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Summary.--A method is developed for the calculation of the pressure ctistribution and the aerodynamic forces and 
moments acting on a wing at incidence, a wing in (steady) roll and a wing in (steady) pitch. The calculation is based on 
the assumption of an inviscid potential flow and is restricted to small incidence and thickness ratio, so that quadratic 
terms in the perturbation velocities are neglected. The results are valid, if I 1 -- M" I- A" is small compared to 1, i.e., 
either for any Nach number M for wings of a small aspect ratio el, or for any aspect ratio for sonic speeds (M N 1). 
The aerodynamic coefficients and stability derivatives l~ and m~ for a wing family which is described by the parameters 
aspect ratio A, taper ratio Z, andsweep ratio a (Fig. 8), are given in the form of charts. The calculation indicates, that 
the plan-form of the wing is of similar importance as regards the pressure distribution at sonic speeds as the chordwise 
section of a wing at subsonic speeds for wings of larger aspect ratios. 

Although the calculation is based on the assumption of an inv-iscid flbw without shock-waves, the results are thought 
to be useful for showing the main trends of the behaviour of a wing near the speed of sound. Plan-forms, which show 
rapid variations of the aerodynamic properties near Mach number M --  1 according to the potential theory, will have to 
be abandoned in favour of other planforms with more favourable characteristics. 
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NOTATION 

Undisturbed velocity 

Cartesian co-ordinates 

Perturbation velocities, caused by the wing 

Air density 

V/a~o, Mach number 

Static pressure 

(P - -  P~)/P, Enthalpy 

Incidence 

Angular velocities about the x and y-axis 

* R.A.E. Report Aero. 2439, received l l t h  February, 1952. 
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Taper ratio 

Wing area 
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Mean chord 
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I. l~trod~tction.--The theory of the lifting surface has been developed by various authors to 
such an extent, that we are now i~ a position to calculate the pressure and the lift distribution 
over a wing at either subsonic or supersonic speeds. The calculation is based on the assumption 
of an inviscid flow without any vorticity outside the wake. Furthermore it is assumed, that the 
disturbances, which are caused by the presence of the wing in a parallel flow, are small enough, 
so that it is sufficient to consider only linear terms in these perturbation velocities. Unfortunately 
the theory of the lifting surface, as it has been developed so far for subsonic speeds, breaks down, 
if the Mach number tends to I. In a similar way many methods developed for supersonic flow, 
which are usually based on certain facts, which hold only in supersonic flow, lose their meaning 
near the speed of sound. 

Thus it seems only natural to try another approach to the problem by starting from a wing 
flying at sonic speed and to extend the method later on to cover both subsonic and supersonic 
speeds. The present theory applies to wings of any aspect ratio moving with a speed very close 
to the speed of sound, and to wings of small enough aspect ratio at speeds remote from M z I. 
This assumption permits the splitting up of our three-dimensional problem into two problems, 
namely to find a solution of the Laplace equation in two dimensions y and z (spanwise and normal 
to the wing span and the flight direction) and secondly to connect all these solutions by means 
of an integral equation in x. In other words the wing is divided into strips extending spanwise 
(not chordwise, as is usual in the theory of a wing of a not too small aspect ratio at subsonic 
speeds) and the solutions for each strip are combined afterwards to give the solution for the wing. 

The justification for this method lies in the fact that in the three-dimensional Laplace equation 
for a steady flow the term containing the second derivative with respect to x, has the factor 
(I -- M2). If non-dimensional co-ordinates are introduced the assumption on which our theory 
is based may be put as 

!I - M IA << I 

(A ---- aspect ratio). Thus all our results apply either for any wing at sonic speeds (/II r ~ I) or 
for a wing of a small enough aspect ratio A at any speed. 

After outlining the fundamentals of the theory in section 2, we shall consider the flat wing of 
an arbitrary plan-form at incidence in section 3, the wing in steady roll in section 4, and the wing 
in steady pitch in section 5. These results are applied in section 6 to the calculation of the lift 
and pitching moment due to incidence, the damping moment in roll (l~) and the force (zq) and 
pitching moment (~¢q) due to pitch for a family of wings, which depends, on three parameters 
(Fig. 8). We choose the aspect ratio A, the taper ratio i and the ratio a ~- tan A~/tan A~ of the 
trailing and leading-edge sweep (A~ and A~ respectively), to describe the family, because with 
their help, the results for the forces and moments can be presented in a most convenient form 
(see Figs. 10 to 18). 

In order to show the form of the pressure distributions to be expected at sonic speeds, a pressure 
plotting is given for two particular wings (section 6.4, Figs. 19, 20 and 21). It shows the large 
effect of small changes in the wing plan form. As can be seen from the figures, a fairly slight 
rounding off of the leading edge results in a fairing of the pressure distribution. 

It may be pointed out, that a theory for a wing of small aspect ratio was first developed by 
R. T. jones% although on slightly different lines. It covered only the case of a Delta wing and 
similar plan forms, where a spanwise section consisted of. only one part. It was applicable also 
to a plan form, where the local span reached its maximum in front of the foremost point of the 
trailing edge. Jones' theory was applied by Ribner 2 to determine most of the (steadyl stability 
derivatives for such plan forms. Later on Heaslet and Lomax 4, 5., extended the analysis to cover 
also the case of a spanwise section consisting of two separate parts, but they succeeded only in 
calculating the load over a particular wing plan form, which is shaped in such a way, that the 
load distribution over the middle part of the wing is constant, so that no wake is developed there, 
but only .from the outer parts of the wing (compare section 3.4). 
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Robinson (revised version of Ref. 7) treated the case of a wing of an arbitrary plan form at 
incidence. Unfortunately his numerical results, which are given only for the fully tapered wing 
do not agree with ours, probably due to an inaccuracy in the numerical calculation*. 

The main features of the pressure and velocity field around a flat wing at incidence ~, moving 
at a Mach number M = 1, can be summarised as follows. The incoming flow is undisturbed in 
front of the Mach wave (Mach plane), which extends from the apex of the wing. The pressure 
field produces a load on the front part of the wing, which is bounded by the Mach wave (plane) 
extending from the wing tip (region I and II  in the adjoining figure).. There is no load on the 
rear part  of the wing behind the tip Mach wave and the pressure IS undisturbed everywhere 
behind this Mach wave. Between the two Mach waves t he  pressure varies, but  is equal to the 
undisturbed pressure everywhere inside the plane z = 0 except for the wing area. 
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The pressure rernoins undisturbed except 
in re9ions I and II. 

In front of the wing and beside the wing an upwash field is induced. On the wing itself and 
this part  of the wake, which extends from the outer part  of the wing, the downwash is constant 
(w = V~.), whereas in region V, the downwash depends on y and varies with x. In region VI, 
the downwash depends on the spanwise co-ordinate y and not on the downstream co-ordinate x. 
Similarly, the sidewash remains unchanged in region IV, V and VI of the wake; it depends 
only on y. The sidewash is discontinuous between the two faces of the wake, so tha t  the wake 
contains a vortex field. The same applies for the wing area I q- I I  -4- III .  We have a sidewash 
between the two Mach waves, which extend from the apex and the wing tips, although the 
sidewash vanishes in the plane z = 0 outside the wing and wake. The perturbation velocities 
which have been created by the wing along the Mach wave, extending from the tip, remain un- 
changed in the downstream direction. 

* Since the completion of this work as R.A.E. Report No. Aero 2439, a paper by  I-I. Mirels 1° has appeared, which 
covers similar ground, although the numerical results cover only plan forms with constant chord. The author is 
indebted to Mr. Mirels for pointing out an error, which occurred in equation (72) in the original version. The error 
and the results in figures 14 and 15 have been put right. 
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2. Principles of the Theory.--2.1. The Equatiom of Motion.--We consider  a th in  wing at  a 
smal l  incidence in a s t eady  paral lel  flow and  app ly  t he  l inearized po ten t i a l  theory ,  i.e., we assume 
t h a t  all p e r t u r b a t i o n  velocities,  u, v, w, which  are caused  b y  t he  presence of the  wing  in t he  
paral lel  flow V (which m a y  be paral lel  to  the  x-direct ion in a car tes ian  co-ordina te  sys tem,  see 
Fig.  1), are so smal l  t h a t  only  l inear  t e rms  in u ,  v, w need  be considered.  Since the  flow is 
i r ro ta t iona l  ou ts ide  the  wake,  a ve loc i ty -po ten t i a l  func t ion  exists so t h a t  

a¢ a¢ ~¢ 
u - -  2 x '  v --  a y '  w - -  ~z . . . . . .  ' "" (i) 

The  Eu le r  equat ions ,  which  connec t  t he  veloci t ies  and  the  pressure  t5 or the  e n t h a l p y  [ ,  can be 
l inear ized as : 

au 82¢ ~I  
V Ox = V 8x ~ --  ax 

2v 22¢ a I  

2w a2¢ ~I  
V }7 = V ax 2~ --  ~z 

where  

. . . . . . . . . . . .  (2) 

fp d/5 I .  + /5 - /5~ I = I v  + ~ p --  p 7  . . . . . . . . . .  (3) 

since the  air dens i ty  p in the  d e n o m i n a t o r  m a y  be rep laced  b y  its va lue  p ~ in the  u n d i s t u r b e d  
flow wi th in  the  accuracy  of the  l inear ized theory .  I n  t he  same w a y  we have  for the  speed of 
s o u n d  a : 

82 dlb 
- -  d p  

a n d  thus  

& @ _  aA _ p~di 

The  c o n t i n u i t y  equa t ion  can be l inearized as 

au av 2w M ~ 2 I  
ax ~ + g / +  v ax - °  . . . . . . . . . .  (4) 

where  M = V/aoo is t he  Mach n u m b e r  of t he  u n d i s t u r b e d  flow. The  in tegra l  of t he  En le r  equa t ions  
(2) is BernoulIi's equation 

2¢ 
I + v ~x --  I + v u  = ~ . . . . . . . . . .  (5) 

We in t roduce  equa t ion  (1) and  t he  first equa t ion  (2) in equa t ion  (4) and  Obtain 

( 2  2 a ~ a ~ ) a 2 
~X~ + --ay,~ + ~7 ~ ¢ - M  ~ bT~ ¢ =  0 . . . . . .  (6) 

B y  di f ferent ia t ing  this  equa t ion  wi th  respect  to x and  us ing (5) we have  

a~I a~I 821 
(1 - -  M' )  ~ 2  q- a-~-,~ + az' - -  0 . . . . . . . . .  (7) 

Now, we in t roduce  non-d imens iona l  co-ordinates ,  referr ing x to  t he  m e a n  chord  g and  y and  z 
to t he  span  b = S/g = A g (S = wing area, A = aspect  ratio) and  ob ta in  (with x' = x/g, 
y '  = y/(Ae), z' = z/(Ae)): 

(1 - -  M ~ ) A  ~ 2~I 2~I a2 I 
~x  ' - ~  + ~v  ' - - ~  + a z "  - 0 . . . . . . . .  (8) 
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and the corresponding equation for the velocity potential ~}. We shall consider only such problems, 
for which 

I1--M21A ~<< 1 . . . . . . . . . .  (9) 

is sufficiently small, so tha t  the first term in the differential equation may be safely neglected 
compared with the other two*. Thus the motion of a wing of a small aspect ratio A at any 
Mach number or the motion of a wing of any aspect ratio at a Mach number M, which is very 
near to 1, is described by the differential equation: 

@ + g p  . . . . . . . . . .  (10) 

or  

~y~-t- ~ I = 0  . . . . . . . . . . .  (11) 

The variable x occurs in these equations only as a parameter. 

2.2. Boundary Co~¢ditio~s.--The solutions of the differential equations (10) or (11) have to 
satisfy the following conditions: 

(al At a great distance from the wing (y" + P ---~ oo) the velocity potential ~ and the ' accelera- 
tion potential ' I -- I~ must vanish. 

(b) Along the surface of the wing, which may be given by the equation 

= 0 . . . . . . . . . . . .  (12) 

(in case of a thick wing, both the upper and the lower surface have to be defined), the component 
v,, of the velocity normal to the surface S must either vanish, or is a function 

v~ = V . g(x,y) 

which is prescribed by the movement of t he  wing (e.g., in roll or pitch~ : 

1 
[(V + ~) S~ + vS, ~- wS~] ~ / (S2  + S9 + S,~ ~) . g(x,y) . . . . .  (13) 

Here suffixes mean partial derivatives. Strictly speaking this condition (13) should be satisfied 
on the surface S = 0 of the wing, but it is well known that  within the accuracy of a linearized 
theory, it is often sufficient, to satisfy this condition (13] inside the plan form of the wing-in the 
plane z : 0 (since for points on the wing z is always small compared to A~). 

2.3. Red~ctio~z to a Two-dime~sio~ag Problem (velocity flote~tiag).--Since the differential 
equation (I0) for the velocity potential ~ depends only on the two variables y and z, we t ry  
to establish a two-dimensional problem with two-dimensional boundary conditions, which is 
equivalent to our three-dimensional problem. 

We consider a cylinder with its axis parallel to the x-axis, the contour of which may be given 
by the equation 

S(y,~) - - 0  . . . . . . . . . . . . .  (14) 

* In this connection the question arises, whether such an approach is justified, since it may  be necessary to retain 
second-order terms in the potential equation if equation (9) holds. Experience shows that  for a three-dimensional flow 
the linearized equation (10) has sensible solutions satisfying all boundary conditions (and the assumptions implied in 
neglecting the first term in (7)), provided the incoming flow is merely deflected and the pressure is an anti-symmetrical 
function of z. But  there are no solutions (producing finite values for the pressure) as soon as thickness is involved. I t  
is believed that  the present calculations give a reasonable solution for the cases treated here, but that  second-order terms 
may  be required in order to allow for thickness effects'near sonic speeds. 
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Along this contour the normal component may be a prescribed function V.  ~(y) • 

or, if ~ denotes the potential of the two-dimensional flow: 

1 a6. 36. 

The boundary condition (13) for the three-dimensional problem may be written as 

1 / a4, { / 

since u can be neglected compared with V. 

By identifying (14) with (12) for any fixed value of x and by comparing (15) with (16) we can 
see, tha t  our three-dimensional wing flow problem can be reduced to the following two- 
dimensional problem : 

For any fixed value of x, we have to find a solution of the two-dimensional Laplace equation (10), 
which vanishes at a great distance from the surface of the wing (S  + Z'~ --~oo) and which has the 
following prescribed values v,~ = 35/3n = V .  g along the contour S = 0 (or z = 0 respectively) 
with : 

{ ~/(S,'  + S,=q - S, =, S, } (17) 
= g(*,Y) + - \ / ( s ,  + s?)  . . . . . . .  

