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Summary.—A method is developed of calculating the performance of a pair of contra-rotating airscrews, closely
analogous to that described in R. & M. 2035° for a single airscrew. The assumptions made are considercd to be
theoretically justifiable if the interference velocities are so small that their squares and products may be neglected.
It is hoped to compare calculations by the present method with experimental results.

The equations have been applied by an approximate single radius method to give the difference in blade setting
between the front and back airscrews for equal power input; a comparison is also made between the efficiencies of
single- and contra-rotating airscrews,

L. Introduction.—The present note contains equations for a close contra-rotating pair of air-
screws based on the same assumptions as those of R. & M. 1674 and 18492, together with the
following special assumptions. These assumptiors appear to be justifiable when the interference
velocities are considered as small quantities of the first order of which squares and products
may be neglected.

(i) The interference velocities at any blade element may be calculated by considering the
velocity fields of the two airscrews independently and adding the effects.

(ii) Either airscrew produces its own interference velocity field which so far as it affects the
airscrew itself is exactly the same as if the other airscrew were absent and includes the usual
tip loss correction. '

(iii) Added to this is the velocity field of the other airscrew. Since the two are rotating in
opposite directions, the effect will be periodic and its time average value may be taken to be
equal to the average value round a circle having a radius of the blade element.

(iv) In considering the interference of either airscrew on the other, it is necessary to resolve
the mean interference velocity into axial and rotational components.

The average value round a circle of the axial component interference velocity varies slowly
through the airscrew disc. It is therefore reasonable to assume for the axial component for a
close contra-rotating pair that the effect of either airscrew (y) on the other (2) is equal to the mean
axial component in the plane of the airscrew disc of (y).*

The average value round a circle of the rotational component is zero3 at any distance in front
of the airscrew disc and has a constant value at any distance behind, this value being twice
the mean effective value for the airscrew blade sections. It is therefore assumed as regards the
rotational component that the effect of the rear airscrew on the forward airscrew is zero : the
effect of the forward airscrew on the rear airscrew is equal to twice the mean value of the rotational
component in the plane of the disc of the forward airscrew with its direction reversed.

* Varying degrees of closeness might be allowed for empirically by multiplying 2, by (1 — u) and u, by (1 4- 4), where
# is a parameter varying from a small value for a close pair to a value near unity for a distant pair.
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2. Equations of motion will now be written down on the lines of the above assumptions using
as far as possible the ordinary notation (see Fig. 1). In order to maintain the greatest possible
degree of generality the equations will be developed to as late a stage as possible on the basis
of assumptions (i) and (ii) only. Thus either airscrew is subject to its own interference velocity
w,, which is normal to W (Fig. 1) and is given by the usual equation

wy, = sC W /4xsin ¢ ; .. .. . . .. .. .. .. (1)

in addition it is subject to the interference velocity of the other airscrew whose axial and rotational
components will be denoted by » and .

The values of » and v according to assumptions (iii) and (iv) may be obtained as follows. The
mean value @, of w, taken round the circle of the blade element is given by the equation

w, = sC,W/4 sin ¢

and is in the same direction (normal to W) as w,.* Then according to assumptions (iii) and (iv),
denoting the front and back airscrews by suffices ' and B (Fig. 1, b and ¢)

Up = Wy COS ¢

’

= %40, COS ¢, .. .. .. .. .. .. .. .. (3)
Uy = %0, COS ¢ T, .. .. .. (4)
=0, .. .. .. .. .. .. .. .. .. . (5)
vy = — 2wa,‘F sin ¢ . (6)

In what follows the general notation (#, v) will be retained as long as possible.

