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Summary.--The problem of estimating flutter and stability derivatives for wings of finite span describing simple 
harmonic oscillations in compressible flow is considered. It  is shown that  the problem can be reduced to a similar 
one for an equivalent wing in incompressible flow. The lateral dimensions of the equivalent wing are ~/(1 - -  M 2) 
times those of the original wing and the frequency of oscillation is increased by the factor (1 - - M 2 )  -1 where M 
denotes the Mach number of the compressible flow. The mode of oscillation is different but  related to that  of the 
original wing and leads to a more complicated condition for tangential flow. I t  is suggested, however, that  sufficient 
accuracy might be obtained by representing the boundary condition to first-order accuracy in the frequency and then 
solving quite generally the integral equation which determines the velocity potential at the surface of the wing. The 
comparisons made in Table 1 and Figs. 2a to 2d indicate that the above procedure is reasonably satisfactory in the 
two-dimensional case. For M = 0.7, the values of the derivatives given by the formulae derived in this report show 
fair agreement with the 'exact'  results of Refs. 1 and 2 over a wide range of frequency parameter values. Since 
flutter derivatives for wings of finite span are not usually very sensitive to variations in frequency parameter, the 
scheme of calculation suggested should be sufficiently accurate for all practical purposes when the combined effects 
of thickness and viscosity are negligible. I t  does, however, require a reliable method for calculating derivatives for 
low aspect ratio wings in incompressible flow, since the aspect ratio of the equivalent wing is ~/(1 - -  M 2) times that  
of the original wing and becomes small for the higher values of M. 

1. I•tr•ducti•n._The th••ry ••r thin aer•••i•s •f infinRe span •sci•1ating in inviscid c•mpressib•e 
flow 3 has been fully developed, but for wings of finite span the position is less satisfactory. 
In the case of supersonic flow, analytical solutions can be derived for certain plan-forms but there 
is little systematic information on aerodynamic derivatives, and there is still less for subsonic 
flow. In this paper the subsonic case is considered, and it is shown that  the problem of deter- 
mining flutter and stabili ty derivatives can be reduced to a similar problem for a wing of related 
plan-form in incompressible flow. If A and f denote the aspect ratio and frequency of oscillation 
of the original wing, the corresponding values for the equivalent reduced wing in incompressible 
flow are A%/(1 -- M ~) and f / ( 1 - - M  ~) respectively, where M represents the Mach number of the 
flow over the original thin wing. The boundary condition for tangential  flow over the equivalent 
wing depends on the mode of motion of the original wing and also on M (see section 2). If the 
original wing is oscillating as a rigid body, the corresponding equivalent wing must distort in a 
particular way in the chordwise direction. For instance, if w denotes the downwash distribution 
for the actual wing, the corresponding downwash W for the equivalent wing at M = 0 is propor- 
tional to w exp (-- i~X) where X is a non-dimensional chordwise distance and 2 is a function of 
f and-M. Known methods 4'5 for calculating derivatives in the case of incompressible flow can 
then be used and solutions of the compressible problem obtained indirectly. 

The exponential term in the downwash complicates matters, but, fortunately, the evidence 
from two-dimensional theory given in Table 1 of this report suggests that  replacing exp (-- iXX) 
by  1 -- iS~X does not lead to serious error in the derivative values for a wide range of frequency 
parameter values. In view of this, it is believed that,  as far as the calculation of flutter and 
stabili ty derivatives is concerned, sufficient accuracy might be given by  an approximate method 
in which the downwash distribution is represented to first order only in the frequency. Since X is 
usually multiplied by X, neglecting terms of higher order than ~ is equivalent to neglecting 
terms in X of corresponding order, and hence any distortion in the chordwise direction. 
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The scheme requires, however, a reliable method for estimating aerodynamic forces on wings of 
low aspect ratio, since when M tends to uni ty  the aspect ratio of the equivalent wing tends to 
zero. For oscillating wings of very low aspect ratios, Garrick's extended form of R. T. Jones' 
steady theory 6 may be used. 

