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Summary.~A draft of this theory was completed by H. Mnlthopp during 1950, before he left the Ministry of Supply. 
It has been edited by the writer, who is responsible for the calculated examples. 

This report is an extension of Multhopp's subsonic lifting-surface theory (Ref. 1) from steady flow to harmonic 
pitching oscillations of low frequency. The method is applicable to wings of arbitrary plan-form. 

The basis of the method is to calculate the local lift and pitching momenf at a number of chordwise sections from 
a set of linear equations satisfying the downwash conditions at two points of each section. By neglecting terms of 
second order in frequency, the oscillatory problem is related to the corresponding steady one with changed boundary 

• conditions. The evaluation of these conditions involves chordwise integrations, which require two new influence 
functions. Complete tables of these functions as well as the original functions i and j, occurring in steady motion 
(Ref. 1), are obtainable from the Aerodynamics Division, National Physical Laboratory (Ref. 11). With the aid of 
these tables the derivatives of lift and pitching moment become calculable by a straightforward routine. The limita- 
tions imposed by assuming only two terms in the chordwise loading cannot be evaluated at this stage. The theory is 
easily generalized to include any number of ehordwise terms, but each additional term introduces two further influence 
functions. 

The theory is outlined in sections 2 to 5. Section 6 describes calculations of pitching derivatives for circular, arrowhead 
and a family of delta wings ; promising comparisons are obtained, when the number of spanwise terms is varied. In 
sections 7 and 8 these results are compared with other theories ; a development of vortex-lattice theory (Ref. 5) is shown 
to give satisfactory agreement, and the deficiencies of a purely steady theory are evaluated. The available wind-tunnel 
data for oscillating wings of the selected plan-forms are discussed in section 9. The theory is remarkably consistent 
with the pitching derivatives measured at low speeds and predicts fairly well the effect of compressibility up to a 
Mach number of about 0-9. Appendix II gives instructions for the computer. 

1. [ntro&~ctio~.--In Ref .  1 (1950) M u l t h o p p  has  d e v e l o p e d  a m e t h o d  of ca lcu la t ing  the  local  
lift an d  p i t ch ing  m o m e n t  on wings  of a n y  p l a n - f o r m  in subson i c  s t e a d y  flow. The  m e t h o d  is based  
on the  acce le ra t ion  p o t e n t i a l  and  r ep re sen t s  the  l i f t ing su r face  b y  a p lane  c o n t i n u o u s  shee t  of 
d o u b l e t s  e x t e n d i n g  ove r  the  p lan- form.  I t  m a k e s  t he  u sua l  a s s u m p t i o n s  t h a t  t he  wing  is in f in i te ly  
th in  in invisc id  p o t e n t i a l  flow, and  neglec ts  t e r m s  of the  second  o rde r  in incidence,  c a m b e r  a n d  
p e r t u r b a t i o n s  of ve loc i ty .  

The  m e t h o d ,  as i t  s t ands ,  is c apab l e  of deal ing w i t h  the  osc i l l a to ry  p r o b l e m s  of roll ing and  
p lung ing  in the  l imi t ing  case of smal l  f r equency .  F o r  the re  is no  d i s t inc t ion  b e t w e e n  the  s t e a d y  
s t a b i l i t y  d e r i v a t i v e s  and  the  l imi t ing  osc i l l a to ry  ones,  so long as the  in -phase  a e r o d y n a m i c  
load ing  van i shes  w i t h  f r equency .  H o w e v e r  p i t ch ing  m o t i o n  is no t  of this  t y p e  and  calls for  a 
specia l  a d a p t a t i o n  of m e t h o d  to d e d u c e  the  first o rde r  effects  of f r equency .  

Th e  i m p o r t a n t  d e r i v a t i v e  f rom p i t ch ing  osci l la t ions  is t he  o u t - o f - p h a s e  p i t ch ing  m o m e n t ,  
w h i c h  c o n s t i t u t e s  the  a e r o d y n a m i c  d a m p i n g  of the  mot ion .  H e n c e  ' l i f t ing-l ine ' aerofoi l  t h e o r y  
does  n o t  g ive  a v e r y  f ru i t fu l  t r e a t m e n t  of the  p rob lem.  T he  first sugges t ed  rou t ine  for  a p p l y i n g  
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lifting-surface theory to oscillating wings came from W. P. Jones ~ (1946). His method is a 
development of the steady vortex-lattice theory ~ (Falkner, 1943) and may be applied to wings 
of any plan-form. The theory includes an arbitrary non-zero value of the frequency parameter, 
but it is unsuitable for oscillations of low frequency. Following Ref. 2, aerodynamic flutter 
derivatives for a delta wing have been calculated in Ref. 4 (Lehrian, 1951). Miss Lehrian 5 has 
also modified the theory of Ref. 2 to permit the calculation of stability derivatives of low fre- 
quency. Her results are compared with those of the present method. 

The limitations of Multhopp's steady theory (Ref. 1) and other standard ones, including 
Falkner's vortex-lattice theory (Ref. 3), have been discussed by the writer in Ref. 6 (1951). 
Of these methods Ref. 1 is considered to be the most reliable, though the flexibility of the vortex 
lattice permits the treatment of a wider range of problems, including pitching and rolling 
oscillations of high frequency. The extension of Ref. 1 to pitching oscillations of low frequency 
should provide reliable routine estimations of theoretical stability derivatives at sub-critical 
Mach numbers. The method is particularly economical for swept wings of moderately small 
aspect ratios. 

At present there is limited information on oscillatory pitching derivatives ; but it is known 
that  the values in steady rotation are usually appreciably different. There exist independent 
solutions for an oscillating circular plate due to Schade and Kdenes 7 and to Kochin 8. The circular 
aerofoil has therefore been chosen as one of the present examples. 

The other examples are derived from ReI. 6, Fig. 1, and are included in the programme of 
oscillatory tests at the N.P.L. These comprise the arrowhead Wing 9 (A = 1.32) and three 
delta wings in the family (d, ,t) = (0, 1/7), i.e., Wings 0, 1, 2 with aspect ratios of 1.2, 2. 3 
respectively. Wings 0 and 9 have been tested at several frequencies at low speeds. A half-model 
of Wing 2 has been tested over a range of subsonic Mach number. 

Mention should be made of other theories, which are not considered in relation to the present 
calculations. The most promising development of the ' lifting-line ' aerofoil theory is perhaps 
that  due to Reissner" (1947). There has appeared recently a new theory giving numerical 
solutions for oscillating rectangular and triangular wings of low aspect ratio 1° (Lawrence and 
Gerber, 1952). W. P. Jones" (1951) has considered the problem of oscillating wings in com- 
pressible flow, and has discussed the effects of frequency at a Mach number of 0.7. 

2. General Theorv . - - I t  is convenient to take rectangular co-ordinate axes referred to the 
leading edge of the central section of the wing. Let the x-axis coincide with the horizontal 
direction of undisturbed flow relative to the wing, the y-axis point to starboard and the z-axis 
upwards. The wing is assumed to have zero thickness and the local velocity to have components 
(U + u, v, w), where U is the undisturbed speed and the ratios (u/U) 2, (v/U) 2, (w/U) ~ are negligible 
compared with u/U, v/U, w/U. This implies that  the wing has small camber and twist and 
oscillates with small amplitude. 

Then, in the absence of viscous forces and heat transfer, Euler's equations of motion may 
be expressed in their linearized form 

u ~u 1 ap 
+ u  - o  

p Ox 

~v Ov 1 ~p 
-I- u Ux + - o  p ay 

aw aw 1 ap 
+ u + - - -  = o . 

p 3z 

t (1) 



and the equation of continuity becomes 

3p @ ~p -Jr ~a~t 
37 e 3,~ P \ ~  

a v 3z~) + ay + ~ = 0 . . . . . . . . .  (2) 

In the absence of shock-waves, the isentropic relation between the pressure p and the density p 

P -- constant #r 

is assumed, and the speed Of sound, a, is given by 

- • . . . . . . . . . . . . . . .  ( 3 )  dp p 

I t  may be shown that  the variation in a 2 is of order, Uu and is negligible in combination with 
terms of order u/U in the linearized equations. Similarly p may be regarded as constant. On 
writing the differential @/p of Euler's equations as the differential of the enthalpy I, 

I - - I o o  --P--P~ 
o . . . . . . . . . . . . . . . . .  ( 4 )  

where the subscript oo represents the undisturbed flow. 

Titus the equations of motion are transformed into 

2 t + g ~ x  u + ~ = 0  

a u a )  a i  
5e+ g. ~+@=o 

Q a 3 ) aI ~ +  u ~  w + ~ = 0  

and the equation of continuity into 

l (~_t + U a ) au 3v 

( s )  

~w 
~z - o . . . . . . .  ( 6 )  

where a~ ~ is a constant, and the operator (a/3t + U 3/ax) is identified with differentiation along 
a streamline. By applying this operator to equation (6) and taking the derivatives of u, v, w 
from equation (5), it follows that  

1 Qa 3 )  2 a~I 32I a2I 
a~ ~ ~ + U ~  I ax ~ ay ~ az ~ - 0 ,  

i.e., ax ~ ' ~3 ,~ + 3z ~ .... a~ at + M ~ x /  I . . . . . . . . .  (7) 

where the Mace number M = U/a. .  

If I is periodic of frequency co, (7) becomes the real part of a complex equation, which may 
be divided throughout by a factor e ~ to give a differential equation for the complex amplitude 
of I, To avoid complex terms in this equation, let 

S(x, y, z, t) = ~ F.r(x, .y, z) exp {io~(t + ~,x)}] . . . . . . . . . . .  (8) 
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where 2 remains to be chosen. Then 

-- eo2!- Qal --[- MX) ~'] exp @o(t + )~x)}} 

~,2).2f) exp {ico(t + ;.x)}} 

a~I 
ay2 ~Y" exp {io)(t + 

az 2 = L az= exp {ioJ(t + 2x)} . 

On putting these expressions into equation (7), 

~x~ @ + ~ 2  ~ ~ + M x  --a ~ . 

By choosing 

M 1 M ~ 
Z = a ~ ( l _ / 1 4  2 ) U 1 - - M  2 . . . . . . . . . . . . .  (9) 

the complex amplitude [ is given by the real differential equation 

~2[ ~o2M ~ 
(1 - -  M ~) ~,r ~ J  + ~ . +  U~(1 [ = 0 . .  (10) 

~x ~ + ~y~ , -- M ~) . . . . .  

If the oscillation is slow enough and the Mach number not too near unity, i.e., if the non- 
dimensional parameter 

o) gM 
M~'~ < < 1,  

U(I 

the last term in equation (10) may be ignored and [ satisfies 

(1 - M ~) ~ +~..~oy_ + ~ = O,  

which may be simplified to Laplace's equation by the Prandtl-Glauert transformation to new 
co-ordinates 

E~, y V ( 1  - M~), ~ V ( 1  - -  M")I. 

From equation (4), the load per unit area is 

l 2 
(~P) = p ( ~ 5  = ~,pu z , . ,  . .  • o 

4 
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where A denotes the difference between the upper and lower surfaces of the wing, which may be 
assumed to lie in the plane z = 0. Let i be the complex amplitude of the non-dimensional 
oscillating load, l; and define f such that  

on the upper surface f(x', y',  + 0) -- -}U2l(x ', y') 
t 

_ _  1 2 -  t i r on the lower surface f (x', y', O) -= + ~U l(x , y ) 
o (13) 

Thus the field of f is equivalent to the field of doublets of strength (A f) and axis in tile positive 
z-direction distributed over the plan-form S. The standard solution of the generalized Laplace's 
equation (1 1) is 

S 

dx' dy ' ,  . . . . . . . . . . . .  (14) 

where 
,,2= ( ~ -  x')' + (1 - ~ r , ) { ( y _  yg' + ~'}. 

It  follows from equations (13) and (14) that  

[ix, y , z ) =  - U ~ z ( i - - M  2) I f  i ( x ' , y ' ) d x ' d y '  (15) S~ , U [ ( x -  x')' + (1 --  Z ' ) ( ( y -  y')' + z2}]'/~" " 

The geometry of the wing and its motion are brought into the problem by specifying the 
component of velocity w in the last of the equations (5). On writing 

w = ~  z~exp io~ t +  U l _  M~/]  

similarly to equation (8) with the value of 2 from equation (9), differentiation along a streamline 
gives 

+ U  w ---,~ U~x -}-imz~ 1 + 1Z21//2 exp im t-i- U1 2 • 

By cancelling the common exponential factor, the equation (5) becomes 

3z~ ic~z~ O[ 
U ~ - I -  I _ M ~ + ~ = O  . . . . . . . . . . . . .  (17) 

This differential equation for z~ may be written as 

--~ z~ exp U(1 - M2)J] + v ~ exp [U(1 -- M') ]  0x 
= 0 .  

By integrating along the lines y = constant, z = 0, 

i f  af {¢o, (x0 - ;)~ z~ -- U ~z (Xo, y, O) exp U-(1 -- M2)J dxo . . . . . . .  (18) 
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From equations (15) and (18), 

y)= <l-s= Mo!f  
O9 

f(x', y') dx' @' ] ( i -  (x0 - 

So far the only restriction on frequency is the approximation that  a~gM/U(1 - -  M S) is small. 
This implies that  equation (19) is not valid for any frequency at transonic speeds, is valid to 
the first order in frequency at sub-critical Mach numbers, and is valid for all frequencies in incom- 
pressible flow. 

3. S teady M o t i o n . - - B e f o r e  proceeding with the theory of pitching oscillations, it will be 
helpful to consider briefly the treatment of problems in steady flow. On substituting co = 0 
and M ---- O, the basic equation (19) reduces to 

o r  

ff ; U l 'x '  '" w(x,  y)  = ~ ~ , y ) 
oo 

S 

d x o  

[(~o - . , ) 3  + ( y  _ y , ) , ? ] ,  d x '  d y '  

W 

o~(x, y)  - -  U - -  if 8~ 
,J 

S 

I(x',y') [1 + 
(y - y,)~ 

• X - -  2;' [ 
-1 

~ / { ( x -  x') 2 + ( y -  y,)~}j d x '  dy'  , . .  (20) 

which corresponds to equation (15) of Ref. 1. At each section y'  the chordwise loading is expressed 
as a series, which includes as many terms as there are boundary conditions at each pivotal station. 
In the present treatment the number of terms is restricted to two, so that  

8sr(y ' )  a2s~(y') 
l(x', y ')  _ :~c(y') cot ½¢ + =c(y') (cot ½¢ - 2 sin ¢) ,  (21) 

where s is the semi-span of the wing, 

X ! = x/(y ' )  + {c(y')(1 cos ¢) 

and x' = x / (y ' )  is the equation of the leading edge, 

so that  ¢ = 0 and ¢ = ~ correspond to the leading and trailing edges. I t  follows that  

1;_ ( y . i + ~ . j )  dv '  
~(x,y) = - - 2 ~  ( ~ _ 7 , ) 2  , • . . . . . . . . . . . . .  (22) 

1 

t " t  S where the spanwise variables v, V = y/s ,  y / , and the influence functions i and j are determined 
by the chordwise integrations 

i ( X , y ) = l f l c o t ½ ¢ I i +  X - - ½ ( 1 -  c o s ¢ ) ~ ] ]  sin¢ d¢ 
. V [ { x  - ½(1 - dOSe)} ~ + y 

fl [ X l l_cos , lsin 
j ( X , Y )  =4n (cot ½¢ -- 2 sin ¢) 1 + ~ ¢ / [ { X _ ½ ( l _ c o s ¢ ) }  2@ Y~] 

[ 
d¢ 

, (2a) 
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with X = (x --  x/)/c(y') l 

/ @ 

Y = (y - -y ' ) / c (y ' )  

The spanwise integration of equation (22) is achieved by the technique of interpolation used in 
Multhopp's treatment of the ' lifting-line ' theory. This is described in Ref. 1, section 5.1. By 
specifying an odd integer m, the unknown functions ~(y'), /~(y') are represented by polynomials 
in terms of their values at the m pivotal stations 

~t7~ 
y , ' = s M n - - E n = 0 ,  nh 1, zh2, =h½(m-- I)] . 

m + l  . . . .  