Here g(x,y) is the (non-dimensional) normal component of the velocity as it is prescribed along 
the wing surface S = 0 by the movement of the wing. For the wing at a constant incidence 
we have g - 0. 

This two-dimensional problem can be solved according to well-known methods (compare the 
theory of the analytic functions of a complex variable) for any fixed value x, which leads to the 
potential function $ for our three-dimensional problem. The pressure distribution over the 
wing can then be obtained by means, of Bernoulli's equation (5). 

I t  may  be pointed out, tha t  the solution of the above-mentioned two-dimensional problem is 
not always unique. In certain cases solutions exist for which the normal derivative along the 
contour is zero and any such function may be added to the solution of the problem. These 
additional solutions often contain such singularities on the surface of the wing which produce 
infinite forces and therefore must be excluded. In other cases the nature of the singularity, 
which is admissible (e.g., at the sharp leading edge of a wing), is known, which helps to find the 
unique solution of the physical problem. 

Another condition, which is useful in this connection, is the so-called no~¢-vorticity condition: 
the integral over the tangential  velocity v, along any closed path of integration, which does not 
intersect the wake, must vanish: 

~ v, ds = 0 . . . .  . . . . . . . . .  (18) 

This means that  the flow outside the wing and outside the wake does not contain any vorticity. 
I t  is obviously satisfied if ~ is a unique function of y and z everywhere outside and on the surface 
of the wing. 

Another condition, in order to obtain a unique solution, is the Kutta-Joukowsky coraditio#¢. 
I t  has to be introduced if the plane x ---- const where the two-dimensional problem is solved, 
contains points which belong to the trailing edge of the wing. I t  can best be formulated in the 
form: The pressure must remain finite (or bounded) along any sharp trailing edge of the wing. 
I t  will be seen tha t  this is equivalent to the condition tha t  there cannot be a pressure difference 
between both faces of the wake. 



In certain cases, e.g., for a unisectional wing (compare Fig. 6) no wake effects occur and the 
potential ¢ can very usefully be applied. 

However the method runs into serious difficulties. It is directly applicable only to such 
(spanwise) sections of the wing which do not contain or touch a part of the wake (see Fig. 2, 
section AA). If a part of the wake occurs in the plane x = const where the solution ¢ must be 
determined, we have to admit discontinuities of # and the velocities along the wake (since the 
wake contains vortices) but these must be chosen in such a way that  no pressure difference 
occurs between the lower and the upper surface of the wake. 

Because of the serious restrictions in the applicability of this method, which is based on the 
use of the velocity potential 6, to the incidence case, we shall describe now another approach to 
this problem, which is based on the use of the en tha lpy / - - some t imes  called the ' acceleration ' 
potential function (because of (2)). 

2.4. Reduction to a Two-dimensional Problem (acceleration potential).--The enthalpy I is 
continuous everywhere outside the wing, and does not show directly the existence of a wake. 
We make use of this fact by identifying the potential # of the above mentioned two-dimensional 
problem with the acceleration potential I .  g/V and the contour S = 0 of equation (14) with the 
contour S = 0 of equation (12) for any fixed value of x. By differentiating equation (13) with 
respect to x and using (2) we obtain the following boundary condition for I :  

(19) 

Unfortunately this condition contains the velocities v and w, but fairly often, e.g., in the important 
case of a flat wing (d = dihedral) 

s ( . , y , z )  - ~ + ~.(~ - Xo) + a l y I  . . . . . . . . . .  (20) 

tile mixed derivatives S,x and Sy, vanish and (19) becomes fairly simple. By comparing (19) 
and (15) our three-dimensional problem can be reduced to the following two-dimensional 
problem: 

For any fixed value x we have to find a solution of the Laplace equation (11), which vanishes 
at a great distance from the contour S = 0. (y= + z ~ --~ oo) and which has the following prescribed 
values for the normal derivative 

a ( I e )  

along the contour S = 0 (or z = 0 respectively), where 

= ~/(~,,~ + s2)  - ~ / (s ,  ~ r+ s2)  a~ I g(~,y) */(&~ + sd + sh 

•., . . . . . . . .  (9.1) 

The solution I must be continuous and bounded everywhere outside and on tee  wing surface 
S = 0 (or z = 0 respectively), possibly with the exception of the points, which correspond to a 
sharp nose. Here only such singularities are admitted, which after the integration over the 
wing surface, produce finite forces and moments. 
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Since (21) represents only a condition for the x-derivative of the original boundary condition 
(13), we have to make sure by an integration over x, that  this original condition (13) is also 

• satisfied. For a flat wing (equation (20)) this leads by means of equatio~ (2) to • 

(22) 

Here the integration with respect to x must be performed for constant values of y and z (along a 
streamline), starting from a point x = --oo far ahead of the wing, where all perturbation 
velocities are zero, up to a point (x,y,z) on the surface S = 0 (or z = 0 respectively). 

As will be seen later on, both conditions (21) and (22) can be satisfied, since the solution for 
(21) usually contains an arbitrary parameter (depending on x), which can be determined in such 
a way, that  (22) is also satisfied. 

In order to obtain a unique solution for the two-dimensional problem with the boundary 
condition (21) we have to introduce again, apart from conditions on the nature of the occurring 
singularities which were mentioned above, the non-vorticity condition and the Kutta-Joukowshy 
condition. The former was already explained in equation (18) and the latter will be applied in 
the form, that  the pressure must remain bounded along the trailing edge of the wing, so that  
no flow round the sharp edge takes place and the flow can smoothly leave the trailing edge. 

In the next section we shall apply this method to the problem of a flat wing of thickness ratio 
zero at incidence or in roll or in pitch. 

3. The Flat Wing of Thickness Ratio Zero at Incidence.--We consider a fiat wing with the 
thickness ratio zero at a small incidence ~. The surface of this wing is defined by 

S = z + c ~ ( x - - x 0 )  = 0  . . . . . .  . . . .  (23) 

(see Fig. 2). Since we intend to consider any plan form of this wing, including a swallow-tail 
wing, where the wake interferes with the pressure distribution on the wing, we prefer the use 
of the enthalpy I to the use of ¢. Thus we have to find a solution of the Laplace equation 

I,y + L ,  = o . . . . . . . . . . . . . . . . . .  (11) 

which vanishes for y2 + p _+ m and satisfies the boundary condition inside the wing plan form 
for z = O" 

I ~ !  x, 

For the wing at i~cidence c~, the normal component along the wing surface is zero 

g = O ,  3 = 0  . . . . . . . . . . . . . . . .  (25a) 

For the wing in steady roll (starboard wing going down if 15 > O) we would have 

• 

g V , ) = o  . . . .  

and for the wing in steady pitch (nose going up for q > 0)" 

qx qg 
v " 

9 
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Equat ion  (22) becomes now 

/ r f [ ", 
t J _ . ~ t ~ ) d x ) . = o = ( Z - ,  g(x,y)@(1 + ~ = ) = c ~ -  g(x,y) (26) 

for points (x, y, 0) inside the  wing plan form. 

3.1. Pressure Distribution for the Front Part of the Wing. - -Firs t  we consider the  front par t  of 
the  wing (section A in Fig. 2) where every section of the wing consists only of one par t  --  s ~ y ~< s. 
We consider the  incidence case (~ = 0) and have to find a solution I of the Laplace equat ion (11), 
for which the  normal  derivat ive OI/az vanishes along the  section y2 < s ~ of the  y-axis z = 0, 
which is the  cross-section of the  wing (Fig. 3). 

As is well known, any analytical  function f l  + if2 of the  complex variable 

z = y + i z  . . . . . . . . . . . . . . . .  (27) 

is a solution of the  Laplace equat ion (11). Thus the real par t  (abbreviation ~) of the  function 

isZ d is 
f l  + if~ - -  ( s  ~ _ Z 2 ) a / ~  - -  d Z  . V / ( s  ~ - -  Z ~) . . . . . . . . . .  (28) 

and of its integral  is/.~,/(s ~ -- Z 2) are solutions of (11). We put  

' { i V ~ --  h(x) ~ V,(s~ _ Z ~) . . . . . . . . . . . .  (29) 

where h(x) is a real function of t h e '  pa rame te r '  x. This function I vanishes for I Z I ~ = Y~ -ff z2 -->oo 
and has the  appropriate  singularities at  the  leading edge y = q-s ,  z = 0". Since 

d ~ l O  
2 2  = o~  = ; o z  . . . . . . . . . . . . . . . .  (30)  

we have 

~ ~ = a(x) ~ J 2  V ( J -  z ~) . . . . . . . . . .  (30 

and this funct ion vanishes for any point  Z = y of the  section y~ < s ~ as can be seen from (28). 
Thus the  solution (29) satisfies all conditions, and it can be shown (see Appendix  I) tha t  this 
solution is unique,  provided tha t  h(x) can be de termined in a unique  way. 

This is done by  means of equat ion (26). For this purpose we have to remember  tha t  both  the  
' half-span '  s and the  factor h are functions of x. Wi thou t  any loss of general i ty we  may  int roduce 

ds(x)  
h,(x) = c~ . H ( s )  d x  . . . . . . . . . . . . . .  (32) 

where the  funct ion H(s) is to be de te rmined  by  means  of equat ion (26) .  

* The sigll of the  square root  in (28) and (29) shM1 be fixed in the  following way. We pu t  
Z - -  s = ] Z - -  alex p i4~, Z + s = [ Z  + s l e x  p i42 

where ¢1 and ¢2 v a r y  between - -  ~ and ~. Then we have 

4t/'(Z2 - -  S 2) = [ Z  2 - -  $211/2 e•,2p i ¢1 @ 42 
2 

which means tha t  the  sign of the  square root along t h e y - a x i s  z = 0 f o r y  2 < s 2 (6j = • =, ¢~. ---- 0) is posi t ive on the upper  
side and negat ive  on the  lower side of the  slit. 
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Since there  is no pressure d iscont inui ty  in all planes x = const ahead  of the  apex (x = 0) of 
the  wing, we have  I = I ~  = 0 for x < 0 and  we m a y  take  x = 0 as the  lower l imit  of the  in tegral  
in (26). In  order to avoid the s ingular i ty  at the  leading edge, we in tegra te  first along a s t reamline  
y = const,  z = const > 0 and go to the  limit z--+ 0 after  the  integrat ion.  Thus  we obta in  
f rom (26) 

w(x,y,z) S d - - i s  } ds 
- v " = ~" o z-z(~) ~ d z  ~ / ( s  ~ - z ~) -~ ~¢'~ 

S d iZ  ! ds 
= ~ o H ( s )  ~ i d s  V ( ~  ~ - z ~ ) / ~  ~x . . . . . . . . .  (33) 

In teg ra t ion  by  par ts  leads to 

_ iZ  
w(x,y,Z)v - -  ~H(s) ~ {'X/(s2 - -  Z2) } - -  °:H(O) 

i z  ] 

_ i V ( z  2 - s ~ ) /  

y~H(s) i z  } ds ~x 
o ds t V ( s  2 Z ~) - -  c~  - -  d x  " 

s ~ 0  

Along the  first par t  of the  pa th  of integrat ion,  which  is in front  of the  wing (see Fig. 2), we 
have  s 2 ~< y2 and @(s 2 - -  Z2)/i = - -  ~ / ( Z  2 - -  s 2) tends to a real value  for z --+ 0. Along the  second 
par t  of the  path ,  which is inside the  wing area, we have  y 2 ~< s 2 and .V'(s ~ - -  Z~)/i tends to an 
imag ina ry  value, so t ha t  in the  l imit  z - +  0 only the first par t  of the  integral  f rom s = 0 to the  
leading edge s = y contr ibutes  to the  integral,  and we have  the  condit ion 

f" dH(s)  Y . . . . . .  (34) w(x,y,O) = ~H(O) + ~ - -  ds .. 
= -  v o d s  V ( 9 - 3 2 )  " 

One .solution of this integral  equat ion  for H(s) is given by  

H(s) = ~ ( 0 )  = 1 . . . . . . . . . . . . . . .  (35) 
This solution is unique,  since any  other  solution mus t  be of the  form 1 -t- H~(s), where  H~(0) = 0 
(the second t e rm in (84) vanishes for small  values of y) and  H~(s) satisfies the  condit ion 

f ' d i l l  (s) y 
, d~ V ( y 2  _ 32) d y  = o 

for all values of y inside the  plan form (y2 < s,,2). Thus  we have  H~(s) = const = H~(0) = 0 .  

Therefore the  solution for I is 

I ds 
v ~ _ ~I-I(s)  

H ( s )  = 1 .  

S 
V (s 2 - -  z ~ )  l ' (~ >~ o) . . . . . .  ( 3 6 )  

The sign in (36) applies in the  upper  half-plane only. Along the  wing section z = 0, y2 < s 2, 
the  funct ion I is discontinuous,  bu t  it  is cont inuous ( I  =: 0) along the  par ts  y2 /7"- s ~ of the  axis 
z = 0. The load dis t r ibut ion over  the  wing is 

~ p  41  4c~s H(s)  ds . . . .  (37) 
- -  1 2 - -  l ~-pV V ~ ~/(s  2 y2) ~ ,  . .  . .  

H(s) = 1 

which agrees wi th  the  results obta ined  by  R. T. Jones 1 in a different way.  
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A 

N 

D 

C 

The function I has been determined in such a way that  
the downwash condition at any point Q of the wing 
section PR is satisfied, if H(s) at P is properly deter- 
mined (equation (34)). Thus we s a t i s f y t h e  boundary 
condition over the whole wing by determining H along 
the leading edge AB, where ds/dx >~ O. The load is then 
known at each spanwise section PN up to BD, where it 
tends to zero since ds/dx -- 0. 

This process tells us nothing about H(s) for spanwise 
sections behind 13D. To get this, we use the Kut t a -  
Joukowsky condition, that  the load must be zero along 
the trailing edge BC, where ds/dx ~ O. But equation 
(37), which is the unique solution of our two-dimensional 
problem (see Appendix I), violates that  condition as y 
tends to s unless to the rear of BD the function H(s) 
vanishes. 

There is no load beyond the maximum span" 

H ( s )  d s  1 = - -  4 Z  - -  _ .  

ds 
H(s) = l, i f ~ b O ;  

ds 
/- /(s) = o,  o 

(37) 

A 

C 

D 

P 

R 

In the general case, where there is a cut-out CDE 
in front of the maximum span 13D, the form of I will 
be chosen (compare section 3.2), so that  the same 
argument applies with the additional condition, that  
I ---- 0 along the trailing edge CE. The boundary 
condition at any point Q of a section PR is satisfied, 
if H(s) at P is properly determined. It will be found, 
that  H is 1 as before between A and F, but is 
different from 1 between F and 13. As before we have 
H = 0 to the rear of 13D. 

