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Summary.—Resonance tests on a model cantilever wing carrying concentrated masses were made in conjunction
with the flutter tests of R. & M. 25337, Measurements were made with masses up to approximately five times the
mass of the bare wing added at the following positions in the section 0-3 span from the root of the wing :

(i) Externally 0-28¢ ahead of leading edge

(i) Internally 0-3¢ behind leading edge.

The flutter and resonance characteristics are placed in juxtaposition, and an attempt is made to correlate the two
sets of phenomena by means of the Kiissner criterion.

The distortion modes of flutter are analysed into normal mode components, and the results suggest that for a wing
rigidly fixed at the root and carrying a single concentrated mass the first three normal modes are sufficient to define

the flutter mode.

L. Introduction.—A knowledge of the natural frequencies and normal modes of an aircraft
is important in relation to the estimation of the flutter critical speed, and the value of resonance
tests in providing this information has been dealt with elsewhere">* Based on experience,
qualitative estimations of the flutter properties may be made by an examination of the resonance
properties, and at one time in the past, it was common to obtain an approximate value of the
critical speed from a simple criterion due to Kiissner which required a knowledge of the resonance
frequencies and positions of the nodal lines. It is clearly valuable to be able to place, as can be
done for experiments with models, the measured flutfer characteristics side-by-side with the
corresponding resonance data. Jones and Scruton* measured the critical speeds of a model
wing for various conditions of mass-loading, and in an examination of the effectiveness of
Kiissner’s criterion related these speeds to the still-air resonance frequencies and the positions
of the node at the wing tip. A detailed examination of the resonance modes was, however,
not made. Hanson and Warlow-Davies® and Taylor® investigated in detail the effect of con-
centrated masses representing wing engines on the resonances of a structural model of a wing,
but with the type of model used no knowledge of the flutter characteristics could be obtained.
Lambourne and Weston’ investigated experimentally the influence of masses representing both
engines and fuel tanks on the flexure-torsion flutter characteristics of a model wing. A detailed
account of resonance tests and stiffness measurements made on the same wing is given in an
unpublished paper®, but some of the more important results of these tests are included in the

present report.

#A.R.C. 13,910 and parts of A.R.C. 11,008.
Published with the permission of the Director, National Physical Laboratory.
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The modes of distortion during flutter were measured for a few cases of mass-loading at an
external (representing leading-edge engines), and at an internal location (representing fuel-tank
and jet-engine installation), and it was for these positions of the additional mass that the resonance
_characteristics were measured. In addition, the elastic properties of the wing were measured in
the form of flexibility coefficients, which together with a detailed specification of the mass
distribution, provide basic data for theoretical calculations, the results of which have been

- issued in unpublished reports by Frazer® ™.

In practice a combination of two or more of the normal modes obtained from resonance tests
is frequently used as a basis for flutter calculations, and the question arises as to how many
and which normal modes are necessary to give a satisfactory estimate of the critical speed.
For the wing of this report some useful information in this connection is obtained by determining
the amount of each normal mode required to build up the measured flutter mode of distortion.

For this purpose the measured flutter modes are analysed in terms of the normal mode
components,

2. The Model Wing—A detailed description of the wing construction appears in Ref. 7,
whilst Table 1 of the present report gives the final mass distribution of the wing in the form
of the masses, mass moments, and inertias associated with each rib. This table is based on the
inventory of the mass and the position of each component part, which was kept during the
course of construction. Table 2 gives the masses and inertias of the steel fittings (the engine

mountings) which could be attached to certain ribs to support the leading castings representing
the external engine masses.

3. Flexibility Coefficients—The elastic properties of the wing were measured immediately
after the wing was constructed and before any of the resonance or flutter tests were carried out.
Owing to variations in the wing stiffnesses that occurred during the subsequent tests, and which
are dealt with in section 4, the measured flexibility coefficients are not strictly applicable to
either the resonance or the flutter tests but they do serve as a standard basis for calculations.
One would expect that, although general changes in the wing stiffness occurred, the stiffness
distribution over the wing would remain approximately the same, so that calculated resonance
and flutter characteristics based on the initial stiffness and inertia data should show qualitative
if not quantitative agreement with experimental results.

Measurements were made of

(i) Flexural displacements z, the linear normal displacements at the transverse reference
axis OY situated at 0-3¢ from the leading edge.

(ii) Twists 0 at chordwise sections.
due to
(2) loads applied at the reference axis OY.
(b) twisting couples in planes normal to axis OY.
Mean flexibilities for each case of loading were obtained and the final results were put into the
form of four matrices of flexibility coefficients as follows :
o (yn") the flexure at » due to unit force at #’,
# (nn') the flexure at » due to unit couple at #’,
% (nn') the twist at o due to unit couple at #’,
2 (nn’) the twist at # due to unit force at ',
where n = y/s the spanwise co-ordinate.

