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Summary.--The,torsional vibrations of a four-boom cylinder of doubiy symmetrical rectangular cross-section are 
considered and the differential equation of motion is derived on the assumption that the ribs maintain the section shape 
but do not themselves resist any warping out of their plane and that the walls of the cylinder are effective only in 
shear. 

Frequency equations are_ derived for a length of cylinder, free at both ends and prevented from rotating at the 
mid-section. The complete behaviour of the cylinder is determined by two non-dimensional parameters and curves 
are given from which the frequeI~cies for any such cylinder may be determined. It is shown that the higher frequencies 
in particular may be underestimated by between 40 to 80 per cent if warping constraint effects are ignored. 

An approximate method is given for estimating the torsional frequencies of a cylinder with non-uniform 
characteristics. 

1. I~troduct~o~.--Under static loading the  torsional  stiffness at any  section along a th in-wal led 
cyl inder  is given sufficiently accura te ly  by  Ba tho  theory  unless the  section is in the  ne ighbourhood 
of some constraint .  Such constraints  m a y  be caused externally,  as when  one end of the  cyl inder  
is buil t- in and  therefore  res t ra ined against  warping,  o r  internal ly,  as when  there  is an abrup t  
change in loading at  a section and  therefore an in terac t ion  at  this section be tween  the  two par ts  
of the  cylinder.  In  ei ther case the  ch~ange in torsional  stiffness is Caused by  the  t endency  of the  
booms to resist var iat ions in the  axial warping of Cross-sections, a t endency  which  causes a 
redis t r ibut ion of 'shear in the  walls of the cyl inder  and  a consequent  increase in torsional  stiffness. 

Under  dynamic  loading, in which  the  iner t ia  torque  varies cont inuously  along the length  of the  
cylinder,  it is therefore to be expected  tha t  the  simple Batho  theory  will not  be sufficiently accurate.  
Tha t  the  constraints  are riot of secondary  impor tance  can be seen by  considering the  l imit ing 
case of ve ry  high frequencies when  adjacent  wavelengths  effectively oppose each other 's  t endency  
to warp;  for a typica l  wing section the  stiffness de te rmined  on the  basis of zero warp ing  is about  
three  t imes tha t  de te rmined  by  Ba tho  theory.  The increase in torsional stiffness is, however,  
less m a r k e d  for t.he l o w e r  frequencies. Fur the rmore ,  there  are cylinders which  do not  warp  
When resisting torsion; for such cylinders the  torsional stiffness will not  vary.  

In  order  to invest igate  this stiffening effect in detail, a four-boom, thin-wal led cyl inder  of doubly  
symmetr ica l ,  rec tangular  cross-section has been considered. By  assuming t ha t  the ribs ma in ta in  
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the section shape and that  the walls are effective only in shear, it has been possible to find the 
torsional frequencies and modes of vibration of a cylinder, free at both ends and prevented from 
rotating at the mid-section. 

An approximate method, based on the vibrations of an infinitely 10ng cylinder, has been 
developed; a dynamic torsional stiffness has been introduced as a simplifying aid to the 
calcMation of frequencies in a non-uniform cylinder. 

2~ Derivatio~ of the Differential Equation of Motion.--2.1. Assumptio~s.=-The following 
assumptions are made regarding the structures: 

(a) Stress-strain relations are linear 
(b) Buckling does not take place 
(c) Rivet flexibility is negligible '. 
(d) Ribs maintain the section shape but  do not offer a n y  resistance to warping out of their 

plane 
(e) The walls of the cylinder are effective only in shear. 

Assumptions ia) to (d) are standard practice. The di1~ect load-carrying capacity of .the walls 
may be taken into account by adding to each boom 1/6th of the section area of the adjacent walls. 

2.2. Stfess-strai~ Relatio~s.--The differential equation of vaotion of a thin-walled cylinder of 
doubly symmetrical, rectangular section will be formed. Firgt, two equilibrium equations will be 
found in terms of 0 the rotation of a section, and u the warping of a section as measured by the 
axiai displacement of a boom. The structure under consideration and the directions of positive 
0 and u are shown in Fig. 1. From symmetry only a quarter of the cross-secIion need be 
considered. 

dO/dx and u both contribute to the shear strains'in the four shear panels O f the cylinder. The 
shear strain in the side panels is 

dO u 
+ -  F 

so that  the shear per unit length is 

Gtl a -~ + . . . . . . . . . . . . . . . . . .  (1) 

Similarly the shear per unit length in the top and bottom panels is 

Gt~ ; b dO (2 )  . . . . . . . . . . . . .  . . . . .  