3.2. Pressure Distribution for the Rear Part of the W i z g . - - I n  the rear part of the wing a spanwise 
section usually consists of two separate parts -- s < y < -- r and r < y < s (compare section 
t313 in Fig. 2). In this case we have to find a function I, which is the real part of a complex 
analytic function of Z = y q- iz, so that  the derivative ~I/~z vanishes for z = 0 along the two 
sections r 2 < y~ < s ~. For y = -4- s, i.e., at the leading edge, the function must behave in the 
same way as the solution I, given in equation (29). Along the trailing edge y ---- ~ r, the Kutta-  
Joukowsky condition must be satisfied, i.e., the pressure must remain bounded there. We shall 
satisfy this condition by making I equal to the undisturbed conditions (I~ ---- 0) along the trailing 
edge, since this is the only possibility of making the pressure equal on both faces of the wake 
which extends for z ---- 0 between -- r and r. 
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In order  to find such an analyt ica l  function,  we have  to use some results of the theory  of the  
complex functions (see Appendix  I). Here  we shall give only the  result  and show tha t  this solution 
satisfies all the  b o u n d a r y  conditions. The uniqueness  of the  soiution is proved in Appendix  I. 

We  s tar t  wi th  the  der iva t ive  O I/~z, which is given by  

{ i s ~ / ( z  ~ - r ~) i s  l 
a I ~(~)  ~ _ z~)~/,~ + ~(s )  ~,  v ~ - (s ~ V ( s  ~ - z % ' ( z  ~ - ~,~) j • 

( 3 s )  

The pa ramete r  n is real. 

and  choose 

I t  depends on the  ratio r/s. We int roduce  

k = .v" (1  - r ~ l s ~ ) ,  ~.ls = ~ / ( 1  - k ~) . .  . . . . . .  (39) 

E(k) 
~(~) - K ( k )  . . . . . . . . . . . . . . . .  ( 40 )  

where  K(k) and E(k) are the  complete  elliptic integrals  of the  first and second kind respectively" 

dx 
~/(1 --  k ~ sin ~ x) 

W/(1 - -  k~ s i n 2  x) dx 
(41) 

~s~/2 
K(k) = .o  

[ . ~ / e  

E(k) = dO 

Since y. tends  to zero for k ~ 1 or r --+ 0 equat ion (38) reduces to equat ion (28) or (31) for ~, --+ 0, 
so t ha t  OI/Oz has the  required s ingular i ty  at  the  leading edge y = ___ s. 

Since the  bracke t  in (38) is pure ly  imaginary  along the  sections z = 0, r ~ < y 2 <  s 2, the  
der ivat ive  OI/Oz vanishes there,  as is required by  the  b o u n d a r y  conditions. 

In  order to s ta te  the  sign of the  square roots in (38) it  is sufficient to consider the funct ion 
A/{(s ~ -  Z2)/(Z ~ -  r2)}. We pu t  

: Z - s = l Z - s [ e x p i S 1 ,  z + s - - l Z + s l e x p i S 2  

Z --  r = I Z - -  r [ exp iS~, Z 4- r --  [Z 4- r] exp iS4 

where the  angles S~ va ry  be tween  - - z  and  ~ and  define 

$2][ 
Z 2 - -  r 'J  = - - r ' ] l  e x p  ½i(S1  4 -  S .  - -  68 - -  ~ - -  = )  . . . . .  ( 42 )  

The en tha lpy  I itself is given by  

z _z l ( Z ~  - , , ~  ~ (z~ - , ~ . , ~  d z  / 
v "  - - { s  , , 4 ' , s ' -  r , ,  - fs _ j . .  (43 )  

as can be seen by  differentiat ing this equat ion  wi th  respect  to z (a/~z = i d/dZ), which leads back  
to equat ion  (38). The bracke t  in (43) vanishes for IZ 1---~ 0% as can be proved  by  expanding  bo th  
terms for large values of ]Z I . 

For  Z = s the  second t e rm  in the  bracket  vanishes and  the  first produces the  required 
s ingular i ty  at  the  leading edge. For  Z = r the  bracket  vanishes as can be seen, when  the  integral  
ts eva lua ted  by  means  of the  following t ransformat ion .  We  in t roduce  

s i n x =  s ~ _  r ~ , = 1 - - ~  . . . . . . . .  (44) 
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(x is real for z = 0, r ~ < y ~ < s  ~) and have  

and thus 

Z 
s - - ~ / ( 1 - - k  ~sin ~x) ,  

s dZ  - -  dx 
.V(s ~ - z ~ ) , V ( z  ~ -  r ~) - .¢(1 - k~sin ~ x) 

',, f 

V 2 m [cot sin  fi (1- k siu  

--  ~ f o , v / ( 1 - - k  ~sin ~x) " . . . . . .  (4s) 

Along the  trailing edge 
The Ku t t a - Joukowsky  

This function is p lo t ted  in Fig. 4 against x for various values of sin -~ k. 
y = r, x = ~/2, the  function I tends to zero, as follows from (45) and (40). 
condit ion is satisfied. The en tha lpy  I becomes zero not  only at the  trailing edge f = s, but  
also along the  entire surface of the  wake (z = 0, y~ < #), since an integrat ion from Z = r along 
the  axis z = 0, where the  in tegrand is purely imaginary,  towards Z = 0 does not  change the  
value of I .  Any  other  choice for ~, different from the  value given in equat ion (40), would have 
resulted in a value ! different from zero for y = r on the  upper  surface of the  wing and the  same 
value with the  opposite sign on the  lower surface of the  wing, and there would have  been a 
pressure difference between both  faces of the  wake. This is the  reason why the  second te rm had 
to be included in equat ion (38) when equat ion (28) was generalized, a l though the  te rm with 
vanishes for r - +  0. 

I t  m a y  be pointed  out tha t  OI/az in (38) changes its sign, if Z is replaced by (-- ZT) (which 
means according to (42) tha t  the  sign of the  square-root mus t  be al tered at  t h e  same time), and 
the  function I remains unMtered,  if Z is replaced by  ( - -Z ) .  The pressure dis t r ibut ion is 
symmetrical .  

Final ly  the  funct ion 
ds 

h(x) = ~ . H(s) ~ .. 

is de termined from condit ion (26). 
y = const, z = const > 0, as in equat ion (33), which leads to the  downwash" 

w(x,y,z) f e z  S { is~v/(Z~ - r~) 
v - o ~ d x = - ~  o H ( S ) ~ '  (s~_z~)~/~ 

Here bo th  r and s are functions of x. 
be expressed as a function of s 

r = r ( s )  . . . .  

and we have  

(s ~ - Z~) 3/~ - -  ds s ~ - -  Z ~ 

Thus w / V  can be wri t ten as 

. . . . . . . . . . . . . . . .  (32) 

The integrat ion with respect to x is performed along a line 

. is I ds ~ 
+ V ( s  ~ -  Z2)~(Z 2 -  r ~ I -~  dx  . . . . .  (46) 

Since r and s are prescribed by  the  plan form, r may  also 

. . . . . . . . . . . . . . . .  (47) 

1" dr/ds 
V(s ~ - z ~ ) V ( z  ~ - ~ )  

w f l  (~) [ d / { Z 2 - - r ~  2} r ~ d r ~ / d s ~ - - z ~ . s ~  } 
y - ° :  H ( s ~ ) ~  i ~ ,  s ? - - z  ~ + i g ( s ? - z ~ ) g ( z  ~ - - r ? )  ds~ 

where the  integrat ion variable s~ occurs also in the  functions fl ----- r(sl) and ~1 = ~(sl). 
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equation is now treated in the same way as the corresponding equation (33). When integrating 
the first term by parts we obtain" 

V (x,y,z)  = c~H(O) + ocH(s) ~ i ~ / \ - j  - -  Z=Ij 

_ = { < d ( 5 - " ' " ) } , , s .  - Z ~) 

' { rl drdds~ - -  ,~ .  s~ 1 ds~. (4S) 
+ o: foH(S~) ~ i V ( s ?  - -  Z = ) ~ / ( z  = --- r# )  I . . . . . . . .  

C 
, , .  0 

I=O o 

e- 

l = O I W a k e  II1 

I 

Region 
j y 2 _ r l  2 

.~ i 
2 2 

s I - y  

> 0  

0 

< o  

( z :  +_ o) 

J 21 y2 _r 1 

"~ 2 2 
s I - y  

O 

Xo 

O 

In the limit z--+ 0 the second term on the right and the integrands vanish for points (x, y, 0) 
inside the plan form and thus it is sufficient to extend the integration between sl = 0 and 
sl = y > 0 (see Fig.). When allowing for the proper signs of the square roots (z ~> 0), we 
arrive finally at the condition (z -+  + 0), which is the generalized equation (34) : 

; d { ' }  ; ' Y - -  r~= ds~ - -  oH(S~) r~ dr~/ds~ - -  ~, . s~ 
1 = H(o) + o ~  (s~) -~ - =? V ( 9  - -  s ? ) V ( y  ~ - -  ~=) ds~. (49) 

I t  must be satisfied for all points y = s(x) of the leading edge (ds/dx ~> 0). For the rear part  of 
the wing (where ds /dx  ~< 0), the boundary conditions are satisfied without introducing a pressure 
difference and a load, as was explained in section 3.1. Since H(0) = 1 and H ' =  0, r = 0, 

= 0 along the front part of the wing, we may write instead of (49) 

~ [ ~ _ _  dsl - -  =oI-I(sO r~ drdds~ - -  . s~ ,o s? ~/(y= - s?) V(y= - 7?) dsl . .  (so) 

where the integration must be extended between the half-span so = s(c,) and the point y in 
question (see Fig. 8). 

Since this equation for the function H(s)  is fairly complicated, we shall determine the solution 
by a numerical method (compare,Appendix II). 
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where  

The  load d i s t r ibu t ion  on the  wing is t h e n  ob ta ined  f rom (45) and  (32) as 

Ap ds 
l - -  ½_pV ~ --  4~H(s) ~ .  cot  x l / ( 1  s in~ x) + f l  

f z dx I 
- ~ o g ( 1  - k ~ s i n '  x l }  

s i n x  = s ~ - r  ~ , r 2 ~ y 2 ~ < s  2. 

I f  r t ends  to  zero (i.e., k - +  1, ~ - +  0, H(s) ~ 1), we ob ta in  f rom (51) 

_ _  ds 1 sin x = 1 --  
1 --  4~. dx sin x ' ) . . . .  

which  agrees wi th  equa t ion  (37). 

,~/(1 --  k z sin 2 X) dx 

(51) 

(52)  

3.3. Forces and Moments for a Flat Wing at Incidence.--When de t e rmin ing  the  forces and  
m o m e n t s  ac t ing  on a wing at  incidence,  we have  to in t eg ra te  the  load  d i s t r ibu t ions  equa t ion  (51) 
and  (52) over the  area of t he  wing. We notice,  t h a t  for a flat wing at  incidence only  those  pa r t s  
of t he  wing, for which  ds/dx is posi t ive,  p roduce  a pressure  difference. The  rear  pa r t s  of t he  
wing  (section CC in Fig. 2) canno t  inf luence the  flow and  therefore  p roduce  no lift. Since we 
have  I = 0 everywhere  on th is  p a r t  of t h e  wing,  t he  K u t t a - J o u k o w s k y  condi t ion  is a u t o m a t i c a l l y  
satisfied. 

T h u s  it  is sufficient to  e x t e n d  our  in t eg ra t ion  only  over those  par t s  of t he  wing, for which  
ds/dx > 0. We in tegra te  first in the  spanwise  di rect ion and  have,  us ing equa t ion  (51) and  (44), 

l d y = 2  l d y = 8 c ~ H ( s ) ~ s  cotx l / (1- -k"s in '~x)  
- - s  ~" J O  

- / f l  ~/(1 --  k2sin ~ x)dx 

- -  ~ 0~/(1 --  k~sin ~ x) ~ v / ~  - - k ~ s i n  ~x)" 

These  integrals  can be eva lua t ed  af ter  an in t eg ra t ion  by  pa r t s  and  we have  finally 

_ l  dy = 8c~H(s) ~ s 1 --  ~ = 4=c~H(s)s dx [1 --  ~(s)] . . . . . . .  (53) 

A second in t eg ra t ion  a long t he  chord  gives the  lift coefficient, if A = 4s,,,2/S denotes  the  aspect  
rat io  of t he  wing  (25,,, = m a x i m u m  value  of t he  local span  2s) 

if/ CL - -  S s l dy dx - -  S o H(s)[1-- ~(s)]s ds 

f~" . . . . . .  (54) 
S ds 

= ~ A ~  o H ( s ) [ 1  - -  . ( s ) ?  s , ,7  . . . . . . . .  

and  t he  m o m e n t  coefficient, referred to the  apex  x = 0 (C,,~ posit ive,  if nose is t u r n i n g  upwards)  • 

1 4~cz s,,, 
-C- - se f ( f l ey )xex -  se fo m )El es . . . . . . .  (55) 

Here  g denotes  t he  s t a n d a r d  m e a n  chord,  so t h a t  - -  Cu/CL gives t he  d is tance  of the  a e r o d y n a m i c  
cen t re  beh ind  t he  apex  in t e rms  of the  m e a n  chord  g. For  a straight leading edge we have  

s = x cot A~ , ~0 = c~ cot  A~ . . . . . . . . . . . . . .  (56) 
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(Az = sweep angle of the leading edge) and we may write 

f . (57) - c , , ;  - ~@c,~ ,,,,o H(s)[1 - -  ~(s)] s,,?L . . . . . . . . . . . .  

S 2 ds 

If we prefer, to refer CM to the root chord c, we have to omit the factor c,./8 in (57) and then 
--  CM/CL would give the aerodynamic-centre position in terms of the root chord. 

3.4. The f~duced Velocities Behi~¢d the W i ~ g . - - A f t e r  the function H(s) has been determined 
according to the integral equation (49), we can use equation (48) for the evaluation of the down- 
wash at any point of the space, if we bear in mind tha t  H(s I = 0 for all points behind the plane 
x = const which extends from the wing tip (tip Mach wave). Therefore, there is no disturbance 
in front of the plane x = 0, which corresponds to the ~ a c h  wave, extending'from the apex. 
We obtain an upwash in front and sideways of the leading edge and a constant downwash over 
the wing. For points in the wake, which are in front of the tip Mach wave (region V of the 
Fig. in section 1), the downwash depends on x and y: but after the tip Mach wave has been 
reached, the velocities, which are induced there, remain unchanged for a l lpo in ts  downstream, 
since H(s) vanishes in this region. Thus the velocity field behind the tip Mach wave depends 
only on y and z and is independent of x. Here the upper limits in the integral (48) must be 
replaced by  s=. For the outer part  of the wake (region IV), the downwash remains constant (V. ~). 
For delta-shaped plan forms (which are unisectional for every x), the downwash remains constant 
(V.  ~) over the entire wake, since then the regions V and VI disappear. 

