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Summary.—The torsional vibrations of a four-boom cylinder of doubiy symmetrical rectangular cross-section are
considered and the differential equation of motion is derived on the assumption that the ribs maintain the section shape
but do not themselves resist any warping out of their plane and that the walls of the cyhnder are effective only in
shear.

Frequency equations are derived for a length of cylinder, free at both ends and prevented from rotating at the
mid-section. The complete behaviour of the cylinder is determined by two non-dimensional parameters and curves
are given from which the frequencies for any such cylinder may be determined. Itisshown that the higher frequenc1es
in particular may be underestimated by between 40 to 80 per cent if warping constraint effects are ignored.

An approximate method is given for estimating the torsional frequencies of a cylinder with non-uniform
characteristics.

1. Introduction.—Under static loading the torsional stiffness at any section along a thin-walled
cylinder is given sufficiently accurately by Batho theory unless the section is in the neighbourhood
of some constraint. Such constraints may be caused externally, as when one end of the cylinder
is built-in and therefore restrained against warping, or internally, as when there is an abrupt"
change in loading at a section and therefore an interaction at this section between the two parts
of the cylinder. In either case the change in torsional stiffness is caused by the tendency of the
booms to resist variations in the axial warping of cross-sections, a tendency which causes a
redistribution of shear in the walls of the cylinder and a consequent increase in torsional stiffness.

Under dynamic loading, in which the inertia terque varies continuously along the length of the
cylinder, it is therefore to be expected that the simple Batho theory will not be sufficiently accurate.
That the constraints are not of secondary importance can be seen by considering the limiting
case of very high frequencies when adjacent wavelengths effectively oppose each other’s tendency
to warp; for a typical wing section the stiffness determined on the basis of zero warping is about
three times that determined by Batho theory. The increase in torsional stiffness is, however,
less marked for the lower frequencies. Furthermore, there are cylinders which do not warp
when resisting torsion; for such cylinders the torsional stlffness will not vary.

In order to investigate this stiffening effect in detail, a four-boom, thin-walled cylinder of doubly
symmetrical, rectangular cross-section has been considered. By assuming that the ribs maintain
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the section shape and that the walls are ef'fectnlfe only in shear, it has been possible to find the

torsional frequencies and modes of vibration of a cylinder, free at both ends and prevented from
rotating at the mid-section.

An approximate method, based on the vibrations of an infinitely leng cylinder, has been
developed; a dynamic torsional stiffness has been introduced as a s1mpl1fy1ng aid to the
cal¢ulation of frequencies in a non-uniform cylinder.

2. Derivatron of the Differential Equation of Motion.—2.1. Assumptions—The following
assumptions are made regarding the structures: ,

(@) Stress-strain relations are linear -

(b) Buckling does not take place ‘

(c) Rivet flexibility is negligible : :
)

(4) Ribs maintain the section shape but do not offer any resistance to warping out of their
plane

(¢) The walls of the cylinder are effective only in shear.

Assumptions ( ) to (d) are standard practice. The d]rect load-carrying capacity of the walls -
may be taken into account by adding to each boom 1/6th of the section area of the adjacent walls.

2.2. Styess-strain Relations.—The differential equation of motion -of a thin-walled cylinder of
- doubly symmetrical, rectangular section will be formed. First, two equilibrium equations will be
found in terms of 6 the rotation of a section, and # the warping of a section as measured by the
axial displacement of a boom. The structure under consideration and the directions of positive

0 and % are shown in Fig. 1. From symmetry only a quarter of the cross-section need be
considered. ‘

a0 [dx and u both contribute to the shear strams in the four shear panels of the cyhnder The
shear strain in the side panels is

d | w
Cix D
so that the shear per unit length is - :
b} P )

Similarly the shear per unit length in the top and bottom panels is

tz{b%—c—a}. e . T

‘The total torque at a section is therefore given by

T:4G{ab(atl+bt25%+(atl—biz)u}.‘.. T (3)

1

- 2.3. Equilibrium of Boom Element—Differences in the shears per unit length in the panels
adjacent to a boom will alter the direct load-in the boom, so that

iZzP EFd%
b

% df  wu ' '
_.th{ - B—}—Gtz{b%—a}. e
. |



Strictly, there should be an inertia term in this equation, arising from the fact that the boom is
vibrating axially, but it is shown in Appendix I that this can be neglected.

