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Summary.--'The Navier-Stokes equations for the flow of a viscous incompressible fluid through curved pipes of 
different sections are solved in power series of the curvature of the pipe. The solution is given as far as the first power 
of the curvature for the case of an elliptic section and a discussion given of the effect of the aspect ratio of the pipe on 
the intensity of the secondary flow. I t  is shown that  the axial velocity is modified by  two curvature terms of opposite 
effect. For values of the aspect ratio near unity tile first of these predominates and the resultant effect is an increase 
of velocity in the outer half of the bend and a decrease in the inner : for large values of the aspect ratio the second term 
is numerically much greater and there is a resultant decrease in axial velocity in the outer half of the bend and an 
increase in the inner half. The solution is also given to the first power of the curvature for the case of a square 
section. This shows tha t  the intensity of the secondary flow in a pipe of square section is greater than that  in a pipe 
of circular section. Finally the solution is given as far as the second power of the curvature for the case of flow tin-ough 
a curved pipe of circular section when suction proportional to the curvature is applied at the walls. The result shows 
that  with the particular distribution of suction considered the diminution in flux through a curved pipe may  be almost 
entirely eliminated. 

1. Introduction.--When a fluid flows through a curved pipe of any cross-section it is observed 
tha t  asecondary  flow occurs in planes perpendicular to the curved central axis of the pipe. The 
theoretical explanation of this secondary flow was first given by Thompson 1. There must be a 
pressure gradient across the pipe to balance the centrifugal force on the fluid due to its 
curved trajectory, the pressure being greatest at the outer wall of the pipe and least at 
the inner wall. The fluid near the top and bottom wails of the pipe is moving more slowly than 
tha t  near the central plane due to viscosity and therefore requires a smaller pressure gradient 
to balance its reduced centrifugal force. Consequently a secondary flow occurs in which the 
fluid near the top and bottom walls of the pipe moves inwards towards the centre of curvature 
of the central axis and the fluid near the central plane moves outwards. This in turn modifies 
the axial velocity. The faster-moving fluid near the central plane pushes the fluid in the boundary 
layer at the outer wall to the top and bottom walls and then inwards along the top and bottom 
walls (where it is retarded due to  its proximity to these walls) towards the inner wall. Faster- 
moving fluid is therefore constantly transported to the outer wall and retarded fluid is carried 
to the inner wall. The accumulation of the retarded layer at the inner wall results in a diminution 
of flux through the pipe. 

Experimental  investigations of the secondary flow were made by Eustace ~, White a and TayloP 
and the first theoretical analysis given by Dean 5 for the case of an incompressible fluid in steady 
motion through a pipe of circular cross-section whose axis is bent to the form of a circular arc 
of several revolutions. Dean expanded the velocities and pressure as a power series of t h e  
curvature of the axis of the pipe and gave the solution as far as the fourth power of this parameter, 
[he analysis being confined to a region of the pipe sufficiently far downstream for derivatives of 
Lhe velocities along the pipe to vanish. 
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The first par t  of this paper  extends  the  same m e t h o d  to deal wi th  pipes of elliptic section and  
a discussion is given of the  effect of aspect  rat io of the  pipe on the  in tens i ty  of the  secondary  
flow. The second par t  applies the  m e t h o d  to pipes of rec tangular  section. An approx imate  
solution for the  par t icu lar  case of a square  section is given explici t ly and  shows t ha t  the  flow 
is more  intense t han  in a pipe of circular  section. The las t  par t  invest igates  the  effect of a 
par t icu lar  d is t r ibut ion of suct ion a round  the  walls of a circular  pipe on the  flux th rough  it. 
I t  is shown tha t  wi th  a sui table choice of suct ion the  d iminut ion  in flux m a y  be a lmost  ent i re ly  
overcome. Bo th  the  first and  last par ts  conta in  Dean ' s  results as special cases. 

2. The Secondary Flow in  a P i p e  o f  El l ip t ic  SecEon. - -2 .2 .  The S tream F u n c t i o n . - -  

Ou~:er 
A B , -  

¢ 
t 

I 

The  following r ight -handed,  or thogonal  sys tem of axes is employed :  05 along the  ma jo r  axis 
of a sect ion;  0v along the  minor  axis and  0¢ along the  curved  centra l  axis. Let  the  veloci ty  
components  along these axes be (u, v, w); C the  centre  of cu rva tu re  of the  axis 0~;  OC = 2/~ 
where  n is the  cu rva tu re  of 0¢ ; 2a, 2b the  ma jo r  and  minor  axes of a section. Let  b/a ---- ~, this 
we shall call the  aspect  rat io of the  pipe. 