The general equations will first of all be obtained in a form convenient for ultimate reduction

to a first order theory analogous to that of R. & M. 20353 using the following notation. Write
for either airscrew :

w, = Wtany , .. .. .. .. .. .. .. .. .. (7)
(Fig. 1) which by equation (1) implies also

sC,=4xsin ¢ tany . .. .. .. . . .. .. .. (8)
Write aiso (asin R. & M. 1849?)

b = ¢, - B .. . .. . . .. . .. (9
where '

V=rQtan ¢,. .. .. . .. .. .. .. .. .o (10)

Resolving parallel and perpendicular to the direction of W (Fig. 1) for either airscrew?,
W =702 sec¢,cos § +using —wvcoséd , .. .. .. e e (1D
w, = W tan y = 702 sec ¢, Sin f — % cOs ¢ — v sin ¢ , .. .. .. (12)

where, if assumptions (iii) and (iv) are made, % and v are given by equations (3-6).

* Strictly speaking the value of ¢ corresponding to #, v will differ from that appropriate to w, but the difference is of
the second order in w,/W and will be ignored. :

T Varying degrees of closeness might be allowed for empirically by multiplying #, by (1 — x) and #; by (1 -+ )
where 2 is a parameter varying from a small value for a close pair to a value near unity for a distant pair.

} For a single airscrew, g = y, and the symbol y is not used.

§ W is the projection of the broken line C D E 4 on A B; w, is the projection of the reversed line A £ D C on B C.
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For the thrust and torque acting on a blade element we have the usual equations
dT = N(dL cos ¢ — dD sin ¢),
(1}r)dQ = N(dL sin ¢ + dD cos ¢),

where
aLl = LpcW2C,dyr,
adD = }pcW2Cpdr,
so that
(@T|dr) = mprsW? (Cpcos ¢ — Cpsin 4), .. .. .. .. .. o (13)
(1/r) (dQ[dr) = mprsW? (C, sin ¢ 4+ Cpcos ¢). .. .. .. .. . o (14)

For the total power loss (power input minus thrust power) we have
QdQ — VaT = NdL (rQ sin ¢ — V cos ¢) + NdD (r2 cos ¢ -+ V sin ¢) .

By the geometry of Fig. 1 it follows that for the induced loss (defined here as the part of the
power loss depending on the lift of the blade elements)

dP, = NdL (vQ sin ¢ -- V cos ¢),
(dP,[dr) = mprsWaQ sec ¢, C, sin B, .. .. .. .. . .. (15)
and for the drag loss
dP, = NdD (vQ cos ¢ + V sin ¢),
(AP, [dr) = mprsWorQ sec ¢, Cp, cos f. .. .. . .. .. .. (18)
Equations (13-16) are all identical in form with those for a single airscrew. '

Equations (10-16) with (3-6) will be developed into forms analogous to those of R. & M. 18492
and R. & M. 1674' in §7 and §8 respectively. The most practical and useful form is obtained by
considering g and y as small quantities and neglecting squares and products of g and y for both
airscrews. The resulting equations analogous to those of R. & M. 20352 are developed in §§3-5.

B

3. Irst Order Theory.—Consider g, y as small quantities of the first order and write ‘

U, = to, Wi, (17
vy - ’pl)ywlz)
and _
Mo, SII ¢oy — ¥, COS ¢o, = &, , (18)
Hoy COS o, + ")Oy sin ¢, = Loy »
where either y = F, 2= Bory=B,z=F.
.Thus equation (11) gives for either airscrew,
W,=7rQ, sec ¢, + £,Wy,+ 002 , .. . .. .. .. oo (19)
and substitution in equation (12) gives
(B — »),rQ, sec ¢y, = L7 2, sec ¢oy, + O(»2) , .. .. .. . (20
for either y=F,z=Bory=B,2=F. On the basis of equations (3-6) we have,
ftop = #op COS ¢op -+ O(y) l
vor = Oy) ,
or ) 1)
Hop = %op COS ¢op + O(y) ,
Vog = — 2oty SIN ¢y + O(y) .

