]B3( 1 0)
¢, B, , So

¥

2: —ﬁzﬁ _wB‘Z‘EE_ 2m
Bel-=1- (2 1)

and

E(k) 1 1
~ K(k) ~ log (4s,/r,)  log {4sy"[By(s, — so)™}

l?

(11.2)

Furthermore we may write

V(8" = 0%) = V(s — s1)v/(2s0)

so that finally we obtain instead of (50), (72), and (87) the simplified equations:

P ds, s mB2( 5L S i x,) ds,
Jats) e [ ) (P 0 (S)_ ; )i

s ds, oy (75 S =) 1) g,
LDH;,, (sl)—————_LO 1( < So > > \/50,\/< _

Vi ST
’ o mB2( S So S %, ) ds,
j0d31< >\/3—“51 _L°HQ(81)< ( i;(s>—81) )
_ J (1 — 5,) d31 . '
V(s — sy

In the second term the functions H, H,, H, may be replaced by 1 and we obtain the solution in
the approximate form: '

, . 5 Sl i So 2m—1
SUH (Sl) = — % + WLB3 <S—>
0

- 2m -1 :
S,)HP’(SI) == MB:;z (s—l—s—"ﬂ)> v (113)
0

d N aH, __, g ((S1 — Sp\™ !
= (SlHq(sl)) =1t s Gt =1 = 2 mB, <T)

or
2m—1
SoH,'(s)) = — %, + mBy (S_Ls:ﬂ>)
0
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and finally
H(sl) ] le ?ﬂ} _l; % B;«;Z(S‘IT_\EQ):ZM
. 0

s Sp

: ! 2m 7
Hys) = 1 +%&ﬁ%§0 Y o ¥

N 1oy dS; | 1 pafS1— S\
H(s;) =1 ZLOT‘f‘st (T)

Thus the influence of the second term, which produces a fairly quick decrease in H and thus

an adverse pressure gradient in the chordwise direction, may be cancelled by the third term,

which is of opposite sign, if # is chosen in a proper way. For a straight trailing edge (m = 1)

the influence of this term may be noticed only for bigger values of s — s, but for a parabolic

trailing edge (m = }) its influence appears very soon and may even (m < %) produce a favourable
pressure gradient in the chordwise direction.

. 2. An Aliernative Form for the Integral Equation.—In order to eliminate the derivative H' in
the equation (50) we integrate by parts and obtain

mﬁ%m@_mmJ@:gy&

s J’S {H(s) — H(s))} [s:(s* — 78) — 6131’1/ds‘1 (8P — 5] ds,
— 302) + S ,\/(sz — 7,12)(32 - 312)3/2 .

= [H(s) — H(s,)]

V(s

= [ (ry drijds, — »5,) ds,
A A

or

(s)ry drifdsy — H(sy)s,
V($* — 1)/ (s* — )
_ﬁgg—ﬂwhvw~m@p ... .. (L5

— 312)3 /2

4
tds,

s ) — Hsg = [ F

The corresponding equation for H, is obtained from (IL.5) by replacing #, by 1 and adding
the term on the left-hand side of equation (72) on the right. In the equation for s,H,(s,) we
have to add on the right of (I1.5) the term on the right of equation (87).

Equation (I1.5) suggests, to try a solution by means of an iteration process where an approxi-
mation for H(s) (obtained by guessing or another calculation) is introduced in the right-hand
side and the improved function H(s) is obtained from the left. Unfortunately this method does
not work very well, unless the approximation introduced in the right is already fairly near to
the actual solution. Thus this procedure was only used to check solutions calculated by another
method (see (I1.3)) or to check solutions which had been obtained by interpolation between
functions H(s) calculated according to (II.3).

For the accuracy, required to compile the graphs in this report, it was sufficient to determine
the integrals on the right of (IL.5) numerically or by plotting the integrands and counting out
the areas. ' '

3. A Direct Method of Solution.—Since the iteration method, explained in section 2, did not
yield satisfactory results a more elaborate method was developed, to solve equation (50) or
(IL5) for the function H(s). It was used to calculate a few curves for H (3), Hy(s), and H,(s).
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Then a number of additional curves for different geometrical parameters of the plan form were
interpolated and the entire picture was checked and corrected if necessary, by the method in
section 2. P : - ‘

The new method is based on the assumption that our solution H(s) may be approximated
by ‘a straight line for any interval §; < s <.§;,,, which is not too big. Since the singularity at
the beginning s = s, is such (compare (II.4))that this assumption holds even there with sufficient
accuracy, we may apply our method straight from the beginning s = s,.