By the FElasticity Reciprocal Theorem, matrices «/ and % should each be symmetrical, and
2 should be the transpose of 4. ~

Thus:
| A’y = ALn'n); Bom') = D'n); €un') =€)
The experimental results were found to accord well with the theory.
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The matrices given in Tables 3, 4 and 5 provide a standard set of flexibility coefficients for use
in the calculation of critical speeds, etc., and represent smoothed mean values. The matrix .7
was obtained as the mean of the experimental matrix .« and its transpose, while matrix ¢ was
obtained on a similar basis. The matrix 2 is the mean of the experimental matrix % and the
transpose of the experimental matrix 2.

The position of the flexural centre at any section 7 is given by
x = —Blm)[E(m) = — D(ny)[%(nm)
where x is the distance aft of the reference axis. Values of x obtained from the standard set of

flexibility coefficients have been used to obtain Table 6 which gives the distances of the flexural
centres behing the leading edge in terms of the local chord.

4. Change of Wing Stiffnesses during the Tests.—Some difficulty was experienced due to the
pronounced temperature variation of the building in which the stiffness tests were made, a change
of 14 deg C being not uncommon during a hot day. Tt was found that the torsional stiffness of
the wing as measured at the tip section decreased with increasing temperature at a rate of
approximately 0-5 per cent per deg C, but no appreciable variation of the flexural stiffness
was observed. Independent evidence was obtained of temperature change affecting the torsional
properties of wood by a simple experiment on a spruce rod, and the results were in agreement
with those of some early experiments of Griffiths and Wigley',

To obtain consistent results in the measurement of flexibility coefficients, as far as possible
all the records were taken while the ambient temperature was approximately 16 deg C.

It was also found that the stiffness of the wing decreased during a preliminary set of resonance
tests carried out prior to the flutter tests and a further decrease was noticed during the flutter
tests (see Ref. 7). Remeasurement of the stiffnesses just before the main series of resonance tests
indicated that they had increased whilst the wing had been stored. Table 7 gives the wing
stiffnesses together with the flutter critical speeds and frequencies of the bare wing as measured
from time to time, ‘

3. Resonance Tests.—A detailed account of the resonance tests and the results are contained
in Ref. 8, and only a brief account of these experiments is given in the present report.

The wing was excited through a spring by a reciprocating member driven by an electric motor,
the resonance amplitudes at selected stations along the leading and trailing edges being recorded
photographically. Due to the special form of construction (see Ref. 7) it is possible to make the
assumption that chordwise sections of the wing do not change their shape, so that the motion
of a section may be defined in terms of flexure and torsion components,

¢ = @ sin Pt

=0Osin (pt &) . .. .. o .. . . . (see Fig. 1.)
At resonance ¢ is approximately 0 or ». The position of the node in the section is given by

X = —(2/0)s . . .. .. . . . .. (see Fig. 1.)

Values of @, @ and X for a number of spanwise stations were deduced from the recorded
deflections of the leading and trailing edges. It will be noted that the nodes are virtual centres
of rotation of the sections, and for this reason the ‘ nodal lines ’ shown in the diagrams have in
some cases been extended to positions that do not lie within the wing area.

The nodal lines are plotted on diagrams having a linear scale in the spanwise direction (n)
and a scale x" = % tanh (x/n) in the chordwise direction, so that it is possible to include nodal
lines far removed from the wing, the value of # being chosen to leave the plan form of the wing
almost unchanged. /
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Resonance frequences and modes were measured for various values of mass loading at the
following positions : -

(i) Externally n = 0-3, 0-28¢ ahead of leading edge (x = — 0-58¢),
(i) Internally » = 0-3, 0-30c behind the leading edge (x = 0).

These were the loading positions most extensively used in the flutter tests, and those for which
the flutter modes were measured.

The method of mass-loading is explained in Ref. 7, and, as in the flutter tests, the mass range
was ¢ = 0 to 2 slugs, with an additional condition representing u = oo.

The Case of u = oo, For any position of mass-loading the first natural frequency tends to
sero as the added mass x tends to w, so that ultimately all the inertia forces on the wing would
vanish except that due to u itself. Thus the first normal mode for ¢ = o would be identical
with the distortion mode for static loading at the point of application of  ; it may therefore
be obtained by a simple calculation from the measured flexibility coefficients. However, as a
check on these coefficients, the static modes were measured for direct loading at the mass-loading
positions, and the results were found to compare favourably with those derived from the flexibility
coefficients. .