I t  is then possible to express 0~(x, y) at the pivotal station y = y,, as a positive contribution 
from the polynomial term belonging to the station itself and negative or zero contributions from 
the other terms. Thus 

-~-(m - 1) 

Z' b . , , ( r i  + ~ j ) . ,  . . . . . . . . . .  (24)  
- ] { '~  - 1 )  

where 

b,, = 

bw ---- 

m+1 

4 cos .... 
m+l 

COS - -  

m+l 

(m + 1)[sin mn~+ 1 sin mv~ ] +  1 

= 0  

- ~  I ~ - ~1 = 1, 3 ,  5 . . . .  

}~ - -  n t = 2,  4,  6 , . . .  

and X' denotes that  the value n = v is not included in the summation. 

There are however logarithmic singularities in the second derivatives of i and j with respect 
to Y. As shown in Ref. 1, equation (53), near the inducing section y = y',  i (X,  Y) can only be 
developed into a series beginning with 

i(X, Y) = i(X,  O) + Kl( i )Y~log IY[ + . . . . . . . . . . . . . . .  (25) 
where 

= - c o s  -1 (1 - 2 x )  + 2 V { x ( 1  - x ) }  
Yg 

and K d i  ) --  1 /~X ~/~ @(1 -- X) . 

Therefore the polynomial representation implicit in equation (24) is not accurate enough. By 
the treatment given in Ref. 1, section 5.2, a correction 

A o : , ( x ) -  92 (sy--  225~ {y.Kl(i) +/~.KI(j)} ~,, (~ .+1 -  ? I v - - l )  . . . . . .  (2a) 

is obtained. When this correctionj- is added to equation (24), 

(m - 1) 

-~(m-1) 
( 2 7 )  

t An improved treatment of the logarithmic singularity has been given by Mangler and Spencer 13 whose corrections 
supersede equation (26). 
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where 

with 

- 2I 1 ~+ = - + c o s - '  (1 - 2 x )  + 2 . / { x ( 1  - x )  + ~ x  ~/~ V(1  - x )  F,, 

.-- 32 Xli2 4(1 + 4X - -  8X ~) 
7,+-- ~ ( l - - X )  a / = +  +X:,/+ + V ( l - X )  "F~ 

368 1 w f s ' ~  2 
F, -- 225x m + 1 cos - -  (V,+~ -- ~,,_~) m + l  

A further complication arises at the k inked central  section of swept wings. On subst i tut ing 
the loading l(x', y') from equat ion (21), a logari thmic singulari ty in downwash would arise in 
the integral  (20), wherever ~¢/~y' is discontinuous• Multhopp overcomes this difficulty at a k inked 
section by calculating the downwash of a n '  in terpolated wing ' (Ref. 1, section 5.3)• This amounts  
to a simple change in the geometry  of the  wing at the  section y '  = Yo' : O. The local values 
Xo/ = 0 and c(yo') = 6, root chord, are replaced by 

;go l p g X l  t 

dyo')  = c . -  ~ { ~ . -  ~ (y / )}  ~ . . . . . . . . . . . .  (28) 

in terms of the neighbouring pivotal  stat ion n =- 1. The calculated loads at the central  section 
from equat ion (21) must  be referred to the actual geometrical  section in such a way tha t  the 
local l i f t  and position of centre o£ pressure are those de termined for the ' i n t e rpo la t ed  wing.'  

The boundary  conditions (27) are satisfied at two points on each pivotal  station. For the 
reasons put  forward in Ref. 1, section 3, the  chordwise positions are chosen such tha t  ¢ ---- 4~/5 
and 2~/5. In the notat ion of equat ion (21) these correspond to chordwise positions 

x,' ---- x,~ -p- 0. 9045c,, ) 

x," ---- x,z -t- 0. 3455c, ~ , . . . . . . . . . . . . . .  (29) 

where the subscript v indicates tha t  ) / =  y,' -= s sin { ~ / ( m  -f- 1)}. 

From the two conditions at each pivotal  stat ion the unknowns 7, and #, are separated by  
elimination. Thus the 2m equations (27) are expressed in the most  convenient  form for solution : 

where 

7. = ¢.(WoU - W'~,,") + 

f t .  ~-- ~.v(774~"0C~/t 

+ 

+ 

l .  ~ l ~ "  ~ t ,  ~ ff~v t~ 

j + "  j,,,,' i . ,," i+ '  

a,, = a,,Ib., = lib... 

~(m-1) 

2 '  
- t ( m - 1 )  

½ (m- 1) 

- i ( m -  1) 

½(m - i )  

- ½(m - 1) 

½(m-l) 

- I , ( , . - I )  

¢ , . (WiJ  - W%") r , ,  

a..(WL.' - W % " > ~  

a ~ . ( r ~ / ' ¢ . , "  - m / / j ) r .  

a.J .~ / ' j , , , , "  - ~ / j j > , ,  

• l !  • I i , , , ' j , , / '--~+ 2,+ 

(a0) 



and the single stroke ' and the double stroke " denote  respective subst i tut ions x = x,,' and 
x = x, ,"  from equat ion (29). The quanti t ies  a~, and a~, = a,, are independent  of plan-form and 
given in Ref. 1, TaMes 1 to '7 for the particular values of m -- 3, 5, 7, 11, 15, 23, 31. Numerical  
formulae for i~,', j , ' ,  i , / ' ,  j , "  according to equations (27) are found in Ref. 1, equations (86). 
The influence functions i and j from equat ions (23) are given graphically in terms of X and Y 
in Ref. 1, Figs. 1 to 6. Wi th  these aids equations (30) may  be evaluated economically. Since 
a,,~= 0 for I~ -- n ] = 2, 4, 6 , . . . . ,  the equations express each unknown (n odd) directly in 
terms of all the unknowns of the other set (n even) and v i c e  v e r s a .  An iterat ive solution for t h e  
2m unknowns  ~,, and #, is therefore possible by considering separately the sets of equat ions 
with n even and with n odd. 

The aerodynamic forces and moments  then follow from Ref. 1, section 7, where the coefficients 
are de termined from the  chordwise loadings in equat ion (21) by integrat ing the polynomials  
assumed in the calculation of downwash. The lift and pitching momen t  about  the local quarter  
chord per unit  span are : 

Hence 

d L / d y  = 2p U2s)~ 

d d [ / d y  = 2p U ~ s c # .  

=A i ( m - 1 )  ~ / , $ Z :  

C~. --  X 7,, cos - -  . . . . . . . . . . . .  (31) 
m + 1 -~(,.-1) m + 1 

3zA .~(,,,-1) 274~ 
C~ --  4(m + 1) -~(,.-1)X y,, sin m - - ' - ¢ -  1 . . . . . . . . . .  (32) 

The position of the local centre of pressure measured as a fraction of the local chord from the  
leading edge of any section is 

1 ~'-~(n v~ 0). 
X~.~. 4 7 

In the particular case of the central section, n = 0, this formula is modified to take account of 
the ' interpolated wing,' and 

" "  - -  c,  X °~ + ~' o /  J ' " . . . . .  

where Xoz and Co are determined as in equat ion (28). The coefficient of pi tching momen t  about  
the  y-axis is 

C , , - - 2 ( m +  1)-~(,,E-1) ~ ' s  m +  1 

The results are given here quite generally for asymmetr ical  distributions. In  practice it is usual 
to have either symmetry ,  ~, = ~ _, and ~, = ¢_,, or an t i symmetry ,  r,~ = -- r-,, and ~,, = -- ~_, 
the  equations (30), and formulae (31), (32), (34) then  simplify. 

Considerable difficulties have been experienced in reading the charts (Ref. 1, Figs. 1 to 6) 
for the  influence functions i and j ;  and a complete tabulat ion of both  functions was clearly 
desirable. This has been carried out by the  staff of the Mathematics  Division of the N.P.L. 11 
(Curtis, 1952). The tables use polar co-ordinates (R, ~0), such tha t  

R c o s ~  = 2 X - -  1 ~ (35) 

J 
. . . . .  , . . . . . . . .  ° 

R sin ~0 = 2Y 
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In the area R ~< 2, i and j are tabulated for vJ = 0 deg (1 deg) 180 deg, R = 0.20(0.05)2.00. 
In the area R >~ 2, i a n d j  are tabulated for w = 0 deg (1 deg) 180 deg, 1/R = 0"00(0.05)0.50. 
The use of these tables necessitates some alterations to the computational scheme set out in 
Ref. 1, Tables 14 to 17. But basically the calculation is unaffected and results in sets of 
equations (30). 

4. Limiting Frequency.--In section 2 it was shown that, if the square of the quant i ty  
co~.M/U(1 -- M 2) is negligible, it is possible to write the oscillating load and upwash at the 
wing as 

Ap/½pU2 = l(x', y', t) = ~'{i(x', y') exp[io~{t + x'MS/U(1 -- M2)}] } ) 

w(x, y, t) = ~ {  ~(x, y) exp[i~o{t + xM2/U(1 -- M~)}~ } (36) • o 

and to obtain the integral relation between their complex amplitudes -" 

-- 8z~ ~ [(Xo_X,)S+(l_MS)(y_y,)~13 ~ exp{~(Xo--x)/U(1--M2)}dxo.  (37) 

Equations (36) and (37) summarize equations (8), (9), (12), (16) and (19) of section 2. 

The treatment of equation (37), when ~o is small, is discussed in Appendix I. The integrand 
may be expanded to the first power in ~o by. writing 

~(;c- ;co) . (38) exp{io)(x0- x)/U(1 -- MS)} = 1 U(1 -- M s) "" " 

I t  is shown in Appendix I that  this approximation neglects a term of order ~ log ~o in z~(x, y). 
For slow oscillations equation (37) is conveniently split into two parts corresponding to the 
separate terms of equation (38) to give 

= @1 4. iz~s . . . . . . . . . . . . . . . . .  (39) 

where 

Ifs  ~ dXo s ~  ~ , [(~0 - ~')~ + (1 - M~)(y  - - y ' ) V / s  
S 

- -  ~ ( x ,  y )  = ~ (x - -  Xo) [ ( x 0  - -  ;c ')~ + (1 - -  M ~ ) ( y  - -  y')~t~/~ " 
O9 

Like [, both 791 and z~s are complex quantities. From the simple integration 

~o [(;co - -  x ' )  2 4 .  (1  - -  M ~ ) ( y  - - y , )S ]3 /2  

1 [ ;c-x' ] 
= ( 1 - - M 2 ) ( y - - y ' ) ~  1 + V { ( x _ x , )  s + ( 1 - M ~ ) ( y - y ' ) ~ }  

the first component of z~ comes to 

z~,(;c, y) 8~ j A i y ~ - ~ ,  ) 1 4 - , V / ( ( ; c _ ; c , ) s 4 - ( l _ M ~ ) ( y _ y , ) 2 }  dx' y ,  .. (40) 
S 
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which is formally identical  to the integral  for the s teady downwash in equat ion (20). The second 
component  z~ requires an integrat ion by  parts  

f~ (x - x0) dx0 
co [ ( x 0  - -  x ' )  ~ + (1  - -  M~)(y --y,)~]3/~ 

(1  - -  M~)(y- y')~ V ' { ( X o  - -  x ' )  2 + (1  - -  M~)(y --y,)2} , o = - ~  

+ (1 --  M~)(y -- y,)2 1 + V/{(Xo_ x,)2 + (1 -- M")(y - -y , )2}  dxo. 
--co 

The first integral  vanishes at  both  limits. Hence 

- ~ ( ~ '  Y) = s ~ ( 1  - M ~) ( y  - -  y ' )~  
S 

F x 

~¢/{(Xo- x') ~ + (1 -- M 2 ) ( y -  y,)2} dXo dx' dy' . . .  (41) 

For the practical  computa t ion  of these integrals (40) and (41), the chordwise load d is t r ibu t ion  
is expressed as a linear combinat ion of the distr ibutions tha t  occur most prominent ly  in two-  
dimensional s teady theory. Following equat ion (21), 

8s¢(y') 32s#(y') (cot ~ --  2 sin ¢) . i(x', y') - ~c(y') cot ~6 + ~c(y') (42) 

Then, precisely as in s teady motion (equations (22) and (23)), at the section y ----- s~, 

~(x) lf~(v')i(n,v')+n(~')j(v,~') 
v - 2 ~  ~ (~ _ , ) ~  d~ '  . . . . . . . .  ( 4 3 )  

with 

where 

i(X,y)_~l+lfl 2 X - -  1 + c o s ¢  ( 1 +  cos¢) de 
V ( ( 2 X  -- 1 4- cos ¢)2 -4- 4Y 2} 

4 f  ~ 2 X - -  1 -4 -cos¢  (2cos 2¢ + c o s ¢ - -  1) d¢ j ( x ,  Y) 
= ~Jo ~/{(2X -- 1 + cos ¢)~ + 4Y ~} 

x = ( x -  x/ ) /c(y')  

Y----(1 --  M~)l/2(y- y')/c(y'). 

. .  ( 4 4 )  

On subst i tut ing X0 = (Xo --  x/)/c(y'), the integral  (41) at  the section y ----- s.e becomes 

1 r + 
- u = ~u(1 - - M  2) 2 ~  ~ _ 1  e (~ _ , ) ~  d ~ '  . .  

( 4 5 )  
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with 
,~X 

~i(x, y)= •I _~ ~(Xo, Y)dXo t 

( I 
j j ( X .  Y ) =  j (Xo ,  Y ) d X o  

t - o o  . . j  

(46) 

As explained in section 3, the s teady influence functions i and j are convenient ly  tabula ted  in 
polar co-ordinates (R, ~), such tha t  

R c o s ~  = 2 X - -  1 "~ 

; R sin ~ ---- 2Y 

Complete tables of all the influence functions i, j ,  i i  and j j  from equations (44) and (46) are 
available from the N.P.L. (Ref. 11). 