The  flow is de te rmined  b y  the  Navier-Stokes  ~ equat ions  of mot ion  

Ov 
~-~ - -  v × curl  v = --  grad  ({v  "~ + pip) - -  ~ curl curl  v .  

and  the  equat ion  of con t inu i ty  

div v = 0 . . . . . . . . . .  

toge ther  wi th  the  b o u n d a r y  condi t ion t h a t  v = 0 at  the  wails. 

(2) 

(2) 

Making the  non-dimensional  subst i tu t ions  x = ~la, y = n/Za, z = ¢/a; u = v#/a, v -= v~la, 
w = vz~/a, p = pv'~/a 2 . ~  and  pu t t ing  Ou/Oz = Ov/Oz = Ow/Oz = 0 we obta in  from equat ions  
(1) and (2) 

Og f~ ~# ~aN 2 

# ~-x+ x ~ y  - 

Off; ~ ~ z~ 
ayd+X~+ l ~ 4 a ~ w  

@ ~ax - -  

-~ {(2+ 
~x 

~z -t- ,~ ~y2 ~ ~x ~y 

1@ ~2~ 1 02# ~a (0~ 1 ~ / )  
Z ~y + ox ~ ~ ~x ~y + l + ~ax g-x ~ g}  

1 @ 02ff ' 1 02z~ ~a ~ n2a2~ 

l + ~axOz ~ y d  s + z ~ y ~  + l + ~ a x o x  (l+~ax) ~ 

~ax)a + ~ ~ (l+~ax)~ = 0 .  

The b o u n d a r y  condi t ion is t h a t  # ---- ~ = z~ = 0 for x" + y~ = 1. 
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Differentiat ing the  th i rd  equat ion in (3) wi th  respect to z we have  a '~ /az  "~ = 0 ; it  follows from 
the  first and second equat ions tha t  a } / a x  and @ / a y  are independen t  of z. @ / a z  is therefore 
constant .  To solve equat ions (3) to the  first power of ~ we pu t  

where 

~1 = Uo + n a R ~  

= ~o + ~ a R %  

R - -  1 q - 4 2 0 z  " 

= Vo -Jr- nctR~v~ l 

I 
. . . .  (4) 

The terms independen t  of ~ yield the  equat ions of mot ion  for flow th rough  a s t raight  elliptic 
pipe, viz . ,  

~Po ~Po 
U o = V o = 0 ;  ~x --  B y - - 0  

and  ~Wo 1 ~wo 2(1 + 1/4 ~) 
8x 2 7 ~ 42 8y ~ - -  

w o =  1 - - x  ~ - y ~ .  wi th  the  solution 

Equa t ing  coefficients of ~ we obtain 

ZOo s ~Pi 1 ~2ul 1 ~vl 
4 - -  ~x + ~ ~y-~ --  2 ~x ~y 

1 ~ib~ ~v~ 1 8~ul 
o = - ~ +  ~x~ 4 ox ~y 

. . . . . . . . . .  ( 5 )  

. . . . . . . .  (6) OW6 Vl 8Wo 3~wl 1 3~Wl 
u ~  + 4 ~y - ~x~ + 4~ ~y~ 

0 = - - 2  1 +  x +  ~ + 4 2  ~y~ + ~x 

Ox + 4 a y - 0  

The last equat ion  m a y  be satisfied ident ical ly  by  a s t ream funct ion ~o defined by  the  equat ions  

1 ~p 
u~ --  ,t2 ~y 

. . . . . . . . . . . . . . . . . .  (7) 

v~ --  2 8x 

El imina t ing  Pl be tween the  first and second equations of (6) we obtain  

~4~0 2 3~o 1 3 ~  _ (1 - -  x ~ - - y 2 ) y  . . . . . . . . .  (8) 
~x--~ + 4~ 0 Z g y  ~ + 4~ ~y~ 

wi th  the  boundary  Conditions ~o/ax = ~ / O y  = 0 for x ~ -F Y~ = 1. The solution is 

~o = (1 --  x' --y2)2(B~ + B2x 2 + B3y2)y  . . . . . . . . . .  (9) 

Where Bz = 44(375 + 8202 ~ + 1,1142 ~ + 21248 + 3948)/360(5 -¢- 24 ~ + 4~)G(2) 

B~ = - -  4~(7S + 24 ~ + 34~)/360G(4) 

B~ = --  4~(1S + 264 ~ + 394~)/360G(4) 

and G(4) = 35 + 844 ~ -t- 1144 ~ + 2046 -l- 348 . . . . . . . . . . .  (10) 

3 
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2.2. Nature of the Secondary Flow.- - I t  appears from equations (4) tha t  ~aR ~ is the dynamical 
parameter of the secondary flow. If W0 be the velocity along the central axis for the flow 
through a straight elliptic pipe, from equation (5) Wo - vR/2a, i.e., R = 2aWo/v. R may therefore 
be interpreted as the Reynolds number for steady flow through the unbent pipe. From equations 
(7) and (9) 