(76164)



Since
rQ, tan ¢, =V = 72, tan ¢, ,
equation (20) may be written in the form '
(B—9), = Cohy, +00®), .. .. . . . .. . oo (22)
where 4, = (sin ¢,,/sin ¢,,).
Also from (8) for either airscrew,
y = bsC, + 0(?) ,

where S .- . .. .. .. (28)
1/6 = 4, sin ¢,%, ‘

so that sC, is of the same order as y.

If C, is given for both airscrews, equations (23) determine y and equations (20, 18 and 21)
determine g for both airscrews. Then equations (15) and (16) in the form

(AP, [dr) = mprs.Cr Q% sect ¢,. f + O(»*) , .. .. . . .. o (24
(AP,/dy) = mprs.Cpr® 2% sec® ¢y + O(y?) . . .. .. . o (25)

give the power losses of either airscrew. In general it is convenient to consider sC, as a small
quantity of order y* so that both dP,/dr and dP,/dr are of order y2. To the first order the power
input to either airscrew is

Q(AQ|dr) = mprsr3® sec? ¢, (Cy sin ¢y ++ Cp cos ¢g) + O(»?) . .. .. .. (26)

The further development analogous to that of R. & M. 20352 required to determine C, for
cither airscrew for given blade angle setting is given in §5, but it is convenient first to consider
the application of equations (24-26) to determine explicitly the power input and power wastage

to the first order, for given C,, for the particular case of equal rotational speed and power input
for the two airscrews.

4. Special Case. Equal Roltational Speed and Power Input.—Equal Rotational Speed.—It
follows from equations (10) and (23) that equal rotational speed of the two airscrews implies
equal values of ¢,, %, and b so that 4,,is unity. Equation (22) then gives

B, =1y, + Gy, + 0, .. . . . . .. . .o (27
so that from (24) _
(AP, )dr), = mprt2® sec® g (sCi), (v, -+ Co, va) + O07), ... . o .. (28)

and using equations (21)
o = #o COS® ¢y + O(?), Loy == #o (COSE y — 2 sin? ) -+ O(y).

and
(dP,[dy), = wpr (rQ sec ¢o)® (SC1){yr + %oy COS* do} + O(?), .. . o (29

(dP,jdr), = mpr (rQ sec ¢o)® (SC.)s{yy + #ev 5 (COS® $o — 2 8in o)} + O(°) . .. {30

Lqual Rotational Speed and Power Input—Equation (26) shows that equal power input to
the blade element at radius # combined with equal rotational speed implies that

(sCr)r — (sCp)p = Oy*) ,
and . . . .. .. . .. (31)
YFr VB ™ 0(7’2) ;
equations (29) and (30) then become
(AP, jdr)y = mpr (2 sec ¢o)* sCry (1 + 2, cOs? ¢g) + O, :
(AP, [dr), = mpr (¥ sec ¢o)* sCry (1 + x COS? ¢y — 22y SIN® b)) + O(®) . .. .. (32)

* R. & M. 2035%, equation (10).
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For the combination of two airscrews :

(dP,]dr) e = mpr (72 sec ¢,)* 25Cry (1 + w, cos 2¢y) 4+ O(*) . .. .. .o (33)
Equations (31-33) and (25) transformed into equations for the coefficient p,, p., of induced
drag power loss, analogous to equations (31) and (33) of R. & M. 2035?, may be used to calculate
the power loss grading for all radii for a given distribution of sC, (equal for the two airscrews) ;
the corresponding blade angle distribution may be obtained from §5. The power input grading
(torque grading) may be obtained from equation (26) or more accurately (as in R. & M. 20353)
from equation (14) using the more accurate value of W obtained below in §6. In the latter
case the power input will not be exactly equal for the two airscrews if the values of sC, are equal.
The second order difference in sC, required to make the power inputs equal to the second order
is determined in §6. Or, the performance for a given blade angle distribution may be deduced
from the equations of §5; the blade angles at standard radius (0-7) might be adjusted to give
equal power input at that radius. o