The spanwise component v of the induced velocity, can be obtained from (2) and (43) in a 
similar way to w. After an integration by parts, we have 

v(x,y,z) { j ( Z  ~ r=)} I i  (=) { rl dra/ds~ --  s~ . zz l 
- aM(s) ~ ~ - -Z~ + ~ ~(s~) ~ ~ / ( s Z - -  Z=)~/(z ~ - ~ ? ) f  ds~ 

. _ ~ _ 7 ~ 1  } ds~ . .  (58) 

Again we can see, tha t  no disturbance occurs in front of the apex Mach wave, and that  the 
conditions at the tip Mach wave remain unchanged for all points downstream. When evaluating 
the values for the plane z = 0 we can use the figure and table in section 3.2, which shows tha t  
the lower limit 0 may be replaced in this case by y (the integral vanishes between 0 and y). Along 
the trailing edge of the wing, we have y = r(x), and for region V (see figure in section 1), where 
0 ~< y ~< r(s,~) : 

_ v(x, r(x), + O) 
V 

= C4 
i=I=) rl drl/dsl --  s l .  ~1 
,<=H(s,) V ( s ?  - -  r=)V(r ~ -  ~r?) ds~ 

(z = + 0 ) .  

The same expression is valid for the entire wake in regions V and VI. 
(r(s,,) < y < s,,,) we h a v e t o  use (58) for z = 0 with s replaced by  s,,, and r replaced by  r(s,,~). 
vorticity in the wake is easily obtained from the sidewash v. 

. . . .  (59) 

For region IV 
The 

I t  may be mentioned tha t  the velocity field behind a Delta-shaped wing, where the wake does 
not interfere with the wing, is given by  the first term in (58). I t  corresponds to the velocity 
field induced by  a plate (replacing the wake), which moves in the direction of -- z. For the 
general case no such simple comparison exists because of the influence of the vortex distribution 
in the wake, which in turn is determined by  the shape of the wing. 
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Now we define a particular wing plan form by demanding (compare Heaslet and Lomax*), that  

E 
r d r / d s  = s ~ ( s )  = s R . . . . . . . . . . . . . . . .  (60) 

which can be integrated (see Appendix III) as 

So/S = E ( k )  - -  (1 - -  k 2 ) K ( k )  , k = V ' ( 1  - -  r~/s ~) . . . . . . .  ( 6 1 )  

For this particular plan form, we have from (50) the solution 

~(s)  - H ( 0 ) =  1 

and thus from (59) 
V 
g (*' r ( . ) ,  + o) = 0 .  

If the middle part  of the wing (or the entire wing plan form) were defined by  equation (61), it 
would not produce a wake, since there would be no difference between the v-velocities on either 
surface of the wake.. 

4. The Wing in Steady Roll.--4.1. Pressure Distribution for the Forward Part of the Wing.-- 
We have to find a solution I of the Laplace equation, which vanishes at a great distance from 
the wing, and satisfies the conditions (24) and (26), where 

g = - ~ y / v ,  ~ = 0 . . . . . . . . . . . . . . .  (25b) 

We consider first the front part  of the wing (see section AA of Fig. 2), and have to find an anti- 
symmetrical function I ,  for which the normal derivative aI/az vanishes for z = 0, y ~ <  s =. 
We choose 

V ~ - - h ~ ( x )  ~ V,(s =_Z= ) + ;  . . . . . . . . . . . .  (62) 

which vanishes for [Z[--+oo. The parameter h/x) is to be determined later. I contains the 
required singularities at the leading edges Z = ___ s. We obtain for the derivative : 

~ ( g ~ ) = - / ~ , ( x ) ~  (s~ z~)3,= I sds  x/(s~ Z=) . . . . .  (6a) 

This function vanishes for any point z = 0, y~ < s ~. The signs of the square root are defined 
in the same way as in equation (29). 

Now we use equation (26) for determining the function h/x). We introduce instead of hp 

h , ( x )  p s  d s  H , ( s )  • ( 6 4 )  
- -  2 V d x  . . . . . . . . . . . . . . .  

(the 2 is introduced in the denominator, to make H~----- 1 near the apex) and obtain for any 
point (x, y, 0) inside the plan form: 

~ 0 # p * { d i(2Z2--s~) } ds 
- V  - = ~ 7  d s  v / ( s ~  - -  Z ~) ~=o ~ d~ 

where the integration is extended over the same path as in section 3.1 (Fig. 2). 

Since N{(2y = -  s=)/V/(s = --y~)} = 0 for points inside the wing and l / ( s~ - -Z  ~) tends to 
-- iv/(y ~ -- s ~) for z--> 0 and points outside the wing (y= > s =) according to our rule for the signs 
of the square root, the last equation is, by  means of an integration by  parts, equivalent to 

v - v Y ( 6 5 )  2v , (y~  _ s ~) ds / . . . . . . . . .  
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One solution of this equation is 
H / s )  - H / O ) =  1 . . . . . . . . . . . .  (66) 

and this is the only solution, as can be shown in the same way as for equation (34). 

Thus the load distribution for the forward part  of a wing in roll is given by 

A p  4 I p s  ds  y . . . .  (67) 
l - -  ½pV 2 - -  ~ = 4 2-V d--x ~ / ( s  ~ - -  y=) . . . . .  

4.2. Pressure  Di s t r ibu t ion  f o r  the R e a r  P a r t  o f  the W i n g . - - I n  order to find the solution for the 
wing in roll for the rear p a r t  of the wing, where a spanwise section consists of two parts (z = 0, 
r ~ < y= < s~), we generalize equation (62) in the following way 

I [ v / ( Z ~ -  r~ )+  1} (68) 
v ~ _ h,(x)  ~ 3 / ( s ~ _  z ~) ¢ . . . . . . . . . . .  

By means of the transformation (44) we have I / V  2 = - -  h~(x) N{cot X q- 1/i}. This function 
vanishes for [Z[--+ oo and has the required singularity at the leading edge Z = -F s. Along the 
trailing edge Z = + r the enthalpy vanishes, so t h a t  the Kutta-Joukowsky condition is satisfied. 
I is a unique function of y and z, if the sign of the square root is defined in the same way as in 
equation (42). The boundary condition (24) is also satisfied, as can be seen from 

__ ( / )  { ~/("gS! - -  ~2) r2)1/2 } . - . .  (69) 
= - a , ( x )  ~ ( s  ~ z ~ ) 3 . ( z  ~ . .  ~ . . . . . .  8 Z  - -  - -  

which vanishes for z = 0, r = < y~ < sL 

Finally, we introduce H~(s) instead of hp(x) by means of equation (64) and determine H,(s ) ,  
using the boundary condition (26). This leads to 

{ i Z ( s ' - - r ' ) # ) ~ / , }  ds  
PY P foH,(~) s V - -  2 V  • • (s ~ - -  Z~)3/~(Z ~ - -  ~ : o ~  dx  . . . .  (70) 

where the integration is again performed along the path, indicated in Fig. 2. Now we may write 

iZ (s  ~ - r ~) r~) "~ 1 d ( ~ z v ( z  ~ -  r~)" I i Z ( r  dr lds  - ~) 
- < - z , ) ~ / , ( z  ~ - - s & \ VW - 2 ~  , '  + ~ v ' ( s '  - z , ) ~ ( z ,  - r ~) • 

We introduce this expression in equation (70), and obtain, integrating the first term by parts, 
for any point (x, y,0) inside the plan form" 

J(s< } 
y y ( r  dr/ds - -  s) 

Here is is sufficient, to extend the integration with respect to s between s = 0 and s = y ,  as 
indicated, since ~( i  . Z / s .  ~/[(Z ~ -- r~)/(s ~ - -  Z~)]! = 0 for z = 0 and values of s between y and 
s(x) > y .  (Compare section 3.2 and the figure m section 3.2.) For the same reason the first 
term in this equation vanishes and we have the following condition for H,(s ) ,  which must be 
satisfied for all points of the leading edge y = s(x) with ds /dx  >~ O" 

- ;i<'/s) J C  

2 v  x / ( y ~  - s~)v' (y~ - r~) ~ "  
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For  the  same reasons, as were explained in section 3.1, the  rear  par t  of the  wing, where  
ds/dx < 0, does not  cont r ibute  any  load. 

In  the  forward par t  of the  wing (s ~< so, x ~< c,) we have  H / s )  - 1, r = 0, as shown above 
(equat ion (66)). 

Using this result  we obtain  from (71) for y ~> So : 

/ ~,o HI(s )  N y~ s ~ / -  ~,o Hp(s) .,V / ( y ~ - - s  ~) , ( y ~ - - r  ~) d , . . .  (72) 

This integral  equat ion  is very  similar to equat ion  (50)and can thus  be t r ea ted  by  the  same me thod  
(compare Appendix  II).  

The  load dis t r ibut ion for the  wing is thus  given by  

I --  V ~ -- 4 -d-x H / s )  ~ "  ~ \ s ~  _ y~ /  . . . . . . . .  (73) 

which  for r = 0 agrees wi th  equat ion (67). 

4.3. Rolling Moment Due to Rol l . - - In  order to de termine  tile rolling m o m e n t  due to roll, we 
have  to mul t ip ly  the  load 1 by  the  arm y and in tegra te  over the area of the  wing. At first we 
in tegra te  spanwise : 

V c l . y d y = 2 f  l y d y = - 4  p s d s  

Using the t ransformat ion  (44) for Z = Y(x real), we have  

~/ \ ~  -- -~ Y dy = s~k~ o c o t x s i n x c o s x k / x  

= s ~ c o s  ~ x dx  = ~ ( s  ~ - -  r ~) 
J 0  

and  thus  for the  rolling m o m e n t  L due to roll:  

]5 Um 
L = --  ~-/)V ~ f s f  ly dy dx --  { - P V ~ " V  3o Hp(s)(s~ -- r~)s ds . . . .  (74) 

where  2s,~ is the  m a x i m u m  value  of the  local span 2s. For  the  same reasons as above, in the  
incidence case, the  in tegrat ion over s (which takes  the place of the  in tegrat ion over x) mus t  be 
ex tended  be tween  s = 0 and s --  s,,,. We in t roduce the  rol l -damping coefficient 

~L 1 
l~, - ~ ( ~ s , , , / v )  p V ~ S s , , ~  " 

and obtain  (A --  4s,,)/S --= aspect ratio)" 

1 s., r ~)s 
l~ - s ~ A  fo Ha(s)  (s~ - ds  

Sm 4 

. . . .  ( 7 2 )  

. . . .  (76) 

5. The Flat Wi~,g i~ Steady Pitch.--5.1. The Pressure Distributio~.--The pressure dis t r ibut ion 
for a wing ill s teady  pi tch which satisfies the  b o u n d a r y  condit ions (24) and  (26) wi th  

qx ~ qg 
g - -  V '  ~ - - - g ~ - ~ g -  V . . . . . . . . . . . .  (77) 

is ve ry  closely re la ted  to the  pressure dis t r ibut ion for a wing at a constant  incidence. We can 
expect  to use similar functions for I in both  cases and shall therefore deal immedia te ly  with  the  
general  case t ha t  the spanwise section of the  wing consists of two par ts  --  s < y < --  r and 
r < y < s. For  the forward par t  of the  wing we m a y  then  put  r = 0. 
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For the derivative 8I/3z  we use now the function" 

az  v 2 - v Z x  ~ . (s ~ - z~)~/". + ~ / <  - z ~ V ( z  ~ - ~ )  J 

Z ~ - s ~ . ~(s)  

+ ~ ~ {1 + i / ( s ~ - , ~ ) - ~ 7 ~ _ _  r~)} " " "  

The first term agrees with equation (38) apart from the parameter H~(s). 
been introduced in order to satisfy the boundary condition 

a I a q (79) 
az V ~ --  ax g(x,y) --  V . . . . . . . . . . . . . .  

inside the plan form of the wing (z = '0 ,  r ~ < yZ < s2). The sign of the square root ,s}mll be 
defined in the same way as before in equation (43). Then both brackets in (78) vanish for [Z [--+ oo. 

I t  can be verified by differentiation (a/az - -  i d/dZ) tha t  (78) is the derivative of 

(~ (z ~ -  s~. ~) d z  

Here the first term agrees with equation (43), if ~ is again determined by 

"(~)  - K ( k ) '  k = 1 - -  ~2 . . . . . . . . . . .  ( S l )  

The first term produces the required singularity at the leading edge y ---- -7- s and vanishes at 
the trailing edge y ---- -7- r and for ]Z I-+ oo. The second term vanishes both for y ---- ~ s and 
17 ---- J:  r and for IZ[-+oo, but it produces also a pressure difference between both faces of the 
wing. 

Using the transformation (44) we may write equation (80) as 

I qxH~(s) dS { 
V ~-- V ~ ~ c o t x x / ( 1 - - k  2sin 2x) 

+ 0~/(1--k ~sin ~x) d x - - R  o~/(1--k ~sin ~x) I 

q s ~ {  ~x - Efz~/( l_dXk2sin  2x) 11 (82) - ~v~ (~  - k ~ s i n  ~ x) + j o V ( 1  - -  k2 s in~ x) & - R J o  

where 
% / (  s ~ - Z ~  

sin = -- (z = y + 

becomes real on the surface of the wing z -- 0, r ~ < 9 < s% The first bracket is plotted against 
x in Fig. 4 (incidence case), the second bracket in Fig. 5. 