2. Equations of Mot ion . - -Le t  Uo, Po, po be the uniform velocity, pressure, and density respec- 
tively, of the a~rstream in the undisturbed state, and let Vs denote the velocity of propagation 
of small disturbances caused by introducing an oscillating thin wing into the field of flow. If 
U0 + u, v, w denote the velocity components of the disturbed flow at a point x, y, z a{ time t, 
the linearised form of Euler's equations for the motion are 

du 1 8p dv 1 ap dw 1 8p 
d~ - -  p o a~ '  d~ = - -  p--. ~ '  d T  = - -  p--. a--~ . . . . . . . . .  (1) 

where d/dt ~ 8/8t + Uoa/ax, and p is the pressure. Furthermore, since Ks2= dp/dp the 
equation of continuity is expressible in the form 

1 dp + (8u  8v 8w) 
v,  ~ dr  po\~ + ~ + - ~ _  = 0 . . . . . . . . . . .  (2) 

If $ denotes the velocity potential of the disturbance superimposed on the steady flow, then 
u = 8dp/ax, v = 85/8v and w = 86/8z. Substitution in (1) and integration then yields 

d6 8~ 84 P -- Po + f(t) . . . . . . . . . . .  (3) 
d-t = 8-{ -F U0 a x -  po 

.At infinity, $ and p -- P0 tend to zero; hencef(t) = 0.  

The oscillating wing gives rise to a vortex wake across which there is a discontinuity in the 
velocity potential. Let $~ and ~b represent the values of q~ above and below the sheet of dis- 
continuity, representing the wing and its wake. Then, if k ~-~ 44 -- 6b, it follows from (3) that  the 
lift distribution ~ (x,y) is given by 

i ( x , y )  = pb - p~  = p o T {  + N o  ~ . . . . . . . . . . .  (4) 

Since there is no discontinuity in the pressure field in the wake, the condition 

8k 8k 
8-7 + u 0 ~  = 0, ( x>  x3 . . . . . . . . . . . .  (5) 

must be satisfied. 

By eliminating p from (2) and (3), it may be shown that  6 must satisfy the equation 

1 dt 2 --  V, ~ + - -  + (6) L 8x 2 ay 2 8z 2j . . . . . . . . . . . .  

over the whole field of flow and the appropriate condition for tangential flow over the wing. 
Let the downward displacement at time t of any point x,y  on the surface of the wing be denoted 
by ~(x,y,t). Then, since there is no flow normal to the wing, the following condition must be 
satisfied at the surface of the wing 

a~ a~ a~ 
w - -  a z - -  at F U.~-~ . . . . . . . . . . . . . . .  (7) 

The problem is then reduced to one of finding a solution of (6) which satisfies (5) in the wake and 
(7) on the wing. 

3. Method of Solu t ion . - - In  the present report, it is assumed that  the wing is describing simple. 
harmonic oscillations of constant amplitude, but the analysis is also applicable to oscillations of 



growing amplitude provided tha t  at the time t under consideration the amplitude is small - other- 
wise the linearised equations of section 2 become invalid. Firstly, the variables x, y, z, t are 
replaced by the non-dimensional variables X, Y, Z, T defined by 

x = lX,  y = /3-1lY, z = /3-1lZ, t = lT/Uo,  . . . . . . . .  (8) 

where I is a convenient length, and where/3 ~ ~/(1 -- M 2) with M ~ Uo/V,. This transforma- 
tion reduces the lateral dimension of the wing by the factor/3. 

I f  f is the frequency of the oscillation, the velocity potential ~ of the disturbance may be 
conveniently expressed in the form 

e . . . . .  ( 9 )  . . . '  . . . . . . . .  

where ~ = 2zffl/Uo, and ~ = M " 3 - % .  

By  substituting the above expression for ~ in (4) and writing K = ~ -- ~b, the following 
equation for the lift distribution is obtained, namely, 

( 8 8 
= + ~-~)K e '(~x+°'r) (10) Y) p oUokU ~- . . . . . . . . . . .  

= poUoF e i(~x+~r~ . . . . . . . . . . . . . . .  (11) 

where /~ ~ i r K  + o K / o X  and v =/3-2eo. Since l(X, Y) is zero everywhere in the wake, the 
condition _r = 0, which implies that  

K ( X )  = K(X~)e -~(x-x') . . . . . . . . . . . . . . .  (12) 

must be satisfied when X > X,, the value of X at the trailing edge. 

I t  also follows from (6) and (9) that  # must satisfy the equation 

8~q~ 32~ 82q5 
ax-- q + + + = o . . . . . . . . . . . .  ( l a )  

where a = My-----Mco/~ -2. The corresponding boundary condition at the  surface of the 
equivalent wing is 

O~b w e ~ax+~'r) , . . . . . . . . . . . . . .  (14) W - - a Z - -  ~ 

where w is defined by (7). 