Example—For the purpose of illustration equations (33), (25) and (26) have been used to
calculate the partial efficiency for a section at standard radius (0-7) for equal rotational speed
and power input. The formulae (deducible from equations (31-33), (25) and (26)) are

| vl (1 xcost dy) + Cp L (39
17 = cos ¢y (Cy sin ¢y + Cp COS o) o o o o '
| _ yCr (1 %y cOs® g — 2 sin® ) + C) ' .. (35)
s = cos ¢y (Crsin ¢y + Cp cos ¢) ’ o DR
~ vC (1 4 % cos 2¢0) + C,,
—mo— e )

with
y = SCr/(4x, sin ¢y) = bsC, . .. .. .. .. .. .. .. (87)

In Fig. 2 values of (1 — #.) are plotted for a range of values of J for (1) a pair of contra-rotating
two bladers and (2) a pair of contra-rotating three-bladers ard for the following values of s, C,,

and Cp:— s = 0-090, C, = 0-56, C,=0-017.

The values of s and C, are those at radius 0-7 for airscrew B in R. & M. 20214, while the value
of Cp is adjusted to give a partial efficiency for this radius equal to the calculated efficiency
(0-878) for the whole airscrew. The calculations correspond therefore, to a power input to each
airscrew of 2,000 h.p. at 450 m.p.h. equal to that assumed in R. & M. 2021% (a total of 4,000 h.p.
for the two airscrews) for the same diameter, rotational speed and height. They were made
for a range of values of J from 1-27 to 4-54.* They are compared with the corresponding
efficiency figures for a single airscrew of double (the same total) number of blades and solidity
and also with airscrews having the same number of blades as one of the contra-rotating pairs
and the same total solidity. The equation corresponding to (36) for a single airscrew is

. yC, + C,
s = cos ¢ (Cr sin ¢y -+ Cp, cos o)

with (37) in which it must be remembered that values of x, and s must be used, appropriate to
the fofal number of blades and solidity. Thus the value of s for the single propeller has twice
the value for the corresponding contra-rotating pair, and so the value of y in (38) would be double
that in (36) apart from the change in #, due to doubling the number of blades.

The results of Fig. 2 show that for the present case the increase of efficiency as between the
2-bladers (contra-rotating) and the 4-bladers (single-rotating) varies from 1-0 per cent. to 4+6
per cént., and the increase as between the 3-bladers (contra-rotating) and the 6-bladers (single-
rotating) varies from 1-7 per cent. to 4-8 per cent. for the patticular values of s, C;, ard C,, chosen.

11— (38)

* The actual efficiency figures for the highest values of J would in practice be reduced by the increase of €, due to
increased compressibility effect. .
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5. The Relation between sC, and Blade Angle 0 to the Fuirst Order, for the General Case.—-This
may be obtained by a similar method to that of R. & M. 20353, §3, as follows :—

Write

0 —dg+e=0, .. .. .. .. . .. .. .. .. .. (39
and
asCy, = o+ ¢
-0 — 8, . . .. .. .. .. .. .. .. (40)

where a and e define the (straight line) lift curve as in R. & M. 20353, equation (11), and are,
in general, functions of the Mach number.

Comparison of (40) and (23) gives :
bO = bp + ay -+ O(y?) , .. .. .. .. .. . .. .. (41)

which with (22) determines 0, @, as functions of y,, y; and so of (sC,), and (sC,); in the form
b
0, — (“be ) vy F Gy, F 00 L 49
¥y

withy = F, z= B or y = B, 2= F. Using the relation 1,4, = 1, the pair of equations
represented by (42) may then be solved for v, y, in the form

(SCL)J' = (y/b)y = {(“ —I— b)z @y - bzcoyz'yz @z}/{<a —l— b)F (“ —I_ b)B - beBCOFCOB}> + O('yz) : (43)

which reduces to equation (13) of R. & M. 20352 on putting o, = oz = 0. In this pair of
equations, using (18) and (21) we have

Cop = %oz COS dop COS o + O(y) .. . .. .. .. .. (44)

Zop = %ox (COS dop COS o — 2 SIN ¢y SIN ?SOF), -+ O(y) , .. .. .o (49)
and .

