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Summary.—A draft of this theory was completed by H. Multhopp during 1950, before he left the Ministry of Supply.
It has been edited by the writer, who is responsible for the calculated examples.

This report is an extension of Multhopp’s subsonic lifting-surface theory (Ref. 1) from steady flow to harmonic
pitching oscillations of low frequency. The method is applicable to wings of arbitrary plan-form.

The basis of the method is to calculate the local lift and pitching moment at a number of chordwise sections from

a set of linear equations satisfying the downwash conditions at two points of each section. By neglecting terms of
second order in frequency, the oscillatory problem is related to the corresponding steady one with changed boundary
_conditions. The evaluation of these conditions involves chordwise integrations, which require two new influence
functions. Complete tables of these functions as well as the original functions ¢ and j, occurring in steady motion
(Ref. 1), are obtainable from the Aerodynamics Division, National Physical Laboratory (Ref. 11). With the aid of
these tables the derivatives of lift and pitching moment become calculable by a straightforward routine. The limita-
tions imposed by assuming only two terms in the chordwise loading cannot be evaluated at this stage. The theory is
easily generalized to include any number of chordwise terms, but each additional term introduces two further influence

functions.

The theory is outlined in sections 2 to 5. Section 6 describes calculations of pitching derivatives for circular, arrowhead
and a family of delta wings; promising comparisons are obtained, when the number of spanwise terms is varied. In
sections 7 and 8 these results are compared with other theories ; a development of vortex-lattice theory (Ref. 5) is shown
to give satisfactory agreement, and the deficiencies of a purely steady theory are evaluated. The available wind-tunnel
data for oscillating wings of the selected plan-forms are discussed in section 9. The theory is remarkably consistent
with the pitching derivatives measured at low speeds and predicts fairly well the effect of compressibility up to a
Mach number of about 0-9. Appendix II gives instructions for the computer.

1. Introduction.—In Ref. 1 (1950) Multhopp has developed a method of calculating the local
lift and pitching moment on wings of any plan-form in subsonic steady flow. The method is based
on the acceleration potential and represents the lifting surface by a plane continuous sheet of
doublets extending over the plan-form. It makes the usual assumptions that the wing is infinitely
thin in inviscid potential flow, and neglects terms of the second order in incidence, camber and

perturbations of velocity.

The method, as it stands, is capable of dealing with the oscillatory problems of rolling and
plunging in the limiting case of small frequency. For there is no distinction between the steady
stability derivatives and the limiting oscillatory ones, so long as the in-phase aerodynamic
loading vanishes with frequency. However pitching motion is not of this type and calls for a
special adaptation of method to deduce the first order effects of frequency.

The important derivative from pitching oscillations is the out-of-phase pitching morment,
which constitutes the aerodynamic damping of the motion. Hence ° lifting-line * aerofoil theory
does not give a very fruitful treatment of the problem. The first suggested routine for applying
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lifting-surface theory to oscillating wings came from W. P. Jones® (1946). His method is a
development of the steady vortex-lattice theory® (Falkner, 1943) and may be applied to wings
of any plan-form. The theory includes an arbitrary non-zero value of the frequency parameter,
but it is unsuitable for oscillations of low frequency. Following Ref. 2, aerodynamic flutter
derivatives for a delta wing have been calculated in Ref. 4 (Lehrian, 1951). Miss Lehrian® has
also modified the theory of Ref. 2 to permit the calculation of stability derivatives of low fre-
quency. Her results are compared with those of the present method. :

The limitations of Multhopp’s steady theory (Ref. 1) and other standard ones, including
Falkner’s vortex-lattice theory (Ref. 8), have been discussed by the writer in Ref. 6 (1951).
Of these methods Ref. 1 is considered to be the most reliable, though the flexibility of the vortex
lattice permits the treatment of a wider range of problems, including pitching and rolling
oscillations of high frequency. The extension of Ref. 1 to pitching oscillations of low frequency
should provide reliable routine estimations of theoretical stability derivatives at sub-critical

Mach numbers. The method is particularly economical for swept wings of moderately small
aspect ratios.

At present there is limited information on oscillatory pitching derivatives ; but it is known
that the values in steady rotation are usually appreciably different. There exist independent
solutions for an oscillating circular plate due to Schade and Krienes” and to Kochin®, The circular
aerofoil has therefore been chosen as one of the present examples.

The other examples are derived from Ref. 6, Fig. 1, and are included in the programme of
oscillatory tests at the N.P.L. These comprise the arrowhead Wing 9 (4 = 1-32) and three
delta wings in the family (¢, 1) = (0, 1/7), 7.e., Wings 0, 1, 2 with aspect ratios of 1-2, 2, 3
respectively. Wings 0 and 9 have been tested at several frequencies at low speeds. A half-model
of Wing 2 has been tested over a range of subsonic Mach number.

Mention should be made of other theories, which are not considered in relation to the present
calculations. The most promising development of the * lifting-line * aerofoil theory is perhaps
that due to Reissner® (1947). There has appeared recently a mew theory giving numerical
solutions for oscillating rectangular and triangular wings of low aspect ratio” (Lawrence and
Gerber, 1952). W. P. Jones" (1951) has considered the problem of oscillating wings in com-
pressible flow, and has discussed the effects of frequency at a Mach number of 0-7.

2. General Theory—It is convenient to take rectangular co-ordinate axes referred to the
leading edge of the central section of the wing. Let the x-axis coincide with the horizontal
direction of undisturbed flow relative to the wing, the y-axis point to starboard and the z-axis
upwards. The wing is assumed to have zero thickness and the local velocity to have components
(U -+ u, v, w), where U is the undisturbed speed and the ratios (/U)%, (v|U)*, (w/U)* are negligible
compared with #/U, v/U, w/U. This implies that the wing has small camber and twist and
oscillates with small amplitude.

Then, in the absence of viscous forces and heat transfer, Euler’s equations of motion may
be expressed in their linearized form

ou ou 10op
ot +U ox ' pox
ov ov 19p
o TV T p oy (1)
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and the equation of continuity becomes

op op ou  ov ow
il 2r A T T W
at—|»Uax+p P '8y+az> 0. - .. .. .. (2)

In the absence of shock-waves, the isentropic relation between the pressure p and the density p

Yo = constant
P’
is assumed, and the speed of sound, «, is given by
d ,
w=Z = 3

dp  p

It may be shown that the variation in a® is of order, U# and is negligible in combination with
terms of order #/U in the linearized equations. Similarly p may be regarded as constant. On
writing the differential dp/p of Euler’s equations as the differential of the enthalpy 7,

1—1,=b=2= e (4)

p
where the subscript o represents the undisturbed flow.

Thus the equations of motion are transformed into

0 0 ol
2_3_&‘_|—U56>u+@:0

e 0 ol
&+Uﬁﬁ+@=0 > (5)
0 a ol
and the equation of continuity into :
1 3 0 ou  dv  ow ,
. Friny U@>I+§;+@+5—Z_=O’ . . . (6)

where a.,° is a constant, and the operator (3/0¢ + U ¢/0x) is identified with differentiation along
a streamline. By applying this operator to equation (6) and taking the derivatives of %, v, w
from equation (5), it follows that

1 /9 o\ CEY L LY
@(QH@Q]_@“@_QZ“
CE SELY BELY | 1 2 2\

: il Bl iR 2

bl m2‘@f+w2 amw+ﬂlm>l’ - " - " (7)

where the Mach number M = UJa,,.

If I is periodic of frequency w, (7) becomes the real part of a complex equation, which may
be divided throughout by a factor e* to give a differential equation for the complex amplitude
of I, To avoid complex terms in this equation, let

Ix,y,21) =2 (x,y, z) exp {lo(t + 1%)}] .. .. ., .. .. (8)
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where 4 remains to be chosen. Then
: . -
(1 Sy Ml Vr= {[M L 94 Ma_l<i +MA>
a., ot 0x ox® 09X \ Qe
-— w21< -+ Ml)} exp {tw(t + M)}}
@,

) =% <v + 2iwA QI — w2/12]> exp {to(t + Ax)}
ox? dx

ox®
T _ g {af{ exp {to(t + )x)}}
oy* o>
02l

e {— exp {1 (¢ -+ 4%) }}

On putting these expressions into equation (7),

(lﬁMz)ﬂ—{—aij+az~—f:2zcr)~{]\l< +M1>——lJ—a} [ —f—MX)——-Z:I

By choosing

M 1 e
bE LA T U e ()

the complex amplitude 7 is given by the real differential equation

ZI 0)22
0 o + i

=~

T _ml=0 - o

I the oscillation is slow enough and the Mach number not too near unity, 7.e., if the non-
dimensional parameter

the last term in equation (10) may be ignored and [ satisfies

orl ol 9
+

(1 — M) 832+-a?:0, o (11)

which may be simplified to Laplace’s equation by the Prandtl-Glauert transformation to new
co-ordinates

0y A/ (1 — M¥), 24/ (1 — M¥)].
From equation (4), the load per unit area is

(4p) = p(4]) = JpUY,.. R ¢ 4



where 4 denotes the difference between the upper and lower surfaces of the wing, which may be
assumed to lie in the plane z = 0. Let / be the complex amplitude of the non-dimensional
oscillating load, /; and define I such that

on the upper surface I(x’, y', + 0) = — LU¥%(x',y") )
_ ] (13)
on the lower surface I(x’, v/, — 0) = 4 LU%(x’, y') '

Thus the field of  is equivalent to the field of doublets of strength (47) and axis in the positive
z-direction distributed over the plan-form S. The standard solution of the generalized Laplace’s
equation (11) is

f(x,y,z):ijj(df)i(%)dx’dy’, O T 71

P = (v — )+ (1— M) {(y — y') + 2},
It follows from equations (13) and (14) that

where

. o=y ([ ', y') dx’ dy B
A= L”W—MH%PWMK%WY+ﬂW'” 19)

S

The geometry of the wing and its motion are brought 1nto the problem by specifying the
component of velocity @ in the last of the equations (5). On writing

w:%{mp{iw(w%TFME)}} L e

similarly to equation (8) with the value of 2 from equation (9), differentiation along a streamline

gives
M . x M
—{—U >w—-%{[U~—{—zww< —{— M2>Jexp{m<t—i—7]1__M2>}}.

By cancelling the common exponential factor, the equation (5) becomes

GX7 To® ol

This differential equation for @ may be written as

2 e tor A LA [ e 1
ox | P U = ) CPvTa — T

By integrating along the lines y == constant, z = 0,

~ 1 [ a_f 1w (% — %)
B = — EJ_ oy (x4, ¥, 0) exp {_—U(l - MZ)}dxo. . .. .. (18)
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From equations (15) and (18),

_ U — My I, y') dx’ dy’ %] jw(x, — 2) |
M%y)“ﬁ‘si*Jm‘U&%—ww+w1—M%@~y%ﬁj@@{Uu—wm}”“<w)

So far the only restriction on frequency is the approximation that wéM| U(l — M? is small.
This implies that equation (19) is not valid for any frequency at transonic speeds, is valid to
the first order in frequency at sub-critical Mach numbers, and is valid for all frequencies in incom-
pressible flow.

3. Steady Motion.—Before proceeding with the theory of pitching oscillations, it will be
helpful to consider briefly the treatment of problems in steady flow. On substituting o = 0
and M = 0, the basic equation (19) reduces to

U ;o ax, C
I ” ) J_w [(vo — %P+ (y — 5/ % @

or

e @ Uy ~ iy -
="y 8 ” (y — o) [1 R CEr —y’>2}]dx Y 20

o

which corresponds to equation (15) of Ref. 1. At each section y’ the chord wise loading is expressed
as a series, which includes as many terms as there are boundary conditions at each pivotal station.
In the present treatment the number of terms is restricted to two, so that

8 ’ 32 ’ .
Ux', y') = %g((ﬁj)—) cot 14 4 —;zﬁ(t% (cot 1 — 2sin¢), . .. .. . (21)

where s is the semi-span of the wing,
a0 = () + $e(y')(1 — cos ¢)
and x' = % (') is the equation of the leading edge,
so that ¢ = 0 and ¢ = = correspond to the leading and trailing edges. It follows that

a(x»y) - = 2_ (17 _ 77/)2

7T

lf@_ﬁf*_ﬂj)ﬁz’, e @

where the spanwise variables 5, " = y/s, y’/s, and the influence functions 7 and 4 are determined
by the chordwise integrations

. RN X — 31 —cosg) |
10X, Y) = ~ | cot %q{l -—}— VEE — %(12~ cos ) T Yz]] sin ¢ dé

. -, (@9
. 4 . X — (1 —cos ¢) .
(X, Y) =- u 0(cot 4¢ — 2sin ¢) [1 + VX 31 —cos )b + Ystmgﬁ dé )
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with X = (x — x/)[e(y) }

Y= (y —)e(y)
The spanwise integration of equation (22) is achieved by the technique of interpolation used in
Multhopp’s treatment of the ‘lifting-line * theory. This is described in Ref. 1, section 5.1. By
specifying an odd integer m, the unknown functions y(y'), #(y’) are represented by polynomials
in terms of their values at the m pivotal stations

, . um
Vo =ssmm+1[11:0,:{:1,i2,....i%(m—1)].