2.4. Torsional Equilibvium.—By considering the equilibrium of an elementalslice of the cylinder
it is found that

i 4T
S =
, ae du -
=4G{ab(at1—}—bt2)d—xz—|—(atl—btz)% . (5)

where ],is the polar moment of inertia per unit-length:
6 and # are functions of x and ¢, but if the cylinder is vibrating with a frequency o we can write
6 = 6(x) sin wt, ,
) , . .. .. . ce e .. (6)
uw = u(x) sin ot : :

and ¢ may now be eliminated from all the equations by dividing throughouf by sinwf. In
particular equation (5) becomes

AT - . '
]w20+d—x=0. .. . .- .. .. .. .. (7) |

2.5. Ec_matzon of Motion.—Either 6 or # may be eliminated from equations (4) and (7) to give
an equation in # or 0 alone: : '

2

rde . d N
[@ — (a? —ﬁ2!22)6§2 — oczQzJ[O orul =0 .. .. .. .. (8)

where the following non-dimensional parameters have been introduced:

2L - 4Gt N Y2 o
\EF(@ + ) | )
~ 2\/(abt1t 24/ (abtits) _ <1 o
p = at1+bt2 , .. s .. .. .. .. (10)
= 1 if there is no tendency to warp,
s AN B | (11)
=" . a2
wB,o ' ( )
where
2nab Gtit, e
P80 =TT Jlat, - btz)} (13)

If there are no warping constraints the torsional stiffness is that given by Batho theory and
for the fundamental frequency 2 = 1.

2.8. Géneral Solution to the Equation.—Solutions of equatlon (18) are of the form e* where x isa

root of
pt— (o — 22N — R =0. .. .. .. .e .. (14)
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By introducmg

2 { 2[22) _[_4&292]'1/2_0(2;*_/32‘92} A 1\
= Hl(e? = p22%" + 4ot QT + of — pR027 e (1)
_af ‘ : ! J , :
b= — ) ‘
) Ha . . - . :

the general SOl‘thlOIl rhay be'written
0 = W,sin p,& + X, cos ué —[— Y, sinh u,¢ + Z, cosh sz -
{mv_(lzl:——ﬁz)}% = W,sin u,& + X, cos u,& + Y, sinh p,¢ + Z, cosh ,La2$ } (16)
The factor in the expression for % has been chosen so that if warping constraints are ignored
(i.e., « = co) and the fundamental mode is considered:
X, =W,,
the other constants being zero.

From equatmns (4) or (7) the eight arbitrary constants satisfy the followmg relations:
pall = BAW, = —(u,* — 229X, |
pa(l — B2 X, = +(us* — p*2°)W, . L
pol — B7)Y, = +(u." + 227 Z, '
poll — B0 Z, = +(u." + B*27)Y,

Four other relations are needed between these constants and they will come from a consideration
of the two boundary conditions at each end of the cylinder. -

(17)

3. The Frequency Equations. —Con51der a cylinder of length 2L, free at its ends but prevented
from rotating at its centre-section (at & = 0). Referring to the behaviour of one half of the
cylinder it will be seen that when warping constraints are ignored there is no distinction between |
symmetrical and anti-symmetrical torsional vibration, the condition at the centre-section being
merely that ¢ = 0 in each case. But when warping constraints are taken into account it will be
seen that at the centre, in addition to zero rotation, #» = 0 for the symmetrical case (from
symmetry) and da/dé = 0 for the anti- -symmetrical case (no boom load from symmetry).

It must be pointed out that for the anti-symmetrical case there is no need to prevent rotation
at the centre-section as there is a 6-node at that pomt in fact the cylinder can be regarded as

‘being completely free.

3.1. Symmetrical Vibration.—The four boundary conditions are:

at& =0, 6=0 andu=0, | }
7T : au (18)
a’cf__2 T =0 addg 0

Using equations (17) these four conditions may be expressed in terms of W, X.,Y, Z,. For
there to be a solution other than

W,=X,=V,=2,—=0

the determinant of these four equations must vanish. This determlnantal equatlon determines
the frequency of vibration £.
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Thus, for the symrﬁetrical vibration

(W.) : (X.) (Y.) (Z.)
(5292 +M22)M1 ‘ 0 (/3292 —;“12);“2 0
0 ‘ ' 1 0 1

(52 Q4 us*) singpa (52 2 +,.L2)cos2 (6?2 — ur?) sinh | (6°Q° — ,?) cosh g pud = 0 (19)

#1COSG fy — H1 Sy Ml © e COShE Mo B 51nh§ M

“which reduces tb

w2(1 — /32){2049 + (o — §207) sin p, sinh —’2‘—“2}
—{—{oﬁ—{—Zo&Qz—[—54!24}cos%,ulcosh%y2:0. .. .. .. (20)

3.2. Anti- symmetmc‘a'l Vibration.—The boundary conditions are as before, except that at
& =0, du/ds =0 instead of # = 0. Thus, the determinantal equatlon is the same as (19)
except that the second line (0, 1, 0, 1) becomes (1, 0, go, 0).

