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Summary.-Expressions are developed on the basis of an unsteady flow analysis for the yawing derivatives for
a delta wing with small dihedral at small incidence flying at supersonic speeds. The assumptions of the linearised
theory of flow are made throughout; only first-order terms in the rate of turn are considered.

The terms dependent on the dihedral alone are continuous and decrease numerically with rising Mach number.
The remaining terms are discontinuous at a Mach number at which a leading edge becomes supersonic; in particular
the rolling-moment component due to incidence changes sign; the other derivatives may do likewise in certain
circumstances.

The approximate theory developed in the paper breaks down as a leading edge nears the Mach wave from the
vertex of the wing. The yawing amplitude for which the results quoted present reasonable approximations decreases
rapidly as this condition is approached; in particular the contributions of the leading-edge suction become undefined.

Earlier results based on strip theory are greater numerically than those derived in the present paper by significant
amounts that increase with Mach number and aspect ratio. The two theories agree for vanishingly small aspect
ratios.

1. I ntroduction.-The purpose of this paper is to determine the forces acting on a delta wing
at supersonic speeds when undergoing a pure yawing motion. The type of motion considered
is of a wing travelling in a wide circle about an axis parallel to its plane of symmetry, and the
derivatives found are those corresponding to a vanishingly small frequency parameter. In a
subsonic stability analysis it is usual to assume that the aircraft is performing an oscillatory
motion rather than a continuous turn, so that the wake may be assumed to stream out straight
behind the aircraft; however, since in supersonic flow the wing is outside the region of influence
of the wake, either motion will lead to the same result in deriving the yawing derivatives.

To simplify the problem the two halves of the wing are taken to be flat and infinitely thin
and the incidence and dihedral small enough to allow second-order terms in them to be neglected.
In addition the rate of turn is assumed to be small enough to ensure that its square is negligible
and that the leading edges are either both subsonic or both supersonic over their whole length.
Within the framework of these linearising assumptions the solution found is thought to be exact.
Assumptions of the type that arise in strip theory are not made.

The aerodynamic forces due to the yawing spring from three sources associated with the facts
that, firstly, the aerofoil has velocities normal to its plane, that, secondly, it has velocities in
its own plane, a complication which does not arise in rolling or pitching, and that, thirdly, in
the quasi-subsonic condition there is an interaction modifying the leading-edge suction forces.
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In the quasi-subsonic case a solution to the unsteady potential equation, correct to the required
order of approximation, is synthesised by means of suitable transformations from solutions to
the steady equation which are obtained by an extension of the method of cone fields introduced
by Stewart (Ref. 1). In the definitely supersonic case the problem reduces to the integration
of a distribution of sonic sources, the strengths of which are functions of time.
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Ux, Vx, Wx)
Uy,Vy,Wyj'
Uz, V., W.

Free-stream velocity
Free-stream Mach number
Free-stream velocity of sound
Free-stream density
Excess pressure
(M2 _ 1)1/2

{3 tan y

1 - k'2 = 1 - it2 ; it < 1
Angle of incidence
Angle of yaw
Angle of dihedral
Semi-vertex angle
Rate of yawing
Maximum chord
Wing span
Wing area
Complete elliptic integrals of 1st and 2nd kind of modulus k
Rolling and yawing moments
Side force

pV~b2 ~;, non-dimensional rolling-moment derivative

4 oNpVSb2 or' non-dimensional yawing-moment derivative

1 3Y non-dimensional side-force derivativep-VScor '
Time
Rectangular cartesian coordinates moving uniformly and rectilinearly at
speed V relative to the- undisturbed air in the positive x-direction; z-axis
downwards parallel to the plane of symmetry of the wing. Fig. 7a refers.

2 R2 2 R2 2X -py -pz

(3Y + iz
s-x

2 02 32 02

-[3 ox2 + 8y2 + 3z2

2iwj(1 - w2)

Induced velocity components in the x,y,z-directions

Analytical functions of w, and therefore of 7:, associated with U,V,W
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3. Results.-(a) General.-The non-dimensional derivatives quoted in subsections (b) and
(c) below are referred to wind axes with the centre of gravity at the vertex. As rarely- more
than half the theoretical suction force has been realised in practice for the delta wing at incidence,
those parts of the yawing moment and side-force derivatives due to suction are shown separately.

The results in both cases determine the derivatives for the centre of gravity aft of the vertex
in conjunction with the corresponding sideslip derivatives (Ref. 2). The primed derivatives
given below are referred to a centre at a fraction h of a chord aft of the vertex:-

1: = l, + h cot y . 1v

n,' = n, + h cot2 Y . y, + h cot y . nv + h2 cot2 Y . Yv

y,' = y, + hyv .

In Fig. 1 the derivative 1, is shown graphically as a function of Mach number for various aspect
ratios. In Figs. 2 and 3 the derivatives n, and y, are similarly plotted with leading-edge suction
neglected; the contributions of the latter are shown in Figs. 4 and 5.