It is then possible to express o(x, ) at the pivotal station y = y, as a positive contribution
from the polynomial term belonging to the station itself and negative or zero contributions from
the other terms. Thus

S e DU
(%) = b, (yi + uj), — 2 byt + 4f)u s - . . . . (24)
where
b Pt __%/L.jl—
YT
4 cos __?I
cos nm
m+ 1.

b —n|=135,..

b = N va  |°
(m 4 1)[sm w1 sin T J

:O ’ [1’—%!:2,4,6,...
and X’ denotes that the value # = » is not included in the summation.

There are however logarithmic singularities in the second derivatives of z and ; with respect
to Y. As shown in Ref. 1, equation (53), near the inducing section y = ', (X, Y} can only be
developed into a series beginning with

(X, Y) = (X, 0) + K() Y log |V +...... L (es)
where '

i(X,0) = 7% [cos—l (1 —2X) + 24/{X(1 — X)}]
and K.(G) = 1nX* /(1 — X) .

Therefore the polynomial representation implicit in equation (24) is not accurate enough. By
the treatment given in Ref. 1, section 5.2, a correction

Ao, (x) = 225 {.Ki(2) + pK }() (M1 — 1y—) . i, .. (26)

is obtained. When this correctiont} is added to equation (24),

(m~

(xv(x) - bw[/l’:: Yo + ﬁ AuD] - E bm(’&m Vn + ]vn n) ’ . o .- (27)

—3im—1

+ An improved treatment of the logarithmic singularity has been given by Mangler and Spencer'® whose corrections
supersede equation (26).
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where

1
2 X /(1 — X))

F,

A

!
8o

{cos”l (1 — 2X) + 24/{X(1 — X)}J -

41 4 4X —8XY

XA =Xt i —x) b

Q8

with

F_368 1 cos VI . ) s 2
" 295 m + 1 m+1(’“+1 U\ o)

A further complication arises at the kinked central section of swept wings. On substituting
the loading /(x, y') from equation (21), a logarithmic singularity in downwash would arise in
the integral (20), wherever 94 /3y’ is discontinuous. Multhopp overcomes this difficulty at a kinked
section by calculating the downwash of an  interpolated wing * (Ref. 1, section 5.8). This amounts
to a simple change in the geometry of the wing at the section 3" = y," = 0. The local values
% = 0 and ¢(y,’) = ¢,, root chord, are replaced by

xo,l, = %)/ / } . .. .. .. . . (28)
c(') = ¢, — #{e, — c(y4)}

in terms of the neighbouring pivotal station # = 1. The calculated loads at the central section
from equation (21) must be referred to the actual geometrical section in such a way that the
local lift-and position of centre of pressure are those determined for the ‘interpolated wing.’

The boundafy conditions (27) are satisfied at two points on each pivotal station. For the
reasons put forward in Ref. 1, section 3, the chordwise positions are chosen such that ¢ = 4xn/5
and 27/5. In the notation of equation (21) these correspond to chordwise positions

x, = x, -+ 0-9045¢, }

(29)
x," = x,, + 0-3455¢,

where the subscript » indicates that v = v,’ = s sin {v/(m -+ 1)}

From the two conditions at each pivotal station the unknowns y, and u, are separated by
elimination. Thus the 2m equations (27) are expressed in the most convenient form for solution :
r ’ i(m‘_l) / ’ (X3 A
’ ! I ! s rr;
Yy = a’w(lv &% — lu &, ) + E am(zv Lo — Zﬂ' (2 )yn
~3m-1)
i(”‘_11) l VP Z Moz
2 a,,,,,( v]vn Ty ]vn )/un
~4(m~-1)
rr Ix: / ! i("‘“‘/1) [N ¥4 ry 7
My = avv(mv % — W, o, ) + 2 avn(mv Yo — M, Tyn )yn
-4(m—1)
$m=1)

T e
}(E, " avn(mv _71'71 — m, ]vn ):un
—im—

where

4 17
L, 4, m, m, 1 ,

: T T Ty TR T Ty
]w '_71'1' Zyy 2y = ]w — 1y ]w




and the single stroke ' and the double stroke " denote respective substitutions x = x,” and
x = x,” from equation (29). The quantities 4,, and a,, = a,, are independent of plan-form and
given in Ref. 1, Tables 1 to 7 for the particular values of m = 3, 5, 7, 11, 15, 23, 31. Numerical
formulae for 2., 7,,/, %, , 7.  according to equations (27) are found in Ref. 1, equations (86).
The influence functions ¢ and ;7 from equations (23) are given graphically in terms of X and Y
in Ref. 1, Figs. 1 to 6. With these aids equations (30) may be evaluated economically. Since
a,=0 for |» —n|=2,4,6,...., the equations express each unknown (# odd) directly in
terms of all the unknowns of the other set (# even) and vice versa. An iterative solution for-the
2m unknowns y, and u, is therefore possible by considering separately the sets of equations

with # even and with # odd.

The aerodynamic forces and moments then follow from Ref. 1, section 7, where the coefficients
are determined from the chordwise loadings in equation (21) by integrating the polynomials
assumed in the calculation of downwash. The lift and pitching moment about the local quarter
chord per unit span are :

al|dy = 2pU?sy
dd|dy = 2pU%cu.

Hence
nd -y  um
C, = w1 —;(5—1) v, COS P (31)
R (s
C, = im + 1) ~§(§~1) yaSI T (32)

The position of the local centre of pressure measured as a fraction of the local chord from the
leading edge of any section is

— £ 0)

Vo

I

MR |t

In the particular case of the ¢entral section, #» = 0, this formula is modified to take account of
the ‘interpolated wing,” and

1 1w '
XM:;{W+<4_i %n O <),

where x,, and ¢, are determined as in equation (28). The coefficient of pitching moment about
the y-axis is

L7 S c x c nw
Cp=r5—"T1 R e — . .. .
" 2m + 1) —wzn—n {M” s 7 < S Tz S }COS m -+ 1 (34)
The results are given here quite generally for asymmetrical distributions. In practice it is usual

to have either symmetry, y, = y_, and u,, = p_,, or antisymmetry, y, = —y_, and p, = — p_,;
the equations (30), and formulae (31), (32), (34) then simplify.

Considerable difficulties have been experienced in reading the charts (Ref. 1, Figs. 1 to 6)
for the influence functions ¢ and 7 ; and a complete tabulation of both functions was clearly
desirable. This has been carried out by the staff of the Mathematics Division of the N.P.L.*
(Curtis, 1952). The tables use polar co-ordinates (R, p), such that

Rcosy = 2X — 1 :
Rsiny =2V '

(35)



In the area R < 2, 7 and ; are tabulated for y = 0 deg (1 deg) 180 deg, R = 0-20(0-05)2-00.
In the area R > 2, ¢ and 7 are tabulated for y = 0 deg (1 deg) 180 deg, 1/R = 0-00(0-05)0-50.
The use of these tables necessitates some alterations to the computational scheme set out in

Ref. 1, Tables 14 to 17. But basically the calculation is unaffected and results in sets of
equations (30).

4. Lumiting Frequency—In section 2 it was shown that, if the square of the quantity

ofM|U(1 — M?) is negligible, it is possible to write the oscillating load and upwash at the
wing as

AplEp U = Ux', o', 1) = #{U(x', ') explin{t + ¥ MY U(1 — My} } 96)
w(x, v, ) = #{D(x, ) explin{t + xM*U(l — MY} }

and to obtain the integral relation between their complex amplitudes

@(xw:g—(%m J “ o) dedy 7a | €XP{io (¥g—x) [U(1—M?*)}dx, . (37)

[(Fo—2")*+(1—M") (y —")*)
Equations (36) and (37) summarize equations (8), (9), (12), (16) and (19) of section 2.

The treatment of equation (37), when w is small, is discussed in Appendix I. The integrand
may be expanded to the first power in o by writing

exp{io(x, — %)/U(l — M*)} = 1 — ;7“3(%:]"2’)) . (38

It is shown in Appendix I that this approximation neglects a term of order w® log w in @(x, y).
For slow oscillations equation (37) is conveniently split into two parts corresponding to the
separate terms of equation (38) to give

B = B, - 110, .. . . . . L . . (39)
where ‘
: T
ey 5 I, y') dx’ dy
B =" J V= Ty =g [

v oJ

~

_ o ’ B L', y') dx’ dy’
- w2(x: y) — 87'6 J\_w (x xo) 1 ] [(xo . xr)z _I_ (1 . M2>(y - y/)2]3/2 dxo

S

Like /, both @, and @, are complex quantities. From the simple integration

: dx,
e =) (1 — MY (y — )

1 X — x'
(1= MYy — ) [1 + V{E — ) 4 (1 — M3)(y —y')z}}

the first component of @ comes to

sy < U [[ 2 [ A ey
B =g, Um—y')z[ I Y
10




which is formally identical to the integral for the steady downwash in equation (20). The second
component @, requires an integration by parts

) (x - xn) ax,
e [(%g — x)° (1 — M*(y —yyEpr

X — %, Xy — X Bo=t
:LP—MWy—MV{l+v«%—xT+%P—MNy—yyﬁiﬁw

1 % {1+ Xy — X }dx
TA M — ) o — 2P + (1 = M3y — )}

The first integral vanishes at both limits. Hence

— w Z(x’: yl)
_%“”*:&a—wmjjw—yw

S

(x Xy — X ', ,
M L v+ A=y — | e

For the practical computation of these integrals (40) and (41), the chordwise load distribution
is expressed as a linear combination of the distributions that occur most prominently in two-

dimensional steady theory. Following equation (21),

— 0

1 vy — 870 32sa(y’) .
Hx',y') = nc(y) ot 1 + () (cot $¢ — 2sin¢) . .. .. .. (42)
Then, precisely as in steady motion (equations (22) and (23)), at the section y = s»,
a1 (" )it n) + @it )
T o Jv.—l 7 — 1)’ n' . .. .. .. (43)
with
i 2X — 1 4 cos ¢ )
UX, ¥j =14~ ‘['\/{ZX——l—{—COScﬁ —{—41“}I.F(:()qu)dqS
] o (4
. 4 2X — 14 cos¢ .
J(X,Y) :;‘JD\/{&X ~ 1+ cosg) £ 4Y"’} (2cos’¢ 4 cosd — 1) dé )
where

X = {x — x)[e(y)
Y = (1 — MYy — y')[e(y").

On substituting X, = (%, — %,")/c(y’), the integral (41) at the section y = s» becomes

Wy(%) wl 1" eln) 7(n") diln, ) +—ﬂ(n3770%9f)dn, | (45)
e )’ o

U ~ Ul — M2
11



with
WX, Y) = | (X, V) dX,

- e (48)

X Y) = (X, Y) dX, |

As explained in section 3, the steady influence functions ¢ and j are conveniently tabulated in
polar co-ordinates (R, y), such that

Rcosy =2X — 1
Rsiny — 2V '

Complete tables of all the influence functions 7, j, %7 and jj from equations (44) and (46) are
available from the N.P.L. (Ref. 11).