The numerical  t r ea tment  of the integrals (43) and (45) is discussed briefly in section 3 and given 
in detail  in Ref. 1. From equations (22) and (27), the integrals for z~ a t y  = s~, = s sin {~,~/(m q- 1)} 
reduce to summat ions  

- - .  . .  { (;,n-- 1) 
YA(x) _ b,,,[i.,f,, q- y,,,, #,] -- E' b,,,(i,,,f,, -k j,,~#.) . . . . . . . .  (47) 

U -~(~-1) 

U(1 -- M ~) ~ (x )  
a>~ U 

with 

where 

h(.z- 1) Cn 
b,,, c~ [ . ~ ¢ ,  + .G#,,] -- X' b,,,, --  (ii,,.y. + £4~.#.) . . . . . .  (48) 

- -  ~ - ½ ( m - l )  C 

~,L-2, = i i ( x ,  o) + G ( i ~ )  F ,  "~ 

S jj,--; = jj(x, o) + K~(jj) F, 
. . . .  (49) 

F,, = 225~ m + 1 cos - -  (%+1 --  ~,-1) (1 -- M2), 

and K1 is defined by an equat ion similar to (25). By the methods  used in section 4, of Ref. 1, 
equat ion (46) gives 

¢i(x,o) = f~oo i(X°'O) dX°=fli(X°'O)dX° 

2 [oos -~ (1 - -  2Xo) + 2 V { X o ( 1  - -  Xo)}]  dXo 

2 
- -  - [ ( X  - -  1 ) cos -1  (1 - -  2 X )  + (~- + X )  V { X ( 1  - -  X)}] 

g~ 

j y(Xo, O) dXo 32 - X o  ~/~ (1 - -  X o )  ~ ,  dXo 
o o  0 

2 4 
-- ~ cos -~ (1 -- 2X) q- ~ (4X --  1) (3 --  2X)v '{X(1  -- X ) } .  

. .  (so) 

. .  (31) 

yj(x, o)= 
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F u r t h e r m o r e  the  coeff icient  K1 in the  e x p a n s i o n  

i i ( X ,  Y )  = i i ( X ,  O) + K l ( i i ) Y ~ l o g  I r l  + . . .  

is g iven  b y  e q u a t i o n s  s imi la r  to  (49) and  (54) of i e f .  1. T h u s  

K I ( i i )  = - -  2 a N  ~ [ i i ( X ,  0)] -- - X 
Eg 

Kl(jj) 2 O X  2 [ jX(X,  0)] =- - 1 - -  1) 

(52) 

I t  r e m a i n s  to  s u b s t i t u t e  t he  va lues  y = s~7,, = s s in{va / (m + 1)} a n d  x = x,,', x = x,," f r o m  
e q u a t i o n  (29) to  o b t a i n  Z~l a n d  z~ a t  t he  chordwise  so lv ing  pos i t ions  0.  9045c, 0.  3455c a t  t h e  
p i v o t a l  s t a t i ons  v. T h e  i n d u c i n g  s t a t i o n  is 

y '  = s~7,, = s sin - - .  
m +  1 

T h e n  f r o m  e q u a t i o n  (44), 

x,,,, '= ( x ; ' -  ..,)/~,,; x, , , ,"= ( . , , " -  .,,,)/~,, 

IYJI = IXZ . , / ' l  = ~ l n ~ -  ~ , ,1 (1  - M2)1t21c,, 
I n  the  specia l  case n = v, X,, '  = 0.  9045, X,,," = 0. 3455. 
c u l a t e d  in Ref.  1, e q u a t i o n  (86), a n d  ii,'7 a n d  jj,---] m a y  be  e v a l u a t e d  f r o m  e q u a t i o n s  (49), 
(51) a n d  (52) as fo l lows t  " 

_ 

at  0. 9045c, i,,/ = 1 9742 + 0- 6234 \ c~ / 

j~/ = 0" 2859 -- 4. 8053 
\ c ~ /  

i i j  = 1 . a lOO - o .  1077 
\ c ~ J  

at  0" 3455c, 

~ v + l  - -  ~ v - i  
COS - -  

m - + - I  

~7~+1 . - -  ~7v-1 
COS 

m + l  

7~v+1 - -  "#7v--1 
COS - -  

m + l  m + l  

7)',,' = 1" 9889 Jr- 1" 1281 ~,+l - -  ~7~-, ~ \ c ~ /  m +  1 c o s - -  

i,,'---; 1. 4055 -t- 1 .0087  ~.+i - -  ~,-1 ~= = \ c , j  m-p-  1 c o s t a +  1 - -  

_ 

j , "  = 3" 1702 Jr- 5" 7577 ~,,+l - -  ~ - 1  ~ \ c ~ . /  m +  1 c o s - -  m + l  

("V = O" 33235 -- O" 4563 ~.+1 - -  7]v-1 V~ \ c , , /  m +  1 c o s - -  m + l  

j j ' , / '  = 0- 9780 -f- 0" 6972 ??,+1 - -  ~7,,-i "~= 
k C , , /  m - t -  1 c o s t a + l - -  

. . . . . . . . .  (sa) 

At  these  pos i t ions  i,~ a n d  j~7 are cal-  
(SO), 

'~Tt" 

m - I - 1  

m + l  

~2Z 

m + l  
(54) 

- -  ~gZ 
where  ~+1 ~"-1 cos - -  

m + l  m + l  
is t a b u l a t e d  in Ref.  1 (Tables  1 to 7), a n d  ¢7 = V/(1 - -  M 2) . 

] - I m p r o v e d  f o r m u l a e  to  r ep lace  e q u a t i o n s  (54) m a y  b e  d e d u c e d  f r o m  Ref .  13 ' t h e s e  are  g i v e n  in  t h e  spec ia l  eases  
m = 7, m = I1 a n d  m = 15 a t  t h e  end  of A p p e n d i x  I I .  
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To summarize, from equations (37), (42), (47) and (48), the angle of upwash at the pivotal  
station v is represented by 

~(x) G(x) G(x) 
U - -  U + i  U 

u(1 - M~//;~ + J~--U6---~r' / /~'~ 

.~ ( m -  t) 
- -  ~ '  

- -  1 ( m - -  1) 

where from equation (24) 

av,, = b . , /b , , , ,  = 

u~i -Tw)) + ?" e-(i - ~ ' )  ) 

4 C O S  - - - -  C O S  1 

m + l  - m q - 1  

= 0  

I~--n 1=1,3,5,...  

[ v - - n  I = 2 , 4 , 6 , . . .  t ° 
Values of a,,, are found in Tables 1 to 7 of Ref. 1 for m = 3, 5, 7, 11, 15, 23, 31 to suit all practical 
requirements. The values of i , ,  j~v, ii , ,  j j ,  for the important  positions 

x = x , '  = x , ~ + 0 . 9 0 4 5 c ,  "], 

f x = x/ '  = x~ + O' 3455c, 
(s6) 

are given in equations (54). Tables of the general influence functions i, j ,  ii, j j  are compiled in 
Ref. 11, as described in section 3 (equation (35)), X and Y being given in equation (53). 

5. Pitching Oscillations.--Let an uncambered thin wing oscillate about a pitching axis x = x0. 
At an incidence c~ the wing surface is given by 

z = - ~ ( x -  ~ 0 ) .  

If the oscillation is of amplitude Q and frequency co, the surface becomes 

z = - Q ( x  - Xo) c o s  ~ t  

= ~ { - -  Q(x - Xo)exp(i~ot)} . . . . . . . . . . . . .  (57) 

Hence 

The upward component of velocity at the surface must satisfy 

0z 0z 
w = ~  + v ~  

. . . .  (5s) 

= ~ ( -  (Qu + i,oQ(x- Xo)) exp(io~t)). 
14 
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By combining equations (16) and (59), 

uW-- Q ( l + i c ° ( x - x ° ) ) e x p {  iC°x M~ } U  U 1 ~  2 

( i~oxl - 2M 2 iuXO) 
- O 1 +  u 1 - - M  2 - -  , . . . . . . . .  ( 60 )  

when for slow oscillations only those terms independent of or linear in aJx/U are retained. 

From equations (36) and (42), the oscillating load on the wing is 

~P {z exp>o{~ + M~)}I } ½pU ~ -- ~ xM2/U(1 -- 

with 

8sp(y) 3 2 s # ( y )  ( co t  ½¢ - -  2 s in  ¢) , (61) z(x, y) _ 7 ( 7  cot ½~ ~ ~ . . . . . .  

where 

x = x , ( y )  + i t ( y ) ( 1  - cos ¢) 

When the boundary condition (60) at the plan-form is combined with equation (55), 

O 1 + ~Xo = <. ~=) /~ '  + F. M,)I,,.. 
g u i -  

- -  Z '  a , , ,  i,,,, 7, ,  + j .... ,a,, (62) 
-:(,,,<) u ( ~  - M ~) U ( 1  - M s) ' 

where v = 0, 4-1, -t-2, . . . . -+-½(m i 1) represents the pivotal s ta t iony  = y, = s sin @~/(m + 1)}, 
and the odd integer m remains to be chosen. On substituting the two values x = x,', x = x," 
from equation (56), the 2m complex linear equations will determine the 2m complex unknowns 
¢., ,a,,, In = o, ± 1, + 2 . . . . .  ± ½(~ - 1)]. 

The real part of equation (62) is precisely the set of equations (27) in steady motion with 
incidence ~ replaced by a uniform value Q. These are expressed in the convenient form of 
equations (30), which yield an iterative solution for ),, and /~,,. If the steady solution at unit 
incidence is denoted by l = il, the solution of equations (62) may be written as 

l = O  i l  + - 0 - i '  , . . . . . . . . . . . . . .  ( 63 )  

where terms of higher order in aJg/U are ignored. To this order all the remaining terms in 
equation (62) are imaginary. On dividing throughout by  the factor ico@/U, 

_ , ,  . . . .  

~ 7  1 - -  M= ~ )  = (i,,..p.' + J.. F.') - -  £ '  a,,,,(i,,,,p,,' q- X,,,,F,/) 
- -  [ ( I ; ' l i  1) 

I _ M  = ~ ~ 

E' a.,, ii.,, - + j j . , ,  
-½(m-l) C ' 
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where (~)1, (/'~v) l correspond to s teady conditions c~ = 1. 
equat ion similar to (61), are identically the values corresponding to a s teady incidence 

where 

Thus 

where 

Then 9,/ and #,,', related to [' by an 

0~ 3 z b,., (9,),c +jj~(y~ ,c,: _ E' a,,~ ii .... - 
C - ~ (,,; - 1) 6 

( ) l ' =  X o / ~ + l - - 2 M  ~ -  1 l~ , . . . . . . .  ( 65 )  
- - c  1 - - M  2 1 ~ - /  1 - - M  ~ 

[, corresponds to ~ = 1, 
[2 corresponds to ~ = x/g, 
ia corresponds to ~a from equat ion (64). 

Apart  from the factor (1 -- 2M~)/(1 -- M~), the first two terms in equat ion (65) are equivalent  
to a uniform rotat ion about  the pi tching axis x = x0. The thi rd  term is a downwash due to the  
aerodynamic loading in phase with the pitching motion ; it represents a t ime lag between the 
loading and its induced downwash. 

From equations (61), (63) and (65), the lift per unit  area Ap/½pU 2 is the real part  of 

1 - - M  ~ g t + S ( i ~ 3 # ) / J  

I ioogQ M 2 x[,  X o [ ~ + l - - 2 M 2 , o +  1 [a)l ' 
= Qexp(i~,,t) i~q- ~ -  1 - - M  ~ g - - c  5=-- 21/i ~ " 1 - - M  = 

Then in phase with the pi tching motion 

~Jpt½pv' = ~{0i~ exp( i~) ) ,  
i.e., from equat ion (58), 

aPl½o u ~ = ~i, . . . . .  

Out of phase with the pi tching mot ion 

M ~ x i Xo Ap (iooOg 1 c c 1pC2-- ~ i ~ - -  __ M2 : 1 -  ---Zl + 

i.e., from equat ion (58) 

Ap (~ ( M 2 x [~ xo l~ q_ 1 - -  2M 2 
½ou ~ =  F: 7 - M ~ e  - 7  1 - M ~ 

where l,, i~, i~ are defined in equat ions  (6i) and (65). 

(66) 

1 - -  2 M  = - 
1 - -  M 2 12 -t- 1 - - 1  Za)exp(icot)} 

1 l ~ ) ,  . .  ( 67 )  
I~ + 1 --  M ~ "" 

The resulting derivatives of lift and pitching momen t  corresponding to equat ion (66) are given 
precisely by the formulae (31) and (34) in section 3. On subst i tut ing :p,, ~ for y, /z in these  
formulae, let 

~ - d  ~( , ,~-1)  q47c 
- ~ (~,~)~ cos - - - -  

(CL)~ m + l - ~ i  .... ~) m + l  

:rg ./.[ 2 {( .... 1) { Cn ( ~ l  ~_~)} 
(c,,,)~ _ 2(. .  + 1) -~,n ~- 1~ (¢")*--S -- (f'')* + -} C O S  - -  

7~2z 

m + 1 

I ° (68) 
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However  in calculating the coefficients corresponding to equat ion (67), the first term needs 
special t reatment .  Consider 

A p *  _ x [ ~  _ x [Ssp~ cot ½¢ + 32s/~, (cot ½¢ -- 2 sin ¢)] . . . . . . . . .  (69) 
1 o ~-p U- g c L ~c ~c 

and the corresponding coe~cients  

C L *  = x[~ ~c sin ¢ de dv 

J g " . 2sg 
- - s t  0 

C,, ,* = - -  . x .  ½c s i n  ¢ d e  2 s g  2 , 
--s JO C 

1 
j 

I 
J 

J 

(70) 

where, measured from the apex, 

x = x, + ½c(1 - cos 4). 
Clearly 

C o * =  {~.x ½csinCd¢ dy • ( ~  - 9  ~.SC" 
S tJ 0 

--  --  (C,,)~ from equat ion (68) . . . . . . . . .  . . . .  (71) 

C,,,* = -- ~g~ {2f~ cot ½¢ -t- S,adcot ½¢ --  2 sin ¢)} x 

{x~ + ½-c(1 -- cos ¢)}2 sin ¢ de dv 

= - ~ [,~-,(2x,," + ac + }c  a) + # , ( -  4x, c - -~c"}] d~ 
1 

;I 1 A 2 x? + ½x; + kc ~ 2x,c + }c 
- -  Y ~ "  & - -  ff~ cs- d~7 

2 -1 

arA ~ ~(,.- 1) [ ~ Y C  
2x , . ; .  + ~ . ~  _ (:~.)~ cos  . . . .  .. (72) 

&' m + 1' 
x,,? + ½x.~_C.cs ÷ }c,?J 

when the integrat ion rule from Ref. 1, section 7, is applied. The last three terms of equat ion (67) 
are in tegra ted  to give formulae similar to (68). The aerodynamic coemcients mav  then be 
deduced from the pressure distributions. 