(b) The Quasi-subsonic Condition (lL < l).-(i) Derivatives neglecting leading-edge suction:-

j
~niX cot y{(2 - Sk2 - k4)E - 2(1 - 2k2)k'2K} }

. + ~niX tan y{(4 - 7k2 - 2k4)E - (4 - 5k2)k'2K}

1 = _ + ~.niX tanS y{2k'2E - (2 - 3k2)K} - ~c5k2E{(1 + 7k2)E - (1 + 3k2)k'2K}
, k2E{ (1 + k2)E - k'2K} .

n, = - iXl, - ! cot2 Y . y,

niX{ (2 - 5k2 - k4)E - 2(1 - 2k2)k'2K} I
+ niX tan2 y{(4 - 7k2 - 2k4)E - (4 - 5k2)k'2K}

+ niX tan4 y{2k'2E - (2 - 3k2)K} - 2c5 tan y . k2E{(1 + 5k2)E

y, = _ ~ c5 . ---.-:"".~:;_____._:o._=,______,_;;=,_____----'('---1-+-2-k2-'-.) _k'_2K---,,-}
nk2E{(1 + k2)E - k'2K}

(ii) Contribution of leading-edge suction to the derivatives:-

{
niXk'2{(S - k2)E - 5k'2K} + niXk'2 tan2 y{(l0 + k2)E - (10 -7k2)K}l

_ + + niX tan4 y{(S - 3k2)E - (5 - 7k2)K} - 8c5k4 tan y . E(2E - k'2K) J
y, - iX 6k tan y . E2{(1 + k2)E - k'2K}

n, = - ! cosec2 y . y, .

(c) The Definitely Supersonic Condition (lL > 1).

1 = iXtany {lL2(4lL2-7) - (4lL2 + 3) tan2 y} + ~
, 12lL5 2lL

- 1 3 t 2n,. - - iX , - 4" co y. y,
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(d) Comparison with Strip Theory.-In default of an unsteady flow analysis attempts have been
made to evaluate the yawing derivatives on the basis of strip theory. The latter is based on the
premise that the induced flow over the surface of a wing at incidence but without dihedral,
yawing in its own plane, is unchanged when expressed in terms of a coordinate system fixed in
the wing, on the grounds that the kinematic boundary condition at the aerofoil is unchanged
by the yawing. One might be tempted to accept this premise by the fact that it is true for a
quasi-subsonic delta wing in sideslip, although it is no longer true in the definitely supersonic
case. However for the yawing wing it is false in both cases.

Such solutions are tentatively put forward in Refs. 7, 8 and 9 for the quasi-subsonic case;
the authors are, of course, aware of the shortcomings of the approach which they clearly point
out in their reports. In comparison with the results of subsection 3(b) these solutions for
lr and Yr referred to wind axes centred at the apex for zero dihedral are:-

and

In the above lr is the result of a normal pressure distribution over the wing and Yr of leading-edge
suction.

These derivatives are in general in excess of those evaluated in this report as shown by the
curves of percentage excess for varying aspect ratio and Mach number in Fig. 6. There is
agreement, however, for very small aspect ratios.

In the reports quoted the derivatives for the definitely supersonic case are not evaulated
by any method, but in Ref. 7 the belief is expressed that there is a reversal of the sign of lr on
passing from one case to the other; this is borne out by the present report (Fig. 1 refers).

4. The Quasi-Subsonic Condition.-(a) Boundary Conditions and Governing Equation.-The
equation to the wing may be written in the form:-

z = f (x,y,t)

so that the kinematic boundary condition holding at the wing is:-

_ af af afw - + (u - V) + v .
at ax ay

(1)

Neglecting terms of order !X2
, 02 and 'ljJ2, the equation to the starboard wing after a rotation

'IjJ about the z-axis and a y-wise displacement Yo of the vertex is:-

z = (0'IjJ - !X)x - (0 + !X'IjJ)(Y - Yo) .

4
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The wing is moving on a circular path relative to still air with speed V and rate of turn r;
the co-ordinate system is moving on a straight line with the same speed in the x-direction;
at time t = 0 the axis of the wing lies in the zx-plane with its verteX at the origin. At time t,
therefore, tp = rt and Yo = iVrt2

• The induced velocities clearly vanish when the incidence
and dihedral are both zero, so that u and v are of order (I., O.

It now follows from equations (1) and (2) that the boundary condition at the starboard wing,
terms in (1.2, (1.0, 02 and r2 being neglected, is:-

w=V(I.+r(ox-(l.Y), .. (3)

with the sign of 0 changed for the port wing. To the same order of approximation this condition
may be regarded as being met at the projection of the aerofoil on the xy-plane rather than at the
aerofoil itself.

Denoting the induced velocity potential by (P, the velocity vector of any particle of fluid is
q = grad ((P - Vx) relative to the co-ordinate system. Since the latter is moving uniformly
and rectilinearly in relation to the undisturbed air, the usual governing equation:-

02 a
_ (p + _ q2 + q . grad .1q2 - a2div q = 0at2 at 2

must be satisfied. Since (p is of the order (I., 0 the latter equation reduces, on neglecting terms
in (1.2, (1.0 and 02, to:-

.. (4)

For a thin wing lying within the apex Mach conoid the shock wave from its vertex is assumed
to be infinitely weak, so that the boundary condition at the Mach conoid is that the induced
velocities shall vanish.

