| LIBRARY : |
ROYsL ’E;E;REM\” ""TSTABUSHMEN? : R. & M. No. 2855
& }.L. L‘ 2T e 1."_“:'2 Ty (14’336)
et R A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL
REPORTS AND MEMORANDA

Oscillating Wings in Compressible Subsonic
Flow

By

W. P. Joxes, M.A., D.Sc.
of the Aerodynamics Division, N.P.L.

i
}

" Crown Copyright Reserved

LONDON: HER MAJESTY’'S STATIONERY OFFICE
1957

PRICE 5s 6d NET




4 -@scillating Wings in Compressible Subsonic Flow
g

Y
W. P. JONES, M.A., DSc.

OF THE AERODYNAMICS DrvisioN, N.P.L.

Reports and Memoranda No. 2855
October, 1951

Summary.—The problem of estimating flutter and stability derivatives for wings of finite span describing simple
harmonic oscillations in compressible flow is considered. It is shown that the problem can be reduced to a similar
one for an equivalent wing in incompressible flow. The lateral dimensions of the equivalent wing are 4/(1 — M?)
times those of the original wing and the frequency of oscillation is increased by the factor (1 — M?-* where M
denotes the Mach number of the compressible flow. The mode of oscillation is different but related to that of the
original wing and leads to a more complicated condition for tangential flow. [t is suggested, however, that sufficient
accuracy might be obtained by representing the boundary condition to first-order accuracy in the frequency and then
solving quite generally the integral equation which determines the velocity potential at the surface of the wing. The
comparisons made in Table 1 and Figs. 2a to 2d indicate that the above procedure is reasonably satisfactory in the
two-dimensional case. For M = 0-7, the values of the derivatives given by the formulae derived in this report show
fair agreement with the ‘exact’ results of Refs. 1 and 2 over a wide range of frequency parameter values. Since
flutter derivatives for wings of finite span are not usually very sensitive to variations in frequency parameter, the
scheme of calculation suggested should be sufficiently accurate for all practical purposes when the combined effects
of thickness and viscosity are negligible. It does, however, require a reliable method for calculating derivatives for
low aspect ratio wings in incompressible flow, since the aspect ratio of the equivalent wing is 4/(1 — M?) times that
of the original wing and becomes small for the higher values of M.

1. Introduction.—The théory for thin aerofoils of infinite span oscillating in inviscid compressible
flow® has been fully developed, but for wings of finite span the position is less satisfactory.
In the case of supersonic flow, analytical solutions can be derived for certain plan-forms but there
is little systematic information on aerodynamic derivatives, and there is still less for subsonic
flow. In this paper the subsonic case is considered, and it is shown that the problem of deter-
mining flutter and stability derivatives can be reduced to a similar problem for a wing of related
plan-form in incompressible flow. If 4 and f denote the aspect ratio and frequency of oscillation
of the original wing, the corresponding values for the equivalent reduced wing in incompressible
flow are A+/(1 — M%) and f/(1—M*) respectively, where M represents the Mach number of the
flow over the original thin wing. The boundary condition for tangential flow over the equivalent
wing depends on the mode of motion of the original wing and also on M (see section 2). If the
original wing is oscillating as a rigid body, the corresponding equivalent wing must distort in a
particular way in the chordwise direction. For instance, if w denotes the downwash distribution
for the actual wing, the corresponding downwash W for the equivalent wing at M = 0 is propor-
tional to w exp (— 74X) where X is a non-dimensional chordwise distance and 2 is a function of

and M. Known methods®® for calculating derivatives in the case of incompressible flow can
“then be used and solutions of the compressible problem obtained indirectly.

The exponential term in the downwash complicates matters, but, fortunately, the evidence
from two-dimensional theory given in Table 1 of this report suggests that replacing exp (— 2.X)
by 1 — 42X does not lead to serious error in the derivative values for a wide range of frequency
parameter values. In view of this, it is believed that, as far as the calculation of flutter and
stability derivatives is concerned, sufficient accuracy might be given by an approximate method
in which the downwash distribution is represented to first order only in the frequency. Since 4 is
usually multiplied by X, neglecting terms of higher order than 1 is equivalent to neglecting

terms in X of corresponding order, and hence any distortion in the chordwise direction.

