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Summary.—The Navier-Stokes equations for the flow of a viscous incompressible fluid through curved pipes of
different sections are solved in power series of the curvature of the pipe. The solution is given as far as the first power
of the curvature for the case of an elliptic section and a discussion given of the effect of the aspect ratio of the pipe on
the intensity of the secondary flow. It is shown that the axial velocity is modified by two curvature terms of opposite
effect. For values of the aspect ratio near unity the first of these predominates and the resultant effect is an increase
of velocity in the outer half of the bend and a decrease in the inner : for large values of the aspect ratio the second term
is numerically much greater and there is a resultant decrease in axial velocity in the outer half of the bend and an
increase in the inner half. The solution is also given to the first power of the curvature for the case of a square
section. This shows that the intensity of the secondary flow in a pipe of square section is greater than that in 2 pipe
of circular section. Finally the solution is given as far as the second power of the curvature for the case of flow through
a curved pipe of circular section when suction proportional to the curvature is applied at the walls. The result shows
that with the particular distribution of suction considered the diminution in flux through a curved pipe may be almost
entirely eliminated.

1. Introduction.—When a fluid flows through a curved pipe of any cross-section it is observed
that a secondary flow occurs in planes perpendicular to the curved central axis of the pipe. The
theoretical explanation of this secondary flow was first given by Thompson'. There must be a
pressure gradient across the pipe to balance the centrifugal force on the fluid due to its
curved trajectory, the pressure being greatest at the outer wall of the pipe and least at
the inner wall. The fluid near the top and bottom walls of the pipe is moving more slowly than
that near the central plane due to viscosity and therefore requires a smaller pressure gradient
to balance its reduced centrifugal force. Consequently a secondary flow occurs in which the
fluid near the top and bottom walls of the pipe moves inwards towards the centre of curvature
of the central axis and the fluid near the central plane moves outwards. This in turn modifies
the axial velocity. The faster-moving fluid near the central plane pushes the fluid in the boundary
layer at the outer wall to the top and bottom walls and then inwards along the top and bottom
walls (where it is retarded due to. its proximity to these walls) towards the inner wall. Faster-
moving fluid is therefore constantly transported to the outer wall and retarded fluid is carried
to the inner wall. The accumulation of the retarded layer at the inner wall results in a diminution
of flux through the pipe.

Experimental investigations of the secondary flow were made by Eustace?, White?® and Taylor*
and the first theoretical analysis given by Dean® for the case of an incompressible fluid in steady
motion through a pipe of circular cross-section whose axis is bent to the form of a circular arc
of several revolutions. Dean expanded the velocities and pressure as a power series of the
curvature of the axis of the pipe and gave the solution as far as the fourth power of this parameter,
the analysis being confined to a region of the pipe sufficiently far downstream for derivatives of
the velocities along the pipe to vanish.

(871) , A



The first part of this paper extends the same method to deal with pipes of elliptic section and
a discussion is given of the effect of aspect ratio of the pipe on the intensity of the secondary
flow. The second part applies the method to pipes of rectangular section. An approximate
solution for the particular case of a square section is given explicitly and shows that the flow
is more intense than in a pipe of circular section. The last part investigates the effect of a
particular distribution of suction around the walls of a circular pipe on the flux through it.
It is shown that with a suitable choice of suction the diminution in flux may be almost entirely
overcome. Both the first and last parts contain Dean’s results as special cases.

2. The Secondary Flow in a Pipe of Elliptic Section.—2.1. The Stream Function.—
17 6
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The following right-handed, orthogonal system of axes is employed: O¢ along the major axis
of a section; Oy along the minor axis and O¢ along the curved central axis. Let the velocity
components along these axes be («, v, w); C the centre of curvature of the axis 0¢; 0C = 1/
where « is the curvature of O¢; 24, 2b the major and minor axes of a section. Let bja = 2, this
we shall call the aspect ratio of the pipe.

The flow is determined by the Navier-Stokes® equations of motion

e
%—w X curl v = — grad ($o* 4 p/p) — vcurlcurlw . .. .. (1)

and the equation of continuity
dive=0 .. .. ce .. .. .. (2)
together with the boundary condition that » = 0 at the walls.