A particular solution of (13) which represents an outward radiating disturbance is r -~ e -x~ . By 
the use of Green's theoremL it may  then be shown that  the general solution for oscillatory 
motion is given by 

4z~q~(X,, Y, ,  Z,) = f f K ( X ,  Y)  aZ,\--;---J d X  d Y  . . . . . . .  (15) 

where r ~ - - - X / [ ( X -  X , ) 2 +  ( Y -  y ~ ) 2 +  Z~.]. The integral is taken over the part of the 
plane Z = 0 representing the equivalent wing and the wake. On differentiation, (15) yields 

4uW(X~,Y~,O) = f f  K - ~ - Z 7 % - - ~ / d X  daY, . .  . .  (16) 
ZF-'~'O 

where W on the aerofoil, Zt = 0, is given by (14) and K is unknown. To determine K, it is 
convenient to write (16)in the form 

K a~ (1"1 d X  d Y ,  4 a ( W  + I0) ----= f f  a Z , % r /  
Z t - - - - > - 0  

ff where 4~I0 = K g-z-~ ~ .f(r) d X  d Y  . . . . . . . . . . . .  (18) 
Z f - - - ~ 0  
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a n d  f ( r )  = 1 - -  e - i~  
/ /  

I t  is shown in Appendix I that  I0 is of order ~ ~ log~ ~. 
(16) may be replaced by 

= f / K  d x  e Y  
.. a Z , ~ \ r /  • .  

Z ~--; , .  0 

. . . . . . . . . .  (19) 

Hence, to first-order accuracy in frequency, 

(20) 

with the wake condition 

8K 
l" = i v K  ~ ~ - -  0 . . . . . . . . . . . . . . .  (21) 

Equations (20) and (21) are precisely what one would have to satisfy in the case of the wing of 
'reduced' plan-form oscillating in an incompressible fluid with a frequency parameter ~ (frequency 

f//3 ~) and a complex downwash amplitude W = f i -*w 'e  -ax,  where w = w'e~° 'T represents the 
d0wnwash distribution for the original wing. Hence, if the general incompressible flow solution 
for the oscillating wing of reduced plan-form were known, the solution for the original wing in 
compressible flow could be derived. 

N u m e r i c a l  methods for solving the problem of the oscillating wing of any plan-form in incom- 
pressible flow already exist, but it is difficult to assess their accuracy. Comparisons .with the 
few experimental results available are useful but, since the measured value of any aerodynamic 
coefficient is dependent on thickness and boundary-layer effects, one has no control on accuracy. 

For the oscillating aerofoil of infinite span solutions which are claimed to be reasonably accurate 
are given in Refs. 1 and 2. These solutions are compared with solution C of this paper in 
Table 1 and Figs. 2a to 2d. Since, however, the numerical values of the derivatives for M = 0- 7 
.given in Refs. 1 and 2 differ appreciably for the higher values of the frequency parameter in some 
cases, there still appears to be some uncertainty in the derivative values even for two dimensions. 

4. T w o - d i m e n s i o n a l  T h e o r y . - - F o r  an aerofoil of infinite span and chord c (=  2l), equation (16) 
gives 

F f  ° . d x  dY,  . . . . . .  (22) 2 ~ w ( x . o )  = ~ 0  -1 K(X) ~&~. V ( y ~  + , )  

where ~2 = (X -- X~) 2 + Z~ ~ and Z~-+0. Let g"t ~ = Y~ + cd and substitute in (22). Then, 
since 

j .oo e-i~lcqt 
, V ( t  ~ - l )  d t -  ~¢Ho (2~(~1~1), • . . . . . . . . . . .  (23) 

where H o  (~) =-: J o  - i Y o  is Hankel 's  function of zer o order, it follows tha t  

2 = w ( x 1 )  = - f~_IK(X) ~-Z-~k2 ¢H°(~')(~] ~ [)1 d X  . . . . . . . . .  (24) 
F~ 

When Z1 ~0 ,  (24) yields, after differentiation and integration by parts, the expression 

-1 X - -  X 1 ~ X  •1 X - - X  1 ](Y1 "-~ ¢J1) d X  . . . .  (25) 

from which K ( X )  may be determined when W ( X ~ )  is known. This relation corresponds to the 
more complicated integral equation first derived by Possio for an aerofoil oscillating in a 
compressible fluid a. 