T h e  total torque at a section is therefore given by 

T 4G {ab(atz q-bG)dO bt2)u} (3) = ~ + (at1 -- . . . . . . .  " . . . .  

2.3. Equilibrium 
adiacent to a boom will alter the direct load.in the boom, so t ha t  

dP d ~u 
- -  - -  E t ~ - -  
d x  -- dx 2 

-- Gtl ~a dO {b dO 

of Boom Element.--Differences in the shears per unit  length in  the panels 
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Strictly, there should be an inert ia te rm in this equation, arising from the fact tha t  the boom is 
v ibra t ing axially, but  it is shown in Appendix  I tha t  this can be neglected. 

2.4. Torsioual Equil ibrium.--By considering the  equil ibrium of an e lemental  slice of the  cylinder 
it is found tha t  

d20 dT  
J dt 2 = dx 

~d 20 
: 4 G { a b ( a t ~  +bt~)-d-Z~ + (atl--bt~) ~xx} 

where J is the  polar m o m e n t  of iner t ia  per uni t . length:  

(5) 

0 and  u are functions of x and t, but  if the  cylinder is vibrat ing wi th  a frequency o) we can write 

0 : 0 (x) sin cot, 

u = u(x) sin ~t a . . . . . . . . . . . . . .  (6) 

and  t m a y  now be e l iminated from all the  equations b y  dividing throughout  by  sin oJt. In  
part icular  equat ion (5) becomes 

d T  
, J o ) ~ o +  d x  - - 0  . . . . . . . . . . . . . . . . . .  (7 )  

2.5. Equation of Motion.--Either 0 or u ma y  be e l iminated from equations (4) and (7) to give 
an equat ion in u or 0 alone" 

I d~ ~ )  d~ 1 - ( ~  - fl ~-~  - ~ E0 o r  u~ = 0 

where the  following non-dimensional  parameters  have  been introduced:  

( s )  

2L f 4Gtlt~ \~12 
c~----£- lEF(atl  + bt~)J ' . . . . . . . . . . . . .  .. (9) 

2w/(abt~t2) (10) f i - - ~ - ~ - ~ / ~ 2  ~ < 1 ,  . .  . . . . . . . . . . . . . .  

1 if there is no tendency  to warp, 

__ ~x , . . . . . . . . . .  (11) 
2 L '  " . . . . . . . . .  

where 

t ? - -  ~o . . . . . . . . . . . . .  . . . . . . .  ( 1 2 )  

(DB, 0 

2~ab f Grit2 ~ 11~ . (13) 
~O~,o - - - Z -  U(a t l  + bt~) J . . . . . . . . . . . . . . . .  

If t h e r e  are n o  warping constraints the  torsional stiffness is tha t  given by  Batho  theory  and 
for the  fundamenta l  f requency ~ = 1. 

2.6. General Solution to the Equation.--Solutions of equat ion (13) are of the  form e~* where # is a 
root of 

F, ~ - ( ~  - f l ~ 2 ~ ) ~  ~ 2 ~  = o . . . . . . . . . . . .  ( 1 4 )  
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By in t roducmg 

~ = ½{E(~ _ ~ .~2~) ~ _}_ 4~.f2~ 1 ~/2 _ cP +/~ ~s2 8} 

~ = ½{1-(~ ~ _ ~ . ) ~  + 4od~] ~ + ~ _ , ~ }  

gY2 
#,~ 

the  general solution may  be' wri t ten  

\ 
f" " 

. . . .  ( i s )  

0 --  Wo sin ~ + X'0 cos t~zg + Yo sinh ~ *  + Z0 cosh t*2# 

aab@-~ - -  ~2) u = W,~ sin #1~ + X ,  cos t t~ + Y,~ sinh t*2~ + Z,  cosh/*2~ 

The factor in the  expression for u has been chosen so tha t  if warping constraints are ignored 
(i.e., c~ = oo) and the  fundamenta l  mode is considered: 

X,0 ---- W0,  

the  other constants  being:zero. 