(b) The Potential Function at Zero Incidence*.-It follows from the previous subsection that
at zero incidence the boundary condition holding over the starboard wing is w = +rxo with
w = -rxo over the port wing. The potential clearly vanishes with r and is therefore of order r.
Taking the potential to be roc/> we can, on neglecting second-order terms in r, consider c/> as being
independent of r. The problem therefore reduces to finding the potential corresponding to
the wing in the hypothetical steady unyawed state with the true kinematic boundary condition
holding over the aerofoil in the neutral position. The corresponding governing equation is
vh2c/> = O.

Since in considering points ahead of the trailing edge the wing may be considered as extending
indefinitely, a point (Cx,Cy,Cz) of the system is also a point of a second similar system scaled
up by a factor C corresponding to (x,y,z) of the first system. Therefore the potential must be a
homogeneous function in x,y,z and from consideration of the boundary conditions it is clearly
of degree two.

Any of the first derivatives of the induced velocity components with respect to x,y or z are
homogeneous functions of degree zero annihilated by the operator vh2

• It therefore follows
from the analogue of the general homogeneous solution of degree zero of Laplace's equation
in three dimensions published by Donkin in 1857 (Ref. 6) that any of the velocity derivatives

* This subsection is based on College of Aeronautics Report No. 28 (Ref. 5).
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can be expressed as the real part of an analytic function of the complex variable w defined by:-

y + izw = fl.--.-.- )
s-x

The conical configuration of the (x,y,z) space is represented by the plane figure in the w-plane
shewn at Fig. 7b.

Take ou/ox, ov/ox, ow/ox to be the real parts of functions Ux, Vx, Wx of w respectively.

Since the motion is irrotational, we can write:-

o'W 02W

oxoy - oX2-
hence

,gp(dVx. OW) = ..!Ji?(4Tllx, o(j))
dw oz dw 0)'

(5)

and

Now s(3w/ox), s(ow/3y), s(owjoz) are analytic functions of w , and if a pair of analytic functions
have identical real parts they can only differ by a pure imaginary constant, so that equations
(5) become:-

dVx ow
dw'3z

iX
s

dWx ow
d';- 'ax

dUx. ow
·d~- oy

dUx ow iY
-dw···oz -5

dVx ow iZ
dw 'ox - S

(6)

where X, Y, Z are real constants. It will be seen from equations (6) that:-

ow ow ow
X-+Y +Z---=O

ox oy oz

which implies a linear dependence between the derivatives of w that does not exist. Therefore
X, Y and Z are all zero, from which it immediately follows that:-

or
i{J dUx i dVx dWx

2;- - I+w2 - r - w2 •

6
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This last result was first obtained by different means by Stewart (Ref. 1) in a slightly different
form. Ref. 2 may be compared.

. The two sets of functions Uy , V y , Wyand Uz , Vz , Wz corresponding to the derivatives with
respect to y and z are connected by similar relations. It is clear that the sets of functions of
the form U", Uy , Uz are also similarly related, so that the nine functions are completely related.

While the boundary conditions at the aerofoil in terms of the complex functions are clear,
it is necessary to examine those at the Mach cone more closely. The latter demand that the
induced velocities should vanish, for which a sufficient condition is that they should vanish at
one point and their first derivatives everywhere on the cone. It will be shewn that this may be
taken to be a necessary condition.

With the aid of all the relations of the form (7) it can be shewn that if ou/ox is defined in a
certain region on the Mach cone then the remaining derivatives are also defined in that region.
If u is zero in such a region the following equations must be satisfied:-

ou ou OUx-+y- +z-=O
ox oy oz

ou ouz--y--=O
oy oz

so that
ou ouzx - + (V2 + Z2) - = 0 .oX - oz .. (8)

Now on the Mach cone we may write w = eiO
, where e is real, so that equation (8) reduces to:-

R • e ou ow -_ 0psm --~

ox ox

while equations (7) become:-

fJ sin e dU" = cot e dV" = dW" = F(e) de, say.
Hence

. d ou d ow !'77JfJ sm e-.- = -. - = .Jl: F (e) .de ox de ox .

.. (9)

.. (10)

It will now be seen on differentiating equation (9) with respect to e that ou/ox and, therefore,
ov/ox and ow/ox vanish. The other velocity derivatives may also be shewn to vanish.

Since the velocity derivatives vanish in any region on the Mach cone where they are defined,
it may be assumed from the physical nature of the present problem that they are either zero or
infinite over the whole cone. Now the induced velocity potential is an odd function of z, so
that ou/ox will be zero on the Mach cone at z = 0; therefore all the velocity derivatives will
vanish on the Mach cone.

A further transformation will now be introduced defined by:-

en i = 2iw/(1 - w2
)

where en i is the Jacobian elliptic function of modulus k in Glaisher's notation. The interior
of the Mach cone is represented in the i-plane by the interior of the rectangle with vertices
±2iK', K ±2iK'; the imaginary axis between ±2iK' corresponds to the Mach cone and the

7



parallel line between K±2iK' to the aerofoH. (See Fig. 7c.) A point in the w-plane inside
the unit circle (Mach cone) corresponds to a given point inside this rectangle in the i-plane; it
also corresponds to the image of that point in the point K + iK' and to all points congruent
(mod. 4K, 4iK') to that point and its image. The exterior of the unit circle in the w-plane
corresponds to the image of this configuration in the imaginary axis in the i-plane.