Finally, we have to determine the ' parameter ' Hq(s) in such a way that  the condition (26) is 
also satisfied for any point inside the plan form" 

s • ] 
. rdr lds  - -  s .  ~(s) ]~=odSdx q " Z = -  s =. ~(s) 

+ < .  ex e*, 

Here the integration must be performed along the same path as in section 3.! (Fig. 2), 
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The first bracket  has been wri t ten  in a similar way as in the  corresponding equation, preceding 
equat ion (48). We integrate  the  first term by parts and carry out the  integrat ion in the first 
t e rm of the  second bracket.  This leads to :  

[ ' < d  y~ --  P 

q [[<"~(s) < ( s ) ~  f ~ e~!es - - s .  ,(s) t ds 

+ qx q [1~ Y~ - s~" "(s) 

The first te rm on the  right is zero for all points inside the  plan form r = < y 3 < s ~. (Compare 
figure and table in section 3.2.) For the same reason it is sufficient to integrate  in the second, 
th i rd  and last te rm over the  par t  of the  path  of integration, which is in front of the  wing 
(0 <~ s(x) <~ y) .  In  other words:  it is sufficient to satisfy equat ion (83) for points (x, y = s(x), O) 
of the  leading edge only, where ds/dx >~ O. Since all the real parts N{~/[(y= -- P ) / ( 9  - -  s~)]} 
vanish for points inside the  wing, equat ion (83) is then  automat ical ly  satisfied in any point  of 
the wing. The Ku t t a - Joukowsky  condit ion excludes the occurrence of a load distr ibution of the  
type  used in the  incidence case (equation (43)), in the  rear part  of the  wing, where & f i x  < O, 
since it would introduce an infinite pressure along the  trailing edge. 

Thus we have for all points  y --  s(x) of the leading edge (ds/dx 1>- 0) the  condit ion (y ~ 0): 

o =  . j , _  

v " ~ / ( 9 -  s ~ ) g ( y  ' -  ~") 

* y ~  - - s  ~ . ~ ( s )  

d+ - fo < d x .  (84) 

For the  forward part  of the  wing we have  f = 0, ~ (s) = 0 and from (84) : 

f Y d Y ds = 0 o& [x(s)(H~(s) --  1)] V , ( y ~ _  s') 

o r  
x ( s ) ( H / s )  - -  1) = c 

is constant.  The entha lpy  I on the forward part  of the  wing is then  according to (82): 

I q (x+c)  ds 1 qs 
V 2 - -  V d x  s i n  g V s i n  x ,  

s i n  x = x / ( 1  - -  Y~/S ~) 
which  should vanish at the  apex x, -= 0 of the  wing where the  ' local incidence ' 
Thus  we have c = 0 and 

Hq(s) -=-- 1 (s ~ So) . . . . . . . . . . . . .  

On introducing this into equat ion (84) we arrive for s >~ So or y >~ So at the  condi t ion 

o = Lo )5 E*(s) H/s ) ]  y ~  _ s ~ d s  

;io • (,. s .  ,.,(..<// 

- o~,. , v q j - - > g - q " ( ~  - e )  g ~  . . . . . . . . .  
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For a wing with a straight leading edge we have  the  simpler condit ion:  

=o ~ " = - s =) =o ~ / T B - - = % / ( - B  - ~=) 

-_ f ,  y= - s = . =(s) ds (y > So) . . . . . . .  (SV) 
,o V ( B  - ~ " T O ( B - -  r ~) 

Apart  from the  te rm on the  right side, equat ion (87) for the  function s .  Jr-Iq(S) agrees with 
equat ion (50) for the  function H(s), and can therefore be solved in a similar way (see Appendix  II). 
In  particular, we have for the  tail part  of the  plan form, where s = s,. = const, the  solution 
Hq -~ O, so tha t  only the  front part  of the plan form s ~< s,. contributes to the first t e rm in (82), 
whereas the  second te rm depends on the  entire plan form. 

5.2. Forces and Moments on a Wing in Pitch.--In order to obtain the  force (-- Z) and the  
pi tching momen t  M with respect to the  apex, we have to integrate  the  load - 

l =  - -  4 I / V  ~ . . . . . . . . . . . . . . . . . . . .  (88) 
as given by  equat ion (82), first with respect to the  span. Since all the  integrals involved occurred 
already in the  incidence case (compare equat ion (53)), we can use these results and obtain now 

S fi 8qXHq(s)sdS~E1- ~(s)~ _=ldy= 2 ldy - -  V ~ 2  

+ -T?-. s .  {11 --  z(s)!,  2 . . . . .  

F rom this equat ion we obtain for the  stabil i ty derivatives (g = mean  chord = 2s.jA) 

~ z  1 . . . . . . .  (90) 
z~ - a(q~/V) pV=S . . . . . . . . .  

and 

the  results 

and 

a M  1 . . . . . . . .  (91) 
m~ - a(q~/V) pV2S~ . . . . . .  

q~ 1- Z ~ A~ { Fs,,, x(s) s ds 
- -  Jo C S,n 2 

r ~ 

- -  2rag ~ 1 c., , - -  ~e  fo Xf_=Z dY dx  

lJo e2 s,~ 

+ ;0 L2 s,,,~ ~ I 

(92) 

In  both  expressions the  first integral  has to be ex tended 
( =  m a x i m u m  value of the  local half-span), and the  second integral, where r(s) and ~(s) are 
by  means of s =: s(x) functions of x, has to be ex tended over x between x = 0 and x = c,,, 
( =  m a x i m u m  value of x for any point  inside the  wing p.lan form). The first integral  in either 
expression depends only on the  forward par t  of the  wing, the  second integral  on the  entire 
plan form. 
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5.3. Pitchiug Derivatives for an Arbitrary Axis  Posi t iou.-- In  order to obtain the pi tching 
derivatives for an arbi trary axis position x - :  Xo, we have to satisfy the  boundary  condit ion 

y ,  o )  = - q ( x  - Xo) . . . . . . . . . . . . . . . .  ( 9 4 )  

inside the plan form of the  wing. The resultant  load consists of two parts, one corresponding 
to the boundary  condit ion w = - - q x ,  which may  be denoted by  l0 and leads to derivatives 
Z~o and mqo, which are given in section 5.2, and a second load l .... which was obtained above (3.3) 
for the constant  incidence c~ = --  qxo/V. Thus we obtain !or the  stabil i ty derivatives zq and mq 
for the axis position x0 

o r  

and 

o r  

- -  2Zq qg 1 1 qXo 1 v sffZ, c+e  

1 xo O CL 
- -  Zq - -  Zqo 2 g ~c~ . . . . . . . . . . . . . .  (95) 

qg 1 

__ 1 (lo qXo sgff - xo)dvdx 

- m~ = - ~Z~o + Xo (1  ~CM + Z~o) -f 1 ~C~ Xo ~ 
g ',,2 Oc~ 2 Oc~ g2 . . . . . . . . .  (96) 

6. Results for Some Particular Wi~gs . - - In  the  following section the  results of the preceding 
sections shall be applied to some particular plan forms namely  the  Delta wing, a plan form with 
straight  edges and unswept  trailing edge, and finally a family of wings, which includes the  two 
preceding cases and consists of wings the  plan forms of which (Fig. 8) have straight  edges and 
can be described by three parameters,  e.g., the  aspect ratio A, the  taper  ratio ,1, and the  sweep 
ratio a. In all these cases we shall give a list of the  stabil i ty derivatives, as far as they  have 
been de te rmined  above. 

6.1. The Delta W i n g . - - I n  the  case of a Delta wing, the  function r(s) is always zero and therefore 
~(s) = O, H(s) = 1, H / s )  = 1, Hq(s) = 1. Since s = cot Az (A~ = leading-edge sweep), all the  
integrals can easily be worked out. We obtain 

- -  Z w - -  

_ _  7 4 ~ w  m 

1 ~CI. 1 ~ A  
2 ~o: 4 

1 OCM 1 
- -  - ~ A  

20c~ 

lp = I ~A 
o ~  

- z~ = ~ .  

- -  T K b q  = 

(compare (54)) 

(compare (57)) 

(compare (76)) 

(compare (92) and (95)) 

(compare (93) and (96)) 

(97) 
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The results have  been obta ined  before by  Ribner  =. These results also agree wi th  the  s tabi l i ty  
coefficients for a Del ta  wing at supersonic speeds (e.g., Ref. 9), if we take  there  the  l imit ing case 
of a wing of small  aspect ratio. 

6.2. The Cropped Delta W i n g . - - N o w  we consider the family of ' c r o p p e d '  Del ta  wings (see 
Fig. 6), where  the  leading edge is swept  at  an angle A z and the  t rai l ing edge is unswept .  The 
family can be described by  two geometr ical  parameters ,  the  aspect ratio A and  the taper  rat io ,1 
(tip chord divided by  root  chord). Here  we have  no direct interference be tween the  wake and 
the  wing (r --- 0), and  thus  z(s) = 0, H(s) = 1, Hp(s) = 1, Hq(s) = 1. All the  integrals  for CL, 
CM, and lp can easily be worked out  be tween s = 0 and  s = s,,, according to equat ions (54), (57) 
and (76). This leads to the  same results for z~ and lp as in the case of the Del ta  wing (equation 
(97)), i.e., these two derivat ives are independent  of the taper  ratio 2. But  for m~ we obtain  a 
different answer :  

_ _  I ~CL 1 ~A lp J~ ~A - - Z ~ - - g  ~ - - ~  , - -  ~ , 

-- m~ = i aC~ _ { ~A 1 --  2 . . . . .  (99) 
2 ~ 1 + 4  . . . . . . .  

Here  only the forward par t  of the  wing (x K s,,~ t an  Az) contr ibutes  to the  forces. 
der ivat ives  zq and  mq also the rear par t  of the  wing becomes impor tan t .  

Since for the  front par t  of the wing 

For  the  

x = s t an  A~, c, = so t an  Aa 

and for the rear  par t  of the  wing (s,,~ tan  A~ ~< x ~< c,): 

.. (loo) 

s ---- G ,  • . . . . . . . . . . . . . . . . .  (101) 

we obtain  for an axis posit ion in the  apex x ---- 0 according to (92) and  (93) the  following integrals" 

= c, I a f"s=ds f~, d~l - z ~ - - d ~  o~ + ½  
0 Sn~2So (I -a)c r 

We int roduce  

s . . . .  1 - - 2 ,  ~ - - 1 + 2 c ,  . .  . .  
So 2 

and  have  (axis at  the  apex x = 0)" 

- -zq  = A  = _ 1 
2 1 + 2  

• • ° ° . 

- ~n~ --: A = 1 E1 + 1 (1 -- a)=] 

For  an a rb i t ra ry  axis posit ion at  x ----- Xo we obtain  from (95) and  (96)" 

. . . . . .  - -  zq 4- [1 + 2 . . . . . . . .  

_ _ X o  ~ _ D ~ ) + ~  + . I 1 + ½ ( 1  2) ~ 7 ( 7 + 2  lx?(1 ~)~l 0~A 
- ~~ = 2(1 + a "~) 

. .  ( lO2)  

. .  ( l o 3 )  

(104) 
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In  order to show the  effect of cropping the  wing tips on the  derivatives,  we consider a wing 
family wi th  a constant  leading-edge sweep Az. Thus we express A by  means  of A," 

A -- 4s,, = 4 1 - -  2cotA z 
(I + z)c  1 + . .  (lOS) 

and  in t roduce the  root  chord c, as reference length,  in order to i l lustrate more  clearly the  effect 
of cropping the  tips. This leads to* 

- - z ~ = ~ c o t A z  
-5 

- - ~ % =  \ 1 - 5  2/  c , - -  3 1 -5 2 

1 --  2 cot Aa (106) - z , - s 1 + z  

cotA,(1-x2) 
- -  z~ = 2 =  ( 1 - 5  X) ~ 

F( ) ( ) - 2= ( 1 1 -  z)  c°tA  1+½(1- p - 2   ec, +2 j 

In  Fig. 7 the  funct ion --  ~n,~ t an  Az has l~een plot ted  against  the  taper  ratio Z for the  axis 
positions Xo - -  ½- c,, Xo = § c, and for the  axis position in the  ae rodynamic  centre  x0 = §(1 --  ;,)c, 

Near  ~ = 0 the  der ivat ive  me is fairly sensitive to a small a l tera t ion of ~, in par t icular  for an  
axis position be tween  the apex and  the middle  of the  root  chord. The var ia t ion of me wi th  
is near ly  linear, if the  axis is kept  always in the  ae rodynamic  centre.  

6.3. A W i n g  F a m i l y  w i th  Three  Geometr ic  P a r a m e t e r s . - - F i n a l l y  we consider a wing plan form 
wi th  a s t ra ight  leading and trai l ing edge, the  sweep of which is Aa and A, respectively.  These 
two edges (or their  extension beyond  the  wing tip) m a y  intersect  at a distance y = s,, f rom the  
line of s y m m e t r y  (y == 0) and  the  wing t ip m a y  be cut  along a line y = s,,~ parallel to the  u-axis 
so t ha t  the  wing has the  taper  ratio ~ (see Fig. 8). We define 

So = c, cot A l . . . . . . . . . . . . . .  (107) 

and  have so --  s,, in Fig. 8a (s,~ ~< So) and So = ~o in Fig. 8b (s,, >- So). In  order  to describe the 
plan form we shall use the  aspect ratio A ,  the  taper  ratio 7~ and  the  ratio (sweep ratio) 

tan A t 

t an  Az 
. .  ( lO8) 

These three  parameters  are most  suitable since all derivatives are then  proport ional  to the  
aspect  ratio A and a funct ion of the  two remaining parameters  ~ and a, as we shall see later  on. 
The relat ions be tween these parameters  and  the quanti t ies ,  occurring in the  analysis, are 

s . . . .  l - - Z ,  S ° - - l - - a ,  s , , _  1 - - ~  
s,~ s ,  ~o 1 - -  a 

.. (io9) 

In  the l imit  a - +  0 we obtain  the  family of cropped Del ta  wings t rea ted  in section 6.2. 

* If we prefer the use of the standard mean chord 7, the values of m,o and me have to be multiplied by 6/7 --- 2/(1 q- Z). 
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In  order  to show the  influence of the  three  geometric  parameters ,  three  families, each with 
one vary ing  and  two fixed values for the  three  parameters  A, ~, and a are p lo t ted  in Fig. 9. 

The contours of the plan form are given by  the equat ions 

x-----stanA~ ( O ~ s  <~s,~) Leading edge" 

Tip:  

Trail ing edge : 

S : S m 

r -  (x --  c~) cot A , - -  x --  c, cot A~ 

(c, ~ x <~ s,, t an  Az + ;~Cr) 

. . . . . .  (11o) 

where  

1 - - a l + 2 A .  cot Aa --  
4 1 - - z  

(111) 

I f  s,,~ > So - -  So, we shall need a relat ion be tween r and  s" 

So ~o So S,~ - -  "go a 
. .  (112) 

For  the  rear  par t  of the  wing (s -= s,,~ > So), we have  to use 

r -  ~ ( ~ , _  1)  (~, ~ x) 
S o a 

. .  (113) 

which follows from (110). 

6.3.1. L/ft and  p i tch ing  m o m e n t  due to i n c i d e n c e . - - T h e  lift and the  pi tching m o m e n t  of a fiat 
wing of the  plan form described in 6.3 at  the incidence c~ can be ob ta ined  f rom equat ions (54) 
and (57). 