Making the non-dimensional substitutions ¥ = £/a, v = 9/ia, 2 = {/a; u = viija, v = vi/a,

w = v®fa, p = pr*la®.p and putting 9u/dz = dv/dz = dw/dz = 0 we obtain from equations
(1) and (2)

_ 0@, U0 2 ATH* op 1 02% 1 2%
Box T A0y T eax— oz T Ray  idxdy
_ 07 0090 1aﬁ 0% 1 0% xa o7 1 94
“a’;ﬁri@z‘ié} B_ﬂ—zaxay—'—l—l—xax a—x_—ia_y> @)
0w , DOWw HAUW 1 815 % 1 9% %a ow 7]
Box A%y Tifran— T T eaxdz Lo TEay T I F wandx (1 wan)®
G _ 10 -
59}{(1—{—%@%)%}"I‘Z@{(l—f—%&l%)v}:zo.

The boundary condition is that % = § = @ = 0 for #* - y* = 1.
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Differentiating the third equation in (8) with respect to z we have 2°5/82* = 0 it follows from
the first and second equations that 9p/dx and 9p/9y are independent of z. 9p/0z is therefore
constant. To solve equations (3) to the first power of » we put

4 = Uy + naR, 7 = ¥ + xaR, (4)
ﬁ - Po _!‘ %aRZPI ZF} — ’%‘R(wo + %asz]_ + %“W2)
_ ® o op
Where R= — mz'a—z .
The terms independent of » yield the equations of motion for flow through a straight elliptic
pipe, viz.,
: . ) 0Py 0Py
Uy = Uy = 0 %—@—0
d 9%w 1 o%w
o = T 'ay—zn = — 2(1 + 1/2%)
with the solution wy=1—x"—y". .. .. . . .. (5)
Equating coefficients of » we obtain
0,° op, , 1 2%, 1 2%
—E =T ox TR idxdy

0— _ L0 v 1 0
T~ T ey ' 0x*  A9xdy
dw, | vy dwy  Owy 10w, e 8
“ox T ey T o T 2oy

2w, 1 2w, , 2w,

0= =21+ 3)e+ 5F t e o

ou, . 1 0v,
ox T 29y 0

The last equation may be satisfied identically by a stream function » defined by the equations

1 oy
1= 72 55}
_ 1%
V1= b

u

(7)

Eliminating p, between the first and second equations of (6) we obtain
4 4 4
%—I—%%—I—%g—;:(l—xz—yﬁy . ce . (8
with the boundary conditions 9y /8x = 8y/8y = 0 for x* - ¥* = 1. The solution is
p = (1 — 2* — y*)%B; + Bux® + Byy*)y .. .. ..

where B, = A%375 - 8204% + 1,1142* 4 2122° 4 3928)/360(5 + 22* + A G(2)

B, = — 2*(75 + 22* 4 31%)/360G(1)

B; = — 2%(15 + 264* 4 394*)/360G(4) ,
and G(2) = 35 + 844% + 1144* + 202° + 32°. .. . . .. .. (10)

- 3
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2.2. Nature of the Secondary Flow—It appears from equations (4) that xaR? is the dynamical
parameter of the secondary flow. If W, be the velocity along the central axis for the flow
through a straight elliptic pipe, from equation (5) W, = »R/2a, i.e., R = 2aW,/». R may therefore
be interprc)eted as the Reynolds number for steady flow through the unbent pipe. From equations

(7) and (9 :

wy IR? |
u="5 (1= 2 — (L — 2 — (B, + Bor* + 8By l
— 49%(B, + B + By (1)
20 RP

v="75 (1 — # — 9B, + B + By?) — Boll — 5 — p)xy

v vanishes along both axes: therefore a fluid particle originally in the upper (or lower) half of
the pipe will remain in it during the subsequent motion. Also

wyR*?
[2]10,0) = E B, >0

and

[%)0,1-0y = — %‘} R*B, + By)s < 0 for 6 small and positive.

The fluid near the top and bottom walls is therefore moving inwards whilst that in the central
plane is moving outwards. There must exist two points, say S and S’, on the minor axis at which
u vanishes. Since v vanishes everywhere along the minor axis these must be stagnation points
of the secondary flow. The following diagram shows the essential features of the flow consisting
of two opposed vortex motions centred about the stagnation points S and S’.

Outer é;i Inner
s

An observation of some interest may be made on the pressure variation across the major
axis. Substitution of #, and v, in the first two equations of (6) shows that p, — $,’ (where 20
is the value of p for x = 0) is odd in » and even in y. Putting y = 0 and x = - 1 in turn we
have

(.751)11 — ]31, = [(Pl)u —' ?1']
(Pr)a + (Po)s .

i‘e., | P]_’ —_ '—2— )

the pressure along the minor axis is equal to the arithmetic mean. of the pressures at A and B.
This result is verified experimentally by Richter” for turbulent flow and assumed for laminar
flow by Keulegan and Beij®.