As the other natural frequencies do not become evanescent as tends to o, the mass-loading
position becomes a node for those oscillations, and the hypothetical condition 4 = o can be
represented by preventing the motion of the point of mass loading. In the tests this was carried
out by using vertical straining wires connected to the wing as described in Ref. 7.

A few remarks on the results of the tests now follow :

Mass-loading Externally—The variation of the resonance frequencies with added mass are
shown in Fig. 10b, whilst the positions of the nodal lines are shown in Figs. 2 to 5. The first
resonance frequency decreases with increasing mass OVer the whole of the experimental range,
whilst the second, third and fourth resonance frequency curves become asymptotic at successively
smaller values of u.

Mass-loading Internally.—The resonance frequencies are shown in Fig. 11b, and the positions
of the nodal lines are shown in Figs. 6 to 9. No nodal-line diagram 1s included for the first
resonance, since for all cases of mass-loading the motion was approximately pure flexure, and
the ‘ nodal lines ’ were far distant from the wing.

The first resonance frequency decreases only slightly as is increased over the experimental
range. The second resonance frequency remains approximately constant up to p==0-5 slug
and then decreases, whilst the third resonance frequency, on the other hand, decreases with
increase of x for small values, and remains almost constant for x > 1:0 slug. The second and
third resonance frequency curves approach one another in the region of x ==0-5 slug and they
have the appearance of almost intersecting. In fact from the experiments themselves it is not
perfectly clear that these two curves do not intersect, for in the region where the two frequencies
are close together, large phase differences were present and it was very difficult to define the
precise resonance conditions. However, theoretical calculations made by Frazer® for an equiva-
lent ideal wing do not give a point of intersection, and the experimental points have been drawn
accordingly. It will be noticed that the asymptotic value of the third resonance frequency as
w tends to oo is approximately the same as the value of the second resonance frequency when

w=0.
The second resonance is predominantly torsional in character until z == 0-6 slug but for larger

additional masses it tends to a flexural overtone type.” On the other hand, for . < 0-5 slug
the third resonance has the character of a flexural overtone whilst for 4 > 1- 0 slug the oscillation
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is predominantly torsional and has the character, as well as the frequency, appropriate to the
second resonance for x = 0. Viewed in a somewhat different manner, and in conjunction with
the changes in the second resonance, the character of the fundamental torsion resonance may be
regarded as persisting whilst mass is added at the reference axis. This is only to be expected
since the position of the nodal line for this type of oscillation passes approximately through
the mass loading position. Initially for 4 = 0 the fundamental torsional type of oscillation is
associated with the second frequency, but with increase of  the frequency of the flexural over-
tone oscillation falls below the frequency of fundamental torsion, and the latter type of oscillation
becomes promoted to the third frequency.

It has already been mentioned that it was difficult to obtain clearly defined resonances in
the region where the second and third resonance frequency curves approach one another closely,
and the results which were obtained give little information of the manner in which the change
in the characteristics of the third resonance occurs. A sequence of nodal line patterns to show a
possible way in which this change-over takes place is suggested in Fig. 8.

6. Comparison of Resonance and Flutler Results—To correlate the resonance and flutter
phenomena the variations with added mass of the following quantities are shown in a single
diagram :

Resonance
Position of nodal line for 2nd and 3rd resonances

Frequency

Flutter
Frequency

Critical speed
Amplitude ratio

Critical frequency parameter.

Fig. 10 refers to tests in which mass was added forward of the leading edge, whilst Fig. 11 refers
to the tests with internal mass-loading. Both of these diagrams, and especially Fig. 10 suggest
that a rapid change in resonance characteristics is accompanied by a rapid change in flutter
characteristics.

For both cases of mass-loading, the frequency of the first type of flutter lies between the first
and second resonance frequencies, and for the second type between the second and third resonance
frequencies. Also as mass is added, the second resonance nodal line over the outer portion of
‘the wing moves forward and eventually reaches a position ahead of the leading edge; the
corresponding change in the third resonance nodal line entails a movement in towards the wing
from the rear, until a position approximately at mid-chord is reached. These movements of the
nodal lines, together with the disposition of the flutter frequency in relation to the resonance
frequencies, are significant in connection with the so-called Kiissner procedure for obtaining a
rough estimate of the flutter critical speed. This procedure is dealt with in the next section.