For  plan-forms, where  s,,~ ~ "go, i.e., ;. >- a, we have  no in terac t ion  be tween  the  trail ing edge 
r( ,)  and  the leading edge s(x). Thus  H(s)  - 1 and 

~ A ~  CL = • , 

(z > ~ )  

. . . . . . . .  (114) 

(CM is referred to the  s t andard  mean  chord g and the  apex x = 0). 
to de te rmine  the  funct ion H(s)  from equat ion  (50). 

First ,  we consider the case tha t /z  = a/(1 - -  a) is very  small. As has been shown in Appendix  
IV, the solution H(s)  of equat ion (50), when  replo t ted  against  the  var iable  

s- o ) a - -  - - - -  1 = - --  1 , . . . . . .  (116) 
S n - -  S O a S O ~ So  

is in the  l imit/~ - +  0 given by  

l im 
s n ~d-->- 1 

1 

~ ( ~ )  - V ( 1  - ~") = 
S z ~ -  ~ 0  

~ / ( s . -  s) V ( s .  + s - 2L) " 
. .  (117) 
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For other values of s,jso = 1 +.ff a numerical  me thod  was used to calculate the solution H(s) 
of equat ion (50). The me thod  is described in detail  in Appendix  II. The results are given in 
Tables 1 and 2 and are plot ted in Fig. 10 against s/~o = S/So. When  replot ted against 

= (s/so - -  1)/~ all the curves nearly coincide with the  l imit ing case ~ -+  0. The biggest difference 
occurs for /~--~ o0. Except  for the  neighbourhood of the wing tip, where the  load decreases 
anyhow and a slight inaccuracy does not  affect very  m u c h  the  overall results, the  difference 
between the  solution for/~ ~ 0 and/~ = 1 is of the  order 0.01. The solution for the  constant  
chord wing (# -+  oo) decreases first, has a min imum of the  order 0. 942 and must  go back to H = 1 
for s--~ oo. The curve for s,jSo = 1.5, which is p lot ted in Fig. 10, was calculated from equat ion 
(117), since it was felt tha t  this approximat ion gives sufficient accuracy in this case. 

Using these values for H(s)  and the function z(s) according to equat ion (40), we obtain the  
coefficients Q and C~ by a numerical  integrat ion according to equations (54) and (57). By 
extending the  integrat ion up to a certain value s = s,,~ a family of wings with varying taper  
parameter  ~ and fixed values of A and a is obtained from each of the  curves H(s) in Fig. 10. 
Because of the  labour involved in determining each of these H-functions,  an approximate  method  
was applied for values Of a between 0 and ½-. 

Here it was thought  permissible to use the  approximat ion (117) for H(s) and to replace the  
function ~(s), which is defined by (40), by 

~ ( s ) - 1 - . o ( 1 - _ r )  
S 

. .  (118) 

where ~0 = 0.85 yields a reasonable approximat ion of the  function (see Fig. 13). Then the  
integrat ion in (54) and (57) can be carried out in general terms. We obtain 

c ~ =  ~_ A V s0~ ~°~ (~, ,-  s0)~0 s , , s -  so ;sd~ l 
2 L~ ~ + 2 f,o <(s,~- s) ~/(s~ -t- s - -  2s0) ( 1 --- ~ ~ , [ - - ~ 0 / ~  d 

or, when subst i tut ing equat ion (116)" 

with 

c ~ = ~ A S o _  ~ 1 + 2  °'° ~o~ ( 1 - ~ ) d o  
~,,? o ~/(1 - ~ )  

1(,,,, ) so 
% ~ -  . . . .  1 , / ~ - -  1 =  

# so So 1 - -  a 
. .  (119) 

and in a similar way:  

The evaluation of these two integrals yields the  result (X ~< a ~< ½ ) • 

C L = ~ A  So~ 1 + 2 .0~(~ / (1 - -  %2) --  1 -}- sin -~,~) 
S i n 2  " • 

.. (120) 

27~  

- .C~ , ,  = ~ 3 ( 1  + ~) 

where s . . . . .  1 -  2 
S O ]. - -  

A So"{a + a~o. [(1 , ) sin-1 ~,, + ~,,," s,,~ --- ~ ~ -  V ( 1  - ~.?) 

(121) 
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Since the  aspect ratio A occurs only as a factor and since ¢ and ~,, are according to (119) directly 
connected with ,l and a, the  functions CL/A and --  C~/CL can be plot ted as functions of the  
taper  ratio 1 with a as a parameter .  

In  Fig. 11 and 12 equations (120) and (121) have been used for values of a between 0 and ½. 
For a = ½ the  difference between the  approximat ion (120) and (121) and the  rigorous solution 
according to (54) and (57), using the  exact values for H(s) and ~.(s), was not  noticeable in the  
pictures. For the  constant  chord wing (2 = 1) also a rigorous solution wi thout  any approxima- 
'.ions was de termined by  the  me thod  in Appendix  II.1 and a numerical  integration.  The gap 
!~r ½a~ a<s,,]sl o was filled by interpolation, whereby the  curves with the  parameter  ( 1 -  ,~)/ 
, - -  = were employed and the  results (120) and (121) were used as a first 
approximation. 

As can be seen from Fig. 11, CL is, for a given aspect ratio A and a given sweep parameter  a, 
ndependen t  of the  taper  ratio 2 if 2 ) a, and then  CL decreases rapidly with decreasing ,~. For 
; constant  chord wing (2 = a =-- 1) the  plan forl~ is be t ter  described by  the parameter  

s,, 1 - - Z  l + Z  
s 0 - -  1 - - a - - ~  A t a n A z  . . . . . . . . . . . .  (122) 

vhich is also indicated in the  figures. 

The distance of the a.c. behind the  apex in terms of the  root chord is p lo t ted  in Fig. 12. It  
iepends only on the  taper  ratio Z and the  sweep parameter  a. For a given value of a, the  a.c. 
vhich is in the  leading edge for an unswept  constant-ch0rd wing, moves backwards with 
iecreasing taper  ratio 2. In  Fig. 9 the  position of the  a.c. is indicated for various plan forms. 
"he a.c. position in terms of the  s tandard  mean  chord is obtained from this picture by a 
nultiplication by the  conversion factor 

c, 2 
e 1 + ~  

6.3.2. Rolling moment due to roll.--The rolling momen t  due to roll (roll damping) of a flat wing 
f the  plan form given in Fig. 8 can be calculated from equat ion (76). If s,,~ ,< s0, we have H~ = 1 
nd (compare equat ion (99))" 

~p _ _  9"C 

32 A (a ~ 2) . . . . . . . . .  . . . .  (123) 

" o r  "~m "~" ~- so, the  function Hp(s) was determined from equat ion (72) with H~(so) == 1 according to 
~e numerical  method,  described in Appendix  II. The parameter  values used in the  calculation 
'ere a ~ 0, ~, ~ x,2 1 or /~ ---- 0, 1, 2, oo. The results are given in Tables 1 and 2 and plot ted in 
ig. 14 as functions of s/so. The function Hp~/(1 - -~ )  was replot ted against e, in order to 
~clude very  small values of ,,, for which H~/(1 -- ~2) tends to 1. Both  pictures can be used 
) interpolate  addit ional  curves for H/s). These were checked bv  the me thod  described in 
ppendix  II.2. 

The results for lp are plot ted in Fig. 15. Since lp is proport ional  to the aspect ratio A, the  
,nc t ion- - lp(32/aA)  is given as a function of the  taper  ratio Z with the sweep ratio a as a 
~. rameter.  

For  a given value of A and of the  sweep parameter  a the  roll damping coefficient --  l~ is 
dependent  of ,~, if ,~ ~> a, and decreases rapidly with decreasing )., if • ~< a. Curves for constant  
.'_lues of (1 --  ~)/(1 --  a) = ~(1 + I)A tan Az~are also included in the picture. 

6.3.3. _Force and pitching moment due to pitch.--The force and the pi tching m o m e n t  d u e  to 
tch for the same wing plan form follow from equations (92) and (93) after the function He(s ) 
determined from the  integral  equat ion (87) with Hq(s) - 1 for 0 ~< s ~ so. In  Fig. 16 the  
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func t ion  He(s ) is p lo t t ed  against  s/so for several  values  of s,,/So (s,/So = 2, 3, oo are c o m p u t e d  ac- 
cording to A p p e n d i x  I I ,  the  r ema inde r  of t he  curves  are ob ta ined  by  in t e rpo la t ion  and  check ing  
by  the  m e t h o d  descr ibed in A p p e n d i x  II .2) .  The  func t ion  Hq(S ) is also p lo t t ed  agains t  ~. 

Us ing  these  curves  we are in a pos i t ion  to car ry  ou t  t he  in tegra t ions  in (92) and  (93). We 

ob ta in  for s,~ ~< g0 

11 ( I .. _ °= 1 + - = ( r )  . . . .  
- -  ze = A ff-7 12 So 

= c ?  s= ',. 1 1 +  - = ( r )  . . . .  
- ~ e : A f f ~  So ~ +  °~ ff ~ c-p-J 

with  
1 - - 2  . 1 - - 2 a  

= , c,,, = c~ 1 a C i  Cr 1 - -  a 

s,_,:;~(1-z) - 1  z > ~ a  
. .  . . .  . .  ( 1 2 6 )  

, c, 1 So = + ~so He(s) 1 - -  ~(s) 
- ze = ff A ~ ff s" ~ s,,? So 

',,, r = " (128) 

I c)  I3_So = I ='He(s  ) 1 - -  u(s) s=s = 
- - m e = i  i [ 8 s , .  = ÷ So ., o 

s m ~/2 cm, 

_. = s,,,=So - - 2  -~-) j .  (129) 

Here  all t h e  integrals  were d e t e r m i n e d  numer ica l ly  or graphical ly.  The  resul ts  are given in 
Figs. 17 and  18. For  a given va lue  of the  t ape r  rat io  ~ and  a cons t an t  aspect  rat io  A the  
der iva t ive  --  Zg increases first wi th  increasing sweep p a r a m e t e r  a and  t h e n  decreases, whereas  
the  der iva t ive  --  me increases all t he  t ime  wi th  increasing sweep p a r a m e t e r  a, except  for very  
small  values  of Z. The  curves  (1 --  2)/(1 --  a) = s,,/So = const  are also ind ica t ed  for t he  region 
X <~ a. T h e y  can useful ly  be e m p l o y e d  for in te rpo la t ion  be tween  the  ca lcula ted  curves.  

6.4. Pressure  Dis tr ibut ions  .for Two  Par t icu lar  P l a n  F o r m s . - - I n  order  to show t he  fo rm of the  
pressure  d i s t r ibu t ion  over  a swept  wing at  sonic speed,  t he  pressure  has  been  ca lcula ted  for two 
flat wings  at  incidence c¢. The  p lan  fo rm of b o t h  wings is g iven in Fig. 19. The  first wing 
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S a 

and  the  th i rd  for t he  tai l  end  of t he  wing, where  x is used  as a variable" 

cl =: cr(1 --  Z)/(1 - -  a) <~ x ~ Cr(1 - -  Za)/(1 --  a) = c,,~ 

and  r is g iven b y  equa t ion  (114). We ob ta in  

. . . .  (127) 

s .... 1 - -  2 

go 1 --  a 

For  s= >~ go = so we have  th ree  con t r ibu t ions  to the  integrals ,  n a m e l y  one for 0 ~< s ~< So, t he  
second for so ~ s <~ s,,,., where  1" m a y  be considered as a func t ion  of s" 



(cropped wing) belongs to the family considered in 6.3, the a~pect ratio is A = 2. 835, the taper 
ratio ~ = 0.4, and the sweep of the quarter-chord line is A1/~ -- 45 deg. The pressure distribution 
at a number of chordwise sections (y/c, = 0, 0.2, 0.4, 0" 6, 0.8, 0.9) is given in Fig. 20. Then 
the plan form was faired according to Fig. 19 in order to avoid the sharp kink at the leading 
edge of the tip. (A mathematical  expression was not used for the faired leading edge, but both 
the shape y = s(x) and the derivative s'(x) must be defined numerically or graphically.) The 
pressure distribution of the ' faired ' wing is plotted in Fig. 21. In both cases the approximation 
(117) for the function H(s) has been used, which should be good enough, since a =: 0.4747 is 
not too big. 

A comparison of Figs. 20 and 21 shows, that  the fairing has a considerable effect on the pressure 
distribution. Instead of the two kinks in the pressure curves, which correspond to the two Mach 
waves (at M = 1 a Mach cone degenerates into a plane normal to the undisturbed flow) in Fig. 20, 
arising from the tip and the trailing edge of the centre-section, only the last one appears in Fig. 21, 
whereas the first one has been smoothed out. 

The local aerodynamic centre for the chordwise sections is plotted in Fig. 19 for both plan 
forms. Apart from the region of the wing tips, the fairing has not much influence on the a.c. 
position. The overall a.c. and the overall CL are practically the same for both wings as can be 
seen from Table 3. 

Thus the fairing of a plan form can be used in order to ' fair ' the pressure curves. Whereas 
the load of the cropped wing is concentrated on the front part of the wing, the faired wing shows 
a more evenly distributed load. In order to avoid the sharp pressure rise along the Math line 
x = % extending from the kink at the trailing edge, a similar fairing of the trailing edge near 
the middle of the wing may be useful (compare Appendix II. 1). I t  would spread the pressure 
rise more evenly over a greater area. 

7. Calculation of the Drag.--The induced drag and the drag coefficient Cz, (neglecting the 
drag C. 0 due to friction) can easily be obtained, after the lift coefficient CL has been calculated. 
As was shown by Ward s , the following relation holds: 

l (aCL'~ . o~. C~ = C~o + ,~ \ -gg/~=o . .  ( 1 3 0 )  

Thus the drag coefficients can be determined using the chart of Fig. 11, provided one can obtain 
a reasonable estimate for the drag coefficient Cv o due to friction. The latter probably depends 
very much on the wing sections and on the wing plan form, since this is responsible for the 
formation of shock-waves, which may affect the drag to a great extent. 