“Published with the permission of the Director, National Physical Laboratory.
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The scheme requires, however, a reliable method for estimating aerodynamic forces on wings of
low aspect ratio, since when M tends to unity the aspect ratio of the equivalent wing tends to

zero.  For oscillating wings of very low aspect ratios, Garrick’s extended form of R. T. Jones’
steady theory® may be used. '

2. Equations of Motion.—Let U, p,, p, be the uniform velocity, pressure, and density respec-
tively, of the airstream in the undisturbed state, and let ¥V, denote the velocity of propagation
of small disturbances caused by introducing an oscillating thin wing into the field of flow. If
U, + u, v, w denote the velocity components of the disturbed flow at a point %, y, z at time ¢,
the linearised form of Euler’s equations for the motion are

dw  10p dv 1 0p dw 1 8p

T~ e T ey T m e (1)

where dfdi =0/t + U,8/0x, and p is the pressure. Furthermore, since V,? = dp/dp the
equation of continuity is expressible in the form ‘

1 dp du | Ov | Ow\ '
W%‘+Poa—x+@+§z‘>—o - .. - . . (2)

If ¢ denotes the velocity potential of the disturbance superimposed on the steady flow, then
u = 0¢/0x, v = 04/0y and w = 9¢/dz. Substitution in (1) and integration then yields
a$ _ 24 o

P —po :
T m U=y L 3)

At infinity, ¢ and p — p, tend to zero; hence f(t) = 0 .

The oscillating wing gives rise to a vortex wake across which there is a discontinuity in the
velocity potential. Let ¢, and ¢, represent the values of ¢ above and below the sheet of dis-
continuity, representing the wing and its wake. Then, if k= ¢, — ¢, it follows from (3) that the
lift distribution j(x,v) is given by

m ok | . ok - ‘

l(%,y):pbwpu:po‘a—t—*—(](,-a;). . .. . .. .. 4)
Since there is no discontinuity in the pressure field in the wake, the condition

ok ok =

a—t—}—UOé;:O, (x>x,) . .. N . . . (O)

must be satisfied.

By eliminating p from (2) and (3), it may be shown that ¢ must satisty the equation

d2¢— 282¢ 82¢ a2¢
w—z_gvs[axﬂugy—z = (6)

over the whole field of flow and the appropriate condition for tangential flow over the wing.
Let the downward displacement at time ¢ of any point %,y on the surface of the wing be denoted

by {(x,y,2). Then, since there is no flow normal to the wing, the following condition must be
satisfied at the surface of the wing

e ac ot

The problem is then reduced to one of finding a solution of (8) which satisfies (5) in the wake and
(7) on the wing.

3. Method of Solution.—In the present report, it is assumed that the wing is describing simple .
harmonic oscillations of constant amplitude, but the analysis is also applicable to oscillations of
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growing amplitude provided that at the time ¢ under consideration the amplitude is small - other-
wise the linearised equations of section 2 become invalid. Firstly, the variables x, v, z, ¢ are
replaced by the non-dimensional variables X, Y, Z, T defined by

¥ =1IX, y=p§"Y, z2=p4Z t=ITIUsy .. .. .. .. (8)

where [ is a convenient length, and where g = +/(1 — M?) with M = U,/V,. This transforma-
tion reduces the lateral dimension of the wing by the factor §. '

"If fis the frequency of the oscillation, the velocity potential ¢ of the disturbance may be
conveniently expressed in the form

¢ = @ g@XFeD) .. . .. .. .. .. - .. (9)
where 0 = 2afl/U,, and A = M*. 0.

By substituting the above expression for ¢ in (4) and writing K = &, — @,, the following
equation for the lift distribution is obtained, namely,

~

0 ¢
i(x, Y):pOU[,(é—]—:-i—ﬁaKe“X“’T), oo

—p U leten (1)

where I'=#»K + 0K/[0X and v = 7w. Since [(X, Y) is zero everywhere in the wake, the
condition I' = 0, which implies that

K(X) = K(X,)e™* .. .. . .. (12)
- must be satisfied when X > X, the value of X at the trailing edge.
It also follows from (6) and (9) that @ must satisfy the equation
o | o' | 0 | ..
it Tt =0 (13)

where % = Mv = Mwp? The corresponding boundary condition at the surface of the
equivalent wing is
oD w
—_— ey, — — @
w__az_ﬁe““f”, .. .. .. .. .. .. (14)
where w is defined by (7).