From equations (4) or (7) the  eight arbi t rary constants  satisfy the  following relations: 

1 
L 

I 
(17) 

~ 1 ( 1  - p ~ ) w ~  = - ( e l ~  - a ~ o ~ ) X o  

~,~(1 - ~2)x,~ = + ( ~  - ~ ) w o  

~ ( 1  - ~ ) Y , ,  = +(~ ,~  + ~ o ~ ) Z o  

~2(1 --/~')Z. = + ( ¢ , '  + $292)Yo 
Four  other  relations are needed  between these constants  and they  will come from a consideration 

of the  two boundary  condit ions at each end of the  cylinder. ' 

3. The Frequency Equations.--Consider a cylinder of length 2L, free at its ends  but  prevented  
from rota t ing at its centre-section (at ~ = 0). Referring to the  behaviour  of one half of the  
cylinder it will be seen tha t  when warping constraints are ignored there  is no dis t inct ion between 
symmetr ical  and  ant i -symmetr ical  torsional vibration, the  condit ion at the  centre-section being 
merely tha t  0 = 0 in each case. But  when warping constraints are taken  into account it will be 
seen tha t  at  the  centre, in addit ion to zero rotation,  u = 0 for the  symmetr ical  case (from 
symmetry)  and d~/d~ = 0 for the  ant i -symmetr ical  case (no boom load from symmetry) .  

I t  must  be pointed  out tha t  for the  ant i -symmetr ical  case there  is, no need to  prevent  rota t ion 
at the  centre-section as there  is a 0-node at t h a t  point;  in fac t ' the  cylinder can be regarded as 
be ing  completely free. 

3.1. Symmetrical Vibrat ion . - -The  four boundary  conditions are:. 

a t~  ----0, 0 - - 0  a n d u - - = 0 ,  

zc d u  . . . .  
at ~ --  , T : 0 and w-; = 0 

2 

Using equat ions (17) these four conditions may  be expressed in terms of W~,, X~, Y,,, Z~. 
there  to be a solution other  than  

w , , = x ~ = Y ~ , = z . = o  
the  de te rminant  of these four equat ions must  vanish. 
the  ~requency of v ib ra t ion  ~. 

(18) 

For  

This de terminanta l  equat ion determines 



\ 

Thus, for the  symmetr ica l  v ibrat ion 

(x,,) • ( Y , , )  ( z . )  

(fl 9 + 

0 

+ sm-  l 

t~l c o s ~ l  

0 

1 

cos  l 

- - / ~1  sin ~/~ 1 

(fl~-~" - -  ~l")Z~ 0 

0 1 

2 " :rg ' 
(fl~9~-- it1 ) s m h ~ t ~  (fl%9 ~ --t/g12) cosh-~ it,, 

- t*~ cosh2t ,~  " t*~ s l n h ~  t*~ 

= 0  (19) 

which reduces to 

eD(1 --  ~2) 2eD -t- ( ~  -- ~ 2 )  sin--ff~l sinh -ff~2 

-t- e~ + 2 ~ ?  ~ + ~ s 9  4 cos -ff~l cosh - f f~ = 0.  

3.2. Anti-symmetrical Vibration.--The boundary  condit ions 
~ = O, du/d~ = 0 ins tead  of u = 0. Thus,  the  de te rminanta l  
except  t ha t  the  second line (0, 1, 0, 1) becomes (~t, 0, ~ ,  0). 

This 'reduces to 

(~1 ~ --  ~ ) ~ 1  t an  --2~1 = (/£~2 --~ f l~2) /~2  t anh - f f~2 .  

. . . . . .  (20) 

are as before, except tha t  a t  
equat ion is the  same as (19) 

(21) 

. 

s g  

cos ~ B  = 0 . . . . . . . . . . . . . . .  

so t ha t  
~%,. = 2 n  + 1 . . . . . . . . . . . . . .  

where n is the  number  of the  mode, n = 0 corresponding to the  fundamenta l  mode. 