2.3. Effect of the Aspect Ratio on the Intensity of the Flow.—It appears from equations (10)
and (11) that for small 1, # = O(4*) and v = O(4%. For pipes of small aspect ratio the secondary
flow is therefore greatly reduced. For large 1, w = O(1/2%) and v = O(1/4); the intensity is
therefore diminished for large aspect ratios. In the case of 4 = o, that is for the flow along the
channel between two infinite concentric cylinders, the secondary flow vanishes altogether.
This is readily explained on physical grounds: the top and bottom walls, which retard the fluid
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near them and thus induce the secondary flow, are now absent. The following table shows the
variation of (%), _, across the central plane for various values of the aspect ratio in the case when
«a = 0-2 and R — 100. The results are shown graphically in Fig. 1.

TABLE 1
x . —1 28 —1/3 0 1/3 2/3 1
12;[___1/2 0 06 1'9 2'6 19 0'6 O
1 0 1-9 53 69 53 1-9 0
fims 0 24 63 81 63 2-4 0
firms 0 1-7 43 | 55 4-3 1-7 0
1y 0 1-1 2-9 3.7 2.9 11 0
T 0 0 0 0 0 0 0

It is natural to take as a measure of the intensity of the secondary flow the total vorticity 2
in either the upper or lower half of the pipe (these are equal and opposite).

2 b/ Dy ou
Q =J_Jo<'a“ - %)df an
 4wxavR* 2°(125 4 3102° + 4282* 1 827° 4 152°)
=759 B+ 242 - NG(A)

If Q,is the value of 2 for 4 = 1, 7.e., 2, is the total vorticity in the upper half of a pipe of circular
section

2 1284%(125 4 31022  4282* 4 821° + 154%)
0, 15(5 + 2% & 49(1 & A%)%(35 - 8442 - 1142* + 202° | 34°)
%@y [ 0P\ .

The variation of /2, with 4 is shown graphically in Fig. 2 from which it appears that @ attains
a maximum value of 3-12; when 1 = 2-2. The diminution of flux through a curved pipe is due
to the accumulation of a retarded layer of fluid at the inner wall and this in turn is due to the
secondary flow ; it therefore appears probable that the diminution is greatest for values of 4
in the neighbourhood of 2. For 4 = 6 the flow is of the same strength as for 2 = 1; further
increase in 4 diminishes the intensity of the flow asymptotically to zero.

2.4. The Axial Velocity—Substituting for w, in the fourth equation of (6) we have
0%, 1 2% Wy
R 0y? (2 - 12>

the solution of which is

14 222 .

The addition of this term in the axial velocity represents an increase of velocity in the inside
of the bend and a decrease of velocity in the outside of the bend. The solution of w,, from the
third equation in (6), is a polynomial of degree nine in x and y together, odd in x and even in y.
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Since w, is also odd in x and even in y, it follows that the diminution in flux is zero to the first
order of the curvature of the pipe. This polynomial represents an increase of velocity in the
outside of the bend and a decrease in the inside of the bend. The effect of curvature of the
pipe on the axial velocity is therefore represented by two terms w, and w, of opposite sign.
Of these, w, represents the effect generally associated with the flow through a curved pipe and
w, the effect generally associated with the flow along a curved channel. In fact, both effects are
always present together. For values of A near unity the w, term predominates; for large 4
w, is of order 1/4* but w, tends to the limiting value — Zx(1 — %*). The following table gives
the variation in (@),_, across the major axis when R = 100, xa = 0-2.

TABLE 2
x —1 —2/3 —1/3 0 1/3 2/3 1 )
7, 0 27-8 445 50 4-5 27-8 0
By 0 21-7 36-0 50 53-0 33-9 0
Wz 0 15-4 30-6 50 58-4 40-2 0
Wig 0 19-3 34-5 50 54-5 36-3 0
Fa 0 229 38-3 50 50-7 32-7 0
B o 0 30-3 465 50 425 95-3 0

These results are shown graphically in Fig. 3. As 4 increases the point of maximum velocity
shifts from the outside of the bend over to the inside of the bend. The transition from one type
of flow to the other may be delayed by increasing R since w, is preceded by an extra factor R*