A particular solution of (13) which represents an outward radiating disturbance is 7' e™. By
the use of Green’s theorem’, it may then be shown that the general solution for oscillatory
motion is given by

o e—im’

4 0(X,, Yo, 7)) = [[K(X, V) ﬁ<7> aXdy R O )
where 7 = /[(X — X)? + (Y — Y,)* + Z,%. The integral is taken over the part of the
plane Z = 0 representing the equivalent wing and the wake. On differentiation, (15) yields

. 82 e—ixr
4 W (X, Y,0) = [| K a‘zT(T) iX dY, T O 1)
Z,~>0

where W on the aerofoil, Z, = 0, is given by (14) and K is unknown. To determine X, it is
convenient to write (16) in the form

2
'4n(W+ID)=”K£—ZG>dXdY, L
Z—>0 t
a2
where 4nIO=UKm.f(1f)dXdY N O £
1
Z—>0
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and | , fr)y=1— e"""' (19)
7

It is shown in Appendix I that I, is of order »* log, ». Hence, to first-order accuracy in frequency,
(16) may be replaced by

e | | '
4nW_JJKW<;>dXdY N 1)
Z—>0 - ' '
With the wake condition
F:ivK+%:0. @

Equations (20) and (21) are precisely what one would have to satisfy in the case of the wing of
‘reduced’ plan-form oscillating in an incompressible fluid with a frequency parameter » (frequency
fiB?) and a complex downwash amplitude W = g-'w’e®* where w = w’e™“’ represents the
downwash distribution for the original wing. Hence, if the general incompressible flow solution
for the oscillating wing of reduced plan-form were known, the solution for the original wing in
compressible flow could be derived.

'Numerical methods for solving the problem of the oscillating wing of any plan-form in incom-
pressible flow already exist, but it is difficult to assess their accuracy. Comparisons with the
few experimental results available are useful but, since the measured value of any aerodynamic
coefficient is dependent on thickness and boundary-layer effects, one has no control on accuracy.

For the oscillating aerofoil of infinite span solutions which are claimed to be reasonably accurate
are given in Refs. 1and 2. These solutions are compared with solution C of this paper in
Table 1 and Figs. 2a to 2d. Since, however, the numerical values of the derivatives for M = 0-7
given in Refs. 1 and 2 differ appreciably for the higher values of the frequency parameter in some
cases, there still appears to be some uncertainty in the derivative values even for two dimensions.

4. Two-dvmensional Theory.—For an aerofoil of infinite span and chord ¢(= 2I), equation (16)
gives
- oF V(Y ) gy gy 22
OJ—l K(X) YA v(yz + 0(2) ’ ! ( )
Where o =X —X)*+ Z,and Z,-0. Let a%#*=Y? + «? and substitute in (22). Then,
since

2aW(X,0) = |

0o e—ix|oc|t

At = — Z i e e . . 23
le(tz ____ 1) QzHO (%] O(.!), . ) ( )
where H,'® = [, — 1Y, is Hankel’s function of zero order, it follows that
oo 0 M . .

20 (X,) = — [ KX W[Q GH (] |)} aX. .. (@

When Z,—0, (24) yields, after differentiation and integration by parts, the expression
o0 1 0 7 . L
2W(X) = [ v—x 5% [K(X)'Q;q X — X, |(Y, +z]1)] iX .. .. (25

from which K(X) may be determined when W(X,) is known. This relation corresponds to the
more complicated integral equation first derived by Possio for an aerofoil oscillating in a
compressible fluid?.

The solution of (25) may be derived by iteration as follows.
p| X — X ) =1 + o] X — X, |(YV, +2])). IR . .. (26)
4



Then (25) may be written in the form
) 1 K

zn(WJrI):j_lZ—_—XéX—dX, Y )
where
= 1 3
2n1:j_lmﬁ[K(X).w(%lx—X1|)]dx. e (28)
Furthermore, by (12), '
K(X) = K(1)e~ -1 e e (29)

in the wake. Equation (27) corresponds in form to the integral equation which arises in the theory
of unsteady motion in incompressible flow, and can be treated by the methods developed to solve
the latter problem®’. It should also be noted that I tends to zero linearly as the frequency is
decreased (see Appendix I). If the integral I were known, (27) could be solved exactly by the
method of Ref. 8 or by the use of the general formula given by Kiissner and Schwarz’. Accord-
ing to Ref. 9 the solution of (27) when W 4 I is known is given by