7. Kiissner Criterion.—Resonance characteristics are determined by elastic and inertial
properties and in some respects by damping properties. On the other hand, flutter properties are
determined by these same quantities together with the aerodynamic properties. It is therefore
clear that resonance tests alone can never yield a precise knowledge of the flutter properties
(e.g., an accurate prediction of the critical speed), but based on experience of more or less similar
structures they may be used as a guide to the general qualitative flutter characteristics. Kissner
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in some very early work' * put these ideas into a more quantitative form by developing empiri-
cally and with some amount of theoretical backing the following relation to give a lower limit
to the flutter critical speed :—-

Vc - Kfcm
where ¢, 18 the mean chord of the oscillating wing,
/is the frequency associated with the ‘ dangerous resonance.’

For the type of aircraft current at that time (1935), Kiissner's work® suggested that the value of
K (the Kiissner coefficient) would lie between 2-8 and 5-4, whilst Pugsley™ considered values
between 3-5 and 6-0. Any resonance that has a nodal line within the region 0-25 to 1-0 chord
behind the leading edge is to be classed as ‘ dangerous,” and the condition most susceptible to
flutter, and thus requiring a low value of K is that having a nodal line at 0-75 chord.

A comparison of the diagrams of nodal position with the critical speed as shown in Figs. 10
and 11 suggests, in the light of Kiissner’s definition of a dangerous resonance, that the first
branch of the critical speed curve be associated with a * dangerous ’ second resistance, and the
second branch with a ‘ dangerous ’ third resonance. Table 9 gives the values of the Kiissner
coefficient K(==V/fc,) calculated on this basis from the measured critical speeds and the
appropriate resonance frequencies for various conditions of mass-loading. The region x = 0-8
to 0-9 for the internal loading case appears to be anomalous since the nodal positions indicate
that the second resonance can hardly be classed as dangerous. A Kiissner prediction in this
region would suggest that already the first branch of the critical speed curve was tending to
infinity, and that the second branch corresponding to the third resonance was now the lower,
In other words, the resonance results would suggest an earlier change from the first to the second
type of flutter as mass is added. A possible explanation of this apparent discrepancy is that,
since the flutter and resonance tests were separated by some months, a change in the elastic

properties of the wing (see section 4) led to a displacement of the flutter parameters relative to
the resonance ones along the u axis of Fig. 11.

In Kiissner’s attempt to provide a theoretical correlation between K and the position of the
nodal line, the conditions were examined under which energy may be absorbed from the air stream
by a two-dimensional aerofoil performing an oscillation in pitching and vertical translation.
After an optimum value had been assigned to the phase difference between the two motions,
a relation was found between the amplitude ratio and the frequency parameter w (= pc/V)

for the limiting case of zero energy input, which corresponds to the critical flutter condition
The next steps in the correlation were :

(@) to identify the flutter amplitude ratio with the dangerous resonance amplitude ratio
(i.e., the nodal position),

(0) to identify the flutter frequency with the resonance frequency.

Thus a relation between K = (V/fc,) and nodal position was found which is shown in Fig. 12.
Steps (a) and (b) (above) cannot be justified, and the relation between K and nodal position has
no strict basis. However, on the basis of vortex-sheet theory air loads, and in the absence of
structural damping it is true that as a resonance nodal line approaches the 0-75 chord position
the flutter critical speed approaches zero'. It would therefore be expected that the variation
of critical speed with nodal position for a practical wing would show a minimum at 0-75 chord,
which is in qualitative agreement with the relation developed above.

It will be noted that for step (@) in the above development to be valid, it would be necessary
for the flutter motion of a wing to be identical with that which can be obtained by recombining
with a phase difference the separate flexural and torsional displacements at one particular

resonance. An assumption of this nature at one time provided a basis for a suggested procedure
for critical speed calculation®®, '

The experimental results do not justify the theory. The following table shows that the ampli-
tude ratio for the dangerous resonance and flutter are certainly not identical. :
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Wing condition Tip amplitude ratio @&
Code letter (see Dangerous
Table 8). resonance Flutter
I, (Bare wing) 0-042 0-23
I, Internal 0-047 0-26
I, f mass-loading 0-052 0-32
E; 0 0-41
tmase-doadin 0:061 | 010
E & 0-059 0-10

The theoretical optimum phase displacement for the extraction of energy from an air stream
by an oscillating aerofoil* 1s plotted against frequency parameter in Fig. 13. Also included
in this diagram are the limiting values of phase displacement outside of which energy cannot
be obtained from the stream. The present experimental results referring both to the tip and to
the 0-7 span section are also plotted on the diagram and it is seen that they do lie within the
region of absorption, but that they do not fall on the curve of optimum phase.

In Fig. 12 the experimental values of K and the positions of the nodal lines taken from Table 9
are plotted so that each systematic series of results appears as a line. The only other results of
this nature known to the writer are those of Jones and Scruton* which are included in the diagram.
In spite of the fact that the derivation of the theoretical relation is not justified, the experimental
values fall reasonably close to the theoretical curve, but it is unfortunate that the nodal positions
do not cover a wider range.