The results are now expressed in terms of an ' equivalent  wing ' in incompressible flow• In the 
formulae (44) for the influence functions i and j, X is independent  of M, but  the spanwise para- 
meter  Y = (1 -- M~)~/2(y - - y ' ) / c ( y ' ) .  These influence functions are unchanged,  if a wing with 
spanwise co-ordinates reduced by the factor ~/(_1 - -M2)  - is considered in incompressible flow. 
The pressure distr ibution is built  up from terms 11, [2, [3, which are derived from solutions (f,~)~; 
(fi~)~, etc., of the real part  of equat ion (62), Q taking respective values ~1, ~2, ~3 from equation (@5). 
g~ and c~2 are independent  of both  /i// and spanwise co-ordinates ; and ~..~ is invariant  when the 
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' e q u i v a l e n t  w i n g '  is cons idered  in incompress ib le  flow. H e n c e  (~,,)~, (f~,,),, etc.,  are snni la r ly  
inva r i an t .  The  equ iva l en t  coefficients f rom equa t ion  (68) are ob t a ined  b y  subs t i t u t i ng  s t / (1  - -  M ~) 
for s, and  AV'(1  - -  M 2) for A as follows : 

(L.), =A ~/(1  - -  M ~) ,-(,,,-*) n=  
= !: (riD, cos - - - -  m + 1 -~( .... t) m + 1 

(L,),  = . A '  x / ( 1  - M ~) 
2 ( ~  + l) 

Therefore  f rom the  t e r m  [~, 

__)i(~'~t__l,l(/£ti)l C'--2~ - - ( ~ n ) l  l .@ 1 
. S 

1. 
7); J 

(7a) 

(CL) 1 = (ZL) I /V(1  - -  M 2) } " 

(Gin) 1 = (~TM)I/~V/(1 - -  M 2) 

Similar  equa t ions  hold for  [2 a n d  la ; a n d  f rom equa t ion  (72), 

C,,,* = I , , /* /V'  ( 1 - -  M ~) _ 

. .  (74) 

1 ~rA=(1 - -  M 2) u,,~,) [ 2x,,,c,, + ~_c,, 2 
d ( ~  - M =) 2(,~ + l) -~c,,,<~ (¢'')' esg(1  - -  M 2) 

" -~x,,,c,, + M Y I  ~ =  _ (~,,) ,,,2 + L 
cs ,/(1 - ~ '~  j c o s  + ~,  

where s and A refer to the actual  wing. 

(7s) 

F r o m  equa t ions  (68) a n d  (72), the  pressure  d i s t r ibu t ion  out  of phase  wi th  the  p i t ch ing  mo t ion  
in equa t ion  (67) gives a lift coefficient 

Cc Og( M ~ Xo 1 - - 2 M  ~ 1 ) 
= v - l M2 C~* - -  - (CD,  + M ~- (CL)~ + M ~ (CD~ - -  c I - -  1 - -  

M= M " O e ( 1 M 2) a,;2 (I,,,), =) 172 x° 1 - -  2 M  ~ 
- -  ( 1 -  e (IL), + (1 - -  M°~) 3/~ (IL)., 

in  t e rms  of the  
x = Xo is 

1 ( & ) O  
(1 - M~)~/"- (76) 

' e q u i v a l e n t  wing. '  S imi la r ly  the  m o m e n t  coefficient abou t  the  p i t ch ing  axis 

(C,,,)o = C,,, + Xo CL, 
6 

where  refer red  to the  axis x = 0 t h r o u g h  the  l ead ing  edge of the  cen t ra l  sect ion 

C,, - -  _ Oc { M 2 1 xo 1 - -  2 M  2 
- -  U (1 - -  M2) 3/i I,,,* (1 - -  M2) 1/2 5 (I,,)~ q ( t - -  M~) ~/2 (I,,)~ 

+ 1 (L,).} 
(! - M 2 )  8/2 " (77) 
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Then the pitching derivatives are defined by 

1 ~CL 1 [/" 
zo = 2 O(Og/U) - -  ~2 [\ 

x_o l ] 
c/3 (&h 

1 ~(c.,)0 1 F / 1  - ~ 
mo - 2 a (OelU) = -2 L[.. #~ 

1 m f12 #~ (!,,,), + 

- -  I,,,* + - 2 # ~ -  1 (I),,,~ + ~ (I,,,)@ 

(78) 

+ x 0 ( _  1 2 / ~ - - 1  1 ) ( x o ) ~ l  1] 
-~ ~ ( I , , ) 1  + / ~  (IL)~ + •  (IL)~ - -  = ~ (IL) , . .  (79) 

;7here fl = ~¢/(1 --  M 2) and in accordance with equation (74) IL and I,,, are coefficients of lift 
md pitching moment for the ' equivalent wing 
he pitching derivatives become 

"0-- 
,[ x0 ] 

' in incompressible flow. 

1 [  x0 ( ~ ) 2  l ,~o : 2 {(c,,,)~ + (c,,,)~} + ? ( - (c , , , )~  + (c~)~ + (c~)~} - (c~)i 

The stages of evaluating z~ and mo may be summarized as follows : 

Thus, when M = 0, 

I 

I 

J 

(8o) 

(i) Given the plan-form and the Mach number, determine the ' equivalent wing ' of semi-span 
s v ' (1  - M~). 

(ii) Calculate il and i~ corresponding to incidences ~1 = 1 and c~2 = x/g by the method of 
Ref. 1 (modified slightly to make use of the new tables of i and j in Ref. 11). 

(iii) Calculate c¢3 from equation (64) by using the additional influence functions i i  and j j  
and the values of f and # corresponding to ii. 

(iv) Calculate/3 corresponding to cq as in stage (ii). 

(v) Evaluate the coefficients of lift and pitching moment corresponding to /1, i~, /3 from 
equations (68) and the special term I,,* f rom-equat ion (75). Note: The symbol I 
replaces the usual C as a reminder of stage (i).) 

(vi) Evaluate the derivatives zo and mo from equations (78) and (79). 

For further computational details the reader is referred to Appendix VII  of Ref. 1 and Appendix 
I of this report. 

6. Numer ica l  Resu l t s . - -For  the reasons given in section 1 the present calculations include 
ive plan-forms : one circular ; one arrowhead (A = 1-32), Wing 9 ; and three delta (A = 1-2, 
'~, 3), Wings 0, 1, 2 respectively. The numbers correspond to Ref. 6, Fig. 1. The three related 
ielta wings of taper ratio ~ = 1/7 have been chosen to illustrate the effects of aspect ratio and 
ompressibility. Wings 1 and 0 are ' equ iva len t '  to Wing 2 at M = 0.745 and M = 0.917 
espectively in the sense indicated above equation (73). 

Before proceeding with any calculations it is necessary to specify m, the number of spanwise 
'ariabl6s. With a single exception (Wing 2 with m = 7) the recommendation of Ref. 1, m > 3A,  
as been followed. The circular plate and Wings 9 and 2 have each been calculated for two 
ifferent vMues of m.. 
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Throughout ,  the influence functions i and j have been de termined from enlarged charts similar 
to Figs. i to 6 of Ref. i, which were based on some calculations by 1K. Winter• He also provided 
unpublished ,~ab!es of ii and 72 for certain values of Y,  which have been used to evaluate e~ 
from equat ion ($4). As e,,:plained at the end of section 3, a complete tabulat ion of i, j, ii, 7L{ has 
been carried out by the staff of the I'~lathematics Division of the N.P.L. (Ref. 11). A check 
calculation in the particular case of Wing 2 with ~ = 7 has shown tha t  Ref. 11 gives much  more 
reliable vaiues of the influence functions. However  the recalculated derivatives z0 and ~0 
differ from the  values given in Table 4 by at most  0.002 over the whole range of pi tching axis 
0 < x, < 1.75g. It  has therefore been assumed tha t  the  computat ional  accuracy is of this order 
in the other seven cases considered. 

The present calculations are summarized in Table 1. Each  of the eight solutions for the  
derivatives is fully expressed by the seven coefficients 

( IL) , ,  (I,_),, (IL)3, I L  ~ ° - -  - -  ( I , . ) , ,  - - ( I , , ~ )~ ,  - - ( I , . ) a ,  - -  I,,/*', 

the last of which only occms in compressible flow. The der ivat ives  zo and mo may then be 
determined from equations (78) and (79). Their values have been tabula ted  against the posit ion 
of pitching ax~s in Tables '2 " • . ,  o, 4, 5 and 6. I t  will be seen tha t  the derivatives in Table 9, for 
the circular plate are .,F~cmlly defined in terms of the radius R. 

There are three distinct considerations arising from these results : 

(i) the number  of spanwise terms, ~ ;  

(it) the effect of aspect ratio (M = 0) ; 

(iii) the effect of compressibility. 

The numerical  implications of each will be discussed. 

&l.  The N,~,mzbe~, of Spa¢~wise Ter 'ms.--The choice of m affects the accuracy wi th  which the 
spanwise integrat ions are achieved. From section 3 the technique used by  Multhopp in the 
' l i f t ing- l ine '  theory results in the formula (24), but  a lifting surface introduces one or two 
complications : 

(a) a logarithmic singularity in the second derivat ive of the in tegrand ; 

(b) a divergent  integral  when the leading, or trailing edge is kinked. 

(a) is always present ; and the correction, included in equat ion (27), is probably satisfactory so 
long as the wing is not  high!y tapered, when the refinement of Ref. 13 is important ,  (b) is absent  
for the circular plate ; but  each of the other examples involves an ' in terpola ted wing ' wi th 
a change in plan-form near the central section from equat ion (28). Both  of these complicat ions 
are t reated by devices dependent  on the choice of m. 

I t  might  be expected tha t  ~ would mat te r  less for the circular plate than  for the  delta wing 
with a k inked leading edge, and would become more significant for the arrowhead wing whose 
trailing edge is k inked as well, Such effects are apparent  from the  coefficients in Table 1. The 
largest discrepancy of all, occurring for the arrowhead wing, is the change in - -  ( I , ~ . ) a  from 
0.70 to 0.31 as ~,J~ is reduced from 11 to 5. 

However,  when the pi tching derivatives in incompressible flow are compared in Tables 2, 3 
and 4, the differences are ra ther  smaller than  Table 1 would suggest. In  Fig. 1 the unbroken  
curves for the circular plate for the two values ~ = 7 and m = 5 are in excellent agreement.  
The largest effect of ~¢~, is recorded in Fig. 2 for the arrowhead wing with pi tching axis th rough  
i:he leading apex, when hlcreases of 0.10 (6 per cent) in --  z~ and 0.07 (4 per cent) in -- ~'o 
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occur as rn is reduced from 11 to 5. Fig. 3 shows that  the least favourable pitching axis for 
the delta wing is Xo = 1.3~ ; a decrease in rn from 15 to 7 then changes - -  zo by -t- 0.04 (G per 
cent) and -- rn0 by -- 0.03, a reduction of about 20 per cent in the minimmn damping. 

These differences are considerably smaller than those between the present theory and other 
oscillatory theories (section 8) and amount to less than a quarter of the corrections to the steady 
theory (section 7). The effects of rn leave scope for improvement, but the numerical inconsistencies 
on that account are encouragingly small and of little importance to a practical aerodynamicist. 

6.2. The Effect of Aspect Ratio.--To some extent aspect ratio determines the labour of conl- 
putation. For an isolated problem it would be unwise to choose a value of ~ less than 3A ; 
and for a swept wing m should be at least 7. A reasonable estimate of computational time on a 
desk calculator is 0.08m" days ; this covers all stages of the work (Appendix Ii) including the 
initial steady theory of Ref. 1. Thus for any particular swept wing the calculations might be 
expected to take at least 0.7A ~ days and not less than 4 days. The method is best sui':ed to wings 
of moderately small aspect ratio, for which it is relatively quick compared with the 7 weeks of 
computation, when A > 5 and it is advisable to take ~ = 23. 

From the few calculations of the derivatives themselves no general conclusions about the 
effect of aspect ratio can be drawn. However, in the particular case of delta wings with a taper 
ratio of 1/7, Fig. 4 shows that  A has a marked effect on z0. For the practical range of pitching 
axis 0.75g < u0 < 1.10~ there is a reduction of the order 0.26 (22 per cent) in =- z~ as A changes 
from 3 to 1.2. The corresponding reduction of 0.05 (14 per cent) i n -  m0, though barely 
significant, is confirmed by experiment (section 9). 

The Iow aspect ratio theory given by Garrick .2 (1951) is considered in Appendix i i I ,  where 
formulae 

(sl) 

are derived for the family of delta wings (,t = 1/7). It is quite clear from Table 5 and Fig. 4 
that  even for A as low as 1.2 neither & nor ~0 is approxhnately proportional to A. The formulae 
(81) differ from the numerical results of Multhopp's theory by as much as 0 o43 (I00 per cent) 
even for A -- 1.2, and the discrepancies become more serious with increasing A. -'97hen A % 0.5, 
the formulae are apparently more consistent ; and the dotted curves for A = 0.5, shown in Fig. 4, 
match the other three curves fairly well. Better indications of the validity of the formulae (81) 
for z0 and rn~ are given respectively in Figs. 6 and 7, where the derivatives are plotted against 
A for three pitching axes ;Co -- 0.55, 0.973g, 1.4& The dotted curves from (81) roughly approxi- 
mate to the numerical results for incompressible flow (tl/f = 0) at very tow aspect ratios. But 
they are seldom likely to supplant the more exact calculations. 

6.3. The Effect of Compress~bflity.--The present theory is valid provided that oJc=~d/U(1 -- ajp) 
is small compared with unity ; the method is thus inapplicable to practical values of oo at very 
high subsonic speeds. A change of Mach number involves a change in the ' equivalent wing '  
of aspect ratio A W / ( 1 -  MP). Computations at higher M will therefore tend to be shorter 
(section 6.2). 

The calculations for the family of delta wings determine the pitc]~ing derivatives for Wing 2 
(A = 3) at M = 0, 0.745, 0.917 (Table 6). The unbroken curves of zo against K0/'8 in Fig. 5 
are separated by much the same amount as the curves of zo in Fig. "L But whereas A has little 
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effect in the region 1.2g < x0 < 1.4g, the effect of M almost disappears when 0.2e < xo < 0.6~. 
Fig. 8 shows typical theoretical curves of zo against M. There is evidence from Fig. 6 that  for 
wings of low aspect ratio Zo is not sensitive to M, whatever the pitching axis. 