This reduces to

T T 7
(1.2 — B22%u, ’EanE‘ul = (u,* + B22%u, tanh?#z- .. .. - (21)
4. Numerical Values.—When warping constraint effects are ignored 25 is a root of the equation

cosgggzo.., . .. e e . . .. (22)

so that ,
Qp,=2n+1 .. .. .. .. .. .. .. .. (23)

where # is the number of the mode, # = 0 corresponding to the fundamental mode.

Now the values of 2 which satisfy equations (20) and (21) are functions of «, § as well as #,
but if a further non-dimensional frequency parameter 4, is introduced such that

@, ' |
o I |
B . ce e .. o (24)

o F 1

for any particular value of #, 4, will be a function only of « and g and will lie between 1 and 1/8,
approaching 1/8 as » increases. 4, therefore affords a useful comparison with the results based on
simple Batho theory.

1, and 1, have been plotted in Flgs 2, 3, 4 and 5 for various values of « and B covering the
practlcal range. A, ug differs very shghtly from unity and the difference between 2, o, and umty
_1s practically all due to the local increase in stiffness near the root and an approximate expression
could be found for it as in Appendix II.

4, has been plotted against # in Figs. 6 and 7 for « = 5, § = 0- 6 and « = 2-5, = 0-6, both
cases representatwe of typlcal wing structures.

The frequencies in the symmetrical vibration are naturally higher than in the anti-symmetrical
case, though as higher modes are considered the corresponding frequencies approach each other.
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5. Approximate Analysis for the Hz'gheyf Modes.—It has been pointed out that 4, ... and
A, i, @pproach each other as 7 increases. The reason is that the end effects become relatively
less important for the higher modes and this suggests that a simple approximate analysis might
be possible. '

If the cylinder is regarded as part of an infinitely long one vibrating uniformly equation (16)
becomes ‘ o

6 = sin u,& .

Now, in the wth mode there are approximately (2# + 1) half-waves in the actual cylinder,
from & = 0 to =/2, so that : ‘

ﬂ1:2”+1 p
whence
. }.n = {:1 _{— anz] 1z
R A S A , 4 .
where ‘ , Cee .. .. .. e (25)
- . o ] ' .
s J | :

This approximate value has been plotted in Figs. 6 and 7 and compared with the true Valueg.

An alternative way of appreciating these results is to introduce a dynamic torsional stiffness.
Equation (25) could then be written ‘

dynamic torsional stiffness 1+’
static torsional stiffness ~— 8% + «,?’

(26)

6. The Shape of the Modes.—Once the frequency of vibration is known the relative magnitudes ‘
of the constants W,, W,, etc., may be obtained from equation (17) and the appropriate boundary
conditions. ' ‘ '

For the cylinder considered in Fig. 7 the fundamental and first harmonic modes have been
plotted in Figs. 8 and 9. 'The symmetrical and anti-symmetrical modes are plotted so that they
may. be compared with each other and with the simple mode obtained by ignoring warping
constraints. The modes are plotted on the basis of a unit amplitude of rotation at the tip. It
will be seen that the effect of ignoring warping constraints does not appreciably alter the 8-modes,
though the ratio of amplitude of rotation at the tip to the amplitude of rotation near the root is
somewhat underestimated. The shape of the #-modes, of little practical importance, are appre-
. clably altered when warping constraints are taken into account. By considering the modes of

vibration of an infinitely long cylinder, as in section 5, it is found that g ’

actual amplitude of #-displacement o 1
amplitude of u-displacement by simple Batho theory — 1 + (8/a,)*

(27)