Numerical Values.--When warping constraint  effects are ignored t2B is a root of the  equation 

. .  (22) 

. .  (23) 

Now the values of ~9 which sat isfy equations (20) and (21) are functions of ~, fl as well as n, 
bu t  if a fur ther  non-dimensional  f requency parameter  ~, is in t roduced such t ha t  

coB,~ (24) 

- - 2 n + 1  

for any  pa r t i cu l a rva lue  of n, ,~. will be a funct ion only of ~ and fl and will lie between 1 and 1/fl, 
approaching 1/fl as n increases. ~t, therefore affords a useful comparison wi th  the  results based on 
simple Ba tho  theory.  

~0 and 21 have been plot ted  in Figs. 2, 3, 4 and 5 for various values of ~ and ~ covering the  
pract ical  range. ~o, a~ti. differs very  s l ight ly  from un i ty  and the difference between ~o, symm. and un i t y  
is pract ical ly  all due to the  local increase in stiffness near the  root and an app rox ima te  expression 
could be found for it as in Appendix  II.  

~ has been plot ted  against  n in Figs. 6 and  7 ~or c~ ---- 5, fl ---- 0 .6  and ~ = 2.5,  fl = 0.6,  bo th  
cases representa t ive  of typical  wing structures.  

The frequencies in the  symmetr ica l  v ibra t ion are na tu ra l ly  higher  than  in the  ant i -symmetr ica l  
case, though  as higher  modes are considered the corresponding frequencies approach each other. 
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5, Approximate Analysis for the Higher Modes.--It has been pointed out that  ~,~,symm. and 
2 .... ,i. approach each other as n increases. The reason is that  the end effects become relatively 
less important  for the higher modes and this suggests that  a simple approximate analysis might 
be possible. 

If the cylinder is regarded a s part of an infinitely long one vibrating uniformly equation (16) 
becomes 

0 = sin/~1# • 

Now, in the nth  mode there are approximately (2n + 1) half-waves in t h e  actual cylinder, 
from # = 0 to ~/2, so that  

it1 = 2n + 1 
whence 

where . . . . . . . . . . . . . .  (25) 

~" = 2 n  + 1 " 

This approximate value has been plotted in Figs. 6 and 7 and compared with the true values. 

An alternative way of appreciating these results is to introduce a dynamic torsional stiffness. 
Equation (25) could then be written 

dynamic torsional stiffness 1 -4- ~,2 
. . . . . . . . . . . .  (26) static torsional stiffness fl 2 + ~2 

6. The Shape of the Modes.--Once the frequency of vibration is known the relative magnitudes 
of the constants W.,, Wo, etc., may be obtained from equation (17) and the appropriate boundary 
conditions. 

For the cylinder considered in Fig. 7 the fundamental and first harmonic modes have been 
plotted in Figs. 8 and 9. The symmetrical and anti,symmetrical modes are plotted so tha t  they 
m a y  be compared with each other and with the simple mode obtained by  ignoring warping 
constraints. The modes are plotted on the basis of a unit  amplitude of rotation at the tip. I t  
will be seen that  the effect of ignoring warping constraints does not appreciably alter the 0-modes, 
though the ratio of amplitude of rotation at the tip to the amplitude of rotation near the root is 
somewhat underestimated. The shape of the u-modes, of little practical importance, are appre- 
ciably altered when warping constraints are taken into account. By considering the modes of 
vibrat ion of an infinitely long cylinder, as in section 5, it is found that  

actual amplitude of u-displacement 1 (27) 
amplitude of u-displacement by simple Batho theory = 1 -t: (¢~/c~,) ~" "" 

7. Applicatio)¢ to Cylinder with Non-uniform Characteristics along its Length.--The conclusions 
reached so far are strictly applicable only to tile cylinder of doubly symmetrical rectangular 
cross-section, and an exact solution for any other type of cross-section, or for a cylinder with 
non-uniform characteristics along its length, will clearly be ve ry  complicated. I t  has, however, 
been shown that  the 0-modes are not appreciably altered by warping constraints , particularly in 
the higher modes: the main effect of warping constraints being rather to cause an increase in the 
apparent torsional stiffness of the cylinder. This fact may be used to obtain an estimate of the 
torsional frequencies in a non-uniform cylinder. 