On the other hand the results plotted in Fig. 5 show that  the effect of M on 'me is much greater 
than the equivalent effect of A in Fig. 4. For the practical range of pitching axis 
0.75g < x0 < 1.10g there is an increase of the order 0.58 (160 per cent) in -- me as M changes 
from 0 to 0.917, while the corresponding increase in --mo from experiment is about 0.45 
(Fig. 8). Thus the effect of compressibility up to M = 0.9 is fairly well predicted by theory 
despite the presence of shock-waves. Theoretical curves of mo against A for M = 0, 0.6, 0.8, 
0.9, 0.95 are shown in Fig. 7. The general appearance is surprisingly sensitive to pitching axis. 
The usual effect of M is towards greater stability ; the interesting exception, however, is the 
case of high M and high A with a forward pitching axis, when  compressibility can produce a 
theoretical tendency towards negative damping. 

7. Comparisons with Steady Derivatives.--The oscillatory derivatives zo and me are given in 
equations (78) and (79). These formulae will be compared with those corresponding to a uniform 
pitching rotation. 

7.1. Steady Pitching Derivatives.--For a steady rate of pitching q the boundary condition in 
place of equation (59) is 

w = - q ( x  - X o ) .  

This is equivalent to an incidence 

(52) 

where 

w qxo qg 
~(x)  = - U - U ~ + - g  ~ '  

(X 2 = X /C  

Then, in the notation of equation (65), the non-dimensional load is 

l _ 

Then from equations 

~P qXo ~ + ~ i~ 
~ p v  ~ - u . . . . . . . . . . . . .  ( s s )  

(73) and similar ones for (IL)~ and (I,,,)~ Corresponding to l~ 

C L -  V(1 -- M 2) 8 (IL)~ + ~/(1 -- M ') (IL)~ . . . . . . .  (84) 

(c,,~)o = ~Oc c~ + u v ( i  ~ M ~ )  - - ~  (z,,~)~ + (z,,,)~ . . .  . .  . .  ( 8 5 )  

Thus by treating equation (83) similarly to (67) the steady derivatives are obtained at once 

1 ~CL 1 (  x0 ) 
zq = - 2 a ( q e / u )  _ 2~  (IL)~ - 7 (I~)1 , . . . . . . . .  

[ 1 ~(C,,,)o 1 Zo { _  (i,,,)~ q_ ( IL )~} -  (IL)I 
m~ - 2 a ( q ~ / U )  - 2~ (I,,,)~ + 7 , . .  
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where /~ = %/(1 - - M  *) and the coefficients IL and I,;, correspond to the 'equivalent  wing '  
in incompressible flow. When M = 0, the derivatives of lift and pitching moment on a steadily 
pitching wing become 

,( , 0 )  
~ = - 5 ( c ~ ) ~ -  ~ (c~), 

I 0°71 1 ,_o { _  (c,,,)~ + (c~),}  - (c~), m~ = ~ (C,,,)~ + c 

(ss) 

which should be compared with the oscillatory derivatives in incompressible flow as given by 
equations (80). These only differ from (88) in that  extra terms (CL)3 and (C,,,), include the time 
lag in downwash due to the aerodynamic loading in phase with the pitching motion. However 
in compressible flow there is a further effect on account of the retarded frequency, which gives 
rise to the first term in equation (67) and the coefficients CL* and C,,,*. 

7.2. Numer ica l  Compar i sons . - -The  summary of the present calculations in Table 1 includes 
the four coefficients 

(&)~, (&)~, - ( L & -  (L)~, 

which determine the steady derivatives defined in equations (86) and (87). The last columns of 
Tables 2, 3 and 4 give values of z e and mq in incompressible flow (5 = 1) for the circular plate, 
arrowhead wing (A = 1.32) and delta wing (A = 3) respectively. In each case the larger value 
of m has been taken. The tabulated values of z e and mq may be compared with the derivatives 
zo and m~ from equation (80) for the range of pitching axis. 

The plotted comparisons in Figs. 1, 2 and 3 show that  the difference between the steady and 
oscillatory derivatives varies a lot with plan-form. For the circular plate the displacement in 
the lift derivative is given by 

R 1 
- -  _ (z~ - -  z~) = ~ ( I L ) a  = 0 " 4 9 ,  

C 

• which is considerably larger than the corresponding values of 0.30 for the arrowhead wing and 
0.25 for the delta wing. This part ly explains why the pitching-moment derivatives for the 
circular plate in Fig. 1 differ so much. Nevertheless m0 and mq happen to be in close agreement 
for the diametric pitching axis xo = R. 

Equations (80) and (88) show that  the minimum --too occurs when the pitching axis is at a 
distance 

(dx0) = ~e(&)3/(&)l . . . . . . . . . . . . . . . .  (s9) 

behind the position for minimum -- mq. The value of the m i n i m u m  is reduced in magnitude 
by an amount 

(~m) = ( -  , ~ q ) , . -  ( -  m0)m,.. 

= ½(I,,,), + ~(IL), {-- (I,,, h + (I~), + ½(&)3}/(I~h . . . . . . .  (90) 

Then, starting from a curve of -- mq against xo/g, the oscillatory derivative -- m0 is obtained by 
translating the curve (Axo)/O to the right (xo increasing) and (Am) upwards (-- m0 decreasing). 
The derivatives for the circular plate are defined in terms of R in Table 2. Thus (A m) is multiplied 
by the special factor 

(dR?  = ~"/4, 
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which would appear on the right-hand side of equation (90). 

Wing 

Circle 
Circle 
Arrowhead 
Arrowhead 
Delta 
Delta 
Delta 
Delta 

7 
5 

11 
5 

A 

1' 27 
1.27 
1" 32 
1 "32 

0 2G7 
0 272 
0 t86 
0 210 

15 
7 
7 
7 

3"00 
3" O0 
2" O0 
1" 20 

0 081 
0 098 
0 172 
0.235 

0 
0 
0 

--0 
0 
0 
0 

(A Ice) 

0 053 
059 
061 
072 
001 
037 
077 
090 

It seems that both (A~Co)/g and (Am) increase when the aspect ratio is reduced. Although the 
steady and oscillatory curves for the delta wing (A = 3) in Fig. 3 are not farseparated,  the 
comparison for the arrowhead wing in igig. 2 is probably more typical of swept wings of moderately 
low aspect ratio. ,Quite generally in incompressible flow the curves of ~rao and ,mq cross where 
xo/g = - -  (I,,,)d(iL)a, which is found at rougMy 0.2g behind the aerodynamic centre. Therefore 
in practice the damping of pitching oscillations can be expected to be greater than the derivative 
mq would suggest. 

A more direct indication of the difference between oscillatory and purely rotational flow is 
the magnitude of tile incidence ~a, which constitutes the phase lag between the wing loading and 
the induced downwash. A summary of values is contained in Table 7, where it is shown that  
~'a can "cake large values, positive at the central section (~7 = 0) and negative near the tip (~ = 1). 
From equation (C5) the magnitudes of the tabulated ~ and ~ = x/g are of equal importance in 
determining the loading out of phase with the pitching motion. At ~7 = 0 in particular the ratio 
of ~ '  (at 0.9045c) to ~2' is as much as 0.75. It is the change in sign of ~ over the outer span 
that accounts for the smaller ratios of (IL)a/(Y-L)~ and (I,,).~/(I,,,)~ from Table 1. Consequently the 
effect on the out-of-phase wing loading in incompressible flow is more significant than the com- 
parative derivatives indicate. 

Steady pitching ceases to be a useful guide when the effects of compressibility are important 
and the additional coefficients CL* and C,/* come into play. These coefficients, however, are 
given in equations (71) and (72) in terms of the steady solution for unit incidence. Results for 
the delta wing (A = 3) in Fig. 5 show that the curves of zo and zq for a given lVfach number remain 
parallel, but that the dif-ference z o -  z~ changes sign at approximately M = 0.78. Thus the 
zo curves converge for a forward pitching axis, while the z~ curves converge for a pitching axis 
near the trailing edge. 

The curve of the oscillatory derivative m0 for 2i4 = 0-917, :Vo/C > 0.7 in Fig. 5 iliustrates how 
much the effect of compressibility can be underestimated by the steady theory. For the practical 
range of pitching axis, 0.75g < z'o < 1 ° 10g, as M changes from 0 to 0- 917, the average increase 
in -- me of 0 o 58 com_t~ares with the much smaller value of 0.23 for the steady -- too. Experiments 
on the delta wing (~ig. 8) give a corresponding increase in -- rno of about 0.45 and support the 
larger value from the oscillatory theory of limiting frequency. 

8. Co,l~@a~'iso~,as wills Other Theo~, ies . - -Three oscillatory theories are considered in the light 
of the present calculations : 

Ref. 5 (Miss Lehrian) ; 
Ref. 7 (Schade and Krienes) ; 
Ref. 8 (Kochin). 
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The last two of these are par t icular  solutions for the oscillating circular plate. Ref. 5 is of general  
applicat ion ; and  results for the circular plate, a r rowhead  wing and  del ta  wing (A = 3) are quo ted  
in Tables 2, 3 and 4 respectively.  

8.1. Circular Aerofoil.--The circular aerofoil was chosen as one of the present  examples  
because the independent  solutions of Schade and  Krienes ~ and  Koehin  8 were available. 

F r o m  page 29 of Ref. 7 the expressions for the lift and pi tching momen t  in the present  no ta t ion  
(section t2) become 

L = ~  

dlo = 

~pU~R~ ~ 8 if2 + K,o q- ~3 ~f2K~o Q exp(icot) 

{--~zpU~R=8Q--2~=+K,,q-:if2K~,)Qexp(iro~)} 

, ( 9 1 )  

where 9 denotes ~oR/U and the ins tan taneous  incidence about  the  axis Xo = R satisfies 

~-=  ~' {(2 exp(i~ot)} \ .  

f 
From Tables 1 and 2 of Ref. 7, in the limit as o) - +  0, 

K~0 = 0"3531 --  0"2484 i~9 

K,1 = --  0 .5489 + 0.4465 i 9  

Kk0 = --  0.2221 q- 0 - 1 2 5 9 i D  | 

J K~I = 0. 3872 --  0" 2630 i 

(92) 

Therefore, on proceeding to the limit, equat ions (91) and  (92) give 

CL -- 

( c , , ) o  - 

16_~ (0"3531c~ -ff 0"2702RO/U) = 1 • 798cz + 0"688(2RO/U) 

3~ g 

, ( 9 3 )  

when the pi tching axis is x0 = R. The corresponding values of OCL/3oc = t .  788 and ~(C,,)0/3a = 
0.597 by  Multhopp's  s teady lifting-surface theory  are in excellent agreement .  However  the 
derivat ives --  & = 1. 219 and  --  m0 = 0. 244 in Table 2 are very  different from the respective 
values 0 .688 and  0 .598 given in equat ion (93). About  a general  pi tching axis Schade and  
Krienes give 

- -  zo = 1" 587 -- 0" 899xo/R "1 
L 

-- m0 = 1.720 -- 2.021&/R + 0-899(&/R) ~ J" 

• • (94) 
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The results of Kochin's theory are given in equations (4.1), (4.42) and (4.43) of Ref. 8, Part  I. 
In the present notation, the lift and pitching moment on a fiat circular wing in periodic oscilla- 
tions of small frequency about a diametric pitching axis are respectively 

Hence 

L : pU~R~(2.813~ + 1.766Ro/U) [ 

d[o : pU2R~(1.473~ -- 0.867RO/U) f " 

CL---- t-791~ ÷ 0. 562(2Ro /U) \ 

(C,,). ----- 0 5 9 7 ~ -  O. 276(2R~O/U~)J ' 
(95) 

when the pitching axis is x0 = R. Again aCL/a~ and a(C,,)o/ao~ are in excellent agreement with 
the values from Multhopp's lifting-surface theory. In the special notation of Table 2, Kochin's 
values of the oscillatory derivatives for a general pitching axis are given by 

- -  zo = 1"457 -- 0"895xo/R ~. 
/ - - m ~  = 1.265 -- 1.884Xo/R Jr 0.895(xo/R) 2 

(96) 

From equations (94) and (96) the curves of zo and m0 against xo/R in Fig. 1 s h o w t h a t  neither 
Ref. 7 nor Ref. 8 supports the present theory ; in fact the results of Ref. 8 lie fairly close to the 
steady pitching derivatives from section 7.1. 

T h e  calculations from Ref. 5, however, agree favourably with Multhopp's oscillatory theory. 
Close comparisons for both derivatives are shown in Table 2 and Fig. 1. These cast doubt on 
the results given in Refs. 7 and 8 and point to the desirability of checking the complicated analysis 
in both of these methods. 

8.2. Vortex-La#ice Technique.--The first routine for an oscillatory lifting-surface theory was 
suggested by W. P. Jones ~ (1946). His method yields a practicable computation for high 
frequencies by developing the vortex-lattice technique ~ (Falkner, 1943) to evaluate periodic 
downwashes. Miss Lehrian has modified the theory of Ref. 2 to permit the calculation of stability 
derivatives of low frequency in Ref. 5, whence values for three wings in incompressible flow are 
placed alongside tile present results in Tables 2, 3 and 4. As mentioned above (section 8.1), 
the comparisons in Table 2 for the oscillating circular plate are good. 

Whereas the computation in Multhopp's theory is specific once m is fixed, the method of Ref. 5 
involves an arbitrary lattice and choice of both the number and combination of pivotal points. 
In the more crucial case of swept wings this choice demands experience, since it may be expected 
to affect the numerical results. Those quoted for the arrowhead wing in Table 3 and the delta 
wing in Table 4 correspond to a 21 × 6 lattice with a total of 6 pivotal points situated 
at ½c and ~c. 

For forward pitching axes the two theories agree well, but for axes closely behind the calculated 
aerodynamic centre differences begin to become appreciable. For x0 = ~ in Fig. 3, Ref. 5 gives 
a value of --too for the delta wing 0.05 (17 per cent) greater than the present theory, Such 
discrepancies continue to grow with increasing x0 until the estimated damping about a pitching 
axis near the trailing edge differs by as much as 0.18 (40 per cent). This trend appears in Figs. 1, 
2 and 3, and in each case involves discrepancies between the two theories of at least three times 
the calculated effect of varying m in the present theory. 

From the general standpoint the comparisons between the present theory and vortex-lattice 
technique are encouraging. It  seems that  the margin of uncertainty in stability derivatives 
has been greatly narrowed down. In conjunction the two theories provide a foundation on which 
the effects of high frequency can be superposed through Ref. 4 and further applications of Ref. 2. 
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9. Comparisons with Experiment.--Measured values of m~ for the delta wing (A = 3) have been 
found by two totally different experimental techniques. Results at low speed obtained at R.A.E. 
for two complete models 1~ (Moss, 1952) compare well with those obtained at N.P.L. for a half- 
model tested over the range of speed 0.40 < M < 0.90. The results plotted against M in Fig. 8 
correspond to oscillations about the two pitching axes, x0 = 0. 973g and x0 --=-- 0.754~, with zero 
mean incidence. At all speeds the derivative was approximately independent of frequency 
provided that the parameter o~g/U > 0.03. The measurements at R.A.E. were made on different 
sized models, bottl of which described pitching oscillations about the axes x0 = 0.664~ and 
x0 = 0.937L The results are taken from Fig. 18 of Ref. 14, where there was no indication of 
any marked change in mo throughout the range 0.03 < cog/U < 0.16, which includes the highest 
experimental frequency. The following average values of the derivative are plotted against 
xo/5 in Fig. 3, where they confirm the theoretical values (m = 15) for the delta wing (A = 3) 
in incompressible flow : 

Model 

Complete 
Complete 
Complete 
Complete 
Half (M = 0.4) 
Half (M = 0.4) 

Span 
2s (ft) 

5-485 
5-485 
3-35 
3"35 
0.571 
0"571 

Pitching 
axis x o 

O. 664~ 
O. 937~ 
O. 6647 
O. 937E 
O. 754~ 
0. 973~ 

Values of --  m o  

Measured 

0.69 
0.32 
0"73 
0-37 
0-52 
0-30 

Theoretical 

0 '756 
0'340 
0"756 
0"340 
0"594 
0"302 

Fig. 3 includes a dotted experimental curve of mo from Fig. 26 of Ref. 14, which is used to 
obtain values at M = 0 in Fig. 8. 