~4~R 2 
u =-= Z~ (1  -- x ~ -- y2)[(1 -- x ~ -- y2)(B, + B2x ~ + 3B.y  ~) 

- -  4Y~( B~ + B2 x~ + B~Y2)] (11) 

2~vR ~ 
v - -  ,~2 ( 1 7 x  2 - y ~ ) [ 2 ( B ~ + B ~ x  2 + B ~ y  2 ) - B ~ ( 1 - x  ~ - y ~ ) ] x y  

v vanishes along both axes: therefore a fluid particle originally in the upper (or lower) half of 
the pipe will remain in  it during the subsequent motion. Also 

~vR ~ 
[uTl~o,o)= z~ - B , > 0  

and 

[u](0,~-~/= -- ,t8- R2(B~ + Ba)0 < 0 for ~ small and positive. 

The fluid near the top and bottom walls is therefore moving inwards whilst that  in the central 
plane is moving outwards. There must exist two points, say S and S', on the minor axis at which 
u vanishes. Since v vanishes everywhere along the minor axis these must be stagnation points 
of the secondary flow. The following diagram shows the essential features of the flow consisting 
of two opposed vortex motions centred about the stagnation points S and S'. 

Ouber Inner 

An observation of 
axis. Substitution of 
is the value of p for x 
h a v e  

(pl)  - p l '  - - 

i.e., PI' 

some interest may be made on the pressure variation across the major 
ul and vl in the first two equations of (6) shows tha t  p~ - - P l '  (where Pl '  
----- 0) is odd in x and even in y. Put t ing y = 0 and x = :J: 1 in turn we 

- - - P , ' ]  

(Pl)A + (Pl)B . 
2 

the pressure along the minor axis is equal to the arithmetic mean  of the pressures at A and B. 
This result is verified experimentally by  Richter 7 for turbulent  flow and assumed for laminar 
flow by Keulegan and ]3eij s. 

2.3. Effect of the Aspect Ratio o74 the I74te74sity of the Flow.- - I t  appears from equations (10) 
and (11) tha t  for small Z, u = O(Z 2) and v = 0(a3). For pipes of small aspect ratio the secondary 
flow is therefore greatly reduced. For large a, u -- 0(1/a ~) and v ---- 0(1/~); the intensi ty is 
therefore diminished for large aspect ratios. In the case of ,~ = co, tha t  is for the flow along the 
channel between two infinite concentric cylinders, the secondary flow vanishes altogether. 
This is readily explained on physical grounds: the top and bottom walls, which retard the fluid 
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near  t hem and thus induce the  secondary flow, are now absent. The following table shows the  
var ia t ion of (~) y = 0 across ,the central  plane for various values of the  aspect ratio in the  case when 
~a = 0 .2  and R = 100. The results are shown graphically in Fig. l. 

T A B L E  1 

Ua=l/2 

q~). = 1 

5a=2 

--1 • - - 2 / 3  

0.6 

1.9 

2.4 

-1/a 

1-9 

5.3 

6.3 

2.6 

6.9 

8.1 

2/a o 1/a 

1"9 

5"3 

(; '3 

4"3 

2"9 

0 0 

0 '6  

1"9 

2"4 

uz=a 0 1"7 4"3 5-5 1"7 0 

5a=4 0 1"1 2-9 3"7 1-1 0 

5a=~ 0 0 0 0 0 

I t  is natural  to take as a measure of the  in tens i ty  of the  secondary flow the  total  vor t ic i ty  f~ 
in ei ther the  upper  or lower half of the  pipe (these are equal and opposite). 

; i°( 
4~avR,, ).2(125 + 3102,, -¢- 4282* -~- 82). 6 + 15,l s) 

- -  525 (5 + 22,, + 24)G(2) 

If P~ is the  value of f~ for 2 = 1, i.e., f2, is the  tota l  vor t ic i ty  in the  upper  half of a pipe of circular 
section 

Y2 12826(125 + 3102,, + 4282 ~ q- 8216 q- 1528) 
0-~ --  15(5 + 22" + 24)(1 + 22)2(35 + 842,, + 11424 + 202 G + 32 s) 

(12) and f21 = 1120 \ 0z / . . . . . . . . . . . . . . .  