8. Conclusions vegavding Correlation between Resonance and Flutter Characteristics.—Although
it would seem impossible to obtain a strict correlation between critical speed and resonance
characteristics, a non-dimensional parameter of the Kiissner type clearly allows a comparison
to be made of the critical speeds of sets of wings showing dynamical similarity. Even when
strict dynamical similarity does not exist, a parameter of this type may be of use in transferring
experience gained from one system to another. Gradually, as the results of resonance and model
flutter tests accumulate, it should be possible to build up a body of experience by which flutter
qualities may be judged from resonance tests.

9. Analysis of Flutter Nodes into Normal Modes.—9.1. Method of analysis—The wing dis-
tortion corresponding to the »th normal mode of oscillation may be defined in terms of flexure
and torsion as follows :

®, = &.f,(n) L G (1)
0, = 6,F,() o 2)
3,08, = — X, L (3)

where @, and @, are respectively flexural and torsional amplitudes, the barred terms referring
toa convemently chosen reference section®, and X, is the distance aft of the OY axis of the node
at the reference section. Since the motions are either in phase or in opposition, no restriction
need be placed on the sign of the amplitudes.

% Tt is assumed that the reference section is chosen so that f(s) and F(y) are in general finite. In the numerical
and experimental work the reference section was taken at the tip.
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Substitution of @, from equation (3) in equation (1) allows the mode to be detined in terms of
a sole arbitrary amplitude @, as follows :—

@, = — (X,/5)0,f(n) . . . . . . .. (4)
0, = &,F(y). . .. .. . . o . (5)

The wing motion during a steady flutter oscillation of circular frequency p may be specified
in terms of flexure and torsion as follows :—

br = Ppsin [pl + a(n)] = Pyfs(n) sin [pt + o(n)] .. .. . (6)
0p = Opsin[pt+ p0)] = B, Fuly) sin [0+ 501 .. .. .. ()
Pp|Op= — Xy/s., .. .. . .. .. (8)

Since in general phase differences are present during flutter, amplitudes @, @, and amplitude
modes fr(), L'x(n) will be restricted to positive quantities. Furthermore, since nodes do not
exist during flutter X will not have the direct physical significance of a nodal position.

Again the motion can alternatively be specified by the following two relations involving the
sole arbitrary amplitude @, :—

pr = — (Xp[s)Bgfr(n) sin [pt + o(n)] . .. .. . . 9)
Op = OpF(n) sin [pt + B(n)]. .. .. e .. .. (10)

If the distortion during flutter is regarded as composed of the first # normal mode distortions
the following equations hold :—

— (XF/S)@FfI«‘(’/) sin [pt + afy)] =4
= 27— (X[) Off) sin (Bt + ) + ypsin [+ )] .. .. (1)

B,Fln) sin [pt -+ pln)) = 6 |
= 26, F () sin (pt -+ ¢,) + Ogsin [pt + Bp(n)] .. .. .. (12)

where ¢, is the phase displacement associated with the 7th mode. The second terms on the
right-hand sides represent the errors in the assumption that the flutter mode can be resolved
into the first # normal modes, and will be termed the residual modes.

By a consideration of the in-phase and the out-of-phase components, and with some
rearrangement four equations are obtained :—

— (Xofs)feln) cos a(n) = 2" — (X [s)f(n)d, + (@5)Bz) cos ws(y) 13)

(
Fu(n) cos p(n) = Z"F(n)A, + (0O cos fx(n) . .. (14)
— (X pfs)fe(n) sin afn) = =, — (X,/s)f.(n)B, + (De/Bp) sin ay(n) .. (15)
Le(n) sin Bln) = ZV'F,(n)B, + (05/@5) sin fx(n) (16)
where B
.%COSE,:A,. .. . .. .. .. . (17)
@;sine,:B,. .. . . . .. .. (18)

Equations (13) to (16) (above) are true for all values of ». Values of the left-hand side of these
equations were available for eight values of  since measurements of the flutter motion had been
made at this number of stations (see Ref. 7). Corresponding values obtained from measurements
of the first four resonances were inserted in the right-hand sides. In this way sixteen equations
in 4,, 4,... 4, and sixteen equations in B, B, ... B, were obtained. After dividing sets of
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equations represented by equations (13) and (15) (above) by (Xg/s) to bring the coefficients to
the same order as those of sets represented by (14) and (16), a ‘ least squares ’ process was used
to obtain values of 4,, A, ... A, and By, B, . .. B, and thus the values of 8,/0; and ¢,. It was
convenient to set the arbitrary amplitude @, at unity, and thus the normal mode components
at any spanwise station were then obtained from the relations