a2 . ‘ 0, . N i sin 6 |
I = ;[O (W 4 I){[C(v)(l cos ¥) -+ cos ﬁ:l cotQ + wL(6,9) sin ¥ + 5 —cos B ﬁ} as¢ (30)
and
K(X)=e™| rewdx, —1< X<l
(31)
-1
= e[ Ie"dx, - X >1 |
In (30), X = — cos ¥, '
L(g,ﬁ):%log1_COS(6+19):2§M%$—M@ . . .. .. .. (32)

el—COS(B—ﬁ’) n

and C(») is the usual oscillatory lift function. By the use of (28), (30) and (31) it should be possible
to determine I'(X) and K(X) corresponding to any W(X) by successive approximation as follows.
Let I = 0 initially in (30). Then determine I'; and by the use of (31) derive K, the first approxi-
mation to K. Substitute K = K, in (28) to obtain I, the first approximation to I, and substitute
I =1, in (30) to give I',, and hence K, a second approximation to K. This process could be
continued until K, = K,,, when further iteration would be unnecessary. The corresponding lift

distribution would be given by (11).

A variation of the above procedure would be to expand the left-hand side of (27) in the form

W 4 I, = U,[Cy + Cy(} + cos 9) + ZC, cos nd] .. .. .. .. (33)
n=2
where I, is the nth approximation to I. It then follows from (27) and (30) that
P =T, S CTy oo o e (3
n=0
where
I'y = 2[C(») cot30 + v sin 0] )
I'' = —2sinf -+ cot 16 + iv(sin 6 -+ sin 26
( | 2( S (35)
0w . rsin (n 4 1)0 _ sin (n — 1)0
n =2 I = 25111%0—{—7,1»( P = pra— ) ‘
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5. Apphications—Consider an aerofoil describing pitching and translational oscillations as
indicated in the following diagram:—

————
\l ¥ P
LUK —> '

%:-zz = L‘z'e Pt

Fic. 1

The downward displacement ¢ of the point P is then given by

=1z + Xa)et .. .. .. . . .. . (36)
and the downwash amplitude '

w = Uylio(z’ + Xao') 4+ o']. .. .. . .. . . (37)
It follows from (27), since pW = w'e ™ that ‘

271;[ —ilX J 1 aK

ﬂwe + BI J_X_XaXdX . . i .. (38)

It 1s shown in Ref. 10 that

et s — T (2) + 2 Ez”],,()cbsn@, . . .. . .. .. (39)

and, since X = — cos 6,

AN
W o= 2 _g[a + twz’ — wo é}e“m"
p p 04

— UO[CO Lk +cosB) + 3 C,cos n@} L 40
n=2
where '

BCy = (o« 4 102)(Jo — i],) — 0 () — i]))

=1, pC, = 2[(o + i) ], — 0[] .. . . . . . (41)
with [,/ == 8];/5 ):

(@) Boundary Condition A.—When I = 0 is assumed, the solution of (38) is readily obtained
by using the results of incompressible flow theory. It follows that I', in this case, is given by (34),
where the C,’s and I',’s are defined by (41) and (35) respectively. The correspondmg Lift dlstn—
bution for compressible flow is then given by (11) in the form

J(X) = poUs? [ s Cnrn] goxven 4
Since X = — cos #, it follows that
e =e#el = J(A) + 2 2 (— 2)"],(2) cos n8, .. . .. .. (43)
n=1
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and that

X = —i 2ot = — i[](,' 42 5(_ 0],/ () cos nﬁ]. I P
It may then be proved that
“1 N N h
[ reesax =24[(co) +%)7) )+ 2 T )}

J1_.1 Iy e X dX = — ZniKC T %) Jo —iCJy + 2_; ]2/]

| rewax = — (1= s+

b 8

Z,

S 1o+ o)
&1+ 72 5 [ 1] U2 + T390 diediy

2

I

|t

where

[0+ T 2@t =2 Tnfa)"