The  var iat ion of ~/L)~ with 2 is shown graphically in Fig. 2 from which it appears tha t  L) a t ta ins  
a m a x i m u m  value of 3 . 1 ~  when 2 = 2.2.  The d iminut ion  of flux th rough  a curved pipe is due 
to the  accumulat ion of a re tarded layer of fluid at  the  inner  wall and this in tu rn  is due to the  
secondary f low; it therefore appears probable tha t  the  d iminut ion  is greatest  for values of 2 
in  the  neighbourhood of 2. For 2 = 6 the  flow is of the  same s t rength  as for 2 = 1 ; fur ther  
increase in 2 diminishes the  in tens i ty  of the  flow asymptot ica l ly  to zero: 

2.4. The Axial Vdocity.--Substitnting for w0 in the  fourth equat ion of (6) we have  

~2ze'2 1 ~2w,, 2 ( 2 + 1  ) 
~x,, + 2,, 3y,, ~ x 

the  solution of which is 
1 + 22,, 

= - 1 + 3 2 8  ( 1  - x , ,  - y , , ) x  . . . . . . .  ( 1 3 )  

The  addi t ion of this t e rm in the axial veloci ty represents an increase of veloci ty in the  inside 
of the  bend  and a decrease of velocity in the  outside of the  bend. The solution of wl, from the  
th i rd  equat ion in (6), is a polynomial  of degree nine in x and y together,  odd in x and even in y. 
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Since w~ is also odd in x and even in y, it follows that  the diminution in flux is zero to the first 
order of the curvature of the pipe. This polynomial represents an increase of velocity in the 
outside of the bend and a decrease in the inside of the bend. The effect of curvature of the 
pipe on the axial velocity is therefore represented by two terms w~ and w2 of opposite sign. 
Of these, w~ represents the effect generally associated with the flow through a curved pipe and 
w2 the effect generally associated with the flow along a curved channel. In fact, both effects are 
always present together. For values of ~ near unity the w~ term predominates; for large 
w~ is o5 order 1/~ ~ but w2 tends to the limiting value -- §x(1 -- x~). The following table gives 
the variation in (z~)y=0 across the major axis when R = 100, xa = 0.2. 

TABLE 2 

'Wo 

~a=l 

wa=2 

wa=4 

wa=m 

--1  - -2 /3  

27"8 

21 "7 

15 "4 

19"3 

22 .9  

30 .3  

- -1 /3  

44"5 

36"0 

30"6 

34"5 

38"3 

46"5 

50 

50 

50 

50 

50 

50 

44-5 

53"0 

58"4 

54"5 

50"7 

42 .5  

2/3 

27"8 

33"9 

40 "2 

36"3 

32" 7 

25 "3 

0 

0 

0 

0 

0 

0 

These results are shown graphically in Fig. 3. As Z increases the point of maximum velocity 
shifts from the outside of the bend over to the inside of the bend. The transition from one type 
of flow to the other may be delayed by increasing R since w~ is preceded by an extra factor RL 

2.5. T h e  S p e c i a l  Case  ~ ---- 1 ; the C i r c u l a r  S e c t i o n . - - D e a n ' s  results for a pipe of circular section 
are readily obtained by putting ~ = 1 and transforming to polar co-ordinates by means of the 
substitutions 

x = r c o s  0 u ,  = ), O0 

/ y == r s i n  0 u o  = - -  D r  

.. .. (14) 

where u, ,  Uo refer to velocities in the radial and transverse directions respectively. 
R i  = - -  ½ ~ / ~ z "  from equations (10), B1 ~ B., B~ 

Then 
~5,, and from equation (9) 

1 
~P - -  1 1 5 2  (1 - -  # ) 2 ( 4  - -  r~)r s i n  0 . ( 1 5 )  

Therefore 
~) R12 

u .  - ( 1  - - r c o s  0 

g4 ?)RI 2 
uo -= - -  1152 (1 -- r~)(7# -- 23r ~ + 4) sin 0 

(m) 
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3. The Secondary Flow in a Pipe of Rectangular Section.--3.1. The Stream Function.--  

Ouger wall 

t 
I 

~ ~ "  Inner 

"~ ] Ya 

wall 

~--(2 

Using the same notation as in the previous section, equations (1) to 
identically whilst the boundary conditions are now 

= ~ = @ = 0  for x =  4 - 1 ( a l l y )  

We put 

y = 4- 1 (all x) 

(3) may be applied 

= Uo @ xaRR~uz ~ = Vo + naRR2vz 

= Po + xaR~fl~ ~ = RR(Wo + xaRR~w~ + ~aw~) 

16~ sech ~ @ . . . . .  (17) where R~ = -- x-w- 2~ az . . . . . . . .  