Thus we are entitled to approximate also the function

H(s) 7, dryjds, — H(s)) . s, . %
V(s* — )

by“a- straight line for the interval §; < s <3§;.(j=0,1,2...):

— (s, 51) R § ¥:)

f(S, 31) —_ (§f+1 — Sl)f(s’ §j) + (31 — §j)f($, §j+1) )

Sjz1 — S

Then the first integral in equation (IL.5) can be evaluated as a sum of integrals, each taken
over a small interval §; < s; < §;1 (s = 8y) : -

J';“'lf(gm $1) 481 §j41/ G, §5) — 5,8, $54) v,
SoOVEE—st . S S 7
LGS =S S) Ly L L L L (18)
Si41 — S ! :
where
I = J;Hl : —“—dél : — sin—t S gin—t 5
T V) R o .. (IL9)
Sj41 WA : n - . N
I3 = J;j K/(—S?’Zi’—lsﬂ = — V(& — 540 + V& — 8
" In the second integral in (Ii.S) we may replace
[H(s) — H(s)] s10V/(s* — 7% =g(s,81) - . .. .. (IL.10)
by a ‘straight‘ line: - |
o(s, ) = B — s)gls, §) + (5. — §;)gs, §i41) - TR €1 8 3 )
: - Siv1 — S ‘ : ' '
Then the integral over a small interval §; < s, < §j11 becomes (s = §y):
[ 58] g, — G elon ) = Sglon S gy
P — s ' Siv1 — §; >
486w S — 8w S) L (1119

Si+1 7 Sj
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. where

o fm ds, 1 [ i1 3 J
37 — - 7= 9 _ o\3/9 = o T = 5 = o\ T 7/= 5 T = v
R e A V(5" — §j34%) V(5" — §;) . (IL13)
TS G =S VE 500 VE 5 l
For the last interval Sy_1 < §; < Sy = s we have instead (j =N — 1):
‘g@ﬁg:§f_s_g( Y T 4 8 08 2
N N—-1 .
and
SN g(S‘N, Sl) ds; Sy — Sy Iy I1.15
waf—awﬂ_ﬂwﬁN) O § § 15 1)
where
I J;N By — s ds; fl\’ ds,
P S (8 — 5P Jsve14/(By — 50 (B + s
— (& ) Sy — Sz\r—1 ‘
e Gy — IV = Av/(sN_F e .. .. .11
Using only one interval §, < s, < §; = s (N = 1) we obtain from equation (I1.5) the following
equation:
O S H - H — $1/(s1, So) — So f(S1, $1) e
VEE— 5 [H(s,) (80)] : S 10
+,f(81, S1) — fIs1, So) | I, — &(s1, o) I
Sy — So S; — So

H (50)S9%(5,) S o — I3

S [H(s) — 1] = —

A (8.2 — s°) 1 . S — S
’ _ H(s)(r, dv./ds,) — $1%(51)) So 110 — 13,
V(8" — 7¥) Sy — S
/ 2 2
SISt =) s g
S1 — S

which is a linear equation for H(s;). It holds only if the interval §, < s, < §;, = s is not too big,
so that the approximation of certain functions by straight lines, as indicated above, is
permissible. After H(s;) has been determined, we may calculate H (sg) at a point s, > s; using
the values H(s,) and H(s,) already determined. The linear equation for H(s,) is more complicated
and more tedious to establish and it shall not be given here explicitly. In the same way we
calculate the remainder of the function H(s), replacing equation (I1.5) by a sum of integrals
over sufficiently small intervals in the way explained in equation (IL.8), (I1.12) and (I1.15),
which leads to a linear equation for the value H(s,). Since the greatest contribution to the
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coefficients of this equation arises always from the last part-interval, it is essential to keep the .
last intervals (preceding §,) small enough, whereas the first intervals (near s,) may be chosen
much bigger, in order to reduce the time required for the work.

This method becomes a little unreliable as one approaches the wing tip of a fully tapered wing
since there (s* — 7,%)'/* tends to zero. The steps §;,, — §; must be chosen fairly small there.
All results were checked by the method of I1.2. In general the contribution of the wing tips in
such a case is fairly small (since the wing sections |s — 7| are small there), so that a certain
inaccuracy of the results near the tips was considered to be fairly harmless.