8. ConcIusions.--Theoretical values, based on the assumption of an inviscid potential flow 
(linearized with respect to the magnitude of the disturbance caused by the wing), are given for 
the lift slope dCc/da, the pitching moment C~u for a wing at incidence, and for the stabili ty 
derivatives lp, z v and mq. The results are valid, if A~(1 -- M ~) is small compared to 1. All these 
quantities are proportional to the aspect ratio A. For a wing family depending on three 
parameters (see Fig. 8) the results are given in the form of charts (Figs. 11, 12, 15, 17 and 18). 
These charts can be used to estimate the magnitude of the lift slope, pitching moment, roll 
damping l~ and damping in pitch mq for a wide range of plan forms. Minor alterations of the 
plan form, e.g., rounding off of corners or tips, usually do not affect very much these overall 
values, as can be seen in the example treated in section 6.4. But  these minor alterations may 
have a big effect on the shape of the pressure distribution. A plan form with curved edges 
without corners has a much smoother pressure distribution than a plan form consisting of straight 
lines linked by sharp corners (compare Figs. 19, 20 and 21). Each corner gives rise to a Mach 
cone (which is here degenerated into a plane, normal to the flight direction). In a real flow this 
Mach cone may develop into a shock-wave with the associated sudden pressure rise and drag, 
whereas it is likely tha t  a rounded leading edge produces a smoother pressure gradient possibly 
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without a great increase in drag. Thus the choice of the plan form of the wing becomes equally 
important  in sonic flight as the choice of the chordwise section in subsonic flight for a wing of a 
larger aspect ratio. 

As regards the applicability of these results, which are based on the assumption of a non-viscid 
flow without interference of shock-waves, to actual flow problems at transonic speeds it may be 
pointed out tha t  this theory will at least show the main trends of the behaviour of a sonic flow 
at a small incidence. All plan forms, for which the linearized theory yields pressure distributions 
with steep pressure rises, are likely to produce shock-waves and the resultant drag increase and 
rapid variation of the aerodynamic characteristics with Mach number near the speed of sound. 
Thus such plan forms, where even the potential theory shows rapid variations of the stabili ty 
derivatives near M = 1, will have to be abandoned in favour of other plan forms with more 
favourable characteristics. These will have to be tested as to their behaviour in a real flow. 
Thus the linearized theory, given in this report, will provide a useful tool in the design of transonic 
aircraft and the investigation of transonic flow problems. The range of validity is usually 
restricted by an incidence of about 4 deg, since, e.g., for a Delta wing at this incidence the flow 
tends to break away from the surface near the apex and non-linear effects have to be accounted for. 

Acknowledgements.--The author is grateful for the help of Miss J. Abrook, B.Sc., who worked 
out all solutions of the integral equations (Appendix II). Numerical calculations were carried 
out by  Mr. A. R. Beauchamp and Miss S. A. Brown. 
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A P P E N D I X  I " 

The Uniqueness of the Solution .for the Two-dimensional Problem 

In order to show that  the solutions of the Laplace equation (11), which we have given in 
sections 3, 4 and 5, are unique, we employ a conformal transformation of the Z-plane (Z = y + iz) 
of Fig. 3 into an auxiliary U-plane. 

At first we introduce the T-plane by 

I : s '  - T =  . .  , .  ( 1 . 1 )  

(see Fig. 22) and go from there into the U-plane by means of 

Z 

S 
- -  d n  U = % / ( 1  - -  k 2 s n  2 U )  = % / ( 1  - -  k2T 2) 

k ~ -- 1 --  r=/: --  1 --  k '~ . . . . . . . . . . . . .  (I.2) 

Here sn U, cn U = %/(1 -- sn ~ U), and dn U -= %/(1 -- k 2 sn 2 U) denote the elliptic functions, 
introduced by Jacobi, with the periods (4K, 2iK'),  ( 4K, 4iK') and (2K, 4iK') respectively, where 

and 

K - - K ( k ) - -  & 
-o %/(1 -- k ~ sin 2 x) 

K ' =  K'(k) - K(k') 

are complete elliptic integrals of the first kind. 

In Fig. 22 points, which correspond to each other in the Z-, T- and U-plane, are denoted by 
the same letter. The entire Z-plane is transformed into the interior of the rectangle B" BB'  B":, 
of the U-plane, the point D (U --- iK')  corresponds to Z = co, the points A (U =: 0) and A' 
( U = 2 i K ' )  to the leading edges Z . . . .  s and Z =  + s ,  the points B, B" ( U = K ,  
U = K + 2 i K ' )  and B', B"  ( U = - - K ,  U - - - - K q - . 2 i K ' )  to the trailing edges Z = - - r ,  
Z = + r .  

Since the pressure I = const ~{F} must be a continuous function everywhere in the Z-plane 
(which is slit along AB and A'B'),  with the only exception of the neighbourhood of the leading 
edges A and A' (where the pressure may tend to infinity), the complex pressure function F(U) 
must be bounded and continuous everywhere in the U-plane except near A, A' and their 
equivalent points U = 2mK + 2niK '  (m, n --  integers). F(U) must- have the period 2K along 
the real axis in order to ensure continuity of the pressure between both faces B C B'  of the wake. 
Since the line ~(U) = 0 corresponds to the left-hand section AB of the wing, the line ~9(U) -- 2iK '  
to the right-hand section B 'A '  and so on, the pressure function F(U) or at least its derivative 
d F / d U  must have the period 4iK '  along the imaginary axis. F itself may take on an imaginary 
additive constant if U is replaced by U + 4iK' .  

Near U = 0 the function F(U) must behave as U -1 and d F / d U  as U -2, since only this 
singularity leads to the well-known form of a singularity near the leading edge Z = ___ S. 

Our solution I for the wing at incidence (compare equation (43), (45))may be written as 
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with 

~(V) cn C dn U f~'[ 
--- dn ~ U 

s n U  q- o 

E(k)-] 

d F  __ 1 E(k) 1 
dU K(h) sn ~ U" 

For the  wing in roll (equation (68)) we have the  solution 

/ 
7~-- t , ,( . /~{f.}  

with 

(1.3) 

• G ( u )  

dF, 
dU 

-- snCn U +  [ U  1 = i (dn ( U  - -  i K ' )  - -  1) 

dn U 
sn ~ U 

ik ~ sn (U -- iK') cn (U --  iK') 

. .  (1.4) 

Finally for the  wing in pi tch we have (compare equat ion (80)) 

I 
V2 

where F(U) is given 

G ( u )  

dFq 
dU 

in (I.3) and 

- - - - / a n  U 4-. f~ [an2 U K~(k)_IE(k)] dU 

- -  q -  i k  ~sn U cn U q- dn ~U E ( k )  
K(k)  

E(k) k 2 U (sn U i cn = 1 K(k)  sn U) 

(1.5) 

The function dF/dU has the  periods 2K and 2iK' and a pole of the order 2 at U--2mK-+2niK'.  
I ts  integral  F(U) vanishes for U = iK'  and the  constant  ~ = ElK has been chosen as to make  
F(U q- 2K) = F(U). Fur thermore  we have  F(U + 2iK') = F(U) -- :~i/(2K) so tha t  2{F} has 
the  period 2iK' as required. Since an elliptic function is (apart from an addi t ive constant) 
de te rmined  in a unique way by the  principal part  of t h e  expansions at the  poles, the only 
arbi t rary  constant  is the  coefficient of U -~ of the expansion at U = 0 which is de termined after- 
wards by  an integral  equation. Thus our solution is unique. 

The function Fp(U) has the periods 2K and 4iK' and poles at U = 2inK + 2inK'. The 
integral  F(U) vanishes at U = iK'  and we have 

G ( u  + 2K)= G(v), G ( u  + 2iK') = -- G ( U ) .  

Thus the  pressure I ~ ~{F~} has a different sign along the  right and the  left wing section, as 
required. Again the  solution is de te rmined  in a unique way by the  principal part  of d F / d U  
at  the  pole. 

For the  wing in pi tch we have to use two functions, one F(U) for the  forward part  of tile wing 
with ds/dx ~ 0 and another  function Fq(U) for the  whole wing. The coefficient of U -2 near  
U = 0 of the  first function F(U)  follows in a similar way as for the  incidence case from an integral  
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equation. The second function F e ( U  i is  introduced, to satisfy the boundary condition (79) 
a(I/V')/az = q/V along the wing. -Since this contribution to the pressure function must remmn 
finite everywhere in the Z-plane (for Z = ± s may now correspond to a side edge or even a 
trailing edge of the wing), we have, to take care that  no singularities occur inside the rectangle 
B" B 13' 13", which means that  thesingutar i ty  must occur in the adjoining rectangle. Thus the 
function dn~U has been introduced in dFjdU,  so that  dFJdU has the periods 2K and 4iK'  
and a singularity at U = 2inK + (4n -- 1)iK' Of the order -- 2. Its integral Fq(U) vanishes 
for U = iK '  and we have 

F~(U + 2K) --= Fq(U) 

Fq(U + 2iK' = Fq(U) - - - -  

Fq(U +. 4iK'  -- Fq(U) -- - -  

2K 

2~i 
2K 

+ 2i dn U 

so that  the real part of Fq has the period 4K', and is symmetrical with respect to the line 
¢5(U) = iK'.  

APPENDIX II 

Solution of the Integral Equation (50) 

In this Appendix we shalt describe a numerical method for the solution of the three integral 
equations (50), (72) and (87) for the functions H(s), H~(s) and Hq(s). The equations may be 

( r r ' d r l / d S l  - -  ~ 1 .  s l )  

V ( s  = - s ? ) V ( s  = - -  r ? )  

written in the form (s0 ~< s) 

s = - r G  es~ - so H ( s 0  H%) ~ v  . 
s O ~ -  

f,o H,'(&) ~ s?/ V. ( s  ~ - s ? ) V ( s  ~ - r ? )  =-- 

& l =  o . . . .  . .  (5o) 

d (  1 - s°~7,, . .  (72) 

and 

s d i s 

• V ( ~ -  ~ T ~  ~ - r : )  

( " (s 2 - s ? .  ~1) dsl  

J,o v IJ - -  - 

Here r~ = r(s 0 and z~ = ~(s 0 are for any plan form known functions of s ,  

(87) 

1. Solution Near s = s0.--We consider first the neighbourhood of s = So, where the influence 
of the trailing edge comes in first. We may assume there that  the leading edge is straight and the 
trailing edge may be either curved or straight (m = 1) and have thus for the right half-wing 
( y  > o ) :  

.... s ;  ~ So + (x - c,)B~ 

r l  = s o B ~ .  X - -  C r m 

Cr 

so that  (B1, B2, Ba are suitable constants) . 
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o ~ / s l -  s0"~ ~ ( s ~ - - S o )  ~ 
k CrJJ 1 / S o 

k = = l  r*=~l- -Ba=(  s ~ s ~  ~ So-  1)~'~ 

a n d  

_ E ( k ) _  1 1 

"~  K ( k )  - -  log ( 4 s ~ / r ~ )  " -  log { 4 S o ' ~ / B a ( s ~  - -  So)'} 
. .  (11.2) 

d r 1  ~ ' _ _  S0)2"~-1 r~ ~1  ~vl4SoBa2 (Sl So 

F u r t h e r m o r e  we m a y  wr i t e  

V ( s  ~ - -  r~ ~) ~ s ~ so 

V < -  ~?) - V ( ~ -  sdV(2So) 

so t h a t  f ina l ly  we o b t a i n  i n s t e a d  of (50), (72), a n d  (87) t h e  s impl i f ied  e q u a t i o n s "  

fs H'(sJ ds~ 
s O so ~1) dsl = 0 

So~/(s - s~) 

S o V ( S -  s~) 
_- , / ( ,  - 

" d ds~ fs Os He(S1)' (~/]/~B32( SI-s0 S°) 2~-1 - ~1) dsl 
V(s  - s~) 

V(s  - sl) 

I n  t h e  s econd  t e r m  t h e  f u n c t i o n s  H,  H~, H e m a y  be  r ep l aced  b y  1 a n d  we o b t a i n  t he  so lu t i on  in 
t he  a p p r o x i m a t e  fo rm"  

--- SO) 2m-1 
Soil%) ~-- -- ~1 + roB? (s~ So 

s,,H/(sl) ~ mB3~ ( s~ So s°) 2"-~ 

dds~ s~He(s~) -'- 1 + So dsl So 

(II.3) 

o r  

soH~'(s~) -"- - -  2 ~ - + -  tuBa ~ (sx So So) 2'~-~ 

36 



and finally 

_ _  So) 2m 
• J:: ,o  

' So ) .m H i s s )  -.-- 1 + ½ .B~. s ~ -  
So 

H/s,) l_2f~o s__T_+½B~ s,-- " '  So 

. . . . . .  ( 1 1 . 4 )  

Thus the influence of the second term, which produces a fairly quick decrease in H and thus 
an adverse pressure gradient in the chordwise direction, may be cancelled by the third term, 
which is of opposite sign, if m is chosen in a proper way. For a straight trailing edge (m = 1) 
the influence of this term may be noticed only for bigger values of s -- s0, but for a parabolic 
trailing edge (m ---- ½) its influence appears very soon and may even (m < ½) produce a favourable 
pressure gradient in the chordwise direction. 

2. A n  Alternative Form for the Integral Equat ion. - - In  order to eliminate the derivative H'  in 
the equation (50) we integrate by parts and obtain 

o r  

" d rH(s )  - -  H(s~) l  ds~ 
--  f'o -~1 " s "  --  sl"/ 

s fs { H ( s )  - H(s~) )Es~(s  ~ - -  r ? )  - r l  d,,~/ds~ (s ~ - -  s ? ) ]  ds~ 
= [ H ( s )  - - H ( S o ) J  ~ / ( s"  So") + 

- - ~'o , V ( s  ~ - r ~ ) ( s ~ -  s~.),/= . 

j (" H(s~) (rx dr~/ds~ -- ,~s~) ds~ 
,o V ( s " -  r ? ) ~ / ( s  ~ - -  s? )  

s f= H(s)rl dr~/dsl -- H(sl)s~ . ~ dsl 
~ / ( s  = _ So =) rH(=) - -  H ( s o ) ]  = So ~ ( s  ~ - -  r ? ) v ' ( =  ~ - -  s? )  

- So [H(sl - -  H(s~ll s iV ( s"  - -  r~=l ds~ (11.5/ 
(s" -- s ? ) ~ / ~  . . . . . . .  

The corresponding equation for Hp is obtained from (11.5) by replacing ~ by 1 and adding 
the term on the left-hand side of equation (72) on the right. In the equation for siHq(s~) we 
have to add on the right of (I1.5) the term on the right of equation (87). 

Equation (II.5) suggests, to t ry  a solution by means of an iteration process where an approxi- 
mation for H(s) (obtained by guessing or another calculation) is introduced in the right-hand 
side and the improved function H(s) is obtained from the left. Unfortunately this method does 
not work very well, unless the approximation introduced in the right is already fairly near to 
the actual solution. Thus this procedure was only used to check solutions calculated by another 
method (see (II.3)) or to check solutions which had been obtained by interpolation between 
functions H(s) calculated according to (11.3). 