The relations between the complex functions now become:

~ (32 nc i dUx = i(3 ns i dUy = (3 dUs

= i(3 ns i dVx = CS i ns i dVy = ~ i cs i dVz

= ~ i cs i dWy = ~ cn i dWz

.. (11)

It now remains to choose one function, say dWx/dT , so that the necessary conditions are all
met. Certain properties of the velocity derivatives are known, which by the aid of equations
(11), can be interpreted in terms of restrictions on the choice of dWx/dT as follows:-

Properties of the Requirements to be met
velocity derivatives by the function dWx/dT

(i) By symmetry ow/ax = 0 on the
zx-plane

(ii) Since w is an even function of z,
ow/oz = 0 on z = 0 at points not on
the aerofoil

(iii) By the boundary conditions ow/ax,
ow/oy are constant over the two
halves of the aerofoil

(iv) By the boundary conditions ow/ax =
+ro, y >0, and ~ro, y <0, on
the aerofoil

(v) At the aerofoil ow/oy = 0

(vi) All the derivatives must vanish on
the Mach cone

(vii) The velocity components are single
valued

(viii) On physical grounds the velocity
components can have no singularities
except at the axis and leading edges
of the aerofoil

(ix) The aerodynamic forces are finite

8

Pure imaginary on the lines OC, AB, A'B'

Real on PQ, P'Q'

Real on BB' with no simple poles except
possibly at B, C, B'

A simple pole of residue of ~ 2iro /n at
C and poles of opposite residue at B, B'

JI< d~2' dT to be imaginary
o dT

Real with no poles on the imaginary axis,
AA', and at least simple zeros at P, P'

The function must be repeated over the
congruent rectangles to which the interior
of the Mach cone also corresponds. In
addition it must have no branch points or
singularities within the rectangle ABB'A'

The function can have no poles except at
B, Q, C, Q', B'. Therefore together with
the foregoing, noting that (vi) implies that
the function takes conjugate values at
image points in the imaginary axis, it must
be doubly periodic and meromorphic and,
hence, elliptic; and furthermore a rational
algebraic function of sn T, cn T, dn T

The singularities on BB' are not to be of
too high an order



The necessary function is found to be:-

dWx = i sc l' nd4 l' (A dn2 l' + B cn2 1')
dT

.. (12)

where A and B are real constants such that ow/ox and ow/oy have the correct values on the
two halves of the aerofoil. Any other function of this form would lead to an inadmissible
singularity of one or more of the complex derivatives at one of the points P, p', Q, Q'.

This function has a residue of - iA/k'3 at C and therefore:-

A = 2rbk'3/n .

From equations (11) and (12) we have:-

oW JT- = - (3!Jil sc2
l' nd4

l' (A dn2
l' + B cn2 1') dT

oy 0-

= 3k2:'4!Jil {3k2A[k'2T - 2E(T) + k'2 sc r nd l' + 2k2cn l' sd 1']

- B[k'2T - (1 + k2)E(r) + k2(1 + k2) cn l' sd l' + k2k'2 cn l' sn l' nd3 1'] l
J

= 3k2:'4 {3k2A(k'2K - 2E) - B(k'2K - (1 + k2)E)} , for l' = K .

Therefore in order that ow/oy may vanish on the aerofoil:-

6 2E -k'2K
B = - rok2k'3 -;-:;--~--=--~=

n - (1 + k2)E - k'2K .

Also from equations (11) and (12):-

ou 1 JT- = - -!Jil i sn r nd4
l' (A dn2 l'

ox (3 0

- 1 C0 {'A d 1 'B d3 }- k'2(3 ..71: t c l' + st C l' ,

+ B cn2 1') dT

Now on z = 0 cn l' = i(3y(x2 - (32y 2)-1/2 so that cd l' == iy(x2tan2 y - y2)-1/2 on the upper
surface of the aerofoil (z =: - 0) with opposite sign on the lower surface.

Hence on the upper surface of the aerofoil:-

and

OU = __1_ J Ay _ By 3 -}

ox k'2(3 l(x2 tan2 y - y2)1/2 3(x2tan2 y - y2)S12

U = ~ ro fch-1-x tanJ" _ 2£ - k'2K . k2x tan y }
n Y l Iyl (1 + k2)E -- k'2K (x2tan2 y - y2)l/2 .

.. (13)

with opposite signs on the lower surface. There is no uncertainty with regard to the introduction
of a function ofy on integrating with respect tax, for on integrating again to obtain the potential
the only possible homogeneous addition is of the form (ax + by)y , and this cannot vanish at
both leading edges as is necessary, the potential being continuous and odd in z.
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4(b). The Potential Function for Zero Dihedral.-It will be seen from equation (3) that the
boundary condition at the aerofoil is w = <x(V - ry). Though the solution corresponding
to w IX y has already been found by other means by Robinson (Ref. 4) in his treatment of the
delta wing in roll, it is more convenient in this instance to treat the problem as a whole.