Apparently equation (72) can be treated in exactly the same way, the only difference being
that » has to be replaced by 1. The same applies for equation (87), where only the additional
term on the right has to be introduced, which is a given function of s for every plan form. Thus
it seems unnecessary to give more details of the calculation here.

APPENDIX III
A Particular Wing with a Spawwise Constant Load Distribution (Ref. 4)

As was shown in section 3.4, equation (60), a wing plan form, which is defined by

V%:s.%(s):s%
B =1—7s" . . . . . . .. (60)

does not develop a wake between the ‘ tails ’ of the wing — » < y < 7, and has thus a constant
sectional lift over the middle part of the span (compare Ref. 4).

The plan form of this wing is obtained by integrating the differential equation (60). We
obtain

S - dR® oAy - ga
HQKE_KQ_Z_{—;ES)——E (1—mK. .. .. .. . (1L

Since we have the following relation for the complete elliptic integrals K and E

az%z [E — (1 — IK] — 3K Lo amy
we may write instead of equation (IIL.1):
_sdis[E_(1_k2)Kj;E_(1_k2)K
which may be integrated as
So

—S:E—(l—kZ)K .. .. .. . - .. (IT1.3)

since for s = s, we have r =0, 2* =1, and E = 1, K = w.
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For small values of #%/s* = 1 — %2, we may write
So__ 4 197 N L
T=l-gh(a+)+.

where

A = log%9 == Jog = 48"

If the leading edge is assumed to be Stralght the shape of the trailing edge is approximately
parabolic.

If the leading edge is cut off at a value s = s,, and then joined to the trailing edge by a straight
line s = s,, parallel to the x-axis, this part of the wing sheds vortices and a Wake betweeny = » (sm)
and vy =s,. The load drops down to zero immediately after the span s(x) has reached its
maximum, due to the Mach cone, extending from the wing tip.

If we consider a wing of a great span, the asymptotic value for the trailing edge is obtained

for big values of s and # and small values of 1 — #%/s* = &* as
25 _ (8—7)[1—% 7+...} e
yz $

as described in more detail in Ref. 4.

APPENDIX IV
Solution of the Integral Equations for H,, H,, and H, for Small Values of u

We consider the integral equation (50) for the function H(s) for the flat wing at incidence «
in the case of a wing, which is not very different from a Delta wing. We introduce

. a 17/s, /s
p=rt al_;_ 1), a__ﬁso 1) .. .. (118
and obtain from (50) (H(s,) = H*(01) 5 #1(s1) = %,*(0y)) !
= s ( + po)? — 1+ﬂ2‘71
0 JOH (Gl)\/li( —]—‘lLO‘)z 1 Mal :I
~ ¥, (1 + p)or — u(1 + poy)us*(oy) doy, .. (IV.1
I T L VI b ot (e - (VD)
since
ri  l7sg o
AN 1>M(1+'u)01 V.2
%:lzl—l—‘u; ds; = p do, | |
s, a H ,
We multiply equation (IV.1) by 4/(2¢) and go to the limit x —0:
0 — J" dH*(0,) 4/(1 — 0,%) J H*(0,)0, do,
o doy \/(o'——al V(1 — 0,84/ (0 — oy)
which is equivalent to
o a " s do, .
O—JOdGI[H()\/(l al)}m. R A )
41
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This is Abel’s integral equation for the function H*(o;)4/(1 — o,%). The (unique) solution is

o 9 ___]. %1 d(}' .
H(Gl)'\/(l Gl)wa_zjo W—I:
since H*(0) = 1. Thus we have for small values of y = a —
H(s) = Sn— So . . .. .. . .. (IV.4)

A (S, — $)V (s, 5 — 280)

By similar considerations it can be proved that for small values of u, H,(s) = H(s) and H(s)
are also given by equation (IV.4). Whereas the approximation (IV.4) for H(s) can be used over
quite a considerable range of g in the incidence case, as has been shown in section 6.3, the
applicability of this approximation for the functions H,(s) and H,(s) is much more restricted.
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"TABLE 1