The solution of (25) may be derived by iteration as follows. 

'~/'(~l X - -  X11) = 1 @- 1~7~,~ I X - -  X1  I(Y,  ÷ q l )  . . . . . . . . .  (26) 



Then  (25) m a y  be wri t ten  in the  form 

2a(W 4- I) -- 1 aK - 1 X t  - -  X ~ x  d X '  

where 

(27) 

2~1 = - j~ 1 a [K(X).w(~] X - -  X t  I)1 d X .  (2S) 
-1 Xt  --  X 3X . . . . . . . .  

Fur thermore ,  b y  (12), 

K ( X )  ---- K(1)e -''(x-~) . . . . . . . . . . . . . .  (29) 

in the wake. Equa t ion  (27) corresponds in form to the integral  equat ion which arises in the theory  
of uns t eady  motion in incompressible flow, and can be t rea ted  by  the methods developed to solve 
the  la t te r  problem 8'". I t  should also be noted tha t  I tends to zero l inear ly as the  f requency is 
decreased (see Appendix  I). If the integral  I were known, (27) could be solved exact ly  by  the 
method  of Ref. 8 or by  the use of the general formula given by  Kiissner and Schwarz". Accord- 
ing to Ref. 9 the solution of (27) when W + I is known is given by  

~ [  1 0 ~ s in0  } 2~ =(W 4- I) C(~)(1 -- cos O) 4- cos O. cot 4- i~L(O,O.) sinO. 4- dv Q (30) 
Y = ~J0 cos d --  cos O 

= e-;~x l_, r e ''X dX, X >~ 1 J 

and  

(31) 

(32) 

In  (30), X = --  cos ,~, 

1 - -  cos (0 + 0) ® sin n0 sin nO 
L(O,O) = ½logo 1 cos (0 -- O) : 2 2; 

- -  n =  L n 

and C(v) is the usual oscil latory lift function. By  the use of (28), (30) and (31) it should be possible 
to de te rmine / , (X)  and K ( X )  corresponding to any  W ( X ) b y  successive approximat ion  as follows. 
Let I = 0 ini t ia l ly  in (30). Then de t e rmine / , t  and by  the use of (31) derive Kt  the first approxi- 
mat ion  to K. Subst i tu te  K = K ,  in (28) to obtain I t  the first approximat ion  to I,  and subs t i tu te  
I = I t  in (30) to give /'2, and hence K= a second approximat ion  to K. This process could be 
cont inued unti l  K ,  = K~+, when fur ther  i terat ion would be unnecessary.  The corresponding lift 
d is t r ibut ion would be given by  (11). 

W + L = U0[Co + C1(} + cos ~) + 2 C, cos n~] 
~* =2 

A var ia t ion  of the  above procedure would be to expand the lef t -hand side of (27) in the form 

..  (33) 

where I,~ is the  n t h  approximat ion  to I. 

T' : Uo E C,~F,~ . . . . .  

where 

I t  then follows from (27) and (30) tha t  

. . . . . .  , . , • o . 

/,0 = 2EC(~) cot½0 + # sin 0] 

sin (n -- 1)0"~ 
= ~ - - - 1  / t . 

i v ( s in  (~ + 1)0 
n >~2 , / , ,~=  - - 2 s i n n 0  + k ~ 2 - 1  

. .  (34) 

. .  (35) 



5. A p p l i c a t i o n s . - - C o n s i d e r  an aerofoil describing pi tching and t rans la t ional  
indica ted  in the  following d i a g r a m : - -  

-7~ 
C::g, = (:::g, 0~ 

g×--e- 

= ~ z  = 5 ' z ' e  i p t  

2C 

FIG. i 

oscillations a s  

The downward  displacement  g of the point  P is then  given by  

C = / ( z '  + X ~ ' ) d  ~ . . . . . . . . . . .  

and the downwash  ampl i tude  

w ' =  Uo[i~(z' + x ¢ )  + ~'] . . . . . . . . .  