2.5. The Special Case A = 1; the Circular Section.—Dean’s results for a pipe of circular section
are readily obtained by puttmg A =1 and transforming to polar co-ordinates by means of the
substitutions

0
¥ =7%cosf U, = _1.00 l
(14)
— ysing _ 9y
Y == 7 sin Uy = — 7~
where %7, u, refer to velocities in the radlal and transverse directions respectlvely Then
R; = — }8p/z; from equations (10), B, = 35, B, = B; = — 147 and from equation (9)
1/):111W(1—1’)(4—7)1'sm€ .. .. .. . .. (15)
v R?
Therefore u, = 1152 (I —7*4 — #*) cos 6
(16)
xy R,® .
g -~ 1150 (1 — 7 (7r* — 237* + 4) sin 0
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3. The Secondary Flow in a Pipe of Rectangular Section.—3.1. The Stream Function.—

A7 /Wé’

Outer wall I Inner wall
- A a—d B o
: d "¢
I"

Using the same notation as in the previous section, equations (1) to (3) may be applied
identically whilst the boundary conditions are now

d=d=w=0 for x=41(lly)

y= -+ 1 (all %)
We put
= Uy + #aRzu, 7 = 0y + waRpv,
P = po + xaRp, W = Rg(w, + »aRiw, -+ =aw,)
: 164® z 0P
Where RR:——?SGC 2—}.6_2. « . .. .. .. . .« (17)

The terms independent of » yield the equations of motion for flow through a straight rectangular

pipe, viz.,
) 0pe __ 0Py
MOZ‘Z)OZO, %—a—y—-o
82w0 1 9%, 7®
and e +53 Bt = 168 cosh & 37

with the solution® »
Wy = % P, [cosh (2n 4 1) 57 — cosh (2n + ) ] cos (2n + 1) 2y

=0

where P,= (2( _{_> )3cosh 72 sech (2n -+ 1) 5_,1 . .. .. .. .. (18)

This series for w, is rapidly convergent and we approximate to w, by retaining only the first
term, v2z., :

w0:<cosh%—-cosh7%> COS%y. . .. . .. . (19

Equating coefficients of » we obtain
0py 1%y 1 P

—wl= g T 3yt ddxdy
10p, 0%, 1 0%,
O0=—37% Tar idroy ' B o a - @0
ow, , 10v;,
 Taay 0




The last equation may be satisfied identically by a stream function » defined by the equations

7 81/)
L oy
(21)
w Oy
U= T ol
Eliminating $, between the first and second equations we obtain
o* 1 2% 7 nx\?
Py + 7E 5y gyz -+ 7 <cosh 97— cosh 27) sin w7y .. .o (22
whence - P = Z_‘, A, cosh —_ + B.x s1nh — )sin Ny
-+ Z (Cn sinh #nizy + D,y cosh nimy) Cos nwx
2
+ T [9::%2 cosh - — 5124° cosh 5 cosh ;4 1442°
+ 7222 cosh Jﬂ sin ﬁy . . . .. - Lo (23
Insertion of the boundary conditions leads to the following equations
— A,L sinh 2 —}— B, sinh %Tn + 7/;—7; cosh 7/;——“
—I—MZ 3[18711 cosh? 7+ (97* — 12822 sinh 5 ] 0 .. . .. (i)
C,sinh #nin + D, cosh nizx = 0O .. .. .. .. .. .. .. .. (1)
DO 6172 /12 T
, Cosh — L Sin s | (9n? — cosh ; — COS #mYy
& ‘A h” —[— B h LS {4477 [(9 ? — 1842% cosh 3 1122‘{“
+ % (— 1" | €, cosh nimy + D, (- cosh miay + 2y sinh miy)| =0 . )
n=1
E (= 1 | 4, cosh ™5 4 B, xsinh 72 |
©
+ JLC,J’L?"E cosh nin + D,(cosh nin 4 wix sinh nix) | cos nmx
A2 . nx . ) 24 .
— {adq O %4 cosh— — 5124 cosh2 coshﬂ -+ 1442% - 722° coshz =0 .. (iv)
where 6,,
=0, p=1.



Solving equations (i) to (iv) we find

Ao . 2pn 42;5 gﬁw ., Sinh niz
(1 + 95, sinh T) By = sinh - 2 (— 1)+ (P* F i*n?)? D |

G 2n (24

~ i 28251nh——{—112s1nh + 9=(1 +cosh~> . (24)

and
sinh 2p = 42 . < ., n’ ., AT
(W — 1) Df, == P—;é Slnhﬁln ’El (— 1) +2 mﬂl’lh 7 B,L

[\ Sinh pin [ P 734 10120 4 642 .