The numerical treatment of the integrals (43) and (45) is discussed briefly in section 3 and given
in detail in Ref. 1. From equations (22) and (27), the integrals for @ at y = sy, = s sin {v=/(m + 1)}
reduce to summations

Byx) L = e .
o 1((] } = bm'[zvv’?w + _77'1/ /’7’1'] - E, b"”(z"”’}j” + ]Y'ﬂ'a") " ‘e ot te (47)
—L0m—1)
U(l ol M2) Z@z(x> _ C, S =y Hm_ll) & N e
w5 U - bm' E [l7’l'x' Vo + .7,7m' [lt],] —%(?n_]) bvn z (Zlm,’}/" + ]]ymun) .. .. .« (48)
with

T = (X, 0) + K,(it) F, }
(49)

Tw = 7J(X, 0) + K,(jj) F,
where

368 1 —_—_— N 2
B = 0 m 1 %% 1 (e — o) (g) (1 — M?,

and K, is defined by an equation similar to (25). By the methods used in section 4, of Ref. 1,
equation (46) gives

X X
(X, 0) = J i(Xo, 0) dX, = J i(X,, 0) dX,

0

1N

I

J [cos™ (1 — 2X,) + 24/{X,(1 — X,)}] dX,

0

d

:g[(x —3)cosT (1 —2X) + (§ + X) V{X(1 —X)}] .. .. (50)
) J’X . 32 J‘X
(X, 0) = §(Xe 0) dX, = — | X (1 — X" dX,
= zcos‘1 (1 — ZX) + g—; 4X — 1) (3 — ZX)\/{X(I — X). . (51)

12



Furthermore the coefficient K, in the expansion
(X, Y) =X, 0) + K (@) Y?log |Y| + . ..
is given by equations similar to (49) and (54) of Ref. 1. Thus

Ky(i) = — 3 52 [(X, 0)) = — 2 J {L;—X} )

K = — 5 sl o =2, | {1—%5} 4x — 1)

It remains to substitute the values y = sy, = s sin{v=/(m + 1)} and x =%/, x = %" from
equation (29) to obtain @, and @, at the chordwise solving positions 0-9045c, 0-3455¢ at the
pivotal stations ». The inducing station is

(52)

nw

m -+ 17

y' = sy, = ssin

Then from equation (44),
Xm’ — (xv/ - xnl)/cﬂ; XWL” - (xv” - xnl)/cn }
V| = Y] = s, — (1 — M, '

In the special case #n =», X, = 0-9045, X" = 0-3455. At these positions 1,, and 7,, are cal-
culated in Ref. 1, equation (86), and 7, and jj, may be evaluated from equations (49), (50),
(51) and (52) as followst :

(58)

~
No—1 Y

— ) AN
at 0-9045¢, 1, = 1-9742 - 0 6234(@) w1 cosm+ i

vy

'—/_" . . _S_[_i} 277v+1,"— Ny—1
7, = 0-2859 — 4 8053(@) m 1 cosm+ i

YT

=7 . . . S_ﬁ : MNor1r — Npa
1, = 1-3100 — 0O 1077(@) m 1 cosm+ i

"/_', . S_/3 2?7,,+1——77,,_1 VT
T = 1-9889 + 1 1281(@) w1 cosm_{~ ]
| IO - 54
T 1., . 2F v+l — fe—1 Ve
at 0-3455¢, 1,”" = 1-4055 4 1-0087 <Cv> m 1 cos m 1

7 q. o~ S_/? 2771'+1—77v~1 Y
7, = 3-1702 4+ 5 /577<Cv> 1 <:osm_*_1

vt l

7 o . . . S—./S ? 771;4—1 - 7]1}—1
1, = 0-3323; — 0-4563 <c,,> w1 cos 1

7 N, . S_ﬁ 277v+1 — N1 v
77, = 0-9780 4 0O 6972(0,,) w1 cosm T

-

Nyr1 — N1 oo : — _ 2
where T 1 cos T 118 tabulated in Ref. 1 (Tables 1 to 7), and § = /(1 — M? .

+ Improved formulae to replace equations (54) may be deduced from Ref. 13 ; these are given in the special cases
m =17, m =11 and s = 15 at the end of Appendix II.
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To summarize, from equations (37), (42), (47) and (48), the angle of upwash at the pivotal
station » is represented by

S TG, = _1eog, .
— byv [(7’;-;: U(l . M2)> yv + (]w U(l _ M2>>,u,,
—3(m—1) " " U(l —_ Mz) Va Tvn U(l — Mz) Iu,"‘ R

where from equation (24)

YT cOS nw
m-+1  “m1

(m+ 1)2 (% '_77)1>2
_ 0 b —n|=24,6,...

4 cos

Ay == bw;/bvy = I"’ _‘n| — 1, 3, 5, e

Values of a,, are found in Tables 1 to 7 of Ref. 1 form = 3, 5,7, 11, 15, 23, 31 to suit all practical

requirements. The values of 7,,, 7,,, ,,, 77,, for the important positions

x =% = x,; + 0-9045¢,
(56)
x=x"" = x, 4 0-3455¢,

are given in equations (54). Tables of the general influence functions ¢, 7, ¢, j7 are compiled in
Ref. 11, as described in section 3 (equation (35)), X and Y being given in equation (53).

5. Pitching Oscillations.—ILet an uncambered thin wing oscillate about a pitching axis x = %,.
At an incidence « the wing surface is given by »

Z= — alx — ).
If the oscillation is of amplitude Q and frequency o, the surface becomes
z = — Q(x — x,) cos i

= R{— Q(x — x,) expliwt)} . .. = .. . o . . (87)
Hence

o = R{Q expliwt)}

58
?5; = 0 = #{i0Q explint)} 8)
The upward component of velocity at the surface must satisfy
_a o
=a T Un
= 2{ — {QU + iwQ(x — x)} expliof) . .. .o (59)

14



By combining equations (16) and (59),

@ 10(x — %) _iwx M?
= Q<l+*—U >exp{ TR
twx 1 — 2M? o,
——Q@+cff:W“'U) (©0)
when for slow oscillations only those terms independent of or linear in wx/U are retained.
From equations (36) and (42), the oscillating load on the wing is
4 ; .
%p‘gz =X {l expliw{t + xM?*U(1 — M*}] }
with
8s7(y) 3254(y) - '
Hx, v) = cot 3¢ + ——=% (cot 14 — 2sin ), e .. 61
( y) 7‘£C<y) 2 7'[0(_’)/) ( 296 ¢') ( )
where

¥ = 24(y) + 2e(y)(1 — cos ¢) .
When the boundary condition (60) at the plan-form is combined with equation (55),

0 iwx | — 2M*  dox,\ || iwe,it, | — 0,7, |
AN A YE ) A K v/ 72§ G S )

—_— Mmjl) ;o 7"an/I’.’L.vn — ' _ Z'CUC,,]:?.,,” -
_%(2"‘——1) Clwz {(Zvn U(l . M2)> y”r + <]U?lr U(l . M2)> /’Ln } ) (62)

wherev =0, +1,+2, .. .. £ §(m — 1) represents the pivotal station y = vy, = s sin {vz/(m + D},
and the odd integer m remains to be chosen. On substituting the two values x = x,’, ¥ = x.”’
from equation (56), the 2m complex linear equations will determine the 2m complex unknowns

?”Jﬂn’[%—:oli1’:‘:2)"":{:%(%——1):"

The real part of equation (62) is precisely the set of equations (27) in steady motion with
incidence « replaced by a uniform value (). These are expressed in the convenient form of
equations (30), which yield an iterative solution for y, and x,. If the steady solution at unit
incidence is denoted by / = /,, the solution of equations (62) may be written as

Z=Q<zl+%§p>, L e

where terms of higher order in /U are ignored. To this order all the remaining terms in
equation (62) are imaginary. On dividing throughout by the factor (wZQ/U,

1 /21 —2M* x, —_, o, ton=1) C, .,
b_ E— T:W - —C: - (Z,,,, Vs + ]vu /’Lv) - E avn(z’vnyn + jvmun)

—}(m—1)

S — ()i, | ()i,
1_M2[%w = 5

c

m—1) By 53¢ . e
-3 f7 <’l$m '(2)#1” + Pwn L@):l ,
—~y(m—1) F; z
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where (7,);, (#,); correspond to steady conditions « = 1. Then j,” and z,’, related to " by an
equation similar to (61), are identically the values corresponding to a steady incidence

xo 1 — 2M*x 1

a_< LJW5+1mMﬂQ,“ R (-1
where

o = b, K”— —*(y_"zlc— + 77, LZ”ZICD o é(mE—'l) Ay (” (y—ﬂzlc_n + Jun mn}leﬂ) ] ‘

C C —é(m—]) C (4

Thus

. Xy ; 1 — 2M* . I .

Z_<———5ll+1—]‘4'212+1‘—]‘/[23>) . . ° v (65)
where

l; corresponds to oy =1,
[, corresponds to o, = %/C,
Is corresponds to oy from equation (64).

Apart from the factor (I — 2M?) /(1 — M?), the first two terms in equation (65) are equivalent
to a uniform rotation about the pitching axis x = x,. The third term is a downwash due to the
aerodynamic loading in phase with the pitching motion ; it represents a time lag between the
loading and its induced downwash. '

From equations (61), (63) and (65), the lift per unit area 4p/3pU® is the real part of

TwX, — 2M*?*twC 1 ol xM*
|:Z<1— >+/ W—*[]*—Flsl_Mz iIQe‘(p{la)(L‘—F—(—‘**']'\—/f—z)-)}

. . 1ol M? x . 1 — 2M* 1 B}
= Q exp(uozf) ':ll —+ —(‘]‘ m E_ll — —c_ Zl —{— ZVI,) Z + Ve Z3>} .
Then in phase with the pitching motion '
Ap|5p U = #{Ql, exp(int)},
t.e., from equation (58), :
Ap|5pU? = al, . . - . . . .. . . . (66)
Out of phase with the pitching motion
Aﬁ_JI’L‘wQE M* X 5 Yo7 | 1 — 2M* . 1 - -
woe N [—dren — eh Tt T Tam T gph ) eplied
t.¢., from equation (58)
Ap  Ge ————2~—ic_—?ﬂ)l- 1 — 2M° 1
LU U\l —M¢t ¢t ’
where [, [,, [; are defined in equations (81) and (65).

(67)

The resulting derivatives of lift and pitching moment corresponding to equation (66) are given
precisely by the formulae (31) and (34) in section 3. On substituting #,, 7, for y, p in these
formulae, let

IJZA 1;(171:1) NI
(CL)I - m "I— i ——f‘_\()zn/~1 (y“,)l OS —I— 68
) = nA*? a(mz—l) G 5.) X | 4 Ca co nw (68)
(Cohy = 20m 4+ 1) Zyin-1) (@)s s Vo g T A s m 1



However in calculating the coefficients corresponding to equation (67), the first term needs
special treatment. Consider

Ap*  xl,  x [8sy 32sa
]b 1 l: Vi cot %qﬁ + M1
7ic 7

LU ¢ ¢

(cot 4¢ — 2 sin 45):] .. . . . (69)

and the corresponding coefficients

[i]
) (70)
. s E ,_’\—52 L dy i
C*= J J 5.x.gcsm¢d¢>2852,
-5 0 J
where, measured from the apex,
x = x, + $c(1 — cos ¢).
Clearly ‘
CL*:J J ll.x.?zcsmgbdqézsjéz
—~$ 0
= — (C,); from equation (88) . .. .. .. . .. .. .. (71)
1 23
C.*= — %3 [ [ {27, cot 3¢ - 8ji,(cot i — 2sind)} X
4 .
v =1 0
{%, + $c(1 — cos ¢)}* sin ¢ de dy
1
s
= — ng [7.(2%0 4 xc + %% + fgu(— 4we — 3c%)] dn
-1
B _fizl _ x12+%xlc+%cz__2xlc+g—czd
) Vi &s t &s g
-1 .
ﬂA2 m=1) _ 2&5&? + %Cng - xnlz + %—xnlcn + %—an nw
- é(Wl —{: 1) —au;zzl) [m")l cs (7 s cos m 4177 (72)

when the integration rule from Ref. 1, section 7, is applied. The last three terms of equation (67)
are integrated to give formulae similar to (68). The aerodynamic coefficients may then be

deduced from the pressure distributions.

The results are now expressed in terms of an * equivalent wing ’ in incompressible flow. In the
formulae (44) for the influence functions 7 and 7, X is independent of A4, but the spanwise para-
meter ¥ = (1 — M®Y*(y — v')/c(y’). These influence functions are unchanged, if a wing with
spanwise co-ordinates reduced by the factor /(1 — M?) is considered in incompressible flow.
The pressure distribution is built up from terms /,, /,, £, which are derived from solutions (7,),
(@,)1, etc., of the real part of equation (62), ¢ taking respective values o, o,, o, from equation (65).
, and a, are independent of both M and spanwise co-ordinates ; and ¢, 1s invariant when the

17

B



‘equivalent wing ’ is considered in incompressible flow. Hence (7,)
invariant. The equivalent coefficients from equation

v (.1, etc., are similarl
for s, and A+/(1 — M? for A4 as follows :

y
(68) are obtained by substituting s+/(1 — M?)