Consider for example a non-uniform cylinder izibrating in the second harmonic torsional mode- -  
no distinction being drawn between symmetrical and anti-symmetrical v ibra t ion--and suppose tha t  
the 0-mode, based on simple Batho theory (i.e., constraint effects ignored) is as given below in 
Fig. i. There are a number of approximate methods for obtaining this mode 2, a. 



I F 
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FIG. i. Second harmonic mode (constraint effects ignored). 

I t  will be assumed that the actual 0-mode will not differ significantly from this, so that, in 
particular, a typical half-wave, such as CD, will not alter significantly. It  is possible to obtain 
an average value for ~ and/~ over each such half-wave and then by applying equation (26) a 
modified value for the torsional stiffness in each half-wave will be obtained. If L is redefined as 
the lengt h of each half-wave the factor in equation (.26) becomes simply 

1 +__ ~ h  . . . . . . . .  (26a) 
~ + c~V . . . . . . . . . . .  

The modified stiffness along the  length of the cylinder obtained in this manner should give a 
sufficiently accurate value for the frequency. 

To determine the freqhency in tile fundamental symmetrical vibration the approximate 
analysis of Appendix n may be used. 

8. Conclusions.--An exact solution has been obtained for 'the torsional vibrations of a four -  
boom, thin-walled cylinder of doubly~symmetrical rectangular cross-section. It is shown that 
the torsional stiffness based on simple Batho theory should not generally be used, especially if 
the higher frequencies are being considered. The vibrations of a length of cylinder, free at b o t h  
ends and prevented from rotating at the mid-section, have been considered in detail and the 
following conclusions have been drawn. 

(a) The complete behaviour of the cylinder may be described by ttie two non-dimensional 
parameters 0~ and/~ 

(b) The simple Batho stiffness is strictly correct only when cross-sections of the cylinder do not 
tend to warp under torsion, in which case ~ ---- 1 

(c) The torsional frequencies will be underestimated if warping constraints are not taken into 
account and the relative amount willbe greatest for the highest modes. The frequency 
will be underestimated by a factor which approaches/~ as the frequency increases 

(d) There is a difference between the frequencies in the symmetrical and .anti-symmetrical 
torsional vibrations unless there is no warping 

(el The frequency of the fundamental anti-symmetrical mode is practically that given by 
simple Batho theory; the frequency of the fundamental symmetrical mode may be up to 
20 per cent higher than that given by simple Batho theory, but this increase may be esti- 
mated fairly accurately by assuming a reduced length for the cylinder to represent the local 
stiffening at the root 4 

(f)  The frequencies in the symmetrical and anti-symmetrical modes approach each other as the 
order of the mode increases ' 

(g) The 0-modes are not seriously affected by warping constraints. 

A simplified method of approach is given for estimating the torsional vibrations of a cylinder 
with non-uniform characteristics along its length. 
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LIST OF SYMBOLS 

2 ~  

2b 

tl 

t~ 

X 

0 

qA 

t 

E , G  

T 

P 
F 

J 
2L 

f o  

fOB, 0 

f2 = 

O~ m 

3 = 

Width of cylinder 

Depth of cylinder 

Skin thickness of vertical walls 

Skin thickness of horizontal walls 

Distance along cylinder 

Rotation of a section about x-axis 

Axial warping of a section as 
boom 

Time 

Elastic moduli 

measured by, the axial displacement of a 

Torque .. 

Load in a boom 

Section area of a boom 

Polar moment of inertia of cylinder per unit length 

Total length of cylinder 

Angular frequency, i.e., cycles per second × 2~ 

Fundamental  angular frequency assuming Bath6 stiffness 

fo/O'IBj 0 

2L ( 4Gt~t~ ~:2 .. 

z~ \EF(at .  + bt,)) " 

2 V (abtlt2) 
a~ + bt~ 

Wo, Xo, Yo, Zo ) 
W~ ,X , .Y . . ,Z~  

] t  n - -  

Ot~  - -  

¢ 4 4  

y = 

~X 

2L 

Determined from equations (14) and (15) 

Constants occurring in equation 

co. D; 
a~,. 2n + 1 

c~ 

2n-}- 1 

Effective mass per unit length of a boom 

: Gmtlt~ " l ~/~ 

4ab ~ EJ  F ( at~ -~ ' bt2) ) 