+(=1 piw L36a" (1 22p%)?° sinh 7

8415 sinh%t At cosh% —I
- 9" 1 427 - 971 + Azp2)2J’ .
3.2. The Special Case 4 = 1; the Square Section.——When 2 = 1 we have the case of a square

section. Solving equations (24) and (25) and retaining only 4,, B,, C; and D, as a
first approximation we find ’

(25)

4, = 0-03337 C, = — 0-001864 ]
B, — — Q- —0-

. 0-02621 . Dg_ 0-001858 L o
Ry=(Rp)i= — % sech’—;£ !

Let U, be the velocity at the centre of a pipe of square section; then

U, = »vRS* 2(8;01>00)

— 0-05062xv Rs>. O (274

If U, be the corresponding velocity at the centre of a pipe of circular section we have from
equation (16)

xv R,?
U =988
Therefore U, R\
7 =145(%)
= 2-47 . .. .. .. .. .. .. . .. (28)

The secondary flow is therefore more intense in a pipe of square section than in a pipe of mrcular
section.

4. The Effect of Suction on the Flux through a Curved Pipe of Circular Section.—4.1. First
Approximation to the Axial Velocity.—

Quter
wall

@

A

We take as co-ordinate system polar co-ordinates in the plane of a section and O¢ along the
central axis: the normal suction velocity at the wall is taken to be x=aU cos 8, that is,

9
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proportional to the curvature of the central axis. Making the non-dimensional substitutions
x =vla, z="=C|a; u=via, v=vila, w= v@a, p = pr*[a®. p and putting

du/dz = Bv[dz = dw/oz = 0
we obtain from equations (1) and (2)

o dom  P° %@ oS O7* op 1 9% 10v 1 0%

l’ﬂa—ﬁ;a‘é—yfﬁm:—a—;m—mﬁwa
a0t T earers (at =550
ﬁ%*‘%%h%‘%@m(mow—mmmZ—mgz*%*ég%@
T }c—z% - 1—[——%9;—**1(:050 %ECOSQ - g%]jsm 0> o (1V—|— Z;a;zios 0)*
i |

a—x{(l—l—;%axcose)xﬂ}—i—%{'(lv—l— xaxcos@)f)’}:O. S . .. (29

The boundary conditions are that »/a .4 = xaU cos b, 5 =@ =0 for x — 1. We put
G = 1y + xaR u, - x°a*R 4, § o= v, ralRPv, + x*a®R;%, i

_ R, !
P = po 4+ xaRp, + #*a*Ry*p, w §1 (wo + »aR™w, + x*a R, "w,) E
1op, |

, 20z _ 7
We have approximated to % by neglecting a term xaw,” in comparison with xaR,*w, ; this has
been shown valid for an aspect ratio of unity in section 2.4. The terms independent of « yield

the equations for the flow through a straight circular cylinder with the suction velocity every-
where zero, viz.,

(30)

|

Where R, =

) ap[,'_apo_
Mo::’(}ﬂ‘:(), a—xmﬁ——O
and 0w, 10w, 1 o%w,
o 2 Tiax Tager - 4
with the axisymmetric solution
W= 1—2x*. . T 21 )

Equétiﬁg coefficients of » we find ‘
W, opy 1 0w 18w, | 1 0%

B A PR T R TR
wWo® | ap, , 0w, | 108w, v, 1 %y | 1 8i
4 S0 =5 Vo Taay T2 T wame T

oW, 2w, 1 Bw, 1 %%w, (32)

"oy Tk Txex T e
0 00,
5z @) + 55 =0
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The last equation may be satisfied identically by a function f(x) defined by the equations

u, = f(x) cos 0
| d : (33)
Uh=—7 [#f (x)] sin 6.