: , (45)
[ riewxax = m'<1 — DU i) + (T + i)
-1 A :
and for n > 2 .
1 . »
[ ueaX = (— iyt a1 = ow + Jo)
[ rewxax — (—ipeia (1= DU’ T’ + oo + 1]
" Hence, by the use of (41), (42) and (45) it may be shown that the total lift L is given by
Le# . : . v .
mpdUg Co2C()(Jo — iJ1) + w(Jo + J2)] C1<1 i)(‘h + /1)
+ B (=IO =) ows o+ T (48)
Slmllarly, the moment M about the mid-chord axis* is given by
L= CL2CON + i) = 4 T
+C [(1 O = i)+ B — i)
+ n=22 —_ ’l ncnl:(l — i) nt1 +]n—1,) lz(]n—kl + ]n— )] v (47)
It is shown in Appendix II that
Si= 2w’ + Junr) =LoLr T L]
So= 3 1/ + T = F S
2y = n§2]n(]n_1 + ]n+‘l)
l 12 /2

J

# For the mid-chord axis, M = i dLjdA, where Lisgivenby (46)andC,,Cy, . ..
of A
7

C,are regarded as being independent




Hence, by use of (41) and (48), the following expressions for the lift and pitching moment may
be derived _ N , :

ﬁ%ﬁzﬂa+mMﬂ—Ud—mds OO o — i) + o+ T3] )

+ 2o + i0a)]s = 0] 11 =2 )2 — i)
—2i(1 = )l(a Fion)S, —wal] |

=+ 102 (Jo — i) — wal]y’ — iJN2CE)Y + i7s) =o' -+ J4)
+ 2(a + dw2) ]y — 0] 11 =) + i) + AT+ i)

12+ dw?) Kl - 3’)21 + 1'23]— ZwocKl — T)E + i 2, ]

In the notation generally used in flutter theory, the aerodynamlc coefﬁc1ents are deﬁned by the
relations : ~

¢ (49)

<

L . )

z ~
el Ve eeh) A G iBae -~ (50)
,,—c]—‘é* = (e i) 2 4 (m, A (G o

where & — 20 — pc/Uyand z = -2‘32

Let ‘ S |
R=2C0)Jo(*) — ¢/u(A)] + o[ [o(d) + Jo(A)],

S=(1 =D + i), .J-- R L
R/ =2R[3), S'=2aS/ox,

where » is regarded as being independent of 1 (actually% = M?*). From (49) and (50) it then
follows that :

3

z+mz_i’?_;[(] )R —27,]15—2z<1— >2}

I, + i3l — _{[]0_ T — o]y — iJLNR — 2(], —w]l)
—2i(1 — )[2 —wzz]} \

me i = — 224 (Jo — i) )R —~2¢]15’—22[<1 — )2 }}

o Gy = {Ur— s — o(Js — )R — 2], — 0]’

()

and from these formulae the individual aerodynamlc coefﬁ01ents for the -boundary cond1t1on
assumed can be determined exactly.

-
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( (;y) Boundary Condition B.—To obtain this boundary condition, / = 0 is again assumed, and
40) is replaced by

W = B U,[(& + twz’)(1 + 74 cos 8) — two cos 6], .. . . . (53)
which yields '
R, C . A\, 1o,
BCy = (o + iz )(1 =) + 5
BC, = iA(o + 102') —iwa
(4 > 2) Cn - O '

Condition (53) is obtained by substituting 1 -+ ¢4 cos @ for exp(iA cos 8) and neglecting terms of
second and higher order in the frequency*. The same condition could be derived by regarding the
equivalent aerofoil as rigid and neglecting distortion terms in X* and higher powers. Once the
boundary condition has been chosen, the general solution of (38) for any value of & can be obtained
as already shown. For condition B, the formulae derived for the mid-chord aerodynamic
coefficients are ~

L+ ol = “77“’[(1 — %)R _ ms}

(54)

-~

I+ idl, = %’ﬁ{[“ 3@02_—1)}13 + (o — Z)S} (55,
Lo e )

m, + iGm; — — i;%[(l— %)R' _ iAS’]

o wh i(w—l)} b i e L

M, -+ 1My b |:1 + 5 R’ 4+ (w0 — 1S J ,

A comparison of the results for boundary conditions A and B revealed that the neglect of second-

order terms in frequency in the boundary condition did not lead to serious discrepancies over the

practical range of values of the frequency parameter (see Table 1). For both A and B, it is

assumed that 7 = 0, and the approximate solutions of (38) obtained can only be regarded as a

rough approximation to the true solution. A better approximation to the exact solution can,
however, be made by including the I term.