The wing is describing a circle in the yawing plane with velocity V at an angular rate r. In
the co-ordinate system chosen the axes are not rotating but are moving with velocity V such
that at time t = 0 the vertex is at the origin and the axis of the wing in the zx-plane; hence
at the time t the wing has rotated through an angle 'Ij! = rt while the vertex has undergone a
y-wise displacement of approximately lVrt2

• For a wing on a rectilinear path the x-wise compon­
ent of the velocity of propagation along the Mach cone of a disturbance initiated at the apex
is - af32jAI; therefore to sufficient accuracy the equation to the apex Mach wave for a wing on
a circular path is:-

2 2 I 1 ( M X)2l2 22_X. - R ~ 'V --V r t -+-. - f3 z- 0 .
I' l~ 2 af32 ) .. (14)

It may be shown, provided crM~jak2f3:1 is small enough, to allow terms in r2 to be neglected,
that under the transformation:--

x' = x

.. (15)

., (16)

z' = z

the displaced delta wing transforms into a wing of the same semi-vertex angle, unyawed and
with its vertex at the origin, while the conoid given by equation (14) becomes the apex Mach
cone, X'2 - f32y '2 - f32z'2 = 0, associated with the steady undisplaced wing.

The limiting case in which a shock begins to form at a leading edge occurs when a characteristic
through an outer wing tip in the xy-plane is tangential to that leading edge. This condition
arises when r = ak2f33j2cM3 approximately; under these circumstances the wing is wholly
within the apex Mach wave.

From consideration of equations (15) a reasonable criterion for the validity of the approximate
transformation appears to be that r should be less than a fifth of the above value. It is believed
that if r is greater than this the aerodynamic forces due to yawing can no longer be regarded
as linear in r. In practice the restriction on r is not severe; as an example, when the Mach
angle exceeds the semi-vertex angle by 3 deg the lateral acceleration in the limiting case is about
25g for M = 1·3 and 300g for M = 3 for a wing of lO-ft chord.

The governing equation (4) is transformed by (15) into:-

'V'h2~ -+- ~k:;f3~2 M r a~' {f32y;~, -+- X ~~,} - ~. ;;, = 0

where terms in r2 are neglected and where ~ is not explicitly a function of time.

Consider a steady, unyawed wing in the primed space with its vertex at the ongm and its
corresponding Mach cone. If we find a function of the primed co-ordinates satisfying equation
(16) which also satisfies the boundary condition w = <x(V - ry') at this hypothetical aerofoil
and the necessary conditions at its Mach cone, that function, regarded as a function of x,y,z
and t by virtue of equations (15), will be the required velocity potential.

10



.. (17)

Let cPo be the velocity potential for a steady, unyawed wing at incidence and define a function
cPo* as follows:-

cPo*(x,y, Z, t) = cPo(x',y', z') .

Define a further function cPl* such that the required potential is:-

It is clear that, when r = 0, cPl* vanishes and that therefore is of order r. Since v'h2cPo* = 0,
we obtain on neglecting terms in r 2by substituting for cP in equation (16) the following equation
for cPl*:-

a solution to which is ~k2 - ~2 Mrx' J(32y ' ocP~* + x' ocPo*1. + 2·l}!ai ,jY'cPo*, Hence, to the same
2ak2(34 lox' oy'J {'-

order of accuracy, we may write, when t = 0:-

-I. _ -I. * + 2k
2 - M2 M J. (.12 0cPo + ocPol + _Mr.y-l.o + -1..:"

'f' - 'f'o 2ak2(34' rx ( y ax x ay J 2a(32 'f' 'f' -

where cP2 is a function such that vh2cP2 = 0 and such that cP satisfies boundary conditions and
has no singularities.

To determine cP2 it is necessary to investigate the behaviour of {(32y(OcPO/ox) + x(0cP%y)} and
its derivative with respect to z at the steady, unyawed aerofoil and its Mach cone. The function
0cPo!oz is homogeneous of degree zero and is the real part of a complex function W for which
dW/di = V CXk'2 nd2 i/E (Ref. 1) ; therefore:-

° J(32 °cPo + x0cPol = (Jtd (32 oW +x.~Wt
oz l y ox oy f . l y oX oy )

_ V CXk'2 CPJ J :3 [(32y ow X ow] 1- - -r J ? lcn T nd i ---;;;. ox + ;. oy f

. _di cd iSInce - = - _._,
dw w

_ VCXk'2 (}}J {' :3 [s i(32z ] 1- -r.:n cn i nd i y + iz - s.=-.x f .

Now at the aerofoil z = 0 and cn i nds
i is pure imaginary and at the Mach cone s = 0 and

cn i nd3 i is real; hence the above derivative with respect to z vanishes at the aerofoil and
Mach cone. Since ocPo!ox and 0cP%y are zero over the Mach cone, {(32y(OcPO/ox) + (ocP%y)}
vanishes and therefore its other derivatives at the Mach cone.

We have from Refs. 1 and 3 that at the upper surface of the aerofoil:­

cPo = Vcx(x2tan2y - y2)I/2/E

so that {(32y(ocP%x) + x(ocP%y)} has an infinity of order a half at the leading edges.
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As the derivatives of 1>0 vanish at the Mach cone and 01>o!oz = Vex at the wing, it now follows
from (17) that the derivatives of 1>2 must vanish at the Mach cone and that at the aerofoil
01>2/0Z ~.= - exry(3M2 - 2)/2f32. Furthermore 1>2 must have a singularity to cancel that intro­
duced by x{f32y(01)u/ox) + x(01)o/oy)}. Since the latter function is homogeneous of degree two
and since the boundary conditions for 1>2 are associated with such a function, it is clear that
1>2 is also homogeneous of degree two.