Measurements on oscillating models of the arrowhead wing (A = 1.32) and the delta wing 
(A = 1.2) have been made at low speed in the N.P.L. Low-turbulence TunneP 5'1" (Scruton, 
Woodgate and Alexander, 1953). For both wings tile lift derivative --zo and the damping 
-- mo have been measured for two pitching axes. Oscillations with zero mean incidence showed 
no effect of amplitude on these derivatives ; and marked effects of frequency were confined to 
low values of the parameter mg/U. Within experimental scatter the derivatives were constant 
throughout the ranges of frequency 

0.25 < cog/U < 0-75 for the arrowhead wing (Ref. 16), 

0.15 < cog/U < 0.50 for the delta wing (Ref. 15). 

Thus with zero mean incidence the experimental -- zo and -- mo were virtually independent 
of both frequency and amplitude at the higher frequencies co g/U > 0.20 for the range of amplitude 
1.5 deg < Q < 4.5 deg and the average values are given in the following table : 

Wing 

Arrowhead 
Arrowhead 
Delta 
Delta 

A 

1 "32 
1"32 
1-2 
1"2 

Pitching 
axis x o 

0.883~ 
1.063~ 
0.754~ 
0.973~ 

- -  z0 

0"75 
0"55 
1 "01 
0" 8 5 5  

- -  m o  

0"27 
O" 13~ 
O" 49 
0-26, 

These derivatives have not been corrected for tunnel interference, which is considered to be 
small in the case of the delta wing. Although the arrowhead model is somewhat large for the 
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size of tunnel, it is argued in Ref. 16 that  the corrections may be fairly small. The tabulated 
experimental values are plotted for the arrowhead wing in Fig. 2 and for the delta wing in Fig. 4. 
Each value of m0 lies very close to the present theoretical curve against pitching axis. The 
comparison of theoretical and experimental values of zo is fair for the arrowhead wing and good 
for the delta wing. 

Since the present theory neglects terms of order o) ~', it is encouraging to find experimentally 
that  the effects of frequency are small and that  the values of the pitching derivatives are 
reasonably close to those calculated theoretically. The variation in ~0 with both pitching axis 
and aspect ratio in Fig. 4 is very consistent and demonstrates the practical importance of the 
theory at low speeds. The curves of ~7¢0 against Mach number in Fig. 8 are in fair agreement. 
For the pitching axis Xo = 0. 973g. the experimental variation in ~0 (0.4 < M < 0: 9) is about 
67 per cent of the theoretical. In the case x0 = 0. 754~, the measured -- ~% is some 20 per cent 
below theory and changes rather less at lower Mach numbers. However a much steeper rise 
where M > 0.8 brings the total experimental variation (0.4 < M < 0.9) up to 90 per cent of 
the theoretical. 

10. Co~clud#~g Remarks.--(a) Descri, ptio,J¢, of Met/~od.--This report describes an extension of 
Multhopp's subsonic lifting-surface theory  (Ref. 1) from steady flow to harmonic pitching 
oscillations of low frequency (sections 2 to 5)_ and its application to wings of circular, arrowhead 
and delta plan-forms (section 6). In equations (78) and (79) the pitching derivatives ~'~0 and zo 
are expressed in terms of the steady theory with changed boundary conditions. 

Full details of the general computation are given in Appendix II, which should bes tud ied  
in conjunction with Appendix VII  of Ref. 1. With the aid of tables of four influence functions 
(Ref. 11), obtainable from the Aerodynamics Division, N.P.L., the procedure becomes straight- 
forward. The stages of calculation are set out at the end of section 5. At the outset a single 
parameter m, defining the pivotal spare.vise stations, must be chosen. Once m is fixed the 
computation is specific. , 

(b) Salie~# Res~Zts.--Three very different plan-forms have been calculated for two values 
of m. Each gives reasonably consistent values of the pitching derivatives (section 6.1). 

Numerical results are discussed in relation to the corresponding derivatives z,j and ~,% of a 
uniform pitching rotation (section 7.2), thus evaluating the deficiencies of a purely steady theory 
(section 7.1) for oscillatory derivatives. These deficiencies apparently grow with decreasing 
aspect ratio : in practice the damping of pitching oscillations can be expected to be greater than 
the derivative m e would suggest. Steady pitching ceases to be a useful guide when the effects of 
compressibility are important. 

For delta wings the theoretical effects of aspect ratio are found to be small (section 6.2). 
Compressibility, however, has a large theoretical effect, which, for delta wings, usually tends 
towards greater stabili ty (section 6.3) and is surprisingly sensitive to pitching axis (Fig. 7). 

The damping of pitching oscillations about the calculated aerodynamic centre is plotted 
against sweepback in Fig. 9. For incompressible flow the points for the five wings lie on a common 
curve : the large effect of Math number is indicated. 

(c) S~t~ta~'ized Co~,@crriso1~ls.--Since the theory neglects all terms involv{ng the square of the 
frequency o~, it is encouraging to find that  the experimental derivatives show no marked effect 
of frequency at the highest available values of the parameter cog/U (section 9). The practical 
significance of the theory is borne out by experimental evidence up to a Mach number of about 
0" 9 (Figs. 4 and 8), though the theory is not strictly valid when shock-waves are present. 

Low aspect ratio theory (Appendix III) for cropped delta wings approximates to numerical 
results in incompressible flow at very low aspect ratios (Figs. 6 and 7), but is generally unsuitable. 
Inconsistent derivatives for the oscillating circular plate are found in Refs. 7 and S (section 8.1). 
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Calculations from Ref. 5 agree fairly well with the present results for circular, arrowhead and 
delta wings (section 8.2). From comparisons with Ref. 5 and experiment it seems that  the 
uncertainty in stabili ty derivatives for slow pitching has been greatly reduced. 

(d) Limitations of Theofy.--The present theory is valid provided that  cogM/U(1 -- M s) is 
small compared with un i t y ;  the method is thus inapplicable to practical values of co at very  
high subsonic speeds. I t  remains to be seen to what extent these considerations are masked 
by the interference of shock-waves. 

In incompressible flow the integral equation (37) is valid for all frequencies. I t  follows from 
Appendix I that  the complex downwash z~ = z~ q- ins neglects complex terms in m~ and a real 
term 

-  Gps log  - log  - f t .  

When o)g/U = 1/w/e = 0.61, the magnitude of this uniform induced incidence has a maximum. 
Its ratio to the amplitude of oscillations is then 

A 
32roe (CI.)1, 

which for the delta wing (A = 3) with (CL)I = 3.05, only amounts to a correction of 3.3 per cent 
to the lift in phase with the pitching motion. The error in the out-of-phase derivatives (~o --+ 0) 
is of similar order co s . 

The limitations imposed by assuming only two terms in the chordwise loading in equation (42) 
cannot be evaluated at this stage, but will presumably become important  if the aspect ratio is 
small enough. Errors from this source would become apparent from calculations with three 
chordwise terms and three boundary conditions at each pivotal station. The theory is easily 
generalized in this way, but the calculations require two further influence functions. 

Two limitations of the theory arise from complications in the evaluation of downwash 
(section 6.1) : 

(1) logarithmic singularity in the spanwise integral ; 

(2) divergent integral at a ' k inked '  section. 

Both of these are treated by devices dependent on the choice of m. Device (1) is not wholly 
satisfactory for pointed wings. Device (2) is thought to be the main cause of the fairly small 
discrepancies that  occur for the arrowhead and delta wings with change of m. 

A practical limitation is the labour of computation for wings of high aspect ratio at low Mach 
numbers. Given a new swept plan-form, the work on a desk calculator would run to 7 weeks, 
when fiA > 5, compared with 4 days when fiA < 2 (section 6.2). 

(e) F~,rther Theoretical Work.--(i) The effect of frequency may become important  at high 
subsonic Mach numbers ; this might be investigated on the basis of Ref. 17 by using the 
vortex-lattice technique of Ref. 4. 

(ii) Multhopp's theory, steady and unsteady, has been generalized to include three chordwise 
terms ; some calculations for a delta wing are in progress. 

(iii) I t  is desirable.to develop methods of cutting down the length of computations when 
m is large. 
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(iv) The theory is readily extended to the problem of oscillating control surfaces, and it 
could estimate some much needed derivatives. 

(v) The oscillating circular plate has been treated independently in Refs. 7 and 8. Incon- 
sistent results suggest that  the complicated analysis in both of these methods should 
be checked. 

(vi) It  is intended to apply Multhopp's theory to calculate pitching derivatives of rectangular 
and triangular wings of low aspect ratio, thus providing interesting comparisons with 
the theories of Refs. 9 and 10. 

11. A cknowledgement.--Most of the numerical results given in this report were calculated by 
Miss J. S. Francis of the Aerodynamics Division, N.P.L. 

12. Nomenclature. 

a 

a v ~  

A 

b..,b,. 

c(y) ; 

C r ; C~ 

Cc 

C~)t 
(C.,)o 

i 

i,.~ j .... etc. 

I ; [  

IL, 1,,, 

I~  n "~ 

J 
l ; [  

m 

m q  

M 
dl 

P; P 
q 

(2 
(R, ,p) 

z 

z 

Speed of sound 

Coefficients for approximate integration in (55) 

Aspect ratio (=  4s2/S) 

Coefficients for approximate integration in (24) 

Local wing chord ; mean chord ( =  S/2s) 

Root chord (~ ---- 0) ; tip chord (~ = 1) 

Lift coefficient (=  L/½0 U2S) 

Pitching-moment coefficient ( =  ,~/½p U2S~) 

C,,, + Crxo/g (about pitching axis) 

~/(--  1) : influence function corresponding to y in (44) 

Influence functions in (46) 

Influence coefficients in (54) (see also Appendix II  and Ref. 13) 

Enthalpy per unit volume ; its complex amplitude in (8) 

Lift, pitching-moment contributions for ' equivalent wing '  in (74) 

Particular value of I,,, in (75) 

Influence function corresponding to # in (44) 

Non-dimensional wing loading (=  Ap/½0 U 2) ; its complex amplitude 

Number of wing sections taken into account 

Rotary derivative of pitching moment in (87) [ =  ½~(C,,,)o/~(qg/U)] 

Oscillatory derivative of pitching moment in (79) [ =  ½~ (C,,)o/~ (0g/U)I 

Mach number ( =  U/a) 

Pitching moment about axis x = 0 

Pressure ; lift per unit area 

Steady rate of pitching 

Amplitude of pitching oscillation 

Polar co-ordinates for influence functions in (35) 
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S 

S 

t 

U 

z~ 

(x', y ')  

Xo 

X l ; X,~ 

X 

Y 
Y 

Z 

Zq 

ZO 

o~ 1 

o~ 

(xa 

) , ; 2  
1 

~7 , ~7 

O 

E*, f i  

p 
¢ 
(D 

oo 

~*j v 

1, 2, 3 

I 

I t  

½(m-- 1) 

- t ( m  - 1 )  

Semi-span of wing 

Surface area of wing 

Time 

Velocity of undisturbed flow relative to wing 

Additional velocities in x, y, z, directions 

wl + i@2. Complex amplitude of w in (16) and (39) 

Rectangular co-ordinate in U direction from leading edge of central 
section 

Co-ordinates at inducing station (~ ---- ~)  

Position of pitching axis : variable of integration (18) 

Position of leading edge ; value at ~ ---- ~,, 

Co-ordinate for influence functions [ =  (x - -  x / ) /c(y ' ) l  

Rectangular co-ordinate to starboard from plane of symmetry 

Co-ordinate for influence functions E= ~v/( 1 - -  M2)(Y - -  Y')/c(Y')l  

Rectangular co-ordinate upwards : equation of wing surface 

Rotary derivative of lift in (86) E= -- ½OCL/O (q~/U)I 

Oscillatory derivative of lift in (78) E = - ½oCL/(Og/U)~ 

Local incidence of wing (=  -- az/Ox) 

1 (uniform incidence) 

x/g (steady pitching) 

Induced incidence in (64) 
Factor for compressibility E= X/( 1 -- M2)I 

Non-dimensional local lift ; its complex amplitude in (42) 

Spanwise co-ordinates ( =  y/s ,  y ' /s)  

at inducing station ~ = sin m~/(m + 1)} E-- ½(m -- 1) ~< ¢4 ~ ½(m -- 1)1 

at pivotal station { =  sin v;z/(m + 1)} E-  ½(m - 1) ~< v ~< ½(m - 1)] 

Rate of pitching (=  am/at) 

Taper ratio ( =  c,/c~) : parameter in (8) and (9) 

Non-dimensional local pitching moment in (21), (42) 

Density 

Angular chordwise co-ordinate in (21) 

Frequency of pitching oscillation 

Suffix denoting undisturbed flow 

Suffixes numerating the spanwise stations ~,,, ~ 

Double suffix numerating X, Y, i, j, etc. 