App = 1fAgp == sin opfsin dopz . .. .. . .. .. . .. (46)

Special Case. For Equal Rotaltional Speed, using the results of §4 equation (43) becomes
(sC)p = v£/b

= {(a 4 B) @, — xyb c0s? ¢, 0 }/{(a + b)* — #2b? cos? ¢,
(cos? ¢y — 2 sin? ¢y)} + O(y?) ,
(SCL)B = /b

= {{a + b) Oy — b (cos® ¢y — 2 5IN® ) O }/{(@ + b -— #,2b° COS? ¢,

(cost do — 25in o)} + 00 . .. (47)

For equal rotational speed and equal power input to the blade element at radius 7 equation (42)
becomes (using 31)

0, = {(“ —Z}; b) + Coy} y + 0%,

and so
Op — O, =1y (Cop — Z;0}3) + 0(?’2)

o= 2y, sin? ¢y + O(y?) )
= LsC, sin ¢, + O(y?) . e - .. .. .. .. (48)

This value is plotted against J in Fig. 3 for the values of sC, used in §4 and varies from 0-7 deg.
to 1-3 deg. over the range of J considered.
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6. Values of W and Q(dQ|dr) to the Second Order in y.—The value of W to the second order can
be obtained from equation (11) in the form

W, = 7R, sec ¢y, + &,7R2,5ec ¢y,v,

= 78, sec ¢, {1 —]— Eohyy.} + 0@ . .. .. .. .. .. (49)
The expressions for dT/dv and dQ/dr involve the factors sin ¢, cos ¢ which may be written,
sin ¢ = sin ¢, (1 + B cot ¢) + O(y?) , .. .. .. .. .. . (50)
cos ¢ = cos ¢, (1 — B tan ¢) + O@»?) , .. .. .. .. .. .. (81
with |
B, = v, + Loby, + 0% , . .. .. .. . .. o (52)

from (22). Equation (49) then gives
- W}rsin ¢, = 7202 tan ¢, sec ¢y, {1 + [2&, + o, cOt ¢y,] 4,7, 4‘
+ v, cot ¢} + O@y®) , .. L (83)

W2 cos ¢, = 1202 2 sec ¢, {1 4 [2&, — &, tan ] 4,7, — », tan ¢} + O(2) ;..  (54)
or

W2 sin ¢, = 722,% sec? ¢q, {sin ¢y, + F4,,7, [#o, (8 — cOs 2¢y,) — #,, sin 2¢,]

+ yy Cos (]S(Jy} + 0(,}}2) » .. .. (55)
W2 cos ¢, = r202,2 sec? ¢, {COS ¢o, + $4,.7, [toy SIN 2y, — vy, (3 + COS 2¢p,)]
— y, sin ¢y} + O(¥?) . .. .. (56)

In evaluating Q2(dQ/dr) and V(dT/dr) it is reasonable to consider “CD/C ., as before, as a small
quantity of the same order as y, and to write

dQ|dr) = mpr2QW? sin ¢ sC, {1 + (Cp/C.) cot ¢} + O(»*) , .. .. .. (57
V(dT|dr) = nprrQ tan ¢y W2 cos ¢ sC, {1 — (C,/C,) tan ¢y} + O(3®) . .. .. (58)

In these expressions W2 sin ¢, W? cos ¢, are given by equations (53-56) in which y is given by
y = bsC,,

so that the torque and thrust power loss grading may be evaluated as far as terms of order 2
if the value of sC, is known to this order for each airscrew. Equations (43-46) give the values
of sC, for each airscrew in terms of the blade angle settings. ‘