A 1 . ‘Z‘{2 i{m—1)
(Il)l = - \’}2(—[— 1 ) ) (7711)1 COs _ﬂ

—4m=1) m + 1
(1), — A V(L= M) s
mjl T

.
S G Eut | 1 G nmw
o 1) = o (B 1) beos

Therefore from the term /,,

(CL)1 — (IL)l/\/<1 — M2) }
(Cls = (Luhf/(1 — M3y [

(74)
Similar equations hold for /, and I, ; and from equation (72), :

. 1 n A1 — M?) ion- 2%, + 4c,”

E I — M — g ), =i 1 4V

Co¥ = L¥/ (1 — M?) VI — MY 2m + 1) -Q(E-l)[’“‘")lc's\/(1 — M?)

. X"(?‘ + %xnlcn _i_ %cnz nw
— (™5 VZi i 7o bl (75)
where s and A refer to the actual wing.

From equations (68) and (72), the pressure distribution out of phase with the pitching motion
in equation (67) gives a lift coefficient
0c M* Es 1 — 2M* 1
CL= o\~ 130" — Z(Coh + T (ot T (CL)3>
¢ M? 1« 1 — 20
v \i= wr (L) — A= z L) + 1 = arpr (1)s

. .. .. . (76)
in terms of the ‘ equivalent wing.’ Similarly the moment coefficient about the pitching axis
X = %, is

(Cm)O = Cm + %CL »

where referred to the axis x = 0 through the leading edge of the central section

L3 PO U S W 1o
W U{(l__—W‘[:n — (1 . M2)1/2 i (Im)l + (1-—~ Mz)"/z <Im)2

1
-+ a—':f]_‘l—z)sﬁ (Im)a} .

L@
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Then the pitching derivatives are defined by

—’%’é(&)l e e (78)
=155 -4 s
+ 2 (g + T m ) - <x> A ] )

where § = 4/(1 — M? and in accordance with equatlon (74) I, and I, are coefficients of lift
ind pitching moment for the ‘equivalent wing ’ in incompressible flow. Thus, when M = 0,
he pitching derivatives become

p = — ?1)‘ [{(CL)z -+ (CL)B} — ZC(-;-‘O (CL)IJ ]|
i

[ (G + (3 + 2 (- + o — (%) |

The stages of evaluating 2z, and m, may be summarized as follows :

DOt i

gy =—

(1) Given the plan-form and the Mach number, determine the * equivalent wing ’ of semi-span
s /(1 — M?). '

(ii) Calculate /; and 7, corresponding to incidences «, = 1 and «, = x/¢ by the method of
Ref. 1 (modified slightly to make use of the new tables of 7 and j in Ref. 11).

(iii) Calculate «, from equation (64) by using the additional influence functions 7 and j;
and the values of # and z# corresponding to /;.

(iv) Calculate /; corresponding to «, as in stage (ii).

(v) Evaluate the coefficients of lift and pitching moment corresponding to /[, I,, I, from
equations (68) and the special term 7,* fromr equation (75). Note: The symbol I
replaces the usual C as a reminder of stage (i).)

(vi) Evaluate the derivatives z, and #, from equations (78) and (79).

For further computétional details the reader is referred to Appendix VII of Ref. 1 and Appendix
I of this report.

6. Numerical Results—For the reasons given in section 1 the present calculations include
ive plan-forms : one circular ; one arrowhead (4 = 1-32), Wing 9 ; and three delta (4 = 1-2,

, 3), Wings 0, 1, 2 respectively. The numbers correspond to Ref. 6, Fig. 1. The three related
telta wings of taper ratio 4 = 1/7 have been chosen to illustrate the effects of aspect ratio and
ompressibility. Wings 1 and O are ‘ equivalent * to Wing 2 at M = 0-745 and M = 0-917
espectively in the sense indicated above equation (73).

Before proceeding with any calculations it is necessary to specify m, the number of spanwise
-ariablés. With a single exception (Wing 2 with m = 7) the recommendation of Ref, 1, m > 34,
as been followed. The circular plate and Wings 9 and 2 have each been calculated for two
ifferent values of m,

19



Throughout, the influence functions 7 and 7 have been determined from enlarged charts similar
to Figs. I to & of Ref. 1, which were based on some calculations by M. Winter. He also provided
unpublished tables of 77 and jj for certain values of Y, which have been used to evaluate a,
from equation (64). As explained at the end of section 3, a complete tabulation of i, 7, 47, j7 has
been carried out by the staff of the Mathematics Division of the N.P.L. (Ref. 11). A check
calculation in the particular case of Wing 2 with # = 7 has shown that Ref. 11 gives much more
reliable values of the influence {unctions. However the recalculated derivatives z; and m
differ from the values given in Table 4 by at most 0-002 over the whole range of pitching axis
0 << xy << 1-75¢. It has therefore been assumed that the computational accuracy is of this order
in the other seven cases considered.

The present calculations are summarized in Table 1. Each of the eight solutions for the
derivatives is fully expressed by the seven coefficients

(IL>]J (II_)‘ZJ (IL>3y ]L* = - <Im)1: - (IHL)ZJ - (Im)3: - Iln*:

the last of which only occurs in compressible flow. The derivatives z, and wm,; may then be
determined frem equations (78) and (79). Their values have been tabulated against the position
of pitching axis in Tables 2, 3, 4, 5 and 6. It will be seen that the derivatives in Table 2 for
the circular plate are specially defined in terms of the radius K.

There are three distinct considerations arising from these results :
(i) the number of spanwise terms, # ;
(ii) the effect of aspect ratio (M = 0);
(iit) the effect of compressibility.

The numerical implications of each will be discussed.

8.1. The Nuwmber of Spanwise Terms—The choice of m affects the accuracy with which the
spanwise integrations are achieved. From section 3 the technique used by Multhopp in the
“lifting-line * theory results in the formula (24), but a lifting surface introduces one or two
complications :

(2) a logarithmic singularity in the second derivative of the integrand ;
(b) a divergent integral when the leading or trailing edge is kinked.

() is always present ; and the correction, included in equation (27), is probably satisfactory so
long as the wing is not highly tapered, when the refinement of Ref. 13 is important, () is absent
for the circular plate ; but each of the other examples involves an ‘interpolated wing’ with
a change in plan-form near the central section from equation (28). Both of these complications
are treated by devices dependent on the choice of m.

It might be expected that m would matter less for the circular plate than for the delta wing
with a kinked leading edge, and would become more significant for the arrowhead wing whose
trailing edge is kinked as well. Such effects are apparent from the coefficients in Table 1. The
largest discrepancy ol all, occurring for the arrowhead wing, is the change in — (J,); from
0-70 to 0-81 as m is reduced from 11 to 5.

However, when the pitching derivatives in incompressible flow are compared in Tables 2, 3
and 4, the ditferences are rather smaller than Table 1 would suggest. In Fig. 1 the unbroken
curves for the circular plate for the two values m = 7 and m = 5 are in excellent agreement.
The largest effect of m is recorded in Fig. 2 for the arrowhead wing with pitching axis through
the leading apex, when increases of (-10 (6 per cent) in — z, and 0-07 (4 per cent) in — m,
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occur as # 1s reduced from 11 to 5. Fig. 3 shows that the least favourable pitching axis for
the delta wing is %, = 1-8¢ ; a decrease in m from 15 to 7 then changes — z, by -+ 0-04 (6 per
cent) and — m,; by — 0-03, a reduction of about 20 per cent in the minimum damping.

These differences are considerably smaller than those between the present theory and other
oscillatory theories (section 8) and amount to less than a quarter of the corrections to the steady
theory (section 7). The effects of m leave scope for improvement, but the numerical inconsistencies
on that account are encouragingly small and of little importance to a practical aerodynarmicist.

 8.2. The Effect of Aspect Ratio—~To some extent aspect ratio determines the labour of com-
putation. For an isolated problem it would be unwise to choose a value of m less than 34 ;
and for a swept wing m should be at least 7. A reasonable estimate of computational time on a
desk calculator is 0-08m?® days ; this covers all stages of the work (Appendix 1i) inciuding the
initial steady theory of Ref. 1. Thus for any particular swept wing the calculations might be
expected to take at least 0-742 days and not less than 4 days. The method is best suited to wings
of moderately small aspect ratio, for which it is relatively quick compared with the 7 weeks of
computation, when 4 > 5 and it is advisable to take m = 23.

From the few calculations of the derivatives themselves no general conclusions about the
effect of aspect ratio can be drawn. However, in the particular case of delta wings with a taper
ratio of 1/7, Fig. 4 shows that 4 has a marked effect on 2, For the practical range of pitching
axis 0:75¢ < %, < 1-10¢ there is a reduction of the order 0-26 (22 per cent) in — z;as 4 changes
from 3 to 1-2. The corresponding reduction of 0-05 (14 per cent) in — iy, though barely
significant, is confirmed by experiment (section 9).

The low aspect ratio theory given by Garrick™ (1951) is considered in Appendix I1I, where
formulae
5 lux
%= —”A@—az-") 1

7 1/%\|°
'n/Lo:—nA{fS——Qj(;_O)}

are derived for the family of delta wings (4 = 1/7). It is quite clear from Table 5 and Fig. 4
that even for 4 as low as 1-2 neither z, nor m, is approximately proportional to 4. The formulae
(81) differ {from the numerical results of Multhopp’s theory by as much as 0-43 (100 per cent)
even for 4 = 1-2, and the discrepancies become more serious with increasing 4. When 4 < 0-5,
the formulae are apparently more consistent ; and the dotted curves for 4 = -5, shown in Fig. 4,
match the other three curves fairly well. Better indications of the validity of the formulae (81)
for z, and m, are given respectively in Figs. 6 and 7, where the derivatives are plotted against
A for three pitching axes x, = 0-5¢, 0-973¢, 1-4¢. The dotted curves from (81) roughly approxi-
mate to the numerical results for incompressible flow (M = 0) at very low aspect ratios. But
they are seldom likely to supplant the more exact calculations.

(81)

6.3. The Effect of Compressibility.—The present theory is valid provided that e [U(1 — M?)
is small compared with unity ; the method is thus inapplicable to practical values of w at very
high subsonic speeds. A change of Mach number involves a change in tne ‘equivalent wing’
of aspect ratio A4/(1 — M?). Computations at higher M will therefore tend to be shorter
(section 6.2).

The calculations for the family of delta wings determine the pitching derivatives for Wing 2
(A =8) at M =0, 0-745, 0-917 (Table 6). The unbroken curves of 5 against x,/¢ in Fig. &
are separated by much the same amount as the curves of z in Fig. 4. But whereas A4 has little
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effect in the region 1-2¢ < x, < 1-4¢, the effect of M almost disappears when 0-2¢ < %, < 0-6¢.
Fig. 8 shows typical theoretical curves of z, against M. There is evidence from Fig. 6 that for
wings of low aspect ratio 2, is not sensitive to M, whatever the pitching axis.

On the other hand the results plotted in Fig. 5 show that the effect of M on s, is much greater
than the equivalent effect of 4 in Fig. 4. For the practical range of pitching axis
0-75¢ << x, < 1-10¢ there is an increase of the order 0-58 (160 per cent) in — m, as M changes
from 0 to 0-917, while the corresponding increase in — m, from experiment is about 0-45
(Fig. 8). Thus the effect of compressibility up to M = 0-9 is fairly well predicted by theory
despite the presence of shock-waves. Theoretical curves of m, against 4 for M = 0, 0-8, 0-8,
0-9, 0-95 are shown in Fig. 7. The general appearance is surprisingly sensitive to pitching axis.
The usual effect of M is towards greater stability ; the interesting exception, however, is the
case of high M and high 4 with a forward pitching axis, when compressibility can produce a
theoretical tendency towards negative damping.

7. Comparisons with Steady Derivatives—The oscillatory derivatives z, and m, are given in
equations (78) and (79). These formulae will be compared with those corresponding to a uniform
pitching rotation.

7.1. Steady Piiching Derivatives.—For a steady rate of pitching ¢ the boundary condition in
place of equation (59) is

W= —qx — %) . .. .. . .. e .. .. (82)

This is equivalent to an incidence

} i
al) = —p=—"u+ L,

Otlzl
0(2:95/0 |

~ Then, in the notation of equation (65), the non-dimensional load is

where

l:éf{;z:_g_g’znﬂ—;zz. (83)
Then from equations (73) and similar ones for (1), and (I,,), corresponding to /,
cL:i’g v in%(IL>I+m(IL)2>’ L s
Che="20C0 + 5—\/(—1‘—”:—]—‘4—2) <— L)+ (I,,,)2> o (85)
Thus by treating equation (83) similarly to (67) the steady derivatives are obtained at once
zqz—éa(ZC_C/LU)=~2—;<(JL)2—9§(1L)1), L 8
=g =g e H P = @ @ - (2wl e

22




where g = 4/(1 — M?) and the coefficients I, and I, correspond to the ‘equivalent wing’
in incompressible flow. When M = 0, the derivatives of lift and pitching moment on a steadily
pitching wing become

e — é((cgz - (CL)1>

1 %o

2 , 89
=g [ €t % = Gt (€03 — (2) (e

which should be compared with the oscillatory derivatives in incompressible flow as given by
equations (80). These only differ from (88) in that extra terms (C,), and (C,), include the time
lag in downwash due to the aerodynamic loading in phase with the pitching motion. However
in compressible flow there is a further effect on account of the retarded frequency, which gives
rise to the first term in equation (67) and the coefficients C,* and C,*.