@, = — (X,[s)(4} + B)*(n)
0, = (A,z + Brz>1/2Fr(77) )

9.2. Results and Discussions.—Flutter motions were measured for the six conditions of the
wing as specified in Table 8. Resonance data covering the first four modes were obtained for a
range of mass-loadings (see Ref. 8), and values corresponding to the same conditions were obtained
by interpolation. From the values of 4;, A,... 4, By, B, ... B, and ¢, ¢, ... ¢, obtained in
the analyses Figs. 14 to 19 have been prepared to show for each condition the resolution of the
flutter distortions into normal mode distortions. These diagrams show the spanwise variations
of 5@ and @ together with indications of the phase, the amplitudes being regarded as positive
throughout. The amplitudes of the residual modes are also included in the diagrams.

It might be expected that there would be a tendency for a normal mode whose associated
frequency is close to the flutter frequency to feature prominently in the flutter motions. To
illustrate any such tendency, values of the ratio (f,/fs) are included in the diagrams.

Each loading condition will now be dealt with separately.

I, (Bare wing) : Fig. 14.—As is to be expected, the flutter mode can be regarded as a combina-
tion of the first two normal modes alone. The other modes provide negligible components.

I, Fig. 15.—A concentrated mass of more than twice the mass of the wing has been added
internally, but the second branch of the critical speed curve has not been reached (see Fig. 11c).
Each of the first three modes enter into the flutter mode.

I, Fig. 16.—This condition also refers to the internal addition of a mass more than twice
the mass of the wing, but now the second branch of the critical speed curve has been reached.
The fourth mode now enters into the flutter motion although not to a great extent, and it is
conceivable that its omission might not appreciably alter the calculated critical speed.

E, . Fig. 17.—Here an external concentrated mass of nearly half the mass of the wing has
been added (see Fig. 10c). The first three modes contribute components, but it is possible
that a good estimate of the critical speed might be obtained using only the first two. -

E, : Fig. 18.—The second branch of the critical speed curve has now been reached. The first
three modes are necessary to define the flutter mode accurately, but it is possible that a calculation
based on the first and third only might yield a reasonably accurate critical speed.

Ey: Fig. 19.—A further addition of mass has been made. As with £, the first three modes
enter into the flutter mode, but it might be sufficiently accurate to include only the first and
the third. '

9.3. General Conclusions regarding Analysis of Flutter Modes.—In only one of the six cases
analysed does the fourth mode feature to any appreciable extent, and even here it is probable
that its presence would not be necessary for a reasonable estimate of the critical speed. The
results suggest that the first three normal modes of wing motion should be sufficient for calcula-
’ftion purposes, but it must be remembered that this is on the assumption of the absence of bodily
reedoms.

10, Acknowledgement —Acknowledgement is made to Mrs. C. H. Wilkinson for her assistance
in the computational work involved in this report.
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LIST OF SYMBOLS
Chordwise ax‘is} .
N , see Fig. 1
Spanwisc axis
opan
Chord
Mean chord
Spanwise co-ordinate == y/s

Normal displacement at reference axis OY
Flexibility coefficients (see section 3)

Flexural displacement == z/s} .
. . see Fig. 1
Torsional displacement

Amplitudes of ¢ and 0 respectively

Values of @ and @ respectively appropriate to a reference section

Mode of flexural distortion = @/@

Mode of torsional distortion = @/

— s(®/®) (for resonances, the node is distance X behind the OY-axis)
Value of X at reference section

Circular frequency (radians/sec)

P27, frequency (cycles/sec)

Flutter frequency

Air speed

Critical air speed for flutter

Frequency parameter == (pc/V)

Kiissner coefficient = (V/f¢,,)

Phase angles

Flexural phase angle at station v

Torsional phase angle at station 7

see equations (17) and (18)
Added mass in slugs

Refers to the #th normal mode
Refers to the flutter condition

" Refers to a residual distortion
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TABLE |
Inertial Constants of Bare Wing