Strictly speaking, equations (23) and (40) are only correct to the first order in ¥ and «, but
it was suggested in R. & M. 2035° that in practice the curves of C, against « in the unstalled
range and of sC, against y over a considerable range of large values of J, are straight lines to a
higher order of approximation. The additional order of accuracy would then apply to equations
(43) since they are deducible from (23) and (40) by linear transformations; the values of sC,
deduced from (43) for given blade angles would then be sufficiently accurate when substituted -
in (57) and (38) to give values of thrust and torque power correct as far as terms in »2.  In any
case the value of power loss given by taking the difference between power input deduced from

(57) and useful power deduced from (58), will be consistent with (24) and (25) and correct to the
same order as the latter equations.
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Case of Equal Revolutions to Second Ovrder—Substitution of
Mo = Mop == %o COS ¢ ,
v =0,
vop = — 2xg SIN ¢,
in (53-56), gives '
W2 sin ¢, = 7202 tan ¢, sec ¢, {1 -+ v, cot ¢,

+ 2y (cOt ¢ - sin ¢y cos ¢o)} + O(»2) , .. (59
W, 2sin ¢, = 7222 tan </>0 sec ¢, {1 4+ 5 cot ¢,

4 %oy (cOt ¢y -+ 3 sin ¢, cos ¢y)} —[— O(y .. (60)
W2 cos ¢, = r202% sec ¢y {1 — yptan ¢, + ey, Sin ¢y cos ¢} + Oy .. .. (8])

W2 cos ¢ = 1202 sec ¢y {1 — vy, tan ¢, + #y, (2 tan ¢, + 3 sin qSO cos (,50)} + 0@(?) . (62

Equal Power Input to Second Order.—1It is evident that the difference C — C,pwill be of order
y? and it is therefore reasonable to assume that C . — C,; is of order »2. The condition of equal
power input will therefore be taken as

(sC Wesin @), = (sC, W? sind), + O@®) . .. .. .. .. .. .. (83)

Condition (63) may be satisfied by writing y, = y, = y in (59-62), since this is true to the first
order, and putting

(sC)p = sCp (1 4 #yy sin ¢y cOS ) , .. .. .. .. .. .. (64)
(sC)p = SC, (1 — #yy sin ¢, oS ¢,) . . . . .. (85)

n (63), where sC, is a mean value between the two airscrews. The final expressions for the
thrust and torque grading will be for either airscrew, :

Q(dQ/dr) = mpr* 23 tan ¢, sec ¢o{sC {1 + y [cot ¢,
. + # (ot ¢y + 2 sin ¢, cos ¢y)]} + sCp cot o} ; .. (66)

and for the front and back airscrews separately,
V(AT |dr), = mpr*2® tan ¢, sec ¢0(SCL{1 + v [— tan ¢,

+ 2wy $in ¢y COS ]} — sC, tan ) .. .. (67)
V(dT]dr), = mprtf2® tan ¢, sec qs.)(sC {1+ y[— tan ¢,
+ 22, (tan ¢, 4- sin ¢, cos ¢,)]} — sC,, tan qSO) . (68)

The differenice between these expressions for torque and thrust power agrees with the first order
value of power loss given in (31-33). Expressions for the blade angle to the second order could
be deduced from §7, equation (76) below, but would be rather complicated.

7. Exact Transformation of Equations (11) and (12) into a Form Analogous to the Equations
of R. & M. 18492 —Write

Uy = fhy Wy, ,
e 69
v, =v, 1w, , | .
where either v = F, z = B, or y = B, z = F, and p,, », arc functions of ¢,, ¢, (according to
equations (3-6), of b, only)
Write
psing — vcosd =&, (70)

Y CoS ¢ - vsing = ¢ .
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These definitions are analogous to the first order definitions of (17) and (18). Write also