(¢} Boundary Condition C.—1It is shown in Appendix I that, when o — 0,

. 2nl — wdK(1), ce . ce e . . . (56)
where K(1) is the value of K-at the trailing edge, and where .
M armge (L /=M (57)
S s=log V(L — M log (R —=)).
Since in the limit . |
| ,K(l):%ﬁ(aurmz')m, RPN . <)
the left-hand side of (38) may be written in the form |
%W 4 I) — ZETU"[(OJ 0z (1 4 4 cos ) — iwacos 0+ id(o + iwz)] .. (59)

to first-order accuracy in frequency. With this modified boundary condition, (38) can be solved
exactly for any value of the frequency parameter. The solution thus obtained may be regarded
as a first approximation to the exact solution of (25).

% The terms o' and 7wz’ are assumed to be of the same order.
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Let

1 s — ]
a -+ 5 )
. -
and b =1 i M_(“’Z;’l).
It follows from (72) that
BC, = twz’.a + o'b )
BC, = Ao/ + tw2’) —iwa’ - .. .. . . . . (61)
n>2 C,=0. |

J

The lift distribution is then given by (42) and the corresponding lift and pitching moment may
be calculated. In this case the formulae for the aerodynamic coefficients are

L+ il = 2 (4R — i2S)

l, + il =7’f‘ﬁ [bR + i(w — 4)S]

' (62)
s _ e Y
m, -+ tom; = % (aR 1AS’)
m, + iGm, :%; (DR’ + (@ — 1)S').

A comparison of the values given by (62) and those given by the ‘exact’ solution show fair
agreement for a wide range of % values and good agreement for & < 0-4. From this, it appears
that if solution C, which is essentially a first approximation, were extended to include second
order terms in frequency on the left-hand side of (38), reliable estimates of the derivatives would
be obtained even for higher values of &.

8. Concluding Remarks—In view of the fact that solutions A and B agree closely, it appears
that the left-hand side of (38) need not be known to great accuracy and that the assumption
exp (— 74X) =1 — 44X can be made at an early stage in the calculations. This is likely to be
true also in the three-dimensional case, and it seems probable that solutions of sufficient accuracy
would be obtained if the left-hand side of (17) were replaced by its limiting form for low frequencies.
Present methods of treating the equivalent incompressible flow problem could then be applied to
derive a general solution of (17) for any frequency parameter value. There is no need to limit
the solution to low frequencies once the approximate form of the left-hand side of (17) has been
chosen. In the two-dimensional case, approximation C is quite satisfactory for M = 0-7 and
& < 0-4, and it seems likely that the corresponding approximation in three dimensions would
give reliable results, Flutter derivatives for wings of finite span are not usually very sensitive
to variations of frequency parameter and the method of calculation suggested may give good
accuracy for a wider range of & values than that given by approximation C in the two-dimensional
case. Terms of order »? log,  are neglected in this approximation but they could be included in
the corresponding three-dimensional solution if necessary. It is, however, doubtful whether the
accuracy of solution for the higher values of » would be improved since terms of order »* then
become equally important.

Acknowledgement.— The numerical results given in this report were calculated by Miss Sylvia W.
Skan and Miss J. S. Francis of the Aerodynamics Division.
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APPENDIX I

Limiting Forms of Integrals

(2) Three-dimensional Case—The integral I, defined by (18) may be expressed in the form

tnly = | J’XLK(X Y) 3 2f L dX dY

+[ [ KX, Y) o af o7 ax ay
Xy

~$:

:J’S J K(X,Y), af dX dY
- f -iu(X—Xthz_f; dX Ay

+H E(X,Y) e adedY N %

whereé = X — X,. Whenxis small the ﬁrst twointegrals are of order » ®since the approximation

f=z'x—l—%77 e . .. .. . o . (64)
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is valid within the ranges of integration. This approximation cannot be used in the thlrd
integral since & varies for zero to infinity and »» may be large for large values of ». However,
when z — 0, it may be proved that