The terms independent of ~ yield the equations of motion for flow through a straight rectangular 
pipe, viz., 

a P o  aPo 
U o = V o = 0 ;  ax ~ y - - 0  

and a~Wo 1 ~wo ~3 
ax ~ + ~ ~y~ _ 16~ cosh 2-~ 

with the solution 9 

w0=  ~P,~ c o s h ( 2 n +  1 ) ~ - - c o s h ( 2 n +  1 ) ~  c o s ( 2 n +  1) ~y 

- -  1) '~ ~ 
where P,, = i2(n + 1)3 cosh ~ sech (2n + 1) ~ . . . . . . . . .  (18) 

This series for Wo is rapidly convergent and we approximate to Wo by retaining only the first 
term, viz., 

Wo = cosh 2~ -- cos ~- . . . . . . . . . . .  

Equating coefficients of ~ we obtain 

ap~ 1 a~u~ 1 a~vl 
- -  w°~ - -  ax  k ~ aye. ~ dx dy 

_ _  

~ul 1 av~ _ 0 
ax k ~ ay 

1 ap l  a~vl 1 a~ul 
Z ~y + ax z a ~x ~y 

(20) 



The last  equat ion may  be satisfied identical ly by  a s t ream funct ion ,/; defined by the equations 

U~ = 2 2  ~ 

O~ . . . . . . . . . . . . . .  (21) 

El iminat ing  151 between the  first and second equations we obtain  

a~0 2 O~o + ~ --  cosh --  cosh~X~ ~ 
Ox ~ + ,V ax ~ Oy ~ Oy ~ ~ 2;t./ sin ~y (22) 

whence 74ar~  94:¢ N '~ . 

+ E (C,, sinh n,t=y + D,,y cosh ~2.~y) cos n=x 

~2 I 7~X ~ 7~X + 1-~474 9 ~ x  2 cosh ~- --  512,a ~ cosh ~ cosh ~ + 144~' 

+ 72Z = cosh i J  s i nuy  . . . . . . . . . . .  ... (23) 

Inser t ion of the boundary  conditions leads to the following equations 

-2 A,, sinh T q- B,, sinh T q- T cosh 

G,fl I18~ 2 .+ 144a~ 

C,, sinh n ,~  + D,, cosh n ,~  = 0 

"~ A,, cosh q- B,  sinh - -  -4, ,,=, T 1 

q- E (--1)"{Cflc°shn;brY + D"(lc°shn'~rY + 

(-- 1) ' ~  A,~ cosh ~ -  -[- B,~ x s i n h  

cosh I + (9~ = --  128,t =) s inhx  = 0 . . . .  

• , o , , . . . . . . . . .  

144n~ (9a = -  184,t ~) c o s h ~ -  112,t" 

~ 0 • o 

cos n~y 

(i) 

(ii) 

(iii) 

where Gp 

~.' [ 
144~ 9~% ~ cosh 7 - -  512't2 cosh ~ cosh 

=1,  p = l  

q- 144i" + 72~-', cosh-~l 

= 0 ,  p ~ - 1 .  

= 0  (iv) 

8 



Solving equations (i) to (iv) we find 

( 2 2p~)  4;tp pz~ ~ sinh n2~ 
1 -{- 2 ~  sinh ~ -  Bp -- ~ sinh ~-,~=~ (-- 1) "+p (p~ + ~%~2)2 D,, 

144~4 28a sinh ~- + 112 sinh ~ + 9~(1 + cosh 

and 
(sinh 2pZ  

2 p ~  
4X s i n h p ~  ~ (-- 1) "+p 1 Dp - - p u 2  ,~=1 

1) p sinh p2~ ~5 
+ ( -  ~ [36~ ~ 

(24) 

n 3 

sinh ~- B,~ (n 2 + ~p~)~ 

73 + 101~p ~ + 64z~p ~ 
(1 + z~p~) ~ sinh~ 

64~ sinh ~ ~' cosh ~ 1 
! (25) 9~ ' 1 + 4x~p ~ 2 ~ ( 1  + zp~) 2 j 

3.2. The Special Case 2 = 1 ; the Square Sec t ion . - -When  ,t ----- 1 we have the case of a square 
Solving equations (24) and (25) and retaining only A~, B ,  C~ and D, as a section. 

first approximat{on we find 
A 1 = 0" 03337 

Rs  

Let U~ be the velocity at 

U s 

C1 = -- 0"001864 

- -  0" 02621 D1 = 0" 001858 
. . . . . . .  (26) 

(RR)~=I = -- sech ~. 

the centre of a pipe of square section; then 

= 0" 05062~ vRs 2 .. . . . . . . . . . . . . . .  (27) 

If Uc be the corresponding . velocity at the centre of a pipe of circular section we have from 
equation (16) 

v R12 

U c -  288 

Therefore U. ( ~ f  
U~ = 14.58 

= 2.47 . . . . . . . . . . . . . . . . .  (28) 

The secondary flow is therefore more intense in a pipe of square section than in a pipe of circular 
section. 