7R sec ¢, cos g = C ,

rQ sec ¢, sin B = D ; 71)
also by (10) '
(rQ tan o), = (r2 tan ),
Then equations (11) and (12) become |
W,=C, b 60, , o oo e e @)
= W,tan y, = D, — {,wy, . .- .. .. .. .. (73)
The pair of equations,
wy, +2w, = D, (74)
| tawy, + w, =D, ,
may be solved giviﬁg
wy, = (D, — D)1 — 5,00 . .. . .. .. . .. .. (75)
Then (72) gives | _
W,={C,(1 —&2) + 6D, — 6LDY(1 —&L) . .. . .. .. (76

and substitution in (73), using (71), gives
D D D
tany, =tan (1 — &, )11 — et + &, 7 ~ 0. F)
’ ¥ ¥

_ tan ﬁy(l sin ¢y sin f, )/[ — W' — &, tan B, 1. (77)

& sin 46 sin B, Ys1n ¢, cos B,

The two equations (77) determine y,, y, and so in virtue of (8) (sC,) and (sC,); as functions of
b5 b5 ONly, by, op being known. Since equations (3)-(6) are only claimed to be correct to the
first order, the advantage of the present equatlons over first order equations is doubtful.

It would be possible to plot (sC,) against ¢, giving for each J a series of curves for various
values of ¢, and similarly for (sC,),, (Fig. 4). It would then be necessary to determine inter-
sections with (sC,) » against &, and (sC,), against a; curves giving consistent values of ¢ ard ¢,
and this could be done by a very rapid successive approximation between the two figures. This
represents the analogue of the use of Chart I'in R. & M. 18492

8. Equations of the type of R. & M. 16741.—From Fig. 1.
 AC = w, cosec y .
Resolving parallel to AF, we have ’
ACcos (¢ —y) =72 — v,
giving
w;, = (¥ — v) sin y sec (¢ — »)
= (rQ — v) tan y sec ¢/(1 + tan y tan ¢) , . . . .. (78)

with tan y = sC. /4= sin ¢ .
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For the front airscrew » = 0 and the equation becomes identical with equation (8) of R. & M.
16741. For the back airscrew v/r2 is of order y and might be calculated by writing «, = «,.

V is then given by (Fig. 1)
V=vQtan¢ — GC — CD — HK
=y7Qtan¢ —w,secd —u —vtand . .. .. .. .. .. (79
The most convenient form for W is (Fig. 1)
W =HA — GB — HG
= (2 — v) sec ¢ — w, tan ¢ , .. .. .. .. .. .. (80
which is identical with equation (2) of R. & M. 16741 for v -— 0.

The equations (78-80) may be transformed so as to involve non-dimensional coefficients only,
by dividing by convenient multiples of RQ,, RQ,.

The solution of the equations by the methods of R. & M. 16741 is straightforward apart from
the occurrence of the term involving v in equation (78) for the back airscrew. A suitable series
of values of the blade incidence « is first chosen for both airscrews for a series of standard values

of the radius. Values of C,, C, for either screw are supposed known as function of «, and ¢ is
deduced from the equation

=0 — o .

Equations (78), (79), (80), (14), (15) and (16) then determine in succession values of w,, W, V,
Q(dQ/dr), dP,/dy, dP,/dr (or of suitable coefficients of them) for both airscrews. In evaluating
the term v in equation (78) it should be sufficiently accurate to write o, = o, It is finally
necessary to plot values of V' or of its coefficients [, and [, and of Q(dQ/dr), dP,/dy, dP,/dr or
their coefficients against «, so as to deduce values of the thrust and power coefficients for the same

values of V' at all radii before plotting against the radius #* and integrating to obtain the power
input-and power loss on the whole airscrew.

9. Recapitulation.—§1. Of the four basic assumptions as set out in §1, the first two are con-
sidered to be of general application to an airscrew, subject to any type of external interference.
The development of the equations is carried as far as possible without reference to the third
and fourth assumptions and these may require further empirical modification and would in fact

be modified as a result of increasing the distance between the two airscrews or varying their
diameters, éeic.