2](‘ 1 —mR
= rmCx—) (65)
where R* =¢* +-a% anda= | Y —Y,|. Let
o(Y) = K(X,Y)e™**
Then the third integral in (63) reduces to
s % —10E a __ a-xR
Iazj_j o(¥) o (o e ay
—wE . e—nR)
BYJ—RMY. N
It is shown in Ref. 11 that
—wEd& .
j\/ T = Kova) —iTova) |
y 2. 2
:_(y +10g. %) — ot iva — L log, v 4 00 (e
and, since » = My,
e—t(u§+xR ~-tw(&+ MR)
Jo J ,\/ E ~+ a ) @
o —wt dt
i, ©
where i =¢& 4+ M+/(£* + a®. Hence, by (67) and (68),
Te (1l — e ™Ry L (7 e 1 . 1
Jo R df_joe <\/(§2—l—a2) \/(§2+a2p’2)> a
edE )
- % 69
+f0 ,\/(52 —|—6l2ﬁ2) ( )
— log, (1 + M) — M;”‘z vtlog.y + O(?)
and, therefore, when » — 0,
s o(Y) I: 2
IB—JY_T;aY log, (1 + M) — %-—}—O(%):|dy
N—ilogexj_sa(Y)dY Ce e, (70)

where the integral has its steady value.
From (18), (63) and (70) it then follows that the integral 7, is of order »* log, #.
(12) Two-dimensional Case—The integral I defined by (28) may be expressed in the form

] e KX — Xilax
o K1) 8 [ e
+J1X1_Xﬁ[qp ( }dX M

since K(X) = K(1)e™* in the wake.
12



Since, when » — 0,

Pl X = X]) ~ (X — X)*log. 5 4 Ofe?),

(72)

the first integral in (71) is of order »* log, ». The second integral in (71) is denoted by I,, where

K(l G (X
1= —Eerneng— || KU oy s ax

and
3
Q:f XX, %

_onax[ _1{' 4z .

Next consider the limiting form of Q(e) as ¢ — 0, where

[piix — Ko | ax

" v 0 — i
— J 2 p(Mx)e ] d .
I'he function vy is defined by (26) and is expressible in the form

p(Mx) =1+ (v, (M) + ] (M)

By Substltutmg for  in (75), it may be shown that
M
2

) — ["[5are(v + ie — T2 (v, if)e — ijﬂdx

= [ {Z 2 e Y + i) = FA(Ye + ifge =L

Now

* e i
L P d%N——y—loge——z——{—O(e),..

Y+ if)e T = — B e TY(Me) + ifu(Me)]

. ' Me | in
~ —z(y +log. 5 + 5 + O(e)>,
and it is proved in Ref. 12 that
2

J:[Yo(Mx) oMo dx = — T Tog,

Hence, when ¢ — 0,

0 it — 20310 Lo VL= 0]

ind it follows from (71) and (73) that

2l ~ woK(1) + O(»*log, »)
~here

ézloge%—}—\/(l—Mz)logel JM/E;[_MZ)'
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APPENDIX II

Summations
(i) Evaluation of Z,, 2,, Z; and Z ,—By the use of the well-known relations
2]743) = Ju-ill) — Juni(2)
2 = Ty + T

[ gonan <2000 + (1= %)7.]

it may be shown that

E = EJ”(]n_1 +]n+1 )

n=2

=33 /s — Jura)
WoJs + T

I

and that 3} )
Se= 3 [ et A Juur) = 3 2T

2, Ut = Jusa?
st + T3

Il

S

Since, by (86),
| 4 %i”]n w :’1(]12 +J22) .
it follows by integration that

2 3l =[]+ T2 @

Hence, by (84) and (n82),
2 E: ]n(]n— + ]n+1) - % 2% ”2
I LARNAY

] B Bl -t

’ 72 /2 - 1 2 _ 4 2:|
A A R G VAR G VAL B
The remaining series

2o= 5 LU 4 Jos)

e

Z%—%%gﬂfﬁ +3 E 2n]f,

2] s
Ja’ ;]J + % éz o],

(84,

(86

(87

(88



since

[Z 2],% di — /12[]"’2 +(1- 7%2)]]