Mass moment Intertia about
7 Rib Mass about y-axis¥ y-axis®
(slugs) (slugs ft) (slugs ft?)
1 0-00995 0-00264 "~ 0-00543
2 0-00887 0-00232 0-00499
0-1 3 0-05610 0-01440 003332
4 0-00832 0-00210 0-00439
5 0-00783 ‘ 0-00195 0-00468
0-2 6 0-03929 0-00960 0-01644
7 000768 0-00183 0-00370
8 0-00736 0-00173 0-00349
0-3 9 0-03639 000842 0-01509
10 0-00724 0-00165 0-00316
11 0-00694 0-00155 0-00291
0-4 12 0-02779 0-00607 0-00956
13 0-00667 0-00143 0-00260
14 0-00642 0-00135 0-00234
0-5 15 003129 0-00644 0-01056
16 0-00598 0-00121 0-00204
17 0-00602 0-00119 ~ 0-00198
0-6 18 0-02123 0-00406. 0-00576
19 0-00516 0-000972 0-00159
20 0-00510 0-000939 0-00155
0-7 21 0-02024 0-003643 ~ 0-00481
22 0-00480 0-000844 0-01339
23 0-00463 0-000793 0-00123
0-8 24 0-01708 0-002852 0-00350
25 0-00424 0-000690 0-00103
26 0-00410 0-000650 0-000955
0-9 27 0-01374 0-002118 0-002459
28 0-00368 0-000560 0-000777
29 000344 0-000501 0-000704
1-0 30 0-00681 0-001046 0-001258

Total Weight of Bare Wing = 12:7 1Ib (= 0-394 slug).

*The y-axis is perpendicular to the wing root and situated at 0-3c from the
leading edge (see Fig. 1).

TABLE 2
Additional Inertias for Engine Mass Mountings (including the Streamlined Cases)
Mass moment Inertia about
Mass about y-axis y-axis
{slugs) (slugs ft) (slugs ft?)
Engine Mounting at = 0-1 0-0849 —0-0922 0-1035
i w1 =03 0-0808 —0-0757, 0-0793
" " W —0-5 0-0774 —0-0834 0-0593
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TABLES 3, 4 and 5
Standard Set of Flexibility Coefficients

&7 (") = flexure-at 5 due to unit force at 7', #(ny') = twist at » due to unit couple at #".
B(yy’) = flexure at 5 due to unit couple at #'. Dpy’) = twist at n due to unit force at %",
TABLE 3
o/ (') X 10° (ft, 167
24 i
!
0-1 0-2 0-3 0-4 0-5 © 06 0-7 0-8 0-9 1:0
0-1 1 0-061 0-084 | 0-133 0-151 0-180 0-201 0-250 0-251 0-279 | 0-339
0-2 0-240 0-380 0-479 0-584 0-667 0-771 0-870 0-984 1-07
0-3 0-670 0-950 1-19 1-45 1-71 1-96 2-20 2-48
0-4 1-50 205 2-52 3-05 3:53 4-08 4-57
0:5 2-94 3-87 4.8t ) 577 6-71 7-67
0-6 5-41 7-06 8-66 10-3 11-9
0-7 9-67 12-2 14-9 17-5
0-8 16-3 20-3 24-4
09 26-2 32-1
1-0 40-4
TABLE 4
& () X 103 (ft=1, 1b=1)
nl
0-1 | 02 0-3 04 0-5 0-6 0-7 08 0-9 1-0
0-1; 0-082 0-146 0-196 0-225 0-232 0-242 0-264 0-264 0-278 0-273
0-2 0-386 0-581 0-717 0-806 0-872 0-900 0-907 1-02 0-996
0-3 1-06 1-39 1-64 1-84 1-93 2-01 2-18 | 2-14
0-4 2-09 2-66 3-11 3-34 3:59 3-81 3-92
0-5 3-76 4-62 5:27 5-70 6-09 6-37
0-6 6-28 7-64 8-71 9-50 10-0
0-7 10-2 12-5 14-1 15-1
0-8 16-5 19-8 22-0
0-9 25-4 29-5
1:0 36-4
TABLE 5
Blm') X 10° = y'y) X 10° (Ib~1)
N n’
0-1 0-2 0-3 0-4 0-5 0-6 0-7 08 0-9 1-0
0-1| —0-006 | —0-010 | —0-010 | —0-015 | —0-020 | —0-030 | —0-035 | —0-040 | —0-035 | —0-035
02| —0-008 | —0:015 | —0-020 | —0-040 | —0-050 | —0-070 | —0-075 | —0-100 | —0-120 | —0-115
0-3| —0-015} —0-035 | —0-050 | —0-080 | —0-105 | —0-135 | —0-155 | —0-180 | —0-185 | —0-170
0-4 | —0-020 | —0-050 | —0-080 | —0-110 | —0-150 | —0-185 | —0-235 | —0-280 | —0-280 | —0-265
0-5| —0-035 | —0-080 | —0-120 | —0-185 | —0-220 | —0-255 | —0-320 | —0-365 | —0-370 | —0-370
0-6 | —0-040 | —0-115 | —0-170 | —0-265 | —0-310 | —0-360 | —0-420 | —0-455 | —0-430 | —0-435
0-7 | —0-060 | —0-145 | —0-230 | —0-340 | —0-425 | —0:470 | —0-505 | —0-495 | —0-455 | —0-450
0-8{ —0-065| —0-165 | —0-280 | —0-415 | —0-525 | —0-635 | —0-605 | —0-490 | —0-450 | —0-505
09| —0-085 | —0-190 | —0-330 | —0-490 | —0-650 | —0-810 | —0-780 | —0-640 | —0-510 | —0-300
1.0 —0-085| —0-215|{ —0-395 | —0-580 | —0-790 | —1-025 | —1-025 | —0-820 | —0-545 | —0-245
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TABLE 6
Position of Flexural Centre