I t  follows from (27), since/3W = w'e  -~ax, t ha t  

- -  , , , , 

-~ X1 -- X aX 

It  is shown in Ref. 10 tha t  
oo 

e~oos0 = Jo(Z) + 2 z i '7, ,(z) cos ~0, . . . . . .  
n = l  

and, since X = -- cos 0, 

(36) 

(37) 

( a s )  

(39) 

where  

e - i ax  U o F _a -1 72) 
W - -  1 o~ 1 / e ~* _ _ , ~  + ~ ,  _ ~ °020 

# L  

= Uo[Co + c,(½ + cos 0) + E C,, cos nO 
n = 2  

r i c o  = ( 0~! ~-- i ( ' o ~ l ) ( J O  - -  ~ 1 )  - -  ( 'O0~l (Jo  ! - -  ~ 1 1 )  

(40) 

, - -  g ~  [ I1 n > 1 tiC, = 2i'[((z' + icoz')J, o, . , , , ,  

with  y /  --=- a y,~(x). 
ok 

(41)  

(a) B o u n d a r y  Condi t ion A . - - W h e n  [ = 0 is assumed, the solution of (38) is readi ly  ob ta ined  
by  using the results of incompressible flow theory.  I t  follows tha t  I% in this case, is given by  (34), 
where  the C,,'s and l%'s are defined by  (41) and (35) respectively.  The corresponding lift distri- 
but ion for compressible flow is then given by  (11) in the  form 

Since X = --  cos O, it  follows tha t  

e 'ax = e -'ac°~° = Jo(z) + 2 E ( -  i ) 'J .(x)  cos nO . . . . . . . . .  (43) 



and tha t  

X d ax = -- i ~-a d~ x : __/[jro, 4 - 2  .=,£(--i)'J.'(~.)cos nO 1. . .  . . . .  

I t  m a y  then be proved t ha t  

J" Foal ax d X  = 2 = 1 ( C ( ; ) 4 -  i , )  i ,  J -~ -~ Jo(2) - i c ( , ) J = ( 2 )  4 -  W J=(2) 

' ~_-1( -~).o i,.~..,]] i% r ' _ i c J , '  + f _FoeiaXXdX = --  2=i C 4- 

V 

1 v ¢ ~iv (1 J _ F ,  d ~ x x  dX = :,zi(1 -- ~.)(J= 4- i J ( )  4- ~- , . ,2  4- i J,) 

and  for n ~> 2 
,v.  

f'_ F,, d ~X d X  = ( - -  i) "+' =(1 - -~) (J , ,+,  4- J,,_,) 

; I ( " )  ' " ' I - ,F"  d a x x  d X  = (-- i)"+2 = 1 --  i (J,+l + J, , - , '  4- K-2(J,,+, + J,,- ,)  

Hence, by  the use of (41), (42) and (45) it m a y  be shown tha t  the  total  lift L is given b y  

L e-e* / v \ 
= ColZC(~,)(Jo - -  iJ,)  4- iv(Jo 4- J=)] - C,(1  - -~ ) (J=  4- iJ~) 

~ p  o / V o  2 

4- 12 ( -  i)"+'C,,(1 - - i ) ( J , + :  4- J,,_,) . . . . . . . . .  
Similarly, the  moment  M about  the  mid-chord axis ~ is given by  

M e -i*' _ Co[2C(v)(Jl' 4- iJo') - v(Jo' 4- J ( ) ]  
~dpol~Uo ~ 

4- C,I(1 -- ~ ) (J (  - i j=') 4- ~ (J ,  - iJ ,)]  

- 1(') , , ] 4- £ ( - - i ) "C .  1 - - i  (J"+' 4 - J " - ' ' )  4- ~-=(J"+' 4- J " - ' )  " "" 

I t  is shown in Appendix  I I  t ha t  
y_,, = ~ j~(j,,_ , + j .+  , )  = JoJ~ + JiJ= 

n=2 2 

£= = £ J . ' (J ._ ,  4- J.+,) - J ,= 4- J== 
n = 2  2 
¢o  

X= = Y. J .(J=_, 4- J.+,) 
n = 2  

4 . = I I j l ' 2  4- J= '=+ (1 - 1 ) j l =  4 - ( 1 - ~ ) J , l  .. 
oo 

I / 2;,, Z J .  (J._,  4- J.+,  ') 
n=2 

1 ..2 ,.,, 2 
1 d ( j =  4-j=2) +Bjo2,Jo( j  ' 4-j=2)2odZod2 ' 

4 d2 
where 

f al 2 o(j1 4- j 2 )  20 d~.o 
oo 

= 2 ~.] . (2,)~ 

(44) 

(45) 

(46) 

(47) 

(45) 

For the mid-chord axis, M ---- il dL/d2, where L is given by (46) and C o, C1 . . . .  C,, are regarded as being independent 
of L 
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Hence, by  use of (41) and (48), the following expressions for the lift and pitching moment  may  
be derived 

, ,  . ' .  