= 12[2 nlz - dj—d}. (]1» n/):| - }']n n/ 3 (91)
t follows that
A ® ]
S onfdr =10 3 2ng,r — (20 4 4 2)(h)
0n=2 n=2 dl 2
ind, therefore, by (89),
2 e A% d A%, T
203 )= gy 2 [, dn (92)
n=2 2 dl 2 0
Hence, by (90) and (92),
d 1 (%
24=%—(J12+]22)+TJ7LJ (J1* 4 Jo") Ay das dA . (93)
di A%a Jy
TABLE 1
Comparison of Resulis for M = 0-7 (Mid-chord Axus)
Z . L
Approximations Refs.* Approximations Refs.®
@ 1 and 2 1and 2
A B C A B C
0 0 0 0 0 4-399 4-399 4-399 4-399
0-04 0-0199 0-0199 0-0225 0-0223 4-0724 4-073 4-065 4-061
0-08 0-0538 0-0539 0-0636 0-0629 3-766 3-767 3-748 3-740
0-2 0-1404 0-1407 0-1917 0-1849 . 3-123 3-130 3-086 3-054
(0-193) : {3-05)
0-4 0-1517 0-1534 0-3251 0-2975 2-587 2-611 2-590 2-504
(0-313) (2-51)
06 0-0127 0-0149 0-3647 0-3120 2.317 2366 2-442 2-269
‘ (0-360) (2-25)
0-8 —-0-2493 —0-2518 0-3294 0-2613 2-150 2-232 2467 4 2-172
(0-317) (2-12)
TABLE 1—continued
Za ]o'c
" Approximations Refs.* Approximations Refs.*
w 1 and 2 1 and 2
A B C A B C
0 4-399 4-399 4-399 4-399 —00 —o0 —o0 : —o
0-04 4-078 4.078 4-071 4-066 —11-402 —11-400 —13-041 —12-981
0-08 3-783 3-781 3-762 3-757 —7-475 —7-472 —8-993 —8-903
0-2 3-177 3-169 3-124 3-117 —2-738 —2-7275 —4-002 —3-881
(3-11) —3-85)
0-4 2-693 2-667, 2-647 2-637 —{(-3128 —0-2979| —1-3705 —1-2775
1 (2-63) (—1-45)
0-6 2-469 2-417 2-493 2-471 0-5374 0-5503| —0-4213 —0-:370
(2-435) —0-486)
0-8 2-345 2-258 2-494 2-448 0-9311 0-9369 0-0287 0-032
(2-38) (—0-07)
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TABLE 1—continued

— WMz —M;

” Approximations Refs.* Approximations Refs.*
w 1 and 2 7 1 and 2
A B c A B C
0o 0 0 0 0 —1-0998 | —1-0998 | —1-0998 | —1-099,
0-04 —0-0058 | —0-0058 | —0-0085 | —0-0064 | —1-0168 | —1-0170 | —1-0146 | —1-0135
0-08 —0-0167 | —0-0167 | —0-0191 | —0-0188 | —0-9383 | —0-9384 | —0-9316 | —0-928C
0-2 ~—0-0536 | —0-0538 | —0-0664 | —0:0629 | —0-7719 | —0-7724 | —0-7496 | —0-743

(—0-0863) (—0-745)
0-4 —0-1069 | —0-1080 | —0-1509 | —0-1330 | —0-6352 | —0-6362 | —0-5859 | —0-5808
' .1 (—0-147) (—0-582)
0-6 —0-1523 | —0-1559 | —0-2460 | —0-2016 | —0-5727 | —0-5736 | —0-4938 | —0-496C
(—0-212) {—0-487)
0-8 —0-1951 | —0-2040 | —0-3612 | —0-2768 | —0-5416 | —0-5423 | —0-4286 ~0-4406¢
‘ (—0-288) {—0-427)

— W — M
" Approximations Refs.* Approximations Refs.*
w 1land 2 1 and 2
A B C A B C
0 —1-0998 | —1-0998 | —1-0998 | —1-0995 co o o ©

0-04 —1-0185 | —1-0184 | —1-0161 | —1-0148 3-6453 3-6450 4-0547 4-0297
0-08 —0-9428 | —0-9426 | —0-9358 | —0-:9333 2-6463 2-6453 3-0245 2-9808
0-2 —0-7872 | —0-7867 | —0-7638 | —0-7595 1-4261 1-4228 - 1-7391 1-6690
’ —0-755) (1-670)

0-4 —0-6684 | —0-6676 | —0-6173 | —(0-6166 0-7915 0-7848 1-0529 0-9761

—(0-617) , (1-01)

0-6 —0-6240 | —0-6235 | —0-5437 | —0-5474 0-5654 0-5557 0-8058 0-7350
(—0-532) ‘ (0-770)

0-8 —0-6129 | —0-6133 | —0-4996 | —0-5040 0-4589 0-4465 0-6921 0-6301

(—0-488) (0-648)

* Values in brackets were obtained from tables given in Ref. 2.
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