7. Application to Cylinder with Non-uniform Characteristics along its Length.—The conclusions
reached so far are strictly applicable only to the cylinder of doubly symmetrical rectangular
cross-section, and an exact solution for any other type of cross-section, or for a cylinder with
non-uniform characteristics along its length, will clearly be very complicated. It has, however,
been shown that the 6-modes are not appreciably altered by warping constraints, particularly in
the higher modes: the main effect of warping constraints being rather to cause an increase in the
apparent torsional stiffness of the cylinder. This fact may be used to obtain an estimate of the
torsional frequencies in a non-uniform cylinder. : '

Consider for example a non-uniform cylinder vibrating in the second harmonic torsional mode—
no distinction being drawn between symmetrical and anti-symmetrical vibration—and suppose that
the §-mode, based on simple Batho theory (i.e., constraint effects ignored) is as given below in
Fig.i. There are a number of approximate methods for obtaining this mode?®2,

6
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FiG. i. Second harmonic mode (constraint effects ignored).

Tt will be assumed that the actual §-mode will not differ significantly from this, so that, in
particular, a typical half-wave, such as CD, will not alter significantly. It is possible to obtain
an average value for « and g over each such half-wave and then by applying equation (26) a
modified value for the torsional stiffness in each half-wave will be obtained. If L 1s redefined as
the length of each half-wave the factor in equation (26) becomes simply

71+ o
| gE=k B
The modified stiffness along the'lengfh of the cylinder obtained in this manner should give a
sufficiently accurate value for the frequency. N

To determine the fréqilency in the fundamental symmetricél vibration the approximate
analysis of Appendix II may be used. ! :

8. Conclusions—An exact solution has been obtained for the torsional vibrations of a four-.
boom, thin-walled cylinder of doublyisymmetrical rectangular cross-section. It is shown that
the torsional stiffness based on simple Batho theory should not generally be used, especially if
the higher frequencies are being considered. The vibrations of a length of cylinder, free at both
ends and prevented from rotating at the mid-section, have been considered in detail and the
following conclusions have been drawn. '

. ) ’ : :
2} The complete behavicur of the cylinder may be described by the two non-dimensional
b y
parameters « and g - ‘ :

(5) The simple Batho stiffness is strictly correct only when cross-sections of the 'cylihder do not
‘tend to warp under torsion, in which case g =1 - : : ‘

.(c)' The torsional frequencies will be underestimated if warping constraints are not taken into
account and the relative amount will be greatest for the highest modes. The frequency
will be underestimated by a factor which approaches § as the frequency increases

(d) There is a_difference between the frequencies in the syimetrical and anti-symmetrical -
. torsional vibrations unless there is no warping

" () The frequency of the fundamental anti-symmetrical mode is practically that given by
simple Batho theory; the frequency of the fundamental symmetrical mode may be up to
20 per cent higher than that given by simple Batho theory, but this increase may be esti-
mated fairly accurately by assuming a reduced length for the cylinder to represent the local
stiffening at the root* ,

( f)‘ The frequencies in thé symmetrical and anti-symmetrical modes approach each other as the
order of the mode increases ‘ '

(g) The f-modes are not seriously affected by warping constraints.

A simplified method of approach is given for estimating the torsional vibrations of a cylinder
with non-uniform characteristics along its length. - : :
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LIST OF SYMBOLS

% Width of cylinder .
20 Depth of cylinder ,

i Skin thickness of vertical walls

£y Skin thickness of horizontal walls
x Distance along cylinder

Rotation of a section about x-axis

u Axial warping of a sectlon as measured by the axial displacement of a
: boom
¢ Time
E,G Elastic moduli
. T Torque
P Load in a boom
F Section area of a boom '
J Polar moment of inertia of cylinder per unit length
2L Total length of cylinder
w Angular frequency, i.e., cycles per second X 2w
wg o Fundamental angular frequency assuming Batho stiffness
2 = oo, . |
1/2 ) ‘ ;
== ZL(E‘Ffzitj-zbtz))- - -
5 = 2V(abtty) ' '
, at, + bt,
Y1, Mo Determined from equations (14) and (15)
%Zz })é: 11;:; g: } Constants occurring in equation (16)
U PO °
* wp, 2n-+1
®, = =
" 2n + 1
m . Effective mass per unit length of a boom

o dgh Gt b, }1/2
vo= “{E]Fat1+bt)

Suffix 5 refers to results predicted by simple Batho theory

Suffix , refers to the #th mode, # = 0 corresponding to the fﬁndamental.
8
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. APPENDIX T
Effect of Boom Inertia in Axial Vibration

It has been pointed out in section 2.1 that there should strictly be an additional inertia term
in the general equation of motion, arising from the fact that the booms are V1brat1ng axially
(unless § = 1). This additional inertia effect will reduce the- frequencies, but it is shown here
that this reduc’uon may be neglected. in all cases.