4. The Effect of Suction on the F lux  through a Curved Pipe of Circular Section.--4.1. First  
Approximation to the Ax ia l  Velocity.--  

Outer ~ ~ '  
wall ~ 0 ' ~ ~  
_. A 13 

Inner 
wall 

~ C  

I 

We take as co-ordinate system polar co-ordinates in the plane of a section and 0¢ along the 
central axis" the normal suction velocity at  the wall is taken to be ~aUcos 0, that  is, 

9 
(371) A* 



p r o p o r t i o n a l  to  t h e  c u r v a t u r e  of t h e  cen t r a l  axis. 
x = r/a,  z - -  ¢/a ; u = v~/a,  v = v~/a, w = ~z~/a, 25 = p ~ / a  ~ . ~ a n d  p u t t i n g  

~u/Oz = av/az:= aw/az = o ' 

we o b t a i n  f r o m  equa t ions  (1) a n d  (2) 

~ ~ ~¢7 ~ ~a cos 0z~ ~ 
~2 g-x + x ~ O x ~ 1 + ~ax  cos O - -  

Making  t h e  n o n - d i m e n s i o n a l  subs t i tUt ions  

We p u t  

ax x 3x 30 x ~ ~0 + x ~ 302 

sin o 
- ~ 1 4 - ~ 7 ~  £os o ~ + x - x g O / 

~ ~7 ~5 ~1~7 ~ a s i n  0z~ 2 @ a ~  1 ~ ~ 1 O~a 

a g-x + x ~ + 7 + l ~ 2 ~ x ~ d ~  O = - x O o + -g~ + x b x x~ - x ~x O-~o 

1 ~ ~a cos 0 / ~ ~ ~7 
+ x~O0 q 1 + ~ a x c o s O i , , ~ +  x - - - - -  

~z~ ~5 ~z~ ~az~ (~cos  0 - -  ~ sin 0) = - -  1 @ a~z~ 1 ~z~ 
g ~ + x ~ -¢-1 + ~ax cos O 1 + ~ax cos O az ~ - ~ 4 - x a x  

+ x ~ aO = q- 1 +  ~ax  cos O ~ c o s 0 - - ~ 6  s i n 0  - - ( l + ~ a x c o s 0 )  °- 

] } • . _~ I ( l + ~ a x c o s 0 ) x ~  + ( l + ~ a x c o s 0 ) ~  = 0  ~X / . . . . . . .  

T h e  b o u n d a r y  condi t ions  are  t h a t  v / a .  "~ = ~ a U  cos O, f f  = ~ = 0 for x = 1. 

x ~ O  

( 2 9 )  

(3o) 

1 avl 1 a2ul 
- -  x m ~ + x 2 a0 ~ 

Wo ~ 3p, a~vl 1 8vl v, 
4 sinO = - - x ~ O .  q- ~ q x ~ x  x ~ 

awo a=w~ 1 Ow~ 1 a=w, 
u,  ax - -  ax ~ + ' ;7  aT + x  ~ a0 = 

~7) 1 
_a (xu~) + - 0 

1 a=u~ 1 a u~ 
x ax  a0 + x 2 a0 

1 0  

. . . .  . .  ( a ] )  

. .  (ag~) 

wi th  t h e  a x i s y m m e t r i c  so lu t ion  
W 0 ~ 1 - - -  X 2 . . . . .  

E q u a t i n g  coeff ic ients  of ~ we f ind 

Wo ~ ~Pl 1 ~vl  
4 c o s 0 - -  ~x x ~ x ~ 0  

o P o _ ~ P o _  0 
~x ~0 Uo --=- vo = 0;  

a n d  °" O2Wo 1 aWo 1 a~Wo 
Ox ~ + x  ~x + x ~ ~0 ~ 

! 3 = Po q- ~aR~2P~ + ~2a~R~4P~ 

w h e r e  R1 - -  2 ~z ' . _ 

We  h a v e  a p p r o x i m a t e d  to  ~ b y  neg lec t ing  a t e r m  ~aw, '  in com pa r i son  wi th  ~ a R d w , ;  this  has  
b e e n  shown  va l id  for  an aspec t  ra t io  of u n i t y  in sec t ion  2.4. T h e  t e r m s  i n d e p e n d e n t  of ~ y ie ld  
t h e  equa t ions  for  t he  flow t h r o u g h  a s t r a igh t  c i rcu lar  cy l inde r  w i t h  t h e  suc t ion  ve loc i ty  eve ry -  
w h e r e  zero, viz. ,  



The last  equat ion  m a y  be satisfied ident ical ly  b y  a funct ion f ( x )  defined by  the  equat ions  

= f (* )  cos 0 
. . . . . . . . . . . . .  (33) 

d 
v, = --  -dx [xf(x)] sin 0. 