7.2. Numerical Comparisons.—The summary of the present calculations in Table 1 includes
the four coefficients

(IL}IJ (IL)Z’ - (Im)b - (Im)zr

which determine the steady derivatives defined in equations (86) and (87). The last columns of
Tables 2, 3 and 4 give values of z, and m, in incompressible flow (8 = 1) for the circular plate,
arrowhead wing (4 = 1-32) and delta wing (4 = 3) respectively. In each case the larger value
of m has been taken. The tabulated values of z, and m, may be compared with the derivatives
2y and m, from equation (80) for the range of pitching axis.

The plotted comparisons in Figs. 1, 2 and 3 show that the difference between the steady and
oscillatory derivatives varies a lot with plan-form. For the circular plate the displacement in
the lift derivative is given by

R
-5 (2g — 2,) = $({.); = 0-49 ,

- which is considerably larger than the corresponding values of 0-30 for the arrowhead wing and
0-25 for the delta wing. This partly explains why the pitching-moment derivatives for the
circular plate in Fig. 1 differ so much. Nevertheless m, and m, happen to be in close agreement
for the diametric pitching axis x, = K.

Equations (80) and (88) show that the minimum —#m, occurs when the pitching axis is at a
distance

(Aw) = 3(L)ol(Ie) -+ oo e e (89)

behind the position for minimum — s, The value of the minimum is reduced in magnitude
by an amount :

(dm)

I

(_ 7nq)min. - (_ mé)min.
(s + 2o {— (L) + Lo + ¥Lo)s} /(- -0 . L. (90)

Then, starting from a curve of — m, against x,/¢, the oscillatory derivative — m, is obtained by
translating the curve (4x,)/¢ to the right (x, increasing) and (4m) upwards (— s, decreasing).
The derivatives for the circular plate are defined in terms of R in Table 2. Thus (4) is multiplied
by the special factor

(§/R)* = =*/4,

I



which would appear on the right-hand side of equation (80).

Wing m A (dxy)/C (Am)
Circle 7 1-27 0-267 0-053
Circle 5 1-27 0-272 0-055
Arrowhead 11 1-32 0-186 0-061
Arrowhead 3 1-32 0-210 0-072
Delta 15 3-00 0-081 —0-001
Delta 7 3-00 0-098 0-037
Delta 7 2-00 0-172 0-077
Delta 7 1-20 G-235 0-080

[t seems that both (4%,)/¢ and (4sm) increase when the aspect ratio is reduced. Although the
steady and oscillatory curves for the delta wing (4 = 3) in Fig. 3 are not far separated, the
comparison for the arrowhead wing in Fig. 2is probably more typical of swept wings of moderately
low aspect ratio. (uite generally in incompressible flow the curves of m, and m, cross where
%o/C = — (I,,)s/({,)s, which is found at roughly 0-2¢ behind the aerodynamic centre. Therefore
in practice the damping of pitching oscillations can be expected to be greater than the derivative
m, would suggest.

A more direct indication of the difference between oscillatory and purely rotational flow is
the magnitude of the incidence ¢, which constitutes the phase lag between the wing loading and
the induced downwash. A suminary of values is contained in Table 7, where it is shown that
o can take large values, positive at the central section (y = 0) and negative near the tip (n = 1).
From equation (65) the magnitudes of the tabulated o, and «, = x/¢ are of equal importance in
determining the loading out of phase with the pitching motion. At # = 0 in particular the ratio
of o (at 0-8045¢) to o' is as much as 0-75. It is the change in sign of «, over the outer span
that accounts for the smaller ratios of ({.)/(1,), and (Z,)s/({,), from Table 1. Consequently the
effect on the out-of-phase wing loading in incompressible flow is more significant than the com-
parative derivatives indicate.

Steady pitching ceases to be a useful guide when the effects of compressibility are important
and the additional coefficients C,* and C,* come into play. These coefficients, however, are
given in equations (V1) and (72) in terms of the steady solution for unit incidence. Results for
the delta wing (4 = &) in Fig. & show that the curves of z; and 2, for a given Mach number remain
parallel, but that the difference z, — z, changes sign at approximately M = 0-78. Thus the
%y curves converge for a forward pitching axis, while the z, curves converge for a pitching axis
near the trailing edge.

The curve of the oscillatory derivative s, for M = 6-817, x,/é > 0-7 in Fig. 5 illustrates how
much the effect of compressibility can be underestimated by the steady theory. For the practical
range of pitching axis, 0-75¢ << x, << 1-10¢, as M changes from 0 to (-917, the average increase
in — m, of - 58 compares with the much smaller value of 0-23 for the steady — . Experiments
on the delta wing (Fig. 8) give a corresponding increase in — m, of about 0-45 and support the
larger value from the oscillatory theory of limiting frequency.

8. Comparisons with Other Theovies.—Three oscillatory theories are considered in the light
of the present calculations :

Ref. 5 (Miss Lehrian) ;
Ref. 7 (Schade and Krienes) ;
Ref. 8 (Kochin).
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. The last two of these are particular solutions for the oscillating circular plate. Ref. 5 is of general
application ; and results for the circular plate, arrowhead wing and delta wing (4 = 3) are quoted
in Tables 2, 3 and 4 respectively.

8.1. Circular Aerofoil.—The circular aerofoil was chosen as one of the present examples
because the independent solutions of Schade and Krienes’ and Kochin® were available.

From page 29 of Ref. 7 the expressions for the lift and pitching moment in the present notation
(section 12) become

L= {npUsz 8 (g 12 + K, -+ :—2%1}!21{,,0> 0 exp(iwt)}
g4
| L (o)

2 2_§ g_ 2 . g' .
A :%{— mpUPR 3ﬂ<—— 159 +Ksl+3z!2 K,d)QeXp(zwt)}

o

where 2 denotes wR/U and the instantaneous incidence about the axis %, = R satisfies
% — 240 expliot))
Boufot = b = & {iw() exp(iot)} } '
From Tables 1 and 2 of Ref. 7, in the limit as w — 0,

K,= 0-3531 — 0-2484 10 }

K, = — 0-5489 1- (-4465 i 0

Ky= — 0-2221 - 0-1259 5.2 r o " n n B (92)
K, = 0-3872 — 0-2630: 2 J

Therefore, on proceeding to the limit, equations (91) and (92) give

T

c, — 18 <O-35310¢ 4 042702R9‘/U> — 1-798 -+ 0-688(2RH/U)
,(93)

ﬁllm

(Co)o = — gg_— (— 05489« + 0-7046R0/U> = 0-593a — 0-598(2R%*%|U¢)

when the pitching axis is x4, = R. The corresponding values of 8C, /6 = 1-788 and 9(C,,)/ox =
0-597 by Multhopp’s steady lifting-surface theory are in excellent agreement. However the
derivatives — 2y = 1-219 and — m, = 0-244 in Table 2 are very different from the respective
values 0-688 and 0-598 given in equation (93). About a general pitching axis Schade and
Krienes give

— g5 == 1-587 — 0-899%,/R

.
| e (94)
— g = 1720 — 2-021x,/R + 0-899(x/R)*
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The results of Kochin’s theory are given in equations (4.1), (4.42) and (4.43) of Ref. 8, Part 1.
In the present notation, the lift and pitching moment on a flat circular wing in periodic oscilla-
tions of small frequency about a diametric pitching axis are respectively

L = pU*R*2-813c + 1-766R6/U)
My = pUR(1- 4730 — 0-867RO/U) |~
Hence

Cp = 1-791a + 0-562(2R4/U) } | (95)

(C,)o = 0-5970 — 0-276(2R*/U3)

when the pitching axis is %, = R. Again 8C,/oa and 9(C,,),/0« are in excellent agreement with
the values from Multhopp'’s lifting-surface theory. In the special notation of Table 2, Kochin’s
values of the oscillatory derivatives for a general pitching axis are given by

— 2y = 1-487 — 0-898x%,/R }

96
— my = 1265 — 1-884x,/R + 0-895(x,/R)* (96)
From equations (94) and (96) the curves of z, and m, against %,/R in Fig. 1 show that neither
Ref. 7 nor Ref. 8 supports the present theory ; in fact the results of Ref. 8 lie fairly close to the
steady pitching derivatives from section 7.1.

The calculations from Ref. 5, however, agree favourably with Multhopp’s oscillatory theory.
Close comparisons for both derivatives are shown in Table 2 and Fig. 1. These cast doubt on
the results given in Refs. 7 and 8 and point to the desirability of checking the complicated analysis
in both of these methods. ,

8.2. Vortex-Lattice Techmigue.—The first routine for an oscillatory lifting-surface theory was
suggested by W. P. Jones* (1946). His method yields a practicable computation for high
frequencies by developing the vortex-lattice technique® (Falkner, 1943) to evaluate periodic
downwashes. Miss Lehrian has modified the theory of Ref. 2 to permit the calculation of stability
derivatives of low frequency in Ref. 5, whence values for three wings in incompressible flow are
placed alongside the present results in Tables 2, 3 and 4. As mentioned above (section 8.1),
the comparisons in Table 2 for the oscillating circular plate are good.

Whereas the computation in Multhopp’s theory is specific once m is fixed, the method of Ref. 5
involves an arbitrary lattice and choice of both the number and combination of pivotal points.
In the more crucial case of swept wings this choice demands experience, since it may be expected
to affect the numerical results. Those quoted for the arrowhead wing in Table 3 and the delta
wing in Table 4 correspond to a 21 X 6 lattice with a total of 6 pivotal points situated
at $c¢ and &c.

For forward pitching axes the two theories agree well, but for axes closely behind the calculated
aerodynamic centre differences begin to become appreciable. For x, = ¢ in Fig. 3, Ref. 5 gives
a value of —m, for the delta wing 0-05 (17 per cent) greater than the present theory. Such
discrepancies continue to grow with increasing x, until the estimated damping about a pitching
axis near the trailing edge differs by as much as 0- 18 (40 per cent). This trend appears in Figs. I,
2 and 3, and in each case involves discrepancies between the two theories of at least three times
the calculated effect of varying  in the present theory.

From the general standpoint the comparisons between the present theory and vortex-lattice
technique are encouraging. It seems that the margin of uncertainty in stability derivatives
has been greatly narrowed down. In conjunction the two theories provide a foundation on which
the effects of high frequency can be superposed through Ref. 4 and further applications of Ref. 2.
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9. Comparisons with Experiment.—Measured values of m, for the delta wing (4 = 3) have been
found by two totally different experimental techniques. Results at low speed obtained at R.A.E.
for two complete models* (Moss, 1952) compare well with those obtained at N.P.L. for a half-
model tested over the range of speed 0-40 < M << 0-90. The results plotted against M in Fig. 8
correspond to oscillations about the two pitching axes, x, = 0-973¢ and x, = 0-754¢, with zero
mean incidence. At all speeds the derivative was approximately independent of frequency
provided that the parameter w¢/U > 0-03. The measurements at R.A.E. were made on different
sized models, both of which described pitching oscillations about the axes x, = 0-664¢ and
%, = 0:937¢. The results are taken from Fig. 18 of Ref. 14, where there was no indication of
any marked change in m, throughout the range 0-03 < w¢/U < 0-16, which includes the highest
experimental frequency. The following average values of the derivative are plotted against
%,/¢ in Fig. 3, where they confirm the theoretical values (m = 15) for the delta wing (4 = 3)
in incompressible flow :

Model Span Pitqhing Values of — g
2s (ft) axis %o Measured | Theoretical
Complete 5-485 0-664c 0-69 0-756
Complete 5-485 0-937¢ 0-32 0-340
Complete 3-35 0-664c 0-73 0-756
Complete 3-35 0-937¢c 0-37 0-340
Half (M = 0-4) 0-571 0-754¢ 0-52 0-594
Half (M = 0-4) 0-571 0-973¢ 0-30 0-302

Fig. 3 includes a dotted experimental curve of m, from Fig. 26 of Ref. 14, which is used to
obtain values at M = 0 in Fig. 8.