Referring to equatlon (4) the inertia term mw *# must be added to E F d*u[dx®, where m is the
effective mass per unit length of a boom.

- The differential equation of motion may now be written

d4 .dz ‘ )
[@—(a 10 =0 f = 2 fﬁzyZ;;%)}[e oru} 0 .. (@)
where ‘ ' '
. Gmtltz 1z ' '
y = 4ab[E]F(atl - btz)} B T,

a non- dimensional parameter, which, like g, is independent of the length of the cylinder.

To get a clearer idea of the magnitude of y it is worth notmg that for the type of cylinder
_ con51dered here in which a > b, ¢,.> ¢, ‘

1-26
=& |
Referring to the case in which o = 5, § = 0-6 we may take
y2==0-08 ‘ o
Making use of the si‘mpliﬁedv analysis of section 5 the relation
6 = sin (2n + 1)&

may be substituted in equation (27) to obtain an equation for £:

(2 4 D+ (o — pRRE — yz.Qz)(Zn + 1)_2.—~ Q¥ a® — BH2:02Y —0 .. (29)
whence ‘ .
_ 201 + o) b
A, = 30
[a R R s gl %0)
where ,
o — [0 4
"o 17

Equation (30) may be compared with the simpler equation (25) in which tnese effects areignored.
Taking § = 0-6, y = 0-283, Table 1 below shows the percentage reduction in frequency for a
number of values of a,.

TABLE 1
Oy o] } 2-5 “ 1 0-5 0-1 ‘ 0
per cent reduction in frequency 0 0.4 - 1-5 2:0 0-2 -1 .0
‘ (a max.) . ‘

Effect of Boom Inertia in Axial Vibration upon the Frequency

Equation (29) is a quadratic in 22 and so will have two distinct roots. The second, corres-
ponding to (30) with a minus sign attached to the square root in the denominator, corresponds to a
frequency in which axial vibrations, instead of torsional, are predominant. It has been pointed

10



out that if 8 = 1 there is no tendency to warp when twisted; conversely there is no tendency to
twist if forced to warp. It is worth noting that for this case in which there is no interaction the
two roots of equation (29) are . '

A, =1 ‘
}., 4 — ’\/(1 + O(nz) .
, 4 :
It is also interesting to note that, because of the interchangeability of f and y in equation (29):
ify =1 ‘
A,=1,

whatever the value for .

APPENDIX II
Increase in Stiffness Near the Root Due to Building-In

If concentrated torques are applied to the free ends of the cylinder it can be shown* that the
symmetrical torque loading shows an increase in stiffness over the anti-symmetrical case given
by the factor ‘ ' ‘

A 1.
. ) _ 2 -
1 — 2_———(1 £ tanh 7%
7T 2

If this increase is regarded as due to an effective shortening of the cylinder, as opposed to a
~ uniformly distributed increase in stiffness, it follows from the arguments of section 4, that

Oy 1 R 2L=BY @Y

T
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(@)  CROSS ~SECTION OF THE CYLINDER

T,©

P
=

(b)  CYLINDER, SHOWING NOTATION

()  CYLINDER WITH BOTH ENDS FREE AND PREVENTED
FROM ROTATING AT THE MID — SECTION

Fies. 1a, 1b and lc. The cylin der, showing notation.
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Fic. 8. Frequencies for symmetrical vibration—first harmonic.
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F16. 5. Frequencies for anti-symmetrical vibration—first harmonic.
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Fic. 4. Frequencies for anti-symmetrical vibration—fundamental mode.
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' \APPROXIMATE METHOD (SEE SECTION )
\SYMMETRICAL
ANTI = SYMMETRICAL
SIMPLE BATHO THEORY
ro | 2 4 5 6 7
NUMBER OF HARMONIC M :
F1G. 6. Frequencies in different modes. o« = 5.
17 :
ASYMPTOTE
16 ' L

&L = 25 o

APPROKIMATE METHGD (SEE SECTION §)
SYMMETRICAL '

ANTI - SYMMETRICAL
SIMPLE BATHO THEORY

q

4 5 " b 7
NUMBER OF HARMONIC ™

F16. 7. Frequencies in different modes. o = 2-5.
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