EL -- [(c~ + ia~z)(Jo - iJ1) - o0o:(Jo' - / J l ' ) ] [ 2 c ( ~ ) ( J 0  - / J 1 )  + iv(jo + J~)] 
o~polUo 2 

--  2 i ( t - -  ~)[(c~ * iwz)Ea --o0 c~E~]. 

~M (49) 
....: ~pj,Uo~= [(~ + io0z)(Jo- i]1) - ~(Jo' - i]i')]E2c(~)(]i! + i]o') -~(]o' + J()l 

o0 ~ , ~ UI)I 

+ + + + 5= " 

In  the no ta t ion  generally used in flutter theory,  the aerodynamic coefficients are defined by  the 
relations 

L -- (Z, + igol~) z 
• .,Cp-oUo~ . . . .  c + (l~ + i~a ) ~ : 

M _ (.~: 4 - i ; ~ . 0  ~ I . . . . . . . . . . .  (50) 
poc~U~o c + (m~ + (icom~)~ , 

where go = 2o0 = pc/Uo and z = ~z. 

Let . . . . .  
R ----2c(~)I/o(Z) - U,(z)l q- +[/o(~)~+ J~(Z)l, ] 

J . . . , [  
( ~) 2 .. (51) - -  . ~ - • • o o o + S ~  1 i [ / = ( ) q - i / l ( 2 ) ] ,  

R' ~_ a R!a z, s ' - -  as~a< 

where v is regarded as being independent  of 2 (actually, 2 = M2v). ,From (49) and (50) it then  
follows tha t  

z, + ig, z, = T k '~°  - U 1 ) R  2 / J 1 s  

l= + ig>la = N [Jo -- U1 - -  ( D ( J o  ! - -  / J , ' ) ]R  --  2i(J1 -- o0J,')S 

. .  (52) 

a,i( (J.,o i J l ' ) ]R '  2i(J1 o0J,')s'  m : + i g ,  m e = F ~ f i  [ J o - i J l - ° '  ' -  - - 

and from these formulae the  individual  aerodynamic coefficients for t h e - b o u n d a r y  condit ion 
assumed can be  determined exactiy. 
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(b) 
(40) is replaced by 

W = ~-~U0[(£ + icoz')(1 + i~ cos 0) - -  i~o£ cos 0], . .  
which yields 

n>~2 ,  

Boundary Condition B.--To obtain this boundary condition, I = 0 is again assumed, and 

. . . . . .  (53) 

= + i oz') - i oo:' j . . . .  

C,=O.  

. . . . . .  (54) 

Condition (53) is obtained by substituting 1 + i1 cos 0 for exp(il cos 0) and neglecting terms of 
second and higher order in the frequency ~. The same condition could be derived by regarding the 
equivalent aerofoil as rigid and neglecting distortion terms in X 2 and higher powers. Once the 
boundary condition has been chosen, the general solution of (38) for any value of o) can be obtained 
as already shown. For condition B, the formulae derived for the mid-chord aerodynamic 
coefficients are 

alto_# F(1 il ~ iiS] 1, + i~l- -- L\ -- ~ / R - -  

l~ -/ i~la = - ~ { [ l  + i(~o -- ' )S}  
. . . . . . . .  (55) 

A comparison of the results for boundary conditions A and B revealed that  the neglect of second- 
order terms in frequency in the boundary condition did not lead to serious discrepancies over the 
practical range of values of the frequency parameter (see Table 1). For both A and B, it is 
assumed that  I = 0, and the approximate solutions of (38) obtained can only be regarded as a 
rough approximation to the true'solution. A better approximation to the exact solution can, 
however, be made by including the I term. 