E l imina t ing  p l  be tween  the  first and second equat ions  of (32) we have,  pu t t ing  df/dx = h(x), 

x ~ d3h d~h dh 
)-~ + 6x ~ )-~ + 3x )-~ - -  3h = x ~ --  x ~ . . . . . . . .  (34) 

B C 1 1 (4x3 x~ ) w i th  the  solution h(x) =A~x  + x + -X ~ + ~-2 --  

C 1 
whence  f(x) = A x  2 + B log x + x ~ + D + 1 ~  (6x' --  x 6) . . . . .  (35) 

The  b o u n d a r y  condit ions are t h a t  v~ ---- O, u z  = aU/vR~ 2. cos 0 for x = 1; i.e., d(x f ) /dx  = O, 
f (x)  = a U / v R ~  2 for x =  1. Since u~ and  v~ are bo th  finite at  x = 0 ,  B = C = 0 .  P u t  
7 = 192aU/vR~ 2, then  A = - -  ~ v ~  (9 + 37), D --  ~ (4 + 97), whence 

u~ = ~ , ~  [(4 + 97) --  (9 + 37)x 2 + 6x ~ --  x ~] cos 0 
. .  (36) 

- -  ] -  v~ ~ , ~  [(4 + 97) 9 ( 3 +  7)x ~ + 30x ~ --  7x~ sin 0 

Pu t t i ng  w~ = g(x)cos  0 in the  th i rd  of equat ions (32) 

d~g dg 
x~ -d~ + x ~ -- g = -- 2 x y ( x  ) 

= v{v Ix ~ -- 6x 7 + (9 + 37)x ~ -- (4 + 97)x3~. .. (37) 

The boundary condition is that g(x) = 0 for x = I. Solving we find 

g(x) ~ [(19 + 807) -- (21 + 107)x 2 + 9x *- x~](l -- x~)x. .. (38) 

4.2. The Second Alb~roximation to the Axia l  Ve lodty . - -S ince  w~ is of the  form g(x) cos 0, it 
follows t h a t  this t e rm  makes  no cont r ibut ion  to  the  flux th rough  the  pipe;  the  d iminu t ion  .in 
flux (which was deduced  on physical  grounds in the  In t roduct ion)  is therefore zero to  the  first 
power  of the  curva ture .  E q u a t i n g  coefficients of n~ i n  equat ions  (32) we find t ha t  the  equat ion  
of con t inu i ty  m a y  be satisfied b y  a functionf~(x) defined by  the  equat ions  

= A(x )  cos 20 

l d  
v~ = --  2 ~ [xf~(x)] sin 20 . 

Owl OWo v~ Ow~ 3~w~ 1 3w~ 1 O2w~ 
and  U l ~ + U s ~ - + x  00 --  ~x 2 + x ~  + x  ~ 005 

~2w~ 1 Ow~ 1 3~w~ d~x g d 
~x 2 + x  ~-x + x  ~ 003 - f  cos~0 + x ~ - x ( X f )  s i n ~ O -  2x f l cos20  i.e., 

02w~ 0w2 102w2 1 [  dg d f 1 
i.e., x - - ~  + - ~  + x 00 ~ - - 2  Xf dx + X dxg  + fg  

1 x /  - x / g  4xy  + ~ cos 20 ~ g --  - -  

f rom which  it follows t h a t  w2 is of the  form re(x) + n(x )cos  20. 

!1 

. .  (39) 

The  integral  of the  second 



t e rm over a cross-section is zero, consequent ly  to find the  d iminut ion  of flux Jt will suffice to 
de termine  re(x). Equa t ing  terms independent  of 0 in equat ion  (39) 

i.e., 

whence 

d~m dm 1 [  _ddg x x - d ~  + dx - - 2  x f  + 

x ~ )  -- 2dx  

d m  _ l f g  . 
dx 

X U x g +  

the  constant  of in tegrat ion being zero to preserve a finite value of dm/dx at x = 0. 
condit ion on m is t ha t  re(x) = 0 for x ---- 1. 

1 ~ 
Therefore re(x) = ~2 f,f(t)g(t) dt 

. . . .  (40) 

The bounda ry  

1 
cfj~/ 76 + 4917 + 720y")t (331 + 1497y + 10507")t 3 A 1 

+ (594 + 17207 + 360y~)t 5 - -  (569 + 890v + 30y~)f 

+ (314 + 1897)t 9 --  (99 + 13~)t ~1 + 16# 3 --  #5 } dt 
/ 

where A = 80 × (1152)L 

Let  Fs, F~ be the  fluxes th rough  the  s traight  and curved pipes respectively;  then 

~I~,R~ v } 
F~ = 2~a ~ f0 [ 2a (1 - -  x~)x + ~-a. ~a2R~Sxm(x) dx 

= 7t a~R~ + ~2a%R~5~ oxm(x) dx 

(41) 

7g 

and Fs ----- ZI avR~. 