Measurements on oscillating models of the arrowhead wing (4 = 1-32) and the delta wing
(A = 1-2) have been made at low speed in the N.P.L. Low-turbulence Tunnel** (Scruton,
Woodgate and Alexander, 1953). For both wings the lift derivative — z, and the damping
— m, have been measured for two pitching axes. Oscillations with zero mean incidence showed
no effect of amplitude on these derivatives ; and marked effects of frequency were confined to
- low values of the parameter w¢/U. Within experimental scatter the derivatives were constant
throughout the ranges of frequency

0-25 < wé/U < 0-75 for the arrowhead wing (Ref. 16),
0-15 < wé/U < 0-50 for the delta wing (Ref. 15).
Thus with zero mean incidence the experimental — z, and — m,; were virtually independent

of both frequency and amplitude at the higher frequencies wé/U > 0-20 for the range of amplitude
1-5 deg < Q < 4-5 deg and the average values are given in the following table :

Wing A Pitching — 2 — g
axis #,
Arrowhead 1-32 0-883¢c 0-75 0-27
Arrowhead 1-32 1-063¢c 0-55 0-13s5
Delta 1-2 0+754¢ 1-01 0-49
Delta 1-2 0-973¢c 0-85; 0-26s

These derivatives have not been corrected for tunnel interference, which is considered to be
small in the case of the delta wing. Although the arrowhead model is somewhat large for the
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size of tunnel, it is argued in Ref. 16 that the corrections may be fairly small. The tabulated
experimental values are plotted for the arrowhead wing in Fig. 2 and for the delta wing in Fig. 4.
Each value of m, lies very close to the present theoretical curve against pitching axis. The

comparison of theoretical and experimental values of #, is fair for the arrowhead wing and good
for the delta wing.

Since the present theory neglects terms of order ? it is encouraging to find experimentally
that the effects of frequency are small and that the values of the pitching derivatives are
reasonably close to those calculated theoretically. The variation in m, with both pitching axis
and aspect ratio in Fig. 4 is very consistent and demonstrates the practical importance of the
theory at low speeds. The curves of m; against Mach number in Fig. 8 are in fair agreement.
For the pitching axis x, = 0-973¢, the experimental variation in m, (0-4 < M < 0-9) is about
67 per cent of the theoretical. In the case x, = 0-754¢, the measured — 1, is some 20 per cent
below theory and changes rather less at lower Mach numbers. However a much steeper rise
where M > 0-8 brings the total experimental variation (0-4 << M << 0-9) up to 90 per cent of
the theoretical.

10. Concluding Remarks.—(a) Description of Method.—This report describes an extension of
Multhopp’s subsonic lifting-surface ‘theory (Ref. 1) from steady flow to harmonic pitching
oscillations of low frequency (sections 2 to 5) and its application to wings of circular, arrowhead
and delta plan-forms (section 6). In equations (78) and (79) the pitching derivatives m, and 2,
are expressed in terms of the steady theory with changed boundary conditions.

Full details of the general computation are given in Appendix II, which should be"studied
in conjunction with Appendix VII of Ref. 1. With the aid of tables of four influence functions
(Ref. 11), obtainable from the Aerodynamics Division, N.P.L., the procedure becomes straight-
forward. The stages of calculation are set out at the end of section 5. At the outset a single

parameter m, defining the pivotal spanwise stations, must be chosen. Once m is fixed the
computation is specific.

(b) Salient Results.—Three very different plan-forms have been calculated for two values
of m. FEach gives reasonably consistent values of the pitching derivatives (section 6.1).

Numerical results are discussed in relation to the corresponding derivatives z, and m, of a
uniform pitching rotation (section 7.2), thus evaluating the deficiencies of a purely steady theory
(section 7.1) for oscillatory derivatives. These deficiencies apparently grow with decreasing
aspect ratio : in practice the damping of pitching oscillations can be expected to be greater than
the derivative m, would suggest. Steady pitching ceases to be a useful guide when the eflects of
compressibility are important.

For delta wings the theoretical effects of aspect ratio are found to be small (section 6.2).
. Compressibility, however, has a large theoretical effect, which, for delta wings, usually tends
towards greater stability (section 6.3) and is surprisingly sensitive to pitching axis (Fig. 7)

The damping of pitching oscillations about the calculated aerodynamic centre is plotted
against sweepback in Fig. . For incompressible flow the points for the five wings lie on a common
curve : the large effect of Mach number is indicated.

(c) Summarized Comparisons.—Since the theory neglects all terms involving the square of the
frequency o, it is encouraging to find that the experimental derivatives show no marked effect
of frequency at the highest available values of the parameter w¢/U (section 9). The practical
significance of the theory is borne out by experimental evidence up to a Mach number of about
0-9 (Figs. 4 and 8), though the theory is not strictly valid when shock-waves are present.

Low aspect ratio theory (Appendix III) for cropped delta wings approximates to numerical
results in incompressible flow at very low aspect ratios (Figs. 6 and 7), but is generally unsuitable.
Inconsistent derivatives for the oscillating circular plate are found in Refs. 7 and 8 (section 8.1).
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Calculations from Ref. 5 agree fdirly well with the present results for circular, arrowhead and
delta wings (section 8.2). From comparisons with Ref. 5 and experiment it seems that the
uncertainty in stability derivatives for slow pitching has been greatly reduced.

(d) Limitations of Theory.—The present theory is valid provided that wcM/[U(1 — M?) is
small compared with unity ; the method is thus inapplicable to practical values of w at very
high subsonic speeds. It remains to be seen to what extent these considerations are masked
by the interference of shock-waves. '

In incompressible flow the integral equatibn (37) is valid for all frequencies. It follows from
Appendix I that the complex downwash @ = @, + 7@, neglects complex terms in ® and a real
term

i[@._ SC—L; 2 1o QE_ACL CO_C— 21 Cff—
U = 16200 8T T 16 \U /) BT

When /U = 1/4/e = 0-61, the magnitude of this uniform induced incidence has a maximum.
Its ratio to the amplitude of oscillations is then

A
% (CL)l b
which for the delta wing (4 = 3) with (C,), = 8-05, only amounts to a correction of 3-3 per cent

. to the lift in phase with the pitching motion. The error in the out-of-phase derivatives (w — 0)
is of similar order ?

The limitations imposed by assuming only two terms in the chordwise loading in equation (42)
cannot be evaluated at this stage, but will presumably become important if the aspect ratio is
small enough. FErrors from this source would become apparent from calculations with three
chordwise terms and three boundary conditions at each pivotal station. The theory is easily
generalized in this way, but the calculations require two further influence functions.

Two limitations of the theory arise from complications in the evaluation of downwash
(section 6.1) : :
(1) logarithmic singularity in the spanwise integral ;
(2) divergent integral at a ‘ kinked * section.

Both of these are treated by devices dependent on the choice of m. Device (1) is not wholly
satisfactory for pointed wings. Device (2) is thought to be the main cause of the fairly small
discrepancies that occur for the arrowhead and delta wings with change of .

A practical limitation is the labour of computation for wings of high aspect ratio at low Mach
numbers. Given a new swept plan-form, the work on a desk calculator would run to 7 weeks,
when g4 > 5, compared with 4 days when 4 < 2 (section 6.2).

(¢) Further Theoretical Work.—(i) The effect of frequency may become important at high
subsonic Mach numbers ; this might be investigated on the basis of Ref. 17 by using the
vortex-lattice technique of Ref. 4.

(ii) Multhopp’s theory, steady and unsteady, has been generalized to include three chordwise
terms ; some calculations for a delta wing are in progress.

(iti) It is desirable-to develop methods of cutting down the length of computations when
m is large. ’
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(iv) The theory is readily extended to the problem of oscillating control surfaces, and it
could estimate some much needed derivatives.

{v) The oscillating circular plate has been treated independently in Refs. 7 and 8. Incon-
sistent results suggest that the complicated analysis in both of these methods should
be checked.

(vi) It is intended to apply Multhopp’s theory to calculate pitching derivatives of rectangular
and triangular wings of low aspect ratio, thus providing interesting comparisons with
the theories of Refs. 9 and 10.

11. Acknowledgement.—Most of the numerical results given in this report were calculated by
Miss J. S. Francis of the Aerodynamics Division, N.P.L.

12. Nowmenclature.

a Speed of sound
Ao Coefficients for approximate integration in (55)
A Aspect ratio (= 4s?/S)
Oyur s Coefficients for approximate integration in (24)
c(v) ;¢ Local wing chord ; mean chord (= S5/2s)
¢, ¢ Root chord (y = 0) ; tip chord (5 = 1)
Ce Lift coefficient (= L[}pU?2S)
Cu Pitching-moment coefficient (= .#/3p U*S¢)
(Cw)o = C, -+ Crxof¢ (about pitching axis)
1 = 4/(— 1) : influence function corresponding to y in (44)
1, 77 Influence functions in (46)
Ty 7o €tC. Influence coefficients in (54) (see also Appendix II and Ref. 13)
;7 Enthalpy per unit volume ; its complex amplitude in (8)
I;, 1, Lift, pitching-moment contributions for ‘ equivalent wing ’ in (74)
1.* Particular value of 7, in (75)
7 Influence function corresponding to x in (44)
1;1 Non-dimensional wing loading (= 4p/3pU? ; its complex amplitude
m Number of wing sections taken into account
, Rotary derivative of pitching moment in (87) [= 12(C,.)s/3(¢¢/U)]
MWy Oscillatory derivative of pitching moment in (79) [= 39(C,),/8(6¢/U)]
M Mach number (= Ula)
V4 Pitching moment -about axis x = 0
P AP Pressure ; lift per unit area
q Steady rate of pitching
Q Amplitude of pitching oscillation
(R, v) Polar co-ordinates for influence functions in (35)
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v

1,2,3
/

124
#{m—1)

—4(m=1)

Semi-span of wing

Surface area of wing

Time

Velocity of undisturbed flow relative to wing
Additional velocities in %, y, 2, directions

W, + 1@, Complex amplitude of w in (16) and (39)

Rectangular co-ordinate in U direction from leading edge of central
section

Co-ordinates at inducing station ( = #,)

Position of pitching axis : variable of integration (18)

Position of leading edge ; value at n =7,

Co-ordinate for influence functions [= (x — %,")/c(y")]
Rectangular co-ordinate to starboard from plane of symmetry
Co-ordinate for influence functions [= /(1 — M*(y — y")/c(¥")]
Rectangular co-ordinate upwards : equation of wing surface
Rotary derivative of lift in (86) [= — $0C,/3(q¢/U)]
Oscillatory derivative of lift in (78) [ = — 32C,/(6¢/U)]

Local incidence of wing (= — 9z/0x)

1 (uniform incidence)

x[¢ (steady pitching)

Induced incidence in (64)

Factor for compressibility [= 4/(1 — M?)]

- Non-dimensional local lift ; its complex amplitude in (42)

Spanwise co-ordinates (= y/s, ¥'/s)

n at inducing station { = sin uz/(m + 1)} [— $(m — 1) < n < $(m — 1)]
n at pivotal station {= sinwvn/(m + 1)} [— % <3

Rate of pitching (= 9«/o?)