The H-functions as Functions of s/s,

H(s) H,(s)
E Ezl:w )l:2 sﬂ.:w S‘)L_E; ﬁ:2 &_— S
So S So S S 0 So
1-0 1-0 1-0 1-0 1-0 10 1-0 1-
1-05 | 0-992 0-995 1-001 1-003 1-004 0-980 | O-
1-1 | 0-984 0-997 1-005 1-012 1-015 0-967 0
1-2 0-972 1-011 1-015 1-034 1-058 0-938 0
1-4 0-957 1-095 1-041 1-102 1-190 0-898 0-
1-6 0-948 1-256 1-070 1-186 1-425 0-870 0
1-8 0-944 1-622 1-099 1-285 1-905 0-850 0
1-9 2-077
2-0 0-942 — 1-127 1-405. — 0-836 0-
2-2 0-942 1-154 1-547 0-826 1-
2-4 0-942 1-179 1-731 0-819 I
26 1-
2-8 1-
2-9 1-
3-0

p=%_1 =1 3__1)
So 1\ S
TABLE 2
The H-functions as Functions of v = ! (§ — 1)
. LA
H(s)/(1 — 0% 2,5)v/(1 — o*) H(s)v/(1 — o)
0 1-0 1-0 1-0 1-0
0-05 0-994 1-010 1-002 0-967
0-1 0-992 1-029 1-010 0-942
0-2 0-991 1-080 1-032 0-907
0-3 1-131 0-883
0-4 1-004 1-178 1-091 0-863
0-5 1-216 0-842
0-6 1-005 1-287 1-140 0-818
0-7 1-236 0-785
0-8 0-973 1-143 0-732
0-9 0-905 0-632
wSo ) V(L —0f) =1, B H(s) (1 —0o) =1, 3, Hy(s)+/(1 — o
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TABLE 3

Aevodynamic Charactevistics for the Wings in Fig. 19

Cropped wing | Faired wing

ac,
o 4-11 4-11
o4 )

acCy
— 3-01 3-06

o

a.c. position

0-73 0-74

? behind apex
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Fic. 2. The plan form of the wing.




14

—_—
-9 C
SECTION AA
! } -1
- 510
. 20°
89°
WAKE
/ j’ Lz.0 ' 85°
] ‘ ' sinX 80°
-3 -t q + £
70°
60°
SECTION BB o
30
3 |
WAKE \\
. N SN
=S -+ C T B
o 1o° 2o° 3o° 40° 50° 60° 10°
: 2
x=sin" |3

"SECTION Ccc¢C

F1c. 8. The (y, z)-plane (sections AA, BB and CC). F1G. 4. Pressure curves for the incidence case.
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F1c. 5. Pressure curves for the wing in pitch (second contribution)
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F1c. 6. The cropped Delta wing.
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F16.7. The derivative — s, for a cropped Delta wing and three
axis positions (%, = ¢, %, = 2¢, and %, = £(1 — A)¢, = position
of the centre of pressure).
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Fi16. 8. A plan form with three parameters
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F16.9. Three families of wing plan forms (the position of the aerodynamic
centre is indicated by @).
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F1G. 10. The functions H(s). (Incidence case.)
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F1c. 12. Position of the aerodynamic centre for the family of Fig. 8.
(Measured from apex in terms of root chord.)



IS

- E(K) .
B
LA
05 //
V/(l-ooss (:--sf
{eaur (18)}
|

Ne o+
<—5‘ CR §

F16. 18. Approximation to the function » = E(k)/K(k)

{(equation (40)).

2-0

*05
Hpls) //0‘
/4=v0 /
85
5 /
2.0
/ /xa»o
p %
/ I
4 = A
| |
e 15 20 %o 25
-3
v2 A7 g0
Hels) e / m‘_— gn 2-0
-
0 r0 |8 o
o 05 - 10
F16. 14. The function H,(s). (Wing in roll.)



oS

Sa_(a
e
5.7 2—“:20
0 - Sn.25
ST\ =2
57202
-2 o :
-_'EI—P e ‘\—-;,_é//
T
3z g \\\ _SS% Y-S
o %
o
10 5 20 25
/s,
_______ EXTRAPOLATED
VALUES Sn
I-o : .10
- - X
O o5 A le) X\\
Frc. 15. The derivative J, for the wing family of Fig. 8, Ho {1-07 \x\
. 20
25
3Q
o-5
e}
o-5 o 1«0
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F1G. 18. The derivative m, for the wing family of Fig. 8.
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F1c. 19. Two particular wings, one with straight edges (cropped wing)
and one with faired tip.
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