Therefore 1>2 can be derived from a cOplplex function dWx!dr on the lines of the previous
subsection. A set of requirements for dWx/dr can be written down that is identical with that
for dWx/dr except for the change of conditions at the aerofoil. The changes are that dWx/dr
does not have a pole at the point C, while ow/oy takes a different value and the singularities
at Q, Q' are of a higher order. By comparison with equation (12) it will be seen that:-

dWx/dr = i sn r cn r (G nd4 r + H nd6 r)

where G and H are real constants.

From equations (11) and (19) we obtain:­

02~_2 = _ f3 c~J~ sn2r (G nd4 r + H nd6 r) dr
0yoz 0

= -_L_ JSk'2{(1 + k2)E - k'2K}G + {(3 + 7k2 - 2k4)E - (3 + k2)k'2K}HI
ISk2k'6 I . J

when r = K.

.. (19)

Therefore, since 01>2/0Z = - exry(3M2 - 2)/2f32 at the aerofoil,

{Sk'2G + (S - k2)H}{(1 + k2)E - k'2K} - Hk'2{(2 - k2)E - 2k'2K} = ISk2k'6.xr(3M2 - 2)/2f33 .
. " ." (20)

Also from equations (11) and (19) we obtain:-

a2~.T = _!.~ r~ i cn2 r sn r (G nd4 r + H nd6 r) dr
3x- f3. 0

_,,1__ ~{S(k'2G + H)i cd3 r - 3k2Hi cdr, r}
ISk'4f3' ,

1 I S(k'2G + H)y3 3k2Hyr, l
- IS//4(J l(x£ tan2y ~ y2)3!2 + (x2tan2y _ )12)5/2)

on the upper surface of the aerofoil. Hence:-

1>2 = - i~ii6l {Sk'2G + (S - k2)H}(x2tan2y _ y2)1/2

- k2Hx2tan2y(x2tan2 y _ y2)-1/2} .

12

, . (21)



.. (23)

In order that the potential may have no singularities, it follows from equations (17), (18) and
(21) that:-

H = 15k'4M2(J.r(2k2 - M2)/2k2{33E

and hence we obtain from equations (17), (20) and (21) that:-

cP = ~_ ( 2 t 2 _ 2)1/2 {v _~. k2(M4 - 2k2)E + M2(3k2- 2M_2)(E=-~/2K)L (22)
E x an y y 2k2{32 (1 + k2)E _ k'2K )

Neglecting terms in r 2 it follows from the transformation (15) that for t = 0 :-

0cP _ ocPo ocPo _ V (J.rxy sec2y
at - ry ax - rx oy - E(x2tan2 y _ y2)1/2

5. The Definitely Supersonic Condition.-Suppose that the normal velocity component is
know at every point of the xy-plane in the form w = w(x;y,t). If the axes are changed to a set
at rest in the fluid, coincident with the moving axes at the time t = 0, the new co-ordinates
being x,y,z, then w = w(x - Vt,y,t). If there are no boundaries other than the xy-plane, the
flow in the half space Z ~ 0 may be regarded as being due to a distribution of stationary sonic
sources of density wl2n over the xy-plane. The potential at a point (x,y,z) at rest in the fluid
due to a source element at (xo,Yo, 0) is:-

1 --
-= w(xo- Vt + MR,yo,t - Ria) dxodyo
2nR

where R is the distance between the two points. Hence the potential at a point (x,y,z) referred
l to the moving axes is:-

ep = JJw(xo + MR ,Yo, t - Ria) d~:,%o

where R2 = (x - XO)2 + (y - YO)2 + Z2 and where the integration is over the whole xy-plane
of the moving system.

On changing the variablexo to (xu + MR) this integral transforms, when M > 1, into:-

(24)

where 50
2 = (x - XO)2 - {32(y - yo)2 - {32z2 and where the integration is over that part of the

xy-plane for which 50
2

;;:: 0 and xo ;;:: x .

In the definitely supersonic case the stream is undisturbed ahead of the leading edges, where,
therefore, w = 0 , while over the aerofoil w is determined by the kinematic boundary conditions;
consequently the potential may be determined at any point ahead of the trailing edge by
evaluating integral (24).

It is believed that the question as to whether the boundary condition at the leading-edge
shock wave is satisfied is automatically answered by the fact that, since the potential is derived
from a distribution of sonic sources over the entire xy-plane at rest in the fluid, the shock wave
does not represent a boundary in the problem treated. It may, however, be easily shown that
the results obtained in this section do in fact satisfy the condition of the potential vanishing
over the shock wave, terms in r 2 being neglected.

13



The boundary conditions at the aerofoil are the same as in the quasi-subsonic case, that is
w = V <X + r(ox - <xy) over the starboard wing, with the sign of a changed for the port wing:
the function w is dependent on time for the reason that the area over which the boundary
condition holds varies. The potential may be written in the form ep = V <xepl + rep~, where
aepd2z = 1 and aep2/aZ = oX - <Xy at the aerofoil.