Suffixes specifying ~,//, i, IL, I,,~ corresponding to ~,  e~, ~3 

Single stroke denoting x,' (0-9045c) in (29) 

Double stroke denoting x," !0" 3455c) in (29) 

Summation in n with ~ = v omitted. 
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APPENDIX I 

Expansion of Equation (37) in Powers of Frequency 

In terms of their amplitudes the downwash and load at a wing are related by the integral 
equation 

d x o  . 
s =  _oo . E(.o - ~')~ + (1 - - , M ~ ) ( y  -- y')~}~'~ L~77 ?t,T~)j 

In view of the infinite limit of integration it is not clear whether the exponental term may be 
expanded in powers of co to obtain approximations when co is small. Split the integration into 
two parts 

~ o o  x -  

such that  x' > (x -- ~) throughout the plan-form S. Then it is valid to expand 

¢~(Xo - x )  coS(Xo - x )  s 
exp(/o)(xo-  x)/U(1 --  MS)} = 1 + U(1 -- M s) 2US(1 -- M2) 2 + " "  

( ff under the integral sign for the part  ; and the integrand of for the range xo < (x -- ~) 
s 

has no singularity. If -- ~ is large enough, the lengths (x -- x') and ~/( 1 -- M ~)(y -- y') in 
the denominator become secondary compared with (x0 -- x) ; then asymptotically 

l(x', y') dx' dy' ~ l(x', y') dx' dy' ~.~ SCL/(x --  xo) a, f¢ 
s s 

where CL is the amplitude of the lift coefficient. The part contributes to z~(x, y) an amount 

U(1 
--  M=) f::- (x 7 x;) exp{ico(Xo -- x)/U(1 -- 2l/2~)} dxo + secondary terms 

8= 

_ _ U(1 -- Ms)SCL f ~o ~_~ e x p ( -  iz~) ,  

where X = co~U(1 --  M=). The expansion of this integral follows from Miss Lyon's analysis in 
Appendix I, equation (87) of ReI. 18 (1939) • 

[ ( 1  s ~i~) exp J~ --21~ '~_ e x p ( - - i ~ ) d ~  

1 i 1  
_ 2 ~  ~ ~ _ ~ s [ ~ _ 7 _ l o g ~ _ ½ ¢ = ] +  .... 

f 
x - - ,  e 

where ~, is Euler's constant. Thus the contribution to z~(x, y) of the part  includes a real term 
- - o o  

SCLo~ ~ co~ 
16=U(1 -- M s) log U(1 -- MS) ' 

which is independent of #. This shows that  the exponential may not be expanded under the 

integral sign for the part  beyond the term in co. But since there is no term in co log co, the 

original integral (37) may be replaced by 

~(x, y)_u(1 8=- Ms) f- ~(]j 
to the first order in frequency, 

{ ico(x0 
z(x', y') dx' dy' 1 + u(1 - M~)~ dxo [ (Xo-  x') ~ + (1 --  M~)(y --y')~?/~ 
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A P P E N D I X  II 

Instructions for Computers 

To anyone familar with Multhopp:s steady subsonic lifting-surface theory its extension to 
harmonic pitching oscillations of tow frequency should present little difficulty. A reader without 
any experience of the steady theory should first s tudy Appendix VII  of Ref. 1 with the help of 
the worked examples. 

Pitching oscillations require the use of two chordwise pivotal points and are associated with 
symmetrical loading. The procedure to be followed therefore closely resembles that  given in 
pages 55 to 59 of Ref. 1 and illustrated in Tables 13 to 22. The stages of the calculation will now 
be described. 

o 

(a) Choice of m.--At  the outset of a calculation the number of spanwise stations has to be 
determined. The essential constants for m = 3, 5, 7, 11, 15, 23, 31 are collected in Tables 1 to 7 
of Ref. 1. The condition m > 3A/3 gives an approximate critical table 

A~ 0 

3 

1 1.5 2.5 3.5 5 7-5 

1t 15 23 

10 

31 

Thus, when 1 < A/3 < 1.5, m ---- 5 is recommended provided that  the contour of the wing is 
fairly smooth. It is, however, unwise to use m < 7, if the leading edge of the wing is highly 
swept (>  tan -1 ¢~) with a central kink ; and for such wings m ---- 7 is suggested for the whole 
range 0 < A/~ < 2.5. 

(b) Functions of One Varia~bi~:~The first calculations involve symmetrical functions of a 
single variable v or n, Iv] or In[ taking the values 0, 1, 2 , . . .  { ( m - - 1 ) .  These should be 
arranged in a form similar to Table 13 of Ref. 1 and subdivided into four sections, associated with 

(i) wing geometry, 

(ii) steady solution, 

(iii) evaluation of ~,  

(iv) evaluation of pitching moments. 

When compressibility is taken into account, it is convenient to work with the ' equivalent wing,' 
which is specified by the actual plan-form (x~ and c in terms of ~) and the ' equivalent ' semi-span 

s/~ ---- sV(1 -- M2). 

In calculating (i) and (ii) the form of Table 13 of Ref. 1 should be followed. But instead of y, 
and b/2c~, 

fly~ = sfl.r]~ and s~/c, 

should be calculated ; and then the factor 

Y ] v + l  - -  ~]v--1 

m+l 
COS 

v:~ ( s f i ~  ~ 
m +  1 " \c~ . /  ' 
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• I • I " t - ' l l  ~ "  I t  ! t !  from which % ,  Jv~, *, , 2~, m a y  be evaluated from equations (54). The evaluat ion of l , ,  l, , 
m," ,  mr' in equations (30) then completes ( i i ) .  

Section (iii) contains five quant i t ies  : 

four addi t ional  influence functions i i , ' ,  jj;,', i i , / ' ,  j j; ,",  which are calculated from equations (54) 
s imilar ly to i%7, etc., and,.c,/c," - 

where g --  wing area _ 2s 
wing span A " 

Section (iv) involves four parameters  which occur in the expressions for (I,,)~ and I,,,* in 
equat ions (73) and (75) : 

c. /s~ , (x., + o .  25c . ) / s~ ,  

2x~c, + O" 75c, ~ x,~ ~ + O" 5x,  zc, + O" 125c, ~ 

~. s~ ~. sfl 

The  last  two of these are only used in compressible flow. 

(c) Formu la t i on  o f  E q u a t i o ~ c s . ~ T h e  procedure in Ref. 1 is set out in Tables 14 to 17 for an 
example in which m = 15. The essential difference now is tha t  the influence functions are being 
determined from tables (Ref. 11) ins tead of charts  (Ref. 1, Figs. 1 to 6). 

A separate  table is required for each value of I n  [, t ak ing  positive and negat ive values such 
tha t  1~ --  n ] is odd. Ins tead  of [ Y.,~ I, X,.,/, X, , / ' ,  it is necessary to calculate 

I2Y,,.I = 2 s~ I v y -  v.I, 
Cn 

2X, , '  - -  1 - -  1,  
Cn 

2X, , / '  - -  1 - -  2 x / '  - -  2x,a 1 ," 
Cn 

and then 

and similarly R , / ' ,  %." and 1/R,,,," (if required). 
and decimals. 

R . . ' =  @<12Y,.['~ + (2X.,/ --  1)2}or 1 / R ~ , / , i f R . / >  2 ,  

~v,~' = cos -~ { ( 2 X , / - -  1)/R,/} (0 deg < ~0v/ < 180 deg); 

%,/ and %,," should be expressed in degrees 

Then %,,', j~,,' and i,,/', j , , "  are  evaluated by  interpolat ion in Ref. 11, where the influence 
functions are t abu la ted  for. w = 0 deg (1 deg) 180 deg in the two regions R ---- 0 .20(0 .05)2 .00  
and 1/R = 0.00(0.05)0.50.  The four quant i t ies  

a~,~(1.'i~.' - U i ~ . " )  

a..(zo'j..' - z / ' j , , / ' )  

a . . ( m / % , / '  - m & . ' )  

~ , . ( ~ / ' J . ; "  - ~ / L / )  

are then determined as in Tables 14 to 17 of Ref. 1, the values of a,,~ being given in Tables 1 to 7 
for the appropria te  value~of m. 
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Hence the 2m linear equat ions (80) are formed and  will de termine  the 2m unknowns  y,, and ft, 
for any  set of values of the incidences c~/and " 

(d) Solu t ion  of E q u a t i o n s . - - I n  view of the symmet ry ,  y,, = y _. and if,, = ff .... the  equat ions  reduce  
to a set of order (m + 1). This reduct ion is achieved by  the  formulae on page 57 of Ref. 1, 
the Values of the coefficients B ..... C,~, D .... E,,,, being entered  separate ly  for even and odd values 
of n, as in Tables 18(a) and 19(a) respectively.  

The problem of slow pi tching oscillations introduces  three  sets of incidences, 

The terms 

= ~1--  1 (everywhere] 

= ~ x/a, i .e. ,  ( ,)~ ~,'le 
I !  - ° 

t v 1~ f ~ t q  = X v I c  

c,. = ~a (to be calculated) 

a . ( l /  ~,' - -  l / '  ~,") 

a,,.(rn." <~." - m,.' ~,,') 

are then calculated for a set of incidences ; and the  i terat ive sOlution is then  carried out  by  the  
process fully described and i l lustrated on pages 58 and 59 and Tables 18 to 21 of Ref. 1. Hence  
the  values 

(~,,)1, (ft,), corresponding to e, 

(y,)~, (ff,,)~ corresponding to ~= 

(?,,)a, (#,,)a corresponding to 0~a 

are de te rmined  to the desired accuracy.  

(e) Calculat ion of  o~a. 

From equat ion (64), 

½(m--l) 

b. " -~,(,,,-1) 

First  the influence functions ii~,,', jj,,,' and i i , ," ,  j j ~ "  
of Ref. 11. Then  

f.,,' -= a.,,{ii.,/(y,,), +j j , , , / ( f f , , ) l }  

f.,," = a., ,{ i i . / ' (y, ,) l  + d,,,/ '(ff,01} 

a.,,.{a.,&,,)lC,~ + JJ,,.(~,O,~,,} • 

are eva lua ted  by interpolat ion in the  tables  

a I I I \  11 -t~,, ; ~ = d , ,  c ; / e -  

a ! ~(~,, )~ = f j  o,le - 

Hm-x) l 
E'  f , . '  c,/g -½(m-l) 

t(m-1) 
~'  f,,,," ~.~/e 

- H m -  1) 
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are eva lua ted  for each (v, n) such ~ tha t  [ v --  n 1 is odd, (7.)1 and (if.)1 being a l ready obta ined for 
a uni t  incidence, T h e n  for each v the values of 

fW = ¢i,/(~,)1 + a J.. (~.)1 

- -  ,,,g-g-- i / 

L / '  = a, , / ' (rD,  + s a .  (~.)1 

are listed, ii,--7', etc., being taken from the first Sheet of calculations. F inal ly  since a ,  = 1/b,,  



where the summat ions  in n omit n = v and the values of c,/g are t aken  from the first sheet 
of calculations. 

( f )  Evaluation of Influence Funct ions . - -The tables o f  Ref. 11 are constructed to give the 
values of i, j, if, j j  within  about  ± 0 .  0001 for the practical  range of the  polar co-ordinates (R, ~). 
Equat ions  (30) show tha t  t h e  solution demands a certain accuracy in a,fi .... etc., where from 
equat ion (55) 

avn 

v ~  n ~  
4 c o s - - c o s - - - -  

m + l  m + l  
(m + 1) 

< 4 cot2 Iv - -  n[z . 
(m + l? 2(m + 1) 

The greatest  accuracy in the influence functions is required when [~ n] = 1. I t  follows t h a t  
requirements  in accuracy for the  other  values of [v -- n[ can be relaxed in the  inverse ratio of 
a,,. Thus i .... j~,, ii~,, jj , ,  are only required within 

± 0.0001 tan  2(m + 1 ) / t a n  2(m + 1) 

:k 0" 0001 (~ --  n) 2. 

A. R. Curtis of the Mathemat ics  Division, N.P.L.,  has shown tha t  the four influence functions 
are related by  the formula 

i ( R ~ +  2X) -k j .  1 ( 2 2 -  1) - - i i { 2 ( 2 X -  1 ) +  l} - - j j .  ~ = (2Y) 2. 

This equat ion consti tutes a very  useful check on the calculations after the evaluat ion of (2X --  1) 
and 2Y, which are themselves convenient ly  sum-checked. Al though the formula will not  check 
j j  to great  accuracy, when (R 2 + 2X) is large, it will normal ly  provide a check to the required 
accuracy of 4-0.0001(~--n) ~, provided tha t  i has been obtained to the greatest  accuracy (of 
about  tic0.0001). The use of such a check is s t rongly recommended;  and it  is desirable to 
complete the evaluat ion of all four influence functions for this purpose before proceeding wi th  
the other stages of the calculation. 

(g) Oscillatory Pitching Derivatives.--Once the equations have been solved for the three 
incidences cq, e~, c~3, tile pi tching derivatives are easily determined by  seven coefficients 

( I L ) l - - m +  l(Aft)  Z (7'.)1 c o s - -  
-~(,.-~) m + 1 

(I,,,)~ = 2(m + 1) (Aft)2 E (#.~)lc,,/s~ -- (),.)l(x., + 0,25c.)/s/1 cos -]- 
- ~ (m- 1) 7~¢ 1 

z~ ~l,.-~) [" 2x.~c. + 0.75c. 2 
I , ,2= 2(~ + 1)(A~)2 ~ \(~°)~ 

-~(, , , -  11 g . S/3 

x.? + O. 5x.~c. + 0.125c,?'~ ~z~ 
) cos  m + l  . . . . .  ' 

and (Iz)~, (I.,)5, (IL)~, (/.,)~, .given similarly to (IL)I, (I.,).  These are evaluated on the lines of 
Table 22 of Ref. 1 by  using the functions of the plan-form tabula ted  on the first sheet of 

7b~ 
calculations and values of cos - -  ~--- sin 0,, given in Tables 1 to 7 of Ref. 1. 

m + l  
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Then the pitching derivatives about a pitching axis x = x0 are given by 

_ _ 2 z 0 = (  1--f l~ 2f lz--1 1 ) x01 
fl~ (S,,,)~ q fl~ ( I D ~ + # ( S D ~  - - T f l  (sD1;  

-- 2m~ = (  1--fi~ 2fl~-- 1 (s,,,).) (s, , , ) .  - 

X_Oe - (I"')~ q 2#~fl ~ 1 ) (x0)~l 

(h) General Comments.--(i) In order to master the principles of the method (m -/  1) may be 
chosen to be one-half of its ultimate value. Such preliminary calculations would increase 
the total labour by only 25 per cent and provide initial guesses for the quantities 
),,,, ~,, (n even) in the ultimate solutions by iteration. 

(ii) 

(iii) 

After experience it will be found that  some of the writing included in Multhopp's 
illustrative calculations (Tables 13 to 22 of Ref. 1) can be avoided, particularly in the 
solutions by iteration. 

When a high-speed computer is available to solve the sets of linear simultaneous equations 
there is no need to introduce the four quantities l/, U', m/ ' ,  m /  at all. Directly from 
equation (27) separate conditions 

½ (m - 1) 
i,7, + j , /~ ,--  ~ '  

- ½ ( m  - 1) 

a r e  obtained at the chordwise positions 

x /  = x,~ + O. 9045c~ 

x," = x,.1 + 0" 3455G 

a.,,(7.,,7,. + j,,,,#.) = a.,<z. 

t . 
With a desk calculator, in fact, an iteration using the separat~ conditions converges as quickly 

as the suggested routine in Ref. 1. This method of solution is feasible since j~-~' is small compared .-r--i 7 
with i,/, i , "  and y,., . The calculations of successive increments to ), and # are replaced by direct 
iterations 

1 I ~ ~ l(m-1) 2' 
--~(m--1) 

a,,,,(i.,, ' y,, + j r , , '  ] 

I ~( .... l l a  (i " " "  )l - - ~  a..~,, - -~ . .  ~ . +  ]D' .,, ..... 7 . + Y . , ,  At. , 

an earlier approximation to t*,, being used in the former equation. 