Therefore F,  _-- 1 + 4 ~l 
F--~ 7~ z~a~R~4 o xm(x) dx 

= 1 -- \ 1 - 1 ~ /  (42) 

4.3. Variation of Flux with Suclion.--Dean's 1° value for the  flux it obta ined by  pu t t ing  7 = 0, 
t ha t  is the  suction is everywhere  zero. Then 

F~ _ 1 ( zaR~2)2 (43)  
F , -  0 .03058, ,  11522 . . . . . . . . . . .  

Pu t  Y(7) = 0.03058 + 0 . 3 5 1 8 7 +  1.17572. This expression has a m i n i m u m  value of 0-00424 
when 7 = --  0. 1497. 

Therefore 
2 

and is a t ta ined  when 7---- - - 0 "  1497, i.e., when U = --O.O007796vR~/a. I t  appears from 
equat ion  (43) t ha t  the  series for F~/F, converges provided nard2< 1152. This condi t ion is 
satisfied for ~a : 0 .1 and R1 = 100. In  this case 

F~ 
F-~ = 1 --  0-7535y(~,) . . . . . . . . . . . . .  (44) 
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The following table shows the variation in Fc/F,  with y;  these results are shown graphically 
in Fig. 4. 

TABLE 3 

U 

--0.4 

0.94133 

--20-833~/a 

--0.2 

0.99456 

--lO-417v/a 

--0-1497 

0"99681 

--7.797~/a 

0-97696 

0.2 

0.88853 

10.417v/a 

0.4 

0.72927 

20" 833,/a 

These results may easily be interpreted physically. The diminution in flux is brought about 
by  the accumulation of a retarded layer of fluid in the inner part  of the bend. When y is positive 
(and hence U) the retarded fluid is forced towards the outer part  of the bend; the region of 
slowly-moving fluid is extended and the flux further diminished, When 7 is negative (and 
hence U) the slowly-moving fluid is removed by suction over the inner wall and replaced by 
faster-moving fluid injected over the outer wall. The particular distribution of suction we have 
considered is capable of almost entirely overcoming the diminution of flux due to curvature : for 
the optimum value of U = -- 7-796v/a, the flux in the example considered at tains a maximum 
value equal to 99.7 per cent of its value in the flow through a straight pipe. 

5. Couc lus ions . - -The  Navier-Stokes equations for the flow of a viscous incompressible fluid 
through a curved pipe of elliptic section have been solved to the first power of the curvature. 
I t  has been shown that  the dynamical parameter of the motion is, in fact, ~aR ~ where R is the 
Reynolds number for steady flow in a straight pipe of the same section and tha t  the secondary 
flow consists of two opposed vortex motions in the top and bottom halves of the pipe, the direction 
of flow in the central plane being away from the centre of curvature. This flow diminishes for 
both high and low values of the aspect ratio of the pipe and in the case when the ratio is infinitely 
large (that is, when the motion takes place in the channelbetween two infinite concentric cylinders) 
the secondary flow vanishes altogether. This suggests tha t  the secondary ftow in a bend may 
be reduced by  the introduction of a number of guide vanes following the curvature of the bend; 
the pipe is then divided into a number of channels of larger aspect ratio in each of which the 
intensi ty of the flow will be decreased. To the degree of approximation considered the axial 
velocity is modified by two curvature terms. The first of these, involving the square of the 
Reynolds number, represents an increase of velocity in the outer half of the bend and a decrease 
in the inner half ; tha t  is, the effect generally associated wi th  flow in a curved pipe. The second 
term, independent of the Reynolds number, represents the reverse effect; tha t  is, the effect 
generally associated with flow through a curved channel. For values of the aspect ratio not far 
removed from uni ty  the first of these terms is the larger ; as the aspect ratio increases the second 
term eventually predominates. Neither of these terms gives any contribution to the flux through 
the pipe so tha t  the flux remains unaltered to the first power of the curvature. For the special 
case when the aspect ratio is uni ty  we have the solution for the flow through a curved pipe of 
circular section. The same method of solution has also been applied to a curved pipe of 
rectangular section. The results are given explicitly for the special case of a square section and 
it is shown tha t  the secondary flow in a square section is stronger than tha t  in a circular section. 

The effect of the increased resistance of a curved pipe is to cause a diminution in the flux 
through it. The equations for flow through a curved pipe of circular section have therefore been 
solved as far as the second power of the curvature to find the effect of a distribution of suction 
proportional to the curvature in reducing this diminution. The results obtained show tha t  
with the distribution of suction considered the diminution may be almost entirely overcome. 
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