In evaluating epl the source distribution may be regarded as the sum of two distributions; a
uniform, steady distribution over the area covered by the wing in its initial position and a
fluctuating distribution over the small areas swept out by the leading edges during the small
time interval 0 to t. The former corresponds to a steady, unyawed wing, therefore contributing
nothing to the yawing derivatives, and it will be ignored. As the area of integration for the
latter is of order 1p , variations of the integrand of the same order can be ignored in evaluating
integral (24): in effect the fluctuating sources can be regarded as being concentrated at the
leading edges. The source distribution making a significant contribution to epj reduces to
line sources along the initial positions of the leading edges, the density at a point being propor­
tional to the distance normal to the leading edge swept out by that point.

At a time t the wing has a y-wise displacement iVrt~ and a yaw 1p = rt and the line source
density along the starboard leading edge is therefore {r/271 }UVt2 cos y + xt sec y}, with the
opposite sign for the other wing. Hence:-

2 ., [t 111 ( )J I dX II+ XII sec- Y + ., X - XII .
afJ~ I 8 1

where:-
(}.2 _ 1)512= {Ax + fJy? - {(Je2 - l)xo + X + JefJy}2

(}.2 _ 1)52
2 = {Ax - fJy}2 - {(Je2 - l)xo + x - JefJy}2

and where XII is restricted in both integrals such that X ~ Xo ~ 0 .

When t = 0, we have:-

Finally we obtain for X < (-Jy <-- x:-

rM2 tan I [ ( Je2- 1 )1/2J- :(Je2 _ 1)"% 'lx tan y{3 sec2
y - 2(}.2 - I)} tan- 1 y cot y x2 _ fJ2y2

+ y{(2Je2 + 1) sec~ y - 2(Je2 ...:..- I)} tan-1[- x(x:
2

fJ~2)1/2J

+ 2~~ xy(Je2 _ nJ/2(x2 _ fJ2y 2)-1/2

14
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and

For - Ax ;?: {3y ;?: - x the integrals reduce to:-

and

.. (26)

For Ax ~ {3y ~ x the terms in x in expressions (26) have the opposite signs.

In evaluating ([J2 J as in subsection 4(b), the wing may be regarded as being fixed in its neutral
position: therefore from (24) we obtain:-

where the integration is over the aerofoil such that 50
2 = (x - Xu? - {32(y - Yo)2 ;?: 0 and

Xo ;?: x. For - x ;?: {3y ;?: 0 this transforms into:-

_~rf2 {(3o(1 + t2) - 2IXt}q +2 ~ox + IXy}~= t
2
) dq dt

n to qo (1 - t )

wherexo = x + (3q(1 + t2)j(1 - t2) andyo = y - 2qtj(1 - t2) and whereqoJ ql andq2 are the values
of q for (xo ,yo) on the lines y = 0 , y = - x tan y and y = x tan y respectively: to is the value
of t for (xu, Yo) at the origin. Integrating with respect to q and differentiating with respect to
x we obtain:-

0([J2 = ~ Jto {2t(0 + IX tan y)(x tan y + y) _ (ox - IXY) tan Yl dt
ox n -1 {)'(1 + t2) - 2t}2 ),(1 + t2) - 2t J

+ ~ Jl {~t(o + IX tan y)(x tan y - y) _ (ox~~ IXY) t~?~}· dt
n to {),(1 + t2) + 2t}2 ),(1 + t2) + 2t

2- - oy log to,
n

_ 2 { 2 -1 [ ( ),2 - 1 )1/2J
- n(),2 _ 1)3/2 x tan y {(2 - )')0 + IX tan y} tan y cot y x2 _ {32y 2

+ y{0 + IX),2 tan y} tan- 1
[ - X(X:2_P2~2)1/]} + 2~y ch- 1 ({31;') .

15
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The same expression serves for the case when x ~ f3y ~ O. For - Ax ;;? f3y ;;? - x , dif>jdX
is given by putting tu = 1 in equation (27):-

dif> 1 { }ox2 = (,1,.2 _ 1)3/2 x tan y {(2 - ,1,.2)0 + I:J. tan y} + y{ {) + I:J.A2tan y} .

For Ax ~ f3y ~ x the sign of x in expression (29) is changed.

.. (29)

6. The Aerodynamic Forces.-The forces acting on the aerofoil are the result of the excess
pressure acting normally to the wing surface and, in the quasi-subsonic case, of a leading-edge
suction acting in the plane of the wing perpendicularly to the leading edge.

(a) Excess Pressure.-To sufficient accuracy the excess pressure is:-

.. (30)

where p is the free-stream density. Hence the pressure differential between the upper and
lower surfaces of the aerofoil is, where ep is the potential on the upper surface:-

LJp = 2p {v oep -~T\ .
ox ot f

For the quasi-subsonic case the excess pressure due to the yawing is:-

{

JtI:J.{(2 - 5k2 - k4)E - 2(1 - 2k2)k'2K}

+ JtI:J. tan2 y {(4 -7k2 - 2k4)E - (4 - 5k2)k'2K} l
_ prVxy + JtI:J. tan4 y {2k'2E - (2 - 3k2)K} - 40 tan y k 4E(2E - k'2K) J

LJP - (x2Taii2-y-=y2)172' -----------------;,Ji21l{(1 + k2)E _ k'2Ky---- . -----

+ ~ prVoy. ch- 1 [=~I~I~~J .
For the definitely supersonic case:-

(i) For x < f3y < - x:-

iJP = - Jt(A:':-V1)5/2 {{I:J.(A 2 - 1)(1 - tan2 y) + 31:J. sed y

[ (
,1,.