Eliminating $, between the first and second equations of (32) we have, putting df/dx = h(x),
LA a‘h ah

xﬁ+6xzﬁ+3x%—3h=x3—x5 .. .. . . (34)
'ththr luti h(z) =A4* §+g_|_i4s 5
wi e solution () =A%+ + 35 192(96——96)
C
whence f(x)zsz—{—Blogx-{—;z—l—D—{—%—Q(Gﬁ——x“). .. .. (35

The boundary conditions are that v; = 0, %, = aU/vR,* cos 8 for x = 1; ie., d(xf)/dx = 0,
f(x) = aUj»R? for x=1. Since u, and v, are both finite at x =0, B = C=0. Put

y = 192¢U/vR;?, then 4 = — 1% (9 + 3y), D = 155 (4 + 9y), whence

wy = 155 L4 + 9) — (9 + 3y)a® 4 6x* — x°] cos 0 36)

U = — a5z (4 + W) — 9B+ y)#* 4 30x* — 72| sin 0 .
Putting w, = g(x) cos 0 in the third of equations (32)

x2E;g§—|—, x%——g = — 2%°f(x)
= g1z [4* — 627 + (9 + 3y)x® — (4 4 9y)x*]. .. (37)

The boundary condition is that g(x) = 0 for x = 1. Solving we find

g(%) 15o50 [(19 + 80y) — (21 + 10p)#* + 9x* — &°(1 — 2%)x. .. (38)

4.2. The Second Approximation to the Axial Velocity.—Since w, is of the form g(x) cos 0, it
follows that this term makes no contribution to the flux through the pipe; the diminution .in
flux (which was deduced on physical grounds in the Introduction) is therefore zero to the first
power of the curvature. Equating coefficients of »? in- equations (32) we find that the equation
of continuity may be satisfied by a function f,(x) defined by the equations

#y = f1(x) cos 20

1d .
U= "5 7 [#f,(x)] sin 20 .

and %l%+%%+%%:%ﬂ;+i%+%a@zﬁ2
i.e., %W; -1-91;—88%2 -+ 9172 ?;—;0;2 :f%cosz 0 -+ yécldéx (xf) sin® 6 — 2xf; cos 20
i.., x%+%+}?§%:é[xf%+x%g+fg] ,
—l—écos29 [’xf%—x%g_fg_élxzfl} .. (39)

from which it follows that w, is of the form m(x) + #(x) cos 20. The integral of the second ’
11



term over a cross-section is zero, consequently to find the diminution of flux it will suffice to
determine m(x). Equating terms independent of 6 in equation (39)

d*m f
dx2+dx I: fdx+xdxg+fg}

( ZZL> de fg

whence dm
E:Qfg .. .. .. .. .. .. .. (40)

1.e.,

the constant of integration being zero to preserve a finite value of dm/dx at x = 0. The boundary
condition on m is that m(x) = 0 for x = 1.

Therefore m(x) = % r f(8)g(t) dt
3J{m+4m%+mwm—@m+www+w%ww
1 (594 + 1720y -+ 360575 — (569 |- 890y - 3027
| L (314  189))f° — (99 + 13y)* 4 164° — 1o }dt @
where 4 = 80 x (1152)%

Let F,, F, be the fluxes through the straight and curved pipes respectively ; then

[»R
F, = 2za® fﬂ { 1’2“1 (1 — x%)x 4 .Qv;l . %%’ R, ®xm(x) ] ax

JT 1 R
=i avR;, 4+ »*a®v R, Lxm(x) dx

and F, = i—; arR, .
F, 4 !
Therefore =1+ 5 'R, J | wm(x) dx
%aRlz 2
=1 1152 [0'03058 -+ 0-3518y 1'175}'2:| . .o (42)

4.3. Variation of Flux with Suction.—Dean’s® value for the flux it obtained by putting y = 0,

that is the suction is everywhere zero. Then

F, ' xa R,2\?

F=1-0008(5s) - - o o o 49
Put y(y) = 0-03058 + 0-3518y + 1- 175y This expression has a minimum value of 0-00424
when y = — 0-1497.

Therefore
F, waR*\?
<F>mf:1_0”M%(1wz
and is attained when y = — 0-1497, z.e., when U = — 0-0007796vR,*/a. It appears from

equation (43) that the series for FC,F converges provided xaR,* < 1152. This condition is
satisfied for x4 = 0-1 and R1 = 100. In this case

e 0-7585) . . R )

F
12
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The following table shows the variation in F,/F, with y; these results are shown graphically

in Fig. 4.
TABLE 3
y —0-4 —0-2 —0-1497 0 0-2 o 0-4
F/F, 0-94133 099456 0-99681 0-97696 0-88853 0-72927
U —20-833sfa | —10-417vja | —7-797/a 0 10-417v/a 20-833v/a

These results may easily be interpreted physically. The diminution in flux is brought about
by the accumulation of a retarded layer of fluid in the inner part of the bend. When y is positive
(and hence U) the retarded fluid is forced towards the outer part of the bend; the region of
slowly-moving fluid is extended and the flux further diminished: When y is negative (and
hence U) the slowly-moving fluid is removed by suction over the inner wall and replaced by
faster-moving fluid injected over the outer wall. The particular distribution of suction we have
considered is capable of almost entirely overcoming the diminution of flux due to curvature: for
the optimum value of U = — 7-796v/a, the flux in the example considered attains a maximum
value equal to 99-7 per cent of its value in the flow through a straight pipe.