Distance aft of
leading edge as
i ratio of local
chord

0-33
0-32
0-32
0-32
0-33
0-33
0-33
0-32
0-31
0-30

—HO OO0 OoO
SO WO UL UGN =

TABLE 7
Change of Elastic Characteristics of Wing

TFlutter characteristics
Stiffnesses® of bare wing

ld’ Wiy V,, fc
(Ib ft/radn) | (Ib ft/radn) (ft/sec) (cycles/sec)

1942 March/April
(Completion of standard flexibility coefficient measure-

ments) .. .. .. .- .. .- .. 1790 97-8
1942 October
(Completion of preliminary resonance tests) . . 1754 88-0
1942 December - .
(Commencement of flutter tests) .. . .. .. 86-1 5-45
1943 January
(After repair to wing) .. . . .. . 1838 94-9 88-2 5:55
1943 March . .. .. . . .. . /893 5-5
190-0 5-45
1943 April . . . . o . . 89-3 [5-45
, 89-4 1 —
1943 May .. .. .. .. .. .. ... 892 |© 54
1943 July T 88-8 5-12
88-6 5-18
1943 August
(Completion of flutter tests) .. .- . .. o 1550 85-3
1944 May
(Commencement of main resonance tests) .. . 1738 90-4

1944 August
(Completion of main resonance tests) .. .. . 1680 89-4

* Tlexural stiffness Jy == 0-49s*W [z where 7 is the displacement at = 0-7 due to a load W applied at the flexural
centre at = 0-7.

Torsional stiffness my = M| where () is the torsional displacement at n = 0-7 due to a couple M applied at # == 0-7,
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The Wing Conditions for which the Flutter Motions were Analysed

TABLE 8

(see also Figs. 10c and 1lc)

Code letter

Condition

I, Bare wing
I Internal loading u = 0-87 slugs
(n = 0-3, 0-3¢ aft leading edge)
I, " w=0-94
E, External loading w=0-17
(n == 0-3, 0-28¢ forward leading edge
E, . w=0-24
E, " @=032
TABLE 9
Position of nodal
Mass- Critical Dangerous" Resonance Kiissner line in chords
loading speed resonance . frequency coefficient behind leading edge
condition ¥, : Velfe,
Tip section 0-7 span
Exiernal mass-loading
ft/sec cycles/sec
(a) g = 0 slug 95 2nd 6-7 6-9 0-44 0-40
0-1 105 » 5-8 8:8 0-37 0-37
(b) 0-15 115 " 5:5 10-15 0-32 0-34
(c) 0-2 123 3rd 9:0 6-7 0-58 0-38
0-3 114 " 8:75 6-3 0-55 0-39
0-4 108 » 8:5 6-2 0-54 0-40
0-5 105 " 8:5 6-0 0-54 0-40
1-0 100 ” 8-5 5-7 0-53 0-40
1-5 98 " 8-5 5-6 0-53 0-40
2-0 97 " 8-5 5-6 0-53 0-40
(d) 97 " 85 5.6 0-52 0-40
Internal mass-loading
(e) u =0 slug 90 Z2nd 725 6-0 0-48 0-40
0-2 92 » 7-25 6-2 0-48 0-42
0-4 945 y 7-2 6-4 044 0-42
0-6 97-5 " .70 6-8 0-33 0-39
0-8 102 " 6-5 7:6 0-14 0-33
) 0-9 104 " 6-3 . 8-0 0-02 0-29
(®) 0-95 95 3rd 7-3 6-3 0-52 0-42
1-0 88 » 7-25 5-9 0-52 0-42
11 83 ” 7-25 5-6 0-52 0-41
1-3 80 " 7-25 5-4 0-52 0-41
1-5 79 » 7-25 5-3 0-52 0-41
1-7 79 ” 7-25 5.3 0-52 0-41
19 80 » 7-25 54 0-52 0-41
2:2 81 ” 7-25 5-4 0-52 0-41
(h) el 84 ” 7-2 5-5 0-52 0-41

—_
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