For the accuracy, required to compile the graphs in this report, it was sufficient to determine 
the integrals on the right of (I1.5) numerically or by plotting the integrands and counting out 
the areas. 

3. A Direct Method of Solution.--Since the iteration method, explained in section 2, did not 
yield satisfactory results a more elaborate method was developed, to solve equation (50)or 
(il.5) for the function H(s). It  was used to calculate a few curves for H(g), H~(s), and Hq(s). 
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Then a number  of addi t ional  curves for different geometrical  parameters  of the  plan f o r m  were 
in terpola ted  and the entire picture was checked and corrected if necessary, by  the method  in 
section 2. i ..... "} . 

The new method  is based on the assumption t ha t  our solution H(s )  m a y  be approximated  
by  a s t ra ight  line for any  in terval  g~ <~ s ~;gi~_~, which is not  too.big. Since the  s ingular i ty  at  
the  beginning s = So is such (compare (II.4)), ' that this  assumpt ion holds even there wi th  sufficient 
accuracy, we m a y  apply  our method  s t ra ight  from the beginning s = so. 

Thus we are ent i t led to approximate  also t!he funct ion 

H ( s )  r ,  d r , / d s ~  - -  H ( s , )  . s~ . ,~  = f ( s ,  s d  . . . . . . . .  (11,6) 
V ( s '  - ~?) 

b y  a s t ra ight  line for the  interval  gi <~ sl ~< g~+l (j = 0, 2, 2 . . . ) "  

f ( s :  Sx) = (~+~ - -  S l ) f ( s '  ~ )  q -  (Sl - -  s d ) f ( s ,  Si+,)  
S)+~ - -  S i 

Then the first integral  in equat ion (11.5) can be evaluated as a sum of integrals,  each taken  
over a small  in terval  g~. ~< s~ ~< g~+~ (s - g~)~ 

~+~ f ( ~ ,  s~) ds~ g~+~f(g~, g~) - -  s~ f(SN, g~+~) . I N  

where 

+ f(sN,  s~+~) - -  f(SN, Si) . I N.~ 
Si+~ - -  S i  

. .  (11.8) 

I,~,; = [ , + '  
ds j  

i2~ j = ffi_ + 
si 

d s l  " = sinT, s;.+~ sin-1 s~ 
~/(sN ~ -  s?) s~ s~ 

s ,  & ,  = - v % ?  - ~ + ? )  + v ' ( ~ N  ~ - -  -V)  
V ( ~ N  ~ - -  s Z )  

(11.9) 

In  the  second integral  in (II.5) we m a y  replace 

[H(s)  - -  H(sl)] s~'X/(s 2 - -  rl ~) - g(s~ s~) . .  

by  a s t r a i g h t  line : 

g(s, sd = (~+~ - s,)g(s, ~) + (s~ - ~M(s ,  ~j+,) . .  
gi+x - -  sj' 

Then  the  integral  over a small  in terval  si • s~ K ~j+~ becomes (s - sN): 

" (~N - ¢ ~  s ~ ' )  - - - ~ / '  ~ = s i + ~  - -  ~J 

+ g(~N' ~J+') - g ( ~ '  ~J)" &'1,~ . .  . .  
g.~+l - -  g~ 
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. where  

N I v+~ s~ dsl 1 1 
I 4 ' j  = d s j  (gN 2 - -  $12)a/2 = V ( , ~ N  2 - -  ,~ j+ l  2) - -  V ( , ~ N  '~ - -  ,~j2) 

• . ( 1 1 . 2 3 )  

For  the last in terval  g~_~ % s~ < gN - s we have  instead (j = N --  2)" 

and  

g(s, sd -- M --_~ g(s, ~.~-1) . . . . . . . . . . . . . .  (11.14) 
S N - -  S N _  1 

r "~ g(M, sd dsl ~ --  ~,~-1.12" . . . . . . . . . . . . . . . .  (II .15)  

where  

= G - K J  - L,~)~=~,~-I = ~ "v ' , ~  + ~_1, '  " 
. .  (II.16) 

Using only one in terval  go ~< s~ -<. g~ - s (N = 1) we obtain  from equat ion  (11.5) the  following 
equat ion" 

s~ s~ f ( s l ,  So) - So/(S~,  s~) . II,0 
~ / ( s #  - So 2) EH(sl) - H(so) ]  = s ~ - -  So 

or ( H ( s o ) =  2)- 

f(s~, sl) - f ( s l ,  So). &0o g(s~, So) + 
S 1 - -  S O S 1  - - -  S O 

_ _  T 1  1 s~ EH(sl) - 2] - H(so)S0~(so) s ~ - l , 0 -  4,0 
~ " ( s l  ~ - -  so 2) sl sl - - so  

H(sl) (rl drddSl) --  slz(sl)) So 11 f~,,~ _ _  1 , 0  - -  

V ( S ?  - ]I?) S l -  S 0 

S o y %  ~ - rd)  z~ EH(sl) - -  13 
S 1 - - -  S o 

which  is a l inear equat ion for H(sl). I t  holds only if the  in terval  go ~- sl ~ gl - s is not  too big, 
so t ha t  the  approximat ion  of cer ta in  functions by  s t raight  lines, as indicated above, is 
permissible. After  H(sl) has been determined,  we m a y  calculate H(s2) at a point  s2 > s1 using 
the  values H(so) and  H(sl) a l ready determined.  The l inear equat ion  for H(s2) is more complicated 
and  more  tedious to establish and it shall  not  be given here explicitly. In  the  same way  we 
calculate t h e  remainder  of the  funct ion H(s), replacing equat ion  (II.5) by  a sum of integrals 
over sufficiently small intervals  in the  way  explained in equat ion  (II.8), (II.12) and  (I1.15), 
which  leads to a l inear equat ion  for  the  value H(g,,). Since the greatest  cont r ibut ion  to the  
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coefficients of this equation arises always from the last part-interval, it is essential to keep the 
last intervals (preceding ~,~) small enough, whereas the first intervals (near So) may be chosen 
much bigger, in order to reduce the time required for the work. 

This method becomes a little unreliable as one approaches the wing tip of a fully tapered wing 
since there (s ~ -  rl~) 1/~ tends to zero. The steps s ; + l - - g j  must be chosen fairly small there. 
All results were checked by the method of II.2. In general the contribution of the wing tips in 
such a case is fairly small (since the wing sections I s - - r [  are small there), so that  a certain 
inaccuracy of the results near the tips was considered to be fairly harmless. 

Apparently equation (72) can be treated in exactly the same way, the only difference being 
tha t  ~ has to be replaced by 1. The same applies for equation (87), where only the additional 
term on the right has to be introduced, which is a given function of s for every plan form. Thus 
it seems unnecessary to give more details of the calculation here. 

A P P E N D I X  I I I  

A P a r t i c u l a r  W i n g  w i th  a S f l a n w i s e  Cons tan t  L o a d  D i s t r i b u t i o n  (Ref .  4) 

As was shown in section 3.4, equation (60), a wing plan form, which is defined by 

dr E ( k )  
r N = s .  ~(s) = s K ( k )  

~ = 1 - r~ /s  ~ . . . . . . . . . . . . . .  (60) 

does not develop a wake between the ' tails ' of the wing -- r < y < r, and has thus a constant 
sectional lift over the middle part  of the span (compare Ref. 4). 

The plan form of this wing is obtained by integrating the differential equation (60). We 
obtain 

dr S K dk2 - -  K q- = ~ - (1 - k " ) K  (III.1) 
2 d s  D s ~ s  . . . . . . . . .  

Since we have the following relation for the complete elliptic integrals K and E 

d [E -- (1 -- k~)K] == ½K 
dk ~ 

. . . . . .  (111.2)  

we may write instead of equation (III.1) • 

d [ E _ ( I _ k , ) K j = E _ ( I _ k ~ ) K  

which may be integrated as 

S o  E _  (I _ k~)K 
S 

: .  (111.3)  

since for s=so we hayer=O, k ~= l, and E= l, K=oo. 
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For small values of r=/s 2 = 1 -- k ~, we ma y  write 

So-- 1 - - 1 r 2  (A +-~_) + 
s ~ P  " ' "  

where 

A = log 4s .,-_ log 4So 

If the  leading edge is assumed to be straight  the  shape of the trailing edge is approximate ly  
parabolic. 

If the  leading edge is cut off at a value s --  s,,, and then joined to the  trailing edge by  a s traight  
line s = s,,, parallel to the  x-axis, this part  of the wing sheds vortices and  a wake between y = r(s,,,) 
and y = s,,, The load drops down to zero immedia te ly  after the  span s(x) has reached its 
maximum,  due to the  Math cone, extending from the  wing tip. 

If we consider a wing of a great  span, the  asymptot ic  value for the  trailing edge is obtained 
for big values of s and r and small values of 1 -- r~/s 2 = k "~ as 

I 1 2 s 0 _  ( s -  r) 1 8 -  + . . . . . . . . . . . . .  ( I I 1 . 4 )  
7c S 

as described in more detail  in Ref. 4. 

A P P E N D I X  IV 

Solution of the Integral Equations for H1, Hi,, and Hg for Small Values of 

We consider the  integral  equat ion (50) for the  function H(s) for the fiat wing at incidence c~ 
in the  case of a wing, which is not  very di f ferent  from a Delta wing. We introduce 

" - 1 - a , ~1 = ; ; -So  - , = - 1 . . . . . .  ( ~16 )  

and obtain from (50) (H(s,) -H*(~I)  ; zl(sl) ---z~*(~l))" 

+ ~ )=  - (~ + ~ ) ~  J 

( ° H":(~I) (1 + m ) ~ l  - - , . ( 1  + m ~ ) ~ * * ( ~ )  d ~  . .  ( I v . i )  
~o g [ (1  + v(7)~ - (~ + ,)=~?IVF(1 + ~ )~  - (1 + ~ ) ~ ]  

_ I)" = (i 
S o a KS o / 

since 

dr1 1 1 q- I~, dsl = / ,  dal 
dsl a /z 

We mul t ip ly  equat ion (IV.l) by V'(%) and go to the  limit ~ --+ 0 : 

¢; dH:~* ({~1) V ( 1  - ~ H * ( ~ 1 ) ~ 1  & l  (712 ) ( 
0 7------ 

which is equivalent to 

O - -  f o j g ~  [ H * ( ~ I ) C ( 1 - -  ~ C ( ~  - -  ~I) . . . . .  
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This  is Abel 's  in tegra l  equa t ion  for the  func t ion  H*(¢1)~/(1 --  ~12). 

__ _ f~l = 1 

The  (unique) so lu t ion  is 

since H*(0) = 1. 
a 

T h u s  we have  for small  values  of/~ = 1 --  a 

S~  - -  S O 

~ ( s )  = ~ / ( s ~ , -  s )~/ (s , ,  + s - Ss0)" " "  

. .  (IV.4) 

B y  similar  cons idera t ions  i t  can be p r o v e d  t h a t  for small  values  of ~, Hb(s ) = H(s) and  Hq(s) 
are also g iven b y  equa t ion  (IV.4). Whereas  the  a p p r o x i m a t i o n  (IV.4) for H(s) can be used  over  
qu i te  a considerable  range  of ~ in t he  incidence case, as has  been  shown in sect ion 6.3, t he  
appl icabi l i ty  of this  a p p r o x i m a t i o n  for t h e  funct ions  Hp(s) and  Hq(s) is m u c h  more  res t r ic ted.  
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T A B L E  1 

The H-functions as Functions of S/So 

S 

S o 

1.0 
1 "05 
1.1 
1-2 
1-4 
1 .6  
1 .8  
1"9 
2 ' 0  
2 .2  
2"4 
2"6 
2 . 8  
2 -9  
3-0 

S~z 

S o 

H(sl 

S n 

1"0 
O' 992 
O" 984 
0.972 
O. 957 
O" 948 
O" 944 

0.942 
0-942 
0-942 

- - 2  
S o 

1.0 
0.995 
0.997 
1.011 
1-095 
1-256 
1-622 
2-077 

S O 

1-0 
1-001 
1.005 
1 . 0 1 5  
1.041 
1.070 
1.099 

1.127 
1.154 
1 '179 

G ( s )  

S, 3 
S O 

1.0 
1 "003 
1 .012  
1.034 
1" 102 
1" 186 

i 1 .285 

1" 405 
1" 547 

i 1-731 

~n ---  2 
so 

1.0 
1.004 
1.015 
1.053 
1-190 
1.425 
1-905 

S n - .  GO 
S O 

1-0 
O" 980 
O" 967 
0.938 
0"898 
0"870 
0"850 

0 '836  
0 '826  
0"819 

Sn - -  3 

S O 

1.0 
0.982 
0 '  968 
0.947 
0 '  926 
O' 926 
0 '  942 

0"972 
1"023 
1 '099 
1"220 
1"451 
1-709 

Sn - -  2 
S O 

1 '0  
0.984 
0 '975  
0.963 
0-987 
1"079 
1.314 
1"621 

S,~ 1, ~ = - - -  1 
¢t So ~t 

T A B L E  2 

The H:functions as Functions of ~ . . . .  1 
tt 

0 
0"05 
0"1 
0"2 
0 .3  
0"4 
0"5 
0-6  
0 .7  
0 ' 8  
0 ' 9  

1"0 
0"994 
0- 992 
0.991 

1.004 

1-005 

0.973 
0.905 

H~¢s)V(1 - ~)  G ( ~ ) ~ / ( 1  - ~ )  

# = 2  # = 2  #~-~1 

1.0 1.0 
1-010 1.002 
1-029 1.010 
1-080 1-032 
1-131 
1 . 1 7 8  1 .091  
1 . 2 1 6  
1.237 1.140 
1.236 

1" 143 

1.0 
0.967 
0.942 
0-907 
0-883 
0.863 
0-842 
0.818 
0.785 
0.732 
0.632 

, u = = l  

1.o 
o. 983 
o. 970 
o. 944 
o. 922 
o. 905 
o.885 
o.863 
0.835 
o. 788 
o. 707 

lira H ( S )  " ~ ( 1  - -  O "2) = 1 lira tt__~. 0 , ~ .__~ .oHp(s )  V ( I  _ _  G2) = I ,  .u--~'0lim H q ( S )  . ~ / / ( I  __  G2) ._= 1 

4 3  
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TABLE 3 

Aerodynamic Characteristics for the Wings in Fig. 19 

Cropped wing Faired wing 

dCz 
d~ 

dC~ 

a.c. position 

_x behind apex 
6~ 

4"11 4"11 

3"01 3-06 

O" 73 O" 74 
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FIG. 2. The plan form of the wing. 
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