5. Conclusions.—The Navier-Stokes equations for the flow of a viscous incompressible fluid
through a curved pipe of elliptic section have been solved to the first power of the curvature.
It has been shown that the dynamical parameter of the motion is, in fact, xaR* where R is the
Reynolds number for steady flow in a straight pipe of the same section and that the secondary
flow consists of two opposed vortex motions in the top and bottom halves of the pipe, the direction
of flow in the central plane being away from the centre of curvature. This flow diminishes for
both high and low values of the aspect ratio of the pipe and in the case when the ratio is infinitely
large (that is, when the motion takes place in the channel between two infinite concentric cylinders)
the secondary flow vanishes altogether. This suggests that the secondary flow in a bend may
be reduced by the introduction of a number of guide vanes following the curvature of the bend ;
the pipe is then divided into a number of channels of larger aspect ratio in each of which the
intensity of the flow will be decreased. To the degree of approximation considered the axial
velocity is modified by two curvature terms. The first of these, involving the square of the
Reynolds number, represents an increase of velocity in the outer half of the bend and a decrease
in the inner half ; that is, the effect generally associated with flow in a curved pipe. The second
term, independent of the Reynolds number, represents the reverse effect; that is, the effect
generally associated with flow through a curved channel. For values of the aspect ratio not far
removed from unity the first of these terms is the larger; as the aspect ratio increases the second
term eventually predominates. Neither of these terms gives any contribution to the flux through
the pipe so that the flux remains unaltered to the first power of the curvature. For the special
case when the aspect ratio is unity we have the solution for the flow through a curved pipe of
circular section. The same method of solution has also been applied to a curved pipe of
rectangular section. The results are given explicitly for the special case of a square section and
it is shown that the secondary flow in a square section is stronger than that in a circular section.

The effect of the increased resistance of a curved pipe is to cause a diminution in the flux
through it. The equations for flow through a curved pipe of circular section have therefore been
solved as far as the second power of the curvature to find the effect of a distribution of suction
proportional to the curvature in reducing this diminution. The results obtained show that
with the distribution of suction considered the diminution may be almost entirely overcome.
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LIST OF SYMBOLS

Curvature of pipe

a, b Semi-major and semi-minor axes of pipe
A = bla
&, ¢ Dimensional Cartesian co-ordinates
X, 2 Non-dimensional Cartesian co-ordinates
u, U, W Velocity components referred to these axes
» Coefficient of kinematic viscosity
R, R,, Ry, Ry Reynolds numbers for steady flow in straight pipes of elliptic, circular,
rectangular and square sections '
Q Total vorticity in the upper half of curved pipe
U, U, Secondary flow velocity at the centre of pipes of circular and square
sections '
xalU cos 0 The suction velocity at the wall of a pipe of circular section
F, F, Fluxes through curved and straight pipes of circular section
REFERENCES
No. Author Title, etc.
1 J. Thompson Proc. Roy. Soc. A, Vol. 25, pp. 5 to 8, 356 and 357.
Proc. Instn. Mech. Engrs., pp. 456 to 460. 1879.
2 J. Eustace Experiments on streamline motion in curved pipes. Proc. Roy. Soc.
A, Vol. 85, pp. 122 ff. 1911. '
3 C. M. White Streamline flow through curved pipes. Proc. Roy. Soc. A, Vol. 123, pp. 645
to 663. 1929.
4 G. L Taylor The criterion for turbulence in curved pipes. Proc. Roy. Soc. A, Vol. 124,
pp. 243 to 249. 1929,
5 W.R. Dean Streamline motion of fluid in curved pipes. Phil. Mag. (7), Vol. 4, pp. 208 ff.
1927.
6 S. Goldstein (editor) Modern Developments in Fluid Dynamics, p. 100. Oxford University
Press. 1938. :
7 H. Richter .. .. Forschungsarbeiten des Ver. deutsch. Ing., No. 338. 1930,
E. H. Keulegan and K. H. Beij Journ. Res. Nat. Bur. Stand., Vol. 18, pp. 89 to 114. 1937.
9 R. J. Cornish Flow in a pipe of rectangular section. Proc. Roy. Soc. A, Vol. 120, pp. 691
to 700. 1998.
10 W. R. Dean Streamline motion of fluid in a curved pipe. Phil. Mag. (7), Vol. 5, p. 682.
1928,