2
- 1 )1/2J+ 20 tan Y(A2 - 1)(,1,.2 - 2)} x tan- 1 y cot y i:f =-- f32

y
2

- Jtf3-2f{,r~~~(~f-!.~;2~2)li2 + 4po;V~ ch-
1 [f3lirJ.
16



(ii) - AX > /3y > - X:-

f1p = - (A 2P~Vl)5/2 {X{(X(A 2
- 1)(1 - tan2 y) + 3(X sec4 y + 2b tan y (A2 - I)(A 2

- 2)}

+ Y {2(X tan Y(A 2 - l)(sec2 y - A2) + 3(XM2 tan y sec2 y - 2b(A2 - I)} ~ .
J

The side-force and rolling and yawing moments are:-

L = 2 JO j"-xtan
y
yf1p dy dx

-c 0

N = - (XL - IeY .

(b) Leading-Edge Suetion.-Owing to the singularity in the induced velocity in the quasi­
subsonic case at the leading edge a suction force exists, which may be calculated by considering
the rate of change of momentum of the fluid contained at any instant by a small cylinder about
a leading edge.

Variations in the flow along a leading edge are small compared to those in a perpendicular
plane, so that the flow for the present purpose is locally two-dimensional and the potential can
be expressed in terms of a pair of local co-ordinates, [; the upward normal and ~ the inward
perpendicular to the leading edge. Also define local polar co-ordinates a, 0 such that ~ = a cos 0
and [; = a sin 0 .

The suction force per unit length is given by the limiting rate of change of momentum in the
~-direction of the fluid in the cylinder a = a o of unit length, as ao tends to zero:--

lim f j"2n 1( P cos 0 + (p + p/a2)(01) + V sin y cos o)01>} aodO
"0~0 ( 0 oa o~

a J2n J"o 01> )+- (p + p/a2
) -- ada dO .at 0 0 o~ j

.. (31}

where p is the free-stream density and p the excess pressure; the density in the disturbed stream
is approximately (p + P/a2

).

In order to evaluate this limit it is necessary to determine the limiting form of the potential
as ao tends to zero.

Introduce auxiliary co-ordinates defined as follows:-

and

The governing equation (4) reduces to:-

021> 021> 2M 021> 1 021>
3J? + 0[;2 = ak tan y o~~-at + a2 ot2 •

17
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Substituting into equation (18) we find that near the point (xo ,
surface of the aerofoil:~

Xo tan y) on the upper

since this function is a steady potential function it is harmonic in ~1' l;, while 2q;0!2( is bounded
on the aerofoil. Hence:~

and from equation (23):~

~~ = V rxr sec2 y a1- I12 cos tel . xo( - 2xok tan )/)II:!.j2kE + O(a]II:!.)

and in addition, using transformation (15), we find that:~

3:!'q; = _ Vr aef;o = 0(a]-112).
at2 ay

Therefore, neglecting terms in r 2
, equation (32) reduces to:-

o:!.q; + .~~ =~ __ rxrx Jl.I:!. sec2 y tan y a -812 COS ~e (- 2x k tan y)II2!2k2E + O(a -112)a~ 12 a(2 0 • 1 :I. 1 0 I I'

A solution to this equation is Qa11/2 cos ~el' where:-

The complete solution will be this function plus an harmonic function, and from the known
value of q; at the aerofoil it is concluded that:-~-

q; = a j '12 {P cos tel + Q cos ~el} + O(a I )

where P is chosen so that cq;!cx, as given by equations (13) and (22), approximates to
- (P + Q) tan y!2ka 1

112 as a, ~ O. It is found that:-

P _ ( 2 k t, )1/2 {rxV 2 ok2 2E - k'2K
- - Xo · an Y E +; r X o (1 +k2)E _ k'2K

It will be noted that cq; = 2
M
ak cot Y Qa,-I I:!. COS~Ol .

at

On substituting for p from equation (30) and dropping terms that will vanish in the limit
we derive from (31) the following expression for the suction force:-----

lim p {f2n ~ - t cos e(k2cos2y(af )2 + (a~)2) + (Of_ 1'\;[2 sin:!. ycos (j Of) of I au de
"0 -'> 0 u \ a~ °s °a a~ °~ I

_~~nY':tf~ {oG~Yadade}.

18



On changing the variables to ~1' 0"1' 81 the expression becomes:-

Ignoring terms in Q2, since they are of order r2, and terms that are odd functions of cos 8,
since they will eventually vanish, we obtain on substituting for ep:-

1. f2n Jp2_ 2PQ c_os28 -:- M2 sin2
y cos 8 cos 38} d8 + 1. f21l fG2PQ 28 1~~8_ = 1 p2

8 P l 1 M 9 ' 2 2 8 2 P cos 4 n P •
o - - SIn y cos 0 Go 0"

Only the terms in r in p2 contribute to the yawing derivatives and the corresponding suction
force per unit length of the starboard wing is:-

with the opposite sign for the other wing.
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