After successive values ),,/11, ~,,i2/, y]31 have been obtained, a better approximation is usually 
given by 

if the values themselves are calculated to an extra decimal place. This alternative procedure 
is recommended once a working facility has been gained. 
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(iv) If required the s teady pi tching derivatives,  zq and m~, may  be evaluated from the  
formulae (86) and (87) in section 7.1. Only the four coefficients ([L)~, (I,,)~, (IL)2, (1,,)2 
are involved. 

(v) Wi thou t  any  increase in computa t ion  the approximate  formulae (54) for i,,,', etc., may  be 
replaced by  more rigorous expressions, justified by Mangler and Spencer (Ref. 13): 

at 0. 9045c, 

i,,-~' = 1-9742 + 1" 1974 g~ 

j~/ ---- 0. 2859 -- 9. 2293 \ c~ / 

at 0.3455c, 

K ' :  1 . 3 1 o o  - o . 2 o , 9  

- 

jj',,,,' ---- 1" 9889 + 2. 1662 \ C,,/ 

G~ 

G~ 

G,, 

i~7' = 1.4055 4, 1.9374 G,. 
kCv /  

y,,__" 3 1702 + 11"0591 ( s ~ )  ~ • Gv 

~., = 0" 3323~ --  0" 8762 G,, 
\ c , , /  

( ' f  J2 .... = 0. 9780 4, 1.3389 sfl G,, 
\ c , , /  j 

where for m = 7, 
v 0 

G, 0. 04521 

for m = 11, 
v 0 

G,, 0.01961 

and for m ---- 15, 

± 1  4-2 ± 3  
O. 03831 O. 02166 O. 00501 

4 - t  4 - 2  4 - 3  4 - 4  4 - 5  

O. 01827 O. 01462 O. 00963 O. 004635 O. 00097~ 

0 4.1  4-2  4-3 4-4  
G,. 0"01094 0"01052 0"00932 0"00753 0"005415 

All the present calculations are based on the formulae (54). 

4 - 5  ± 6  1 7  

0.00330 0.001507 0.00030, 

A P P E N D I X  I I I  

Low Aspect Ratio Theory 

In reviewing some research on flutter 12 (1951), Garrick has included analyt ica l  results for 
uns teady  incompressible flow past  wings of very  small aspect ratio by  generalizing the classical 
s teady theory  of R. T. Jones. 
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The upward  component  of veloci ty at  the surface satisfies 

Oz ~z 

= -- QU cos cot + Qco(x - Xo) sin cot, 

as in equat ion (59) of section 5. Then,  if 2s(x) denotes the span of a t ransverse strip of the  wing, 
the  lift per uni t  length in the  direction of the s t ream is given by  equat ion  (6) of Appendix  B to 
Ref. 12 as follows : 

{ / ~ 2 z  
l(s) = - ~ps ~ \ ~ + 2 u  

( a w  ~w)  ~s 

-- zcPsQ [ (  2U2 dsd-x - °)~s(x - x°) ) c°s 

From equat ion (58), O = --  coQ sin cot. 
Then out of phase wi th  the pi tching mot ion 

( d S ( x - - x ° ) )  ' Z(x) = 2~pUsO s + dx 

where s = s(x). For  a del ta  wing of taper  rat io 2 ----- 1/7 

s = ½ A x f o r 0  < x < ~ t ' [ .  

= ½Ae for a t  < x < act 
Thus  l(x) = §~zpA~UO {x ~ + x(x -- x0)} for 0 < x < ~t5) 

= ½~pA~UOU for ~g < x < { i f  " 
Then 

+ V x : / - 2 ~ p U s ~  2t + U ~ x  

W 

~ot -- 2Uco(s + dx 

- -  - -  ) 2  
~A @ ½(xole) 

--  mo has a m i n i m u m  value of zero about  the trai l ing edge x0 = 

= --½oC~./a~,,'~)foc"~ ZO 

~,"Ot\ 
.% = kuJ 

Thus the derivatives,  defined in equat ions (78) and (79), are 

• 75& 

It  is clear from Fig. 4 tha t  even for aspect ratios as low as 2 or 1.2, nei ther  z0 nor m0 is 
approx imate ly  propor t ional  to A. But  when  A < ~, ~ these formulae are apparen t ly  more 
consistent wi th  the numerica l  results of Multhopp 's  theory  p lo t ted  in Figs. 6 and  7. 

4O 

CL ~1'~ l(x) dx/½p U~S, where  S = A t  ~ ~JO 

2 ~ 0  F~<~,,~_ ~oa') + ½e ~ ~ 2~A ~ (~ ix;/t) 
- -  U U  L .~ t~  . . . .  • 

c u t  ~ j 

= - 2~A -~ ~ - ~(Xo/a) + ~(Xo/a) , 



T A B L E  1 

Summary of Coej~cients for Pitching Derivatives 

Wing 

Circle 
Circle 
Arrowhead 
Arrowhead 
Delta  
Delta  
Delta  
Delta  

A Solution 

4/~ m = 7 

m = 1 1  
1.32 m =  5 
3 I m = 15 
3 m =  7 
2 m =  7 
1.2 m =  7 

(z~)/ 

1.788 
1.793 
1.644 
1.704 
3,050 
3.071 
2.387 
1.624 

(x& 

1"736 
1"746 
2.482 
2"571 
4-601 
4"592 
3"660 
2"563 

(Z~)3 

0.954 
0.974 
0.610 
0.717 
0.491 
0.602 
0.821 
0.762 

I , * = -  (/,.)~ 

0.541 
0.539 
1.622 
1.615 
2.845 
2.820 
2.250 
1.594 

- ( I , , &  

0.901 
0"906 
2.758 
2.792 
4.816 
4.754 
3.911 
2.854 

- ( / , . ) 3  

0.629 
0.634 
0.696 
0"812 
0.622 
0"681 
0.933 
0 '885  

0.268 
0.265 
1.860 
1.779 
3.159 
3.092 
2"496 
1.807 

T A B L E  2 

Pitching Derivatives for a Circular Plate 

Axis position 

xo/R 

L.E. 0 
0.25 
0 . 5 0  
0.75 

1 . 0 0  
1-25 
1 . 5 0  
1' 75 

r .E.  2 .00 
i 

Values of - -  z0 

Multhopp 

m--- -5  m = 7  

2.136 2-113 
1.912 1.890 
1.688 1.666 
1.464 1"443 
1-240 1.219 
1.016 0.996 
0"782 0.772 
0.568 0.549 
0.343 0.325 

Ref. 5 

2 .087 
1-864 
1.642 
1.419 
1.196 
0.974 
0.751 
0.528 
0.305 

--z~ 

Steady 
m = 7  

1.364 
1-140 
0.917 
0.693 
0.470 
0-247 
0.023 

- -0 .200  
- -0 .424  

Values of - -  m 
1 

Multhopp 

m = 5  m = 7  

1.900 1.888 
1.316 1-310 
0.844 0.843 
0.484 0.487 
0.236 , 0-244 
0-100 0-112 
0.077 0.092 
0.165 0-184 
0.366 i 0 .387 

Ref. 5 

1 "904 
1 "331 
O' 869 
0"519 
O" 279 
O" 152 
0"135 
O" 230 
O" 436 

- -m~ 

Steady 
m = 7  

1"112 
O- 720 
O" 441 
O" 273 
0.217 
O" 272 
O" 440 
0"719 
1" 109 

Note : For  a circular plate Cz = L/½pU2S, C,,~ = ~/½pU~S3 where S = ~R 2 and  ~ = ½~R ; and  the derivatives 
are defined to be z0 ---- - -  {SCz/8(OR/U), m0 ----- (c/2R) 8C,,/8(OR/U). 
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T A B L E  3 

Pitching Derivatives for an Arrowhead Wing (A = 1.32) 

Axis  posi t ion Values of - -  z0 - -  zq Values of - -  m0 - -  m~ 

Mul thopp  Mul thopp  

Xo/~ 

Apex  0 
0 .2  
0 .4  
0 .6  
0 .8  
1 .0  
1 .2  
1.4 
1 .6  
1 .8  

K ink  a t  T.E.  2.1 

m = 5  m = l l  

1.644 1"546 
1.474 1.382 
1.303 1.217 
1-133 1-053 
0 .962 0 .888 
0 .792 0 ' 7 2 4  
0.621 0.559 
0-451 0.395 
0 .280 0.230 
0.110 0.066 

- - 0 ' 1 4 6  - -0-181  

Ref. 5 

1.528 
1.361 
1.194 
1.028 
0.861 
0.695 
0.528 
0.362 
0.195 
0 .029 

- -0 .221  

S teady  
m-- - - - l l  

1-241 
1.076 
0.912 
0.747 
0.583 
0.418 
0.254 
0 .090 

- -0"075  
- - 0 ' 2 3 9  
- -0"486  

m = 5  m = l l  

1.802 1.727 
1.345 1.288 
0.957 0.916 
0.638 0 .608 
0 .386 0.367 
0-202 0.192 
0.087 0 .082 
0 .040 0 .038 
0-061 0 . 0 6 0  
0-150 0.148 
0-412 0 .403 

Ref. 5 

1.708 
1.277 
0.912 
0.614 
0"383 
0.218 
0.120 
0 .089 
0-124 
0.225 
0-503 

S teady  
m = l l  

1 '379 
1'001 
0"689 
0"444 
0.263 
0-149 
0 - I 0 0  
0"117 
0.200 
0 .349 
0.696 

T A B L E  4 

Pitching Derivatives for a Delta Wing (A = 3) 

Axis  posi t ion 

Xo/~ 

kpex 0 
0 .25 
0 .50 
0 .75 
1.00 
1.25 
1-50 

F.E. 1.75 

Values of -- zo 

ReL 5 
Multhopp 

m = 7  m = 1 5  

2 .597 2 .546 
2 .213 2"165 
1.829 1.784 
1.445 1.402 
1.062 1.021 
0 .678 0.640 
0.294 0 .258 

- -0"090  - - 0 , 1 2 3  

2"423 
2"038 
1-654 
1"269 
0"884 
0 .500 
0"115 

- -0"270 

S teady  
m = 1 5  

2 .300 
1.919 
1.538 
1.157 
0.775 
0.394 
0.013 

- - 0 . 3 6 9  

, Values of - -  m0 

Mul thopp  

m--- -7  m = 1 5  

2.718 2 .719 
1.812 1-822 
1.098 1.116 
0 .576 0.600 
0.246 0.276 
0 .109 0.141 
0.163 0.198 
0.409 0.445 

Ref. 5 

2,623 
1" 760 
1.089 
0.610 
0. 324 
0. 231 
0- 329 
0.621 

S t eady  
m = 1 5  

2.408 
1. 573 
0 .928 
0. 474 
0.210 
0- 138 
0.255 
0- 564 
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TABLE 5 

Pitching Derivatives for a Family of Delta Wings 

Present Theory (m = 7) 
/ 

Axis posi t ion Values of - -  zo 

xo/-c A = 3  A = 2  A = 1 . 2  A = 3  A = 1 . 2  

Apex 0 
0 .25 
0 .50  
0.75 
1.00 
1.25 
1.50 

T.E.  1.75 

2. 597 
2.213 
1.829 
1.445 
1. 062 
0.678 
0.294 

- - 0 .  090 

2.241 
1. 942 
1. 644 
1. 346 
1. 047 
0. 749 
0.450 
0. 152 

1" 662 
1.459 
1" 256 
1. 053 
0" 850 
0" 647 
0-445 
0. 242 

2-718 
1-812 
1. 098 
0- 576 
0. 246 
0" 109 
0'  163 
0" 409 

Values of - -  m0 

A = 2  [ 

2- 422 
1"655 
1" 038 
0 '  569 
0" 250 
O. 080 
O. 059 
O. 187 

I 1" 870 
1" 306 
0"843 
0" 482 
0" 222 
0" 064 
0" 008 
0" 052 

T A B L E  6 

Pitching Derivatives for a Delta Wing (A = 3) 

at M = 0, 0-745, 0. 917 

Present Theory (m = 7) 

Axis  posi t ion Values of - -  z0 Values of - -mr 

xo/~ M ----- 0 M = 0-745 M = 0.917 M = 0 M = 0.745 M = 0.917 

Apex  0 
0 .25 
0 .50 
0 .75 
1-00 

1 . 2 5  
1.50 

r . E .  1.75 

2- 597 
2.213 
1.829 
1" 445 
1. 062 
0. 678 
0.294 

- - 0 . 0 9 0  

2 .810 
2. 362 
1-914 
1- 467 
1.019  
0. 572 
0. 124 

- - 0 .  323 

2. 797 
2- 289 
1- 782 
1.274 
0" 767 
0.260 

- - 0 . 2 4 8  
- -0"755 

2.718 
1.812 
1. 098 
0. 576 
0.246 
0- 109 
0. 163 
0" 409 

3.181 
2. 169 
1.380 
0.815 
0-474 
0" 357 
0.463 
0. 793 

3.614 
2. 543 
1. 726 
1. 163 
0.854 
0 "799 
0. 997 
1" 448 
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T A B L E  7 

Out-of-phase Incidence Induced by In-phase Loading 

Calculated values of ~a' (at 0.9045c) 

Wing Circle Circle Arrowhead Arrowhead A (A : 3) A (A = 3) A (A = 2) A (A = 1.2) 

m = 5  m = 7  m = 5  m =  11 m - - 7  m==15 m = 7  m = 7  

0 
0.1951 
0.2588 
0.3827 
0.5000 
0.5556 
0-7071 
0.8315 
0.8660 
0.9239 
0.9659 
0.9808 

0.849 

0.663 

0.121 

0.850 

0.742 

0.424 

--0.098 

1.021 

0.370 

--0.225 

1.112 

0.663 

O" 267 

--0.031 

--0.201 

--0.351 

1-040 

0.289 

--0-299 

--0.592 

1-184 
0.646 

O. 234 

--0'094 
--0.326 
--0.496 

--0.584 

--0.621 

1.172 

0.455 

--0.179 

--0-549 

1- 247 

0.573 

--0.067 

--0.488 

Calculated values of ~3" (at 0" 3455c) 

0 
0.1951 
0.2588 
0.3827 
0.5000 
0.5556 
0.7071 
0.8315 
0.8660 
0.9239 
0.9659 
0-9808 

0.191 

0.091 

--0.228 

0.178 

0.122 

--0-050 

- -  O" 3 7 7  

0.278 

--0.167 

--0.603 

0.369 

0"037 

--0.238 

--0"441 

--0-572 

--0.717 

0-247 

-- 0- 233 

--0.543 

--0.715 

0-327 
--0-093 

--0.346 

--0.528 
--0.640 
--0.716 

--0.750 

--0.777 

0-349 

--0"138 

--0.500 

--0-717 

0.415 

--0-046 

--0'430 

--0.691 

Note : To the first order in frequency co the in-phase loading corresponds to a uniform incidence Q. This induces an 
angle of upwash of amplitude eo'cQo~.a/U(1 - M ~) out of phase with the pitching motion. 
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