§2. Equations are given of the most general form conrsistent with assumptions (i) and (ii) and
determine the total velocity W and the interference velocity w, of either screw on itself, in terms of
rQ, ¢, and (u, v) the components of the interference velocity of the second screw ; also for the
thrust, torque and power loss grading in terms of W, C,, C, and ¢.

§3. In this section squares and higher powers of the interference velocity ratio are neglected.
This is probably not a serious limitation since it is very doubtful whether the original assumptions

hold beyond the first order in the interference velocities. Explicit equations are given for
(dP,dy), (dQ/dr), (dP,/dr) to the first order.

§4. The equations of §3 are applied to the particular case of equal rotational speed and equal

power input. Explicit equations are given for the partial efficiency at a given radius and for
the induced loss for front and back airscrews separately.

* Coefficients of the type #,, Py, pes are plotted against 72 = (r/R)2
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§5. This section gives first order results for given blade angles and also the first order difference
of blade angle between front and back airscrews for the case of equal angular velocity and power
input. This completes the formulae necessary to obtain the numerical results given in the
present note.

§6. Values of W, (dQ/dy) and (dT/dr) are given to the second order for known values of C,.
Difference of C, between the two airscrews is determined to the second order for equal revolutions
and power input. The resulting value of the difference between the thrust power and torque
power checks with the first order estimation of power loss in §3.

§7. In this section equations are obtained analogous to those on which the charts of R. & M.
18492 are based.

§8. In this section equations analogous to those of R. & M. 1674! are developed which could
be used in the absence of charts to calculate the exact performance of an airscrew on the basis
of assumption (i)—(iv).

LIST OF SYMBOLS

a Reciprocal of slope of lift curve. Equation (40).
b Equation (23).
B suffix For “back airscrew .
¢ Blade chord.
C suffix = Mean value for contra-rotating pair of airscrews.
C, D Equation (71).
C,, C, Lift and drag coefficients of blade element.
dD Drag of blade element.
F suffix For “front airscrew”. .
J ==aV/]/RQ.
aL Lift of blade element.
N Number of blades of either component.
dP;, Induced power loss for blade elements.
dP, Drag power loss for blade elements.
dQ Torque on blade elements.
7, R Radius of blade element, tip radius.
s Solidity (= Nc¢/2a7) of either component.
S suffix For single airscrew.
@I Thrust on blade elements.

u, v Components of interference velocity of front airscrew on back airscrew or
vice versa (Fig. 1). )

V  Forward speed (Fig. 1).
W Resultant velocity at blade element (Fig. 1).
W, Fig. 1.
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List of Symbols—continued.

w, Interference velocity of either airscrew on itself (equation (1)).

@, Equation (2).

y, z suffices  Denoting cither front airscrew and back airscrew respectively, or vice versa

(equation (17)).

0 suffices Indicating limiting value for zero lift.

« Blade incidence.
f TFig. 1; equation (9).

y Fig. 1; equations (7) and (8).
e Zero lift angle ; equation (39).

¢, & Equations (70), (18).
Efficiency.

Blade angle ; equation (39).

N
vl
© Equation (39).
»

4,, Equation (22).
#r ""}Equations (69), (17).
v, %

&, & Equations (70), (18).

Tip loss factor ; equation (1). x, is written for %(by).

é, ¢ Fig. 1. Equations (9), (10).
£ Angular velocity in radians per second.

Note. O(y?*). The notation used in equation (19) efc. The statement

F(y) = Fily) + 00"
implies that F(y) can be expanded in powers of y in the form

Fy)=f+2vf+v+. ..

2

and that

Fl(?’) :fo -+ ?’fl + 'J’zfz + ..+ ')’nﬁ a—1 -+

Lock and Yeatman

Lock

Lock, Pankhurst and Conn

Pankhurst and Fowler

Lock
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