Taper ratio (= ¢/c,) : parameter in (8) and (9)

. Non-dimensional local pitching moment in (21), (42)

Density

Angular chordwise co-ordinate in (21)

Frequency of pitching oscillation

Suffix denoting undisturbed flow

Suffixes nurﬁérating the spanwise stations #,, 7,

Double suffix numerating X, Y, 4, 7, etc. ‘
Suffixes specifying 7, &, {, I, I,, corresponding to oy, o, ¢,
Single stroke denoting x,” (0-9045¢) in (29)

Double stroke denoting x,"” (0-3455¢) in {29)

Summation in » with # = » omitted.
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APPENDIX I
Expansion of Eguatz'oh (87) in Powers of Frequency

In terms of their amplitudes the downwash and load at a wing are related by the integral
equation

Ul — MY L', ') dx’ dy’ T (X — %)
e =e {” (o — 2 + (1 — My —y 7 P\ T — o [ o )
In view of the infinite limit of integration it is not clear whether the exponental term may be
expanded in powers of w to obtain approximations when o is small. Split the integration into

two parts
J»x _ J»x—f + J>x A
— 0 —~ 0 x—§
such that x" > (¥ — &) throughout the plan-form S. Then it is valid to expand

1o (%, — %) w?(xy — x)* .

exp{iw( - x)/U(l - M2 } =14 ( M2) o ZUz(l _ Mz)z

under the integral sign for the part f ; and the integrand of J f for the range x, << (x — &)

has no singularity. If — £ is large enough, the lengths (x — x) and /(1 — M*»(y —y') in
the denominator become secondary compared with (v, — %) ; then asymptotically

H x (%/ )_dxM:?(vy y')Epere ‘U (Ziiiyxo))a dx' dy' ~ SC.[(x — x,)’,

x—§
where C, is the amplitude of the lift coefficient. The part f contributes to @(x, y) an amount
Ul — M? F—f SC,
8z (x — =%,
U1 — M¥ySC, s .
—_ e L £-% exp(— 1A£) ,

where 4 = w/U(1 — M?. The expansion of this integral follows from Miss Lyon’s analysis in
Appendix I, equation (87) of Ref. 18 (1939) :

7 sexp{io(x, — x)/U(1 — M?)} dx, 4+ secondary terms

°° . 1 1A N w .
L g3 éxp(— 1AE) dé = — [ 28 25) exp (— ME)L — —%FL E~' exp(— 4A€) dé
1 14 . .
:2—52——6———%/1 3 —y —loght — $im] + ...,
v—¢
where y is Euler’s constant. Thus the contribution to @(x, y) of the partf includes a real term
SCLO) wl

16-U(1 — 3% 8 Tl — )’

which is independent of &. This shows that the exponential may not be expanded under the

x~—§
integral sign for the part j beyond the term in . But since there is no term in o log , the

original integral (37) may Be ‘replaced by

_ Ul——M2 * x', y') dx' dy’ 1o (% — %)
sy =20 [ {U [ — w7+ (1~ M)(y — y')ﬂwz}{”m—m}d’%

to the first order in frequency.
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APPENDIX II
Instructions for Computers

To anyone familar with Multhopp’s steady subsonic lifting-surface theory its extension to
harmonic pitching oscillations of low frequency should present little difficulty.” A reader without

any experience of the steady theory should first study Appendix VII of Ref. 1 with the help of
the worked examples.

Pitching oscillations require the use of two chordwise pivotal points and are associated with
symmetrical loading. The procedure to be followed therefore closely resembles that given in

pages 55 to 59 of Ref. 1 and illustrated in Tables 13 to 22. The stages of the calculation will now
be described. ‘

(@) Choice of m.-——At the outset of a calculation the number of spanwise stations has to be
determined. The essential constants for m = 3, 5, 7, 11, 15, 23, 31 are collected in Tables 1 to 7
of Ref. 1. The condition # > 34p gives an approximate critical table

3-5 10

5 l7-5

m

i
|
i
‘3)51711I15!23|31

Thus, when 1 < Af < 1-5, m = 5 is recommended provided that the contour of the wing is
fairly smooth. It is, however, unwise to use # < 7, if the leading edge of the wing is highly

swept (> tan™' g) with a central kink ; and for such wings m = 7 is suggested for the whole
range 0 << Af < 2-5.

(b) Functions of One Variable."The first calculations involve symmetrical functions of a
single variable » or #, |»| or |u| taking the values 0, 1, 2,...%(m — 1). These should be
arranged in a form similar to Table 18 of Ref. 1 and subdivided into four sections, associated with

(i) wing geometry,
(i) steady solution,
(iii) evaluation of a,,
(iv) evaluation of pitching moments.

When compressibility is taken into account, it is convenient to work with the ‘ equivalent wing,’
which is specified by the actual plan-form (¥, and ¢ in terms of ) and the equivalent ’ semi-span

sf = s4/(1 — M?).

In calculating (i) and (ii) the form of Table 13 of Ref. 1 should be followed. But instead of Y,
and b/2c,,

By, = spn, and sf/c,
should be calculated ; and then the factor

nv-f-l /I (€43 . sﬁ ’
w1 cosm+1.<i> ,

¢
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from which Ty T’y T s }Ty” may be evaluated from equations (54). The evaluation of [/, 1",
m,”’, m,’ in equations (30) then completes (ii). .
Section (iii) contains five quantities :
four addltlonal influence functions 7s,,’, jj,,, L, ]],,, , which are calculated from equations (54)
similarly to z,’, etc., andic,/¢,
where § = —b 2% _ 2 .
wing span A

Section (iv) involves four parameters which occur in the expressions for (/,); and 7,* in
equations (73) and (75) :
Cn/Sﬂ 1] (xnl + 0‘250,‘)/35,
2%,¢, + 0-75¢,2 Xt + 05%,¢, + 0-125¢,°

£.sp . sp

The last two of these are only used in compressible flow.

(c) Formulation of Equations.—The procedure in Ref, 1 is set out in Tables 14 to 17 for an
example in which m = 15. The essential difference now is that the influence functions are being
determined from tables (Ref. 11) instead of charts (Ref. 1, Figs. 1 to 6).

A separate table is required for each value of | # |, taking positive and negative values such
that | » — » | is odd. Instead of | Y,, |, X,,/, X,,”, it is necessary to calculate

IZY“”i = 2—0—” ]770 — 771:];

’ .
2%, — 2x,

2Xvn, - 1 - - 1:
Cy
90X,/ 1= 2%, — 2 ;.
¢,
and then

wv, - /\/{|2Yvnlz 2Xw1./ )2} or l/Rvn’: 1f Run, > 2 )
¥ = cosT {(2X,, — )[R} (0 deg < v,,” < 180 deg) ;

’ 124

and similarly R,,”, v»,,”” and 1/R,,” (if required). ¢, and v,,
and decimals.

should be expressed in degrees

I4

Then 4,,, 7,/ and 2,,”, 7,/ are evaluated by interpolation in Ref. 11, where the influence
functions are tabulated for.y = 0 deg (1 deg) 180 deg in the two regions R = 0-20(0-05)2-00
and 1/R = 0-00(0-05)0-50. The four quantities

(15 l“m")
avn(l jﬂn ]:-n )
() 0" — m,/1,,)

am(mu ]vn - M, jvn )

are then determined as in Tables 14 to 17 of Ref. 1, the values of a,, being given in Tables 1 to 7
for the appropriate valuejof .
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Hence the 2m linear equations (30) are formed and will determine the 2m unknowns v, and u,
for any set of values of the incidences «," and o,”..

(d) Solution of Equozzfzons —In view of the symmetry, v.=7v_,and u, = u_,, the equations reduce
to a set of order (m + 1). This reduction is achieved by the formulae on page 57 of Ref. 1,
the values of the coefficients B,,, C,,, D,,, E,,, being entered separately for even and odd Value%
of n, as in Tables 18(a) and 19(a) respectively.

The problem of slow pitching oscillations introduces three sets of incidences,

o = o, == 1 (everywhere) '

o= oy = %[C, 1.e., (&, )s =

o = oy (to be calculated)

The terms
’
avv(lv, *, — Zv” O('v”)
124

a,(m o/ — m, &)

are then calculated for a set of incidences ; and the iterative solution is then carried out by the

process fully described and illustrated on pages 58 and 59 and Tables 18 to 21 of Ref. 1. Hence
the values

(¥w)1, (), corresponding to o,
(Yn)z> (tn)e corresponding to o,
v)s, ()5 corresponding to g

are determined to the desired accuracy.
(e) Calculation of a.

From equation (64),

(a’,) 3 —_— ${m—1)

b, . C— = {7’ ( )16 —I_ 7_71:» lc} - ml " avn{iivn(yn)lcn + jjvn(un)lon} .

First the influence functions ,,’, j7,, and ,,”, 74,,'”" are evaluated by interpolation in the tables
of Ref. 11. Then

]l;/nl = len{‘l:i,,n/ (yn)l + jjvnl (!u’n)l}

fo” = i s+ G ()1}

are evaluated for each (v, #) such that |» — » | is odd, (y,), and ( +1 being already obtained for
a unit incidence. "Then for each » the values of

fol = 12, () A+ T (e
ﬁv” = 77—"1—';”<yv>1 —-I_,i?_.v;”(lu'v)l

are listed, 7, ', etc., being taken from the first sheet of calculations. Finally since 4,, = 1/b,,,

aw(av,):i :ﬁv,'cv/c_ - E’ j[vnl Cn/c_
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where the summations in # omit # = » and the values of ¢,/¢ are taken from the first sheet
of calculations.

(f) Evaluation of Influence Functions.—The tables of Ref. 11 are constructed to give the
values of 7, 7, 42, 77 within about -0-0001 for the practical range of the polar co-ordinates (R, v).
Equations (30) show that the solution demands a certain accuracy in 4,:,, etc., where from
equation (55)

T Hna
0S

C
0 m—|—21 m—iz— 1 < 4 cot? v — nlz
(m + 1)* (1, — 7.) (e + 1" 20m + 1)

4 cos

The greatest accuracy in the influence functions is required when |» — n| = 1. It follows that
requirements in accuracy. for the other values of |[» — #| can be relaxed in the inverse ratio of
a,,. ThUs %,,, 7,u, %, 47,, are only required within

. p — ni= _ﬂﬁ>2
-+ 0-0001 (tan %%m + 1) tan %m - 1)

1 0-0001 (v — %)™

or

A. R. Curtis of the Mathematics Division, N.P.L., has shown that the four influence functions

are related by the formula ,
(R? 4 2X) +7. 22X — 1) — {22X — 1) 4+ 1} — j7 . § = (2Y)~

This equation constitutes a very useful check on the calculations after the evaluation of (2X — 1)
and 2V, which are themselves conveniently sum-checked. Although the formula will not check
7j to great accuracy, when (R* 4 2X) is large, it will normally provide a check to the required
accuracy of --0-0001(»—n)?, provided that 7 has been obtained to the greatest accuracy (of
about 4-0-0001). The use of such a check is strongly recommended ; and it is desirable to
complete the evaluation of all four influence functions for this purpose before proceeding with
the other stages of the calculation. ’

(g) Oscillatory Pitching Derivatives—Once the equations have been solved for the three
incidences «,, o, o, the pitching derivatives are easily determined by seven coefficients

n im=1) N
()= m+ 1 (AB) ~i(§—1) (7)1 cOs m - 1
(L = g (A8 S 4(uieafsB — (pohala + 0-250,)[s8 bcos —T—
mjl 2(7}’1/ + 1) D) n/1bn n)I\Vnl n n *}’ 1
* od A 2 don=1) < zxnlcn —'_ 0'750;;2
Im 2(m + 1)( IB) —‘}(E—l) ( )1 5. Sﬂ

- ( ) xnlz + O'5xnlcn + O 12561L2 c __'7_7’_7_3__
Va1 g.sp %% + 1’

and (I;)s, (Lw)s (r)s (£1)s glVED similarly to (Z,);, (£,);. These are evaluated on the lines of

Table 22 of Ref. 1 by using the functions of the plan-form tabulated on the first sheet of

calculations and values of cos ==sin §, given in Tables 1 to 7 of Ref. 1.

N
w1
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Then the pitching derivatives about a pitching axis ¥ = x, are given by

_(_1=F 28" —1 1 4l
2= (=150 w + E L wor G - 2 2w
1 —p2_ . 282—1 1
—_— 2”10 = <”““ _ ﬁslg I,,,:* - —ﬂ_ﬁ—gﬁ— (Im)z - -5_3 (Im)3>

%o 1 28 — 1 1 %\ 1
i —‘“Il ILE Y /s - - Lj1»
(g + T w g )+ (2) 3w

(h) General Comments.—(i) In order to master the principles of the method (m + 1) may be
chosen to be one-half of its ultimate value. Such preliminary calculations would increase
the total labour by only 25 per cent and provide initial guesses for the quantities
Y #, (n even) in the ultimate solutions by iteration.

(i) After experience it will be found that some of the writing included in Multhopp’s
illustrative calculations (Tables 13 to 22 of Ref. 1) can be avoided, particularly in the
solutions by iteration.

(it)) When a high-speed computer is available to solve the sets of linear simultaneous equations
there is no need to introduce the four quantities /,/, ", m,”, m,’ at all. Directly from
equation (27) separate conditions

$(m—1)

ivv,}/v —'I— jwwuv - MEI 1 awl(ivn'yn + _7;01:“’;1) = avva’v
~}(m—

-are obtained at the chordwise positions
x, = x,, + 0-9045¢,
% = %, + 0-3455¢, '

With a desk calculator, in fact, an iteration using the separate conditions converges as quickly
as the suggested routine in Ref. 1. This method of solution is feasible since 7,,’ is small compared
with ¢, ¢,,” and 7,,”. The calculations of successive increments to y and x are replaced by direct
iterations

1 i =~ 5(1)»—’1) . Yo
Yo = -— [aw &%, — _7w My —I_ 2 aﬂn(zvnl Ya —JF— jv» lu’n) ]

7, —m—1)

1 1 Ky don—1) c N
My = ﬁ Ay &y — by Y, + i(El ) a’vn<7’1vn Y _i_ ]vn” ;u’n) ’
12 —&lm—1

an earlier approximation to g, being used in the former equation.