14



/N
~L\

y

TN



ARN
AN
// \\ ,
7 -
L/
5
/4 \
V4 \
4

......




h
1o
\ —
A
£
0~8
06
0-4
02
0 >
-04 -0:2 0 0:2 04y
Fic. 4.
17

(371) Wt. 18/9296 K.9 355 Hw. . PRINTED IN GREAT ERITAIN



R. & M. No. 288(

Publications of the
Aeronautical Research Council‘

ANNUAL TECHNICAL REPVORTS OF THE AERONAUTICAL
RESEARCH COUNCIL (BOUND VOLUMES)

1936 Vol. 1. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 4os. (415 14.)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, ete.  §0s. (51s. 14.)

1937 Vol. I Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (415. Id)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 60s. (015, 14.)

1938 Vol. I Aerodynamics General, Performance, Airscrews: g5os. (51s. 14))
Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 3o
(315. 1) ‘

1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engmes ‘505, {§1s, 14.)
. Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc.
635, (645. 24))
1940 Aero and Hydrodynamics, Aerofoils, A:rscrews, Engmcs, Flutter, Icing, Sta.blllty and Control
) Structures, and a miscellaneous section. 5os. (515, 14.)

1941 Aero and Hydrodynamics, - Aerofoils, Airscrews, Engmes, Flutter, Stability - and Control,
Structures. 635, (64s. 2d)) -

1942 Vol. L Aero and Hydrodynamics, Aerofoils, Airscrews, Engmes 755, {76s. 34.)
Vol. I1. Noise, Parachutes, Stability and Control, Structures, V1bratlon, Wind Tunnels
475. 64. (438s. 7d.) ‘
1943 Vol. L Aerodynamics, Aerofoils, Airscrews. 8os. (81s. 44) ' 3
, Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control Structures
gos. (g1s. 64.)

1
1944 Vol I Aero and Hydrodynamics, Aerofoils, AJrcraft, Airscrews, Controls. 84, (8 5s. 84’.)
. Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance,
Plates and Panels, Stability, Structures, Test Equipment, Wind ‘Tunnels .

845. (85s. 84) 7
Annual Reports of the Aeronautical Research Council—
193334 15, 64. (15. 84.) 1937 25. (2s5. 24.)
193435 15. 64. (15, 84.) 1938 15, 6d. (15. 84.)
April 1, 1935 to Dec. 31, 1936 45, (45 4d) " 193948 - 35, (35, 24.)

Index o all Reports and Memoranda published in the Annual .
Technical Reports, and separately——
April, 1950 - R. & M. No. 2600. 25, 6d. (25. 7}4.)

Author Index to all Reports and Memoranda of the Aeronautical"
R@seamh Council—
190G-1949. R. & M. No, 2570. - 155 (155 34)

Indexes to the Techmcal Reports of the Aeronautical Research
Council— , :
December 1, 1936 — June 30, 1939. R.& M. No. 1850.  1s. 34. (15. 434.)

July 1, 1939 — June 30, 1945. R. & M. No. 1950. 15 (15, 134,

July 1, 1945 ~— June 30, 1946. R. & M. No. 2050.  1s. (15. 144.)

July 1, 1946 — December 31, 1946. R. & M. No. 2150, 15 34. (15. 434 ,
January 1, 1947 — June 30, 1947~ R.& M. No. 2250. 15 34. (5. 41d))

v July, 1951, R. & M. No. 2350. 15, 9d. (15. 10}4)

Prices in brackets include postage.

Obtainable from:

HER MAJESTY’S STATIONERY OFFICE

Yorlk House, Kingsway, London, W.C.2: 423 Oxford Street, London, W.x (Poﬁt Orders : P.O. Box 569, London, -
S.E.1); 132 Castle Street, Edinburgh 2; 39 King Street, Manchester 23 2 Edmund Street; Birmingham 33
rog St. Mary Street, Cardiff : Tower Lane, Bristol, 1 ; 80 Chichester Street, Belfast, or through any bookseller

8,0, Code No. 23-2880 *

R. & M. No. 288(