Suffix B refers to results predicted by  simple Batho theory 

Suffix. refers to the nth  mode, n = 0 corresponding to the fundamental. 
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~." A P P E N D I X  I 

Effect of Boom Inertia inAxial  Vibration 

I t  has been pointed  out in sec t ion  2.1 t h a t  there  should strictly be an addit ional  inert ia term 
in the  general equat ion of motion,  arising from the  fact t ha t  the  booms are vibrat ing axially 
(unless fi = 1). This addit ional  inert ia  effect will reduce the ' frequencies,  but  it is shown here 
t ha t  this reduct ion m a y  be neglected.in all cases. 

Referring to equat ion (4) the  inertia te rm moo 3u must  be added  to EF d3u/dx ~, where m is ,the 
effective mass per uni t  length of a boom. 

The differential equat ion of mot ion  may  now be wri t ten  

_ (~3 _ / ~ 3 f 2 2  _ ~, ~-~ _ f2~(cd _ /~3)~2D3)  0 or u = 0 . .  (27) 

where 
, ~F GmtlG ] 11~ 

r =  aOLEyF(at  + bt.)J . .  , ,  . . . . . . . . . .  (28) 

a nonrdi~nensional parameter ,  which, like ~, is independent  of the  length  of the  cylinder. 

To get a clearer idea of the  magni tude  of ~, it is w o r t h  not ing tha t  for the  type o f  cylinder 
considered here in which a > b, tl > t3 

1._2b/(a&~ 
~'-'- a d F / "  

Referring to the  case in which ~ = 5,/~ = 0 .6  we may  take 

~ ---~ 0"08 

Making use of the  simplified anals~sis of section 5 t h e  relation 

0 = sin (2n + 1)~ 

m a y  be subst i tu ted in equat ion (27) to obtain an equat ion for tg: 

(2n + 1) ~ q- (od --  f i ~ 3  _ ~,~L)~)(2n q_ 1 ) 3  .Q3(o d _ fl3~,2~) = 0 ..  (29) 
whence 

o~3 + f13 + 73 + {(0%2 + / ~ 2  + r _ 4fl2~,2(1 d 3)}~/3 . .  (30) 
where 

c~ --  2n + 1 

Equation (30) may be compared with the simpler equation (25) in which these effects are ignored. 
Taking fl ----- 0.6, y = 0. 283, Table I below shows the percentage reduction in frequency for a 
number  of values of :¢.. 

T A B I . E  1 

Cgn 

per cent reduction in frequency 

OO 

0 

2 5  1 

0 .4  • 1 "5 

0.5 

2.0 
m x.) 

0.1 

0.2 

0 

0 

Effect of Boom Inertia in Axial Vibration upon the Frequency 

Equa t ion  (29) is a quadrat ic  in X23 and so will have two distinct roots. The second, corres- 
ponding to (30) wi th  a :minus sign a t t ached  to the  square root in the  denominator ,  corresponds to a 
-frequency in which axial vibrations, ins tead of torsional; are predominant .  I t  has been pointed  

l0 



out tha t  if/3 1 there is no tendency to warp when twisted; conversely there is no tendency to 
twist if forced to warp. I t  is worth noting that  for this case in which there is no interaction the 
two roots of equation (29) are 

2,{ ---- 3/(1 + ~2) 
7 

I t  is also interesting to note that,  because of the interchangeability of/3 and ~ in equation (29)" 
i f~  = 1 

~ , =  1 ,  

whatever the value for/3. 

, APPENDIX II 

Increase in Stiffness Near the Root Due to Building-In 

If concentrated torques are applied to tile free ends of the cylinder it can be shown 4 tha t  the 
symmetrical torque loading shows an increase in stiffness over the anti-symmetrical case given 
by  tile factor 

1. 

1 - -  2(f --//2) tanh ~c~ 

If this increase is regarded as due to an effective shortening of the cylinder, as opposed to a 
uniformly distributed increase in stiffness, i t  follows from the arguments of section 4, tha t  

.C2o, symm..-"- 1 + 2(1 -- /32) (31) 
• • " i *  * " " " " " " " " " 
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