After successive values »,*, v, 4,® have been obtained, a better approximation is usually
given by

(yv(E))E — ,},v(l) " ,},v(a)

TR — 0 =y

if the values themselves are calculated to an extra decimal place. This alternative procedure
is recommended once a working facility has been gained.
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(iv) If required the steady pitching derivatives, z, and m, may be evaluated from the
formulae (86) and (87) in section 7.1. Only the four coefficients (7,),, (7,):, (1)s (Z.)2
are involved.

(v) Without any increase in computation the approximate formulae (54) for i, etc., may be
replaced by more rigorous expressions, justified by Mangler and Spencer (Ref. 13):

at 0-9045¢, .

2
1, = 1-9742 4+ 1‘1974<%))> G
e Sﬁ *
7, = 0-2859 — 9-2293 <~C-—> G
’ >
—_— sB\? '
1, = 1-3100 — O~2069<C—> G
—, s\’
7. = 1-9889 4 2-1662 - G
at 0-3455¢, 4 ~
. 2
6, = 1-4055 + 1-9374 (‘?) G
- AN
I =3-1702 4 11-0591 <c—> G
' .
t? sﬁ :
11, = 0-3323; — 0-8762 = G
el « | Sﬂ :
7., = 0-9780 4 1-3389 (;) G
where for m = 7, : ,
¥ 0 41 4 2 -+ 3
G, 0-04521 0-03831 0-02166 0-00501
for m = 11, 7
v 0 + 1 4+ 2 4 3 + 4 +5
G, 0-01961 0-01827 0-01462 0-00963 0-00463, 0-00097,
and for m = 15, '
¥ 0 + 1 + 2 +3 + 4 + 5 + 6 + 7

G, 0-01094 0-01052 0-00932 0-00753 0-005641; 0-00330 0-00150, 0-00030,
All the present calculations are based on the formulae (54).

APPENDIX III
Low Aspect Ratio Theory

In reviewing some research on flutter’® (1951), Garrick has included analytical results for
unsteady incompressible flow past wings of very small aspect ratio by generahzmg the classical
steady theory of R. T. Jones.
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The upward component of velocity at the surface satisfies
02 0z
" =% U
= — QU cos wt 4+ Qo (x — %,) sin wf,

as in equation (59) of section 5. Then, if 2s(x) denotes the span of a transverse strip of the wing,
the lift per unit length in the direction of the stream is given by equation (6) of Appendix B to
Ref. 12 as follows : '

0%z 0% % \" ds [0z 0%
. 2 - = 2_ 7 — _ i
I(s) = — mps P + 2U Py + U 8x2> — 2npUs 7\ 5 + Uax
ow ow ds
— 2f - —_—
= — 7mps$ Y +U ) 2npUs dxw
= 7psQ 2U2d—s~—cozs(\c—x) cos wt — 2Uw s—}—@ (¥ — x,) )sin wt| .
dx ’ ’ dx 0 |
From equation (58), § = — »() sin wt.

- Then out of phase with the pitching motion
ds
Ix) = 2mpUsh <s + (x — xo)) ,

where s = s(x). Fora delta wing of taper ratio 4 = 1/7
s=gAxfor0 <=x < %
= tAcfor3c < x < 1¢

2o}

Thus

Ux) = ZopAPUD {8 + x(x — x)} for 0 < x < %5}
= Jnp A*UGE® fordc < x < %é '
Then /4
C, = j l(x) dx[LpU?S, where S = Aé*
0

2240 [, . ) 41 1 o /o
= T |30 — )+ 46 6| = 204 Tk — o).

75/4
(Coo =], He) o — ) dfhp U*S2
20— [0 — ) + e |.

— — 20d |41 — 8§ + $sf0]
Thus the derivatives, defined in equations (78) and (79), are

0= — 306 £) = — = (3 — 1) )
my = %a(cm)o/aC‘;—Ué) = — n4 <% — $(%/2) )2

— my has a minimum value of zero about the trailing edge x, = 1-75¢.

It is clear from Fig. 4 that even for aspect ratios as low as 2 or 1-2, neither Zp NOT #y 1S
approximately proportional to A. But when 4 < 1, these formulae are apparently more
consistent with the numerical results of Multhopp’s theory plotted in Figs. 6 and 7.
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TABLE 1
Summary of Coefficients for Pitching Dertvatives

Wing 4 Solution | (I); (L2)s Ip)s [L*=— {uh] —La)s | — )y | — I,*
Circle 4fn wm = 17 1-788 1-736 0-954 0-541 0-901 0-629 0-268
Circle 4/7 wm = 5 1-793 1-746 0-974 0-539 0-906 0-634 0-265
Arrowhead 1-32 | m =11 1-644 2-482 0-610 1-622 2-758 0-696 1-860
Arrowhead 1-32 | m= 5 1-704 2-871 | 0-717 1-615 2-792 0-812 1-779
Delta 3 m =15 3:080 4-601 0-491 2-845 4-816 0-622 3-159
Delta 3 m= 7| 3-071 4-592 0-602 2-820 4-754 0-681 3-092
Delta 2 m= 7| 2-387 3-660 0-821 2-250 3-911 0-933 2-496
Delta 1-2 m= 7| 1-624 2-563 0-762 1-594 2-854 0-885 1-807

TABLE 2
Pitching Derivatives for a Civcular Plate
Axis position Values of — 2 —z, Values of — m — m,
Multhopp Multhopp
%R Ref. 5 Steady Ref. 5 Steady
m =5 m =7 wm =17 m =5 wm =7 m =17
LE. 0 2-136 2-113 2-087 1-364 1-900 1-888 1-904 1-112
0-25| 1-912 1-890 1-864 1-140 1-316 1-310 1-331 0-720
0-50"| 1-688 1-666 1-642 0-917 0-844 0-843 0-869 0-441
0:75 | 1-464 | 1-443 1-419 0-693 0-484 0-487 0-519 0-273
'1-00 | 1-240 1-219 1-196 0-470 0-236 0-244 0-279 0-217
1-25 | 1-016 0-996 0-974 0-247 0-100 0-112 0-152 0-272
1-50 ] 0-782 0-772 0-751 0-023 0-077 0-092 0-135 0-440
1-75| 0-568 0-549 0-528 | —0-200 0-165 0-184 0-230 0-719
‘T.E. 2-00 | 0-343 0-325 0-305 |—0-424 0-366 0-387 0-436 1-109

Note: For a circular plate C, = L{4pU=S, C,, = .#/3pU?S¢ where S = nR? and ¢ = {nR ; and the derivatives
are defined to be 2z = — 40C,J0(§R/U), my = (¢/2R) oC,.[o(0R|U).
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TABLE 3
Pitching Derivatives for an Arvowhead Wing (A = 1-32)

Axis position Values of — z — Values of — my — M,
_ Muithopp Multhopp

Tofc Ref. 5 Steady Ref. 5 Steady
m=2>5 m =11 m =11 m =25 m = 11 m =11

Apex 0 1-644 1-546 1-528 1-241 1-802 1-727 1-708 1-379
0-2 1-474 1-382 1-361 1-076 1-345 1-288 1-277 1-001

0-4 1-303 1-217 1-194 0-912 0-957 0-916 0-912 0-689

0-6 1-133 1-053 1-028 0-747 0-838 0-608 0-614 0-444

0-8 0-962 0-888 0-861 0-583 0-386 0-367 0-383 0-263

1-0 0-792 0-724 0-695 0-418 0-202 0-192 0-218 0-149

1-2 0-621 0-559 0-528 0-254 0-087 0-082 0-120 0-100

1-4 0-451 0-395 0-362 0-090 0-040 0-038 0-089 0-117

1-6 0-280 0-230 0-195 | —0-075 0-061 0-0860- 0-124 " 0-200

1-8 0-110 0-066 0-029 | —0-239 0-150 0-148 0-225 0-349

Kinkat TE. 2:1 | —0-146 | —0-181 | —0-221 | —0-486 0-412 0-403 0-503 0-896

TABLE 4
Pitching Devivatives for a Delta Wing (A = 3)
Axis position Values of — z — 2, + Values of — my —
Multhopp Multhopp

PAL Ref. 5 Steady Ref. 5 Steady
m =17 m = 15 m = 15 m =17 m = 15 . m =18

Apex 0 2-597 2-546 2-423 2-300 2-718 2-719 2-623 2-408
0-25 2-213 2-185 2-038 1-919 1-812 1-822 1-760 1-573

0-50 1-829 1-784 1-654 1-538 1-098 1-116 1-089 0-928

0-75 1-445 1-402 1-269 - 1-157 0-576 0-600 0-610 0-474

1-00 1-062 1-021 0-884 0-775 0-246 0-276 0-324 0-210

1-25 0-678 0-640 0-500 0-394 0-109 0-141 0-231 0-138

1-50 0-294 0-258 0-115 0-013 0-163 0-198 0-329 0-255

T.E. 1-75 | —0-090 —0-123 —0-270 —0-369 0-409 0-445 0-621 0-564
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TABLE 5
Pitching Devivatives for a Family of Delta Wings

Present Theory (m = 7)

Axis position

Values of — 2

Values of — my

%[ A =3 A=2 A =12 A4=3 4 =2 A=12

Apex 0 2-597 2241 1-662 2-718 2-422 1-870
0-25 2-213 1-942 1-459 1-812 1-655 1-306
0-50 1-829 1-644 1-256 1-098 1-038 0-843
0-75 1-445 1-346 1-053 0-576 0+569 0-482
1-00 1-062 1-047 0-850 0-246 0+250 0-222
1-25 0-678 0-749 0-647 0-109 . 0-080 0-064
1-50 0-294 0-450 0-445 0-163 0-059 0-008

TE. 1:75 | —0-090 0-152 0-242 0-409 0-187 0-052

TABLE 6

Pitching Derivatives for a Delta Wing (A = 3)
at M = 0, 0-745, 0-917

Present Theory (m = 7)

Axis position Values of — 24 Values of —my

Zpfe M=0 M =0-745 | M =0-917 M=0 M = 0-745

Apex 0 2-597 2-810 2-797 2-718 3-181 3-614
0-25 2-213 2-362 2-289 1-812 2-169 2-543
0:50 1-829 1-914 1-782 1-098 1-380 1726
0-75 1-445 1-467 1-274 0-576 0-815 1-163
1-00 1-062 1-019 0-767 0-246 0-474 0-854
1-25 0:-678 0-572 0-260 0-109 0-357 0-799
1-50 0-294 0-124 —0Q-248 0-183 0-463 0:997

T.E. 1-75 —0-090 —0-323 —0-755 0-409 0-793 1-448
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TABLE 7

Out-of-phase Incidence Induced by In-phase Loading
Calculated values of &, (at 0-9045¢)

Wing Circle Circle Arrowhead | Arrowhead |4 (4 =8) |4 (4 =3) |4 (4 =2)4(4d =1-2)
i wm =5 wm =17 =25 m = 11 m =17 w == 15 m =17 m =7
0 0-849 0-850 1-021 1-112 1-040 1-184 1172 1-247

0-1951 0-646

0-2588 0-663

0-3827 0-742 0-289 0-234 0-455 0-573

0-5000 0-663 0-370 0-267

0-5556 —0-094

0-7071 0-424 —0-081 —0-299 —0-326 —0-179 —0-067

0-8315 —0-496

0-8660 0-121 —0-225 —0-201 .

0-9239 —0-098 —0+592 —0-584 —0-549 —0-488

0-9659 —0-351

0-9808 —0-621

Calculated values of ot;” (at 0-3455¢)
0 0-191 0-178 0-278 0-369 0-247 0-327 0-349 0-415

0-1951 —0-093

0-2588 0-037

0-3827 0-122 —0-233 —0-3846 —0-138 —0-0486

0-5000 0-091 —0-167 —0-238 ‘

0-5556 —0-528

0-7071 —0-050 —0-441 —0-543 —0-640 —0-500 —0-430

0-8315 , —0-716

0-8660 —0-228 —0-603 —0-572

0-9239 —0-377 —0-715 —0-750 —0-717 —0-691

0-9659 —0-717

0-9808 —0-777

Note: To the first order in frequency w the in-phase loading corresponds to a uniform incidence ¢. This induces an

angle of upwash of amplitude weQoty/U(1 — M?) out of phase with the pitching motion.
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