('c) Boundary Condition C.-- I t  is shown in Appendix I that,  when o~ -+ 0, 

2~I ~ #aK(1), . . . . . . . . . . . . . . . .  (56) 

Where K(1) is the value of K at the trailing edge, and where 
- : 

M (!-I-  V / ( 1 -  M2) ") . . . . . .  (57) 
a =logo ~ + ~ / ( 1  M2) logo\ M / "  

Since in the l i m i t  

K ( 1 ) =  2~ 7 + i z')Uo, . .  . . . . . . . . . . . .  (55) 

the left~hand side of (38) may be wri t ten  in the form 

" 2~(W + I )  _ 2%U0[(~, +.icoz')(1 + i~ cos0) -- i ~ c o s  0 +iva(~' + ioz')] .. (59) 
p -  

to first-order accuracy in frequency. With th~s modified boundary condition, (38) can be solved 
exactly for any value of the frequency parameter. The solution thus obtained may be regarded 
as a first approximation to the exact solution of (25). 

The te rms  ~' and i(oz' are assumed to be of the same order. 
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Let 

and b = 1 + ivd + i(o~ -- 4). 
2 

It  follows from (72) that  

n > ~ 2 ,  

riCo = io~z'.a + o~'b 

rC~ = iz (~ '  + io, z') - i o ~ '  I " "" 
C~-=O. 

( 6 0 )  

(61) 

The lift distribution is then given by (42) and the corresponding lift and pitching moment may 
be calculated. In this case the formulae for the aerodynamic coefficients are 

lz + i3l~ = ai__~ (aR - -  i t S )  
r 

t~ 

m~ + i~ra~ - -  ~o  (aR ~ _ i1S ~) 
2r 

EbR' + - 

(62) 

A comparison of the values given by (62) and those given by tile 'exact' solution show fair 
agreement for a wide range of 3 values and good agreement for a ~< 0-4. From this, it appears 
tha t  if solution C, which is essentially a first approximation, were extended to include second 
order terms in frequency on the left-hand side of (38), reliable estimates of the derivatives would 
be obtained even for higher values of ~. 

6. Concluding R e m a r k s . - - I n  view of tile fact that  solutions A and B agree closely, it appears 
that  the left-hand side of (38) need not be known to great accuracy and that  the assumption 
exp (-- i I X )  = 1  -- i i X  can be made at an early stage in the calculations. This is likely to be 
true also in the three-dimensional case, and it seems probable that  solutions of sufficient accuracy 
would be obtained if the left-hand side of (17) were replaced by its llmiting form for low frequencies. 
Present methods of treating the equivalent incompressible flow problem could then be applied to 
derive a general solution of (17) for any frequency parameter value. There is no need to limit 
the solution to low frequencies once the approximate form of tile left-hand side of (17) has been 
chosen. In the two-dimensional case, approximation C is quite satisfactory for M = 0.7 and 
6 ~< 0" 4, and it seems likely that  the corresponding approximation in three dimensions would 
give reliable results. Flut ter  derivatives for wings of finite span are not usually very sensitive 
to variations of frequency parameter and the method of calculation suggested may give good 
accuracy for a wider range of 8o values than that  given by approximation C in the two-dimensional 
case. Terms of order ~ ~ logo ~ are neglected in this approximation but they could be included in 
t he  corresponding three-dimensional solution if necessary. I t  is, however, doubtful whether the 
accuracy of solution for tile higher values of n would be improved since terms of order ~ 2 then 
become equally important. 

Acknowledgemen t . - -The  numerical results given in this report were calculated by Miss Sylvia W. 
Skan and Miss J. S. Francis of the Aerodynamics Division. 
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Limi t ing  Forms of Integrals 

(i) Three-dimensional Case . - -The  i n t e g r a l  I0  d e f i n e d  b y  (18) m a y  be  e x p r e s s e d  in  t h e  f o r m  

rs cXt ~ ~f 
4a!o---- J_J xLK(X,Y) ~ G dX dY 

aT 
- -  I" I 'X 'K(X,  Y)  a ~  d X  d Y  
- -  J - s J  X L  

--  ~' [ X ' K ( X t ,  Y)  e -'~<x-xt, ~ ~f d X  d Y  
J-sJXr ~Zx 2 

+ 
~ z - ~  . . . . . . . . . .  

w h e r e  ~ - -  X - -  X1. W h e n  ~ is smal l ,  t h e  f i rs t  t w o  i n t e g r a l s  a r e  of  o r d e r  ~ ~ s ince  t h e  a p p r o x i m a t i o n  

n~r . . . .  (64) f = ix + --ff . . . . . . . . . . . . . .  
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is val id  wi th in  the ranges of integrat ion.  
integral  since ~ varies for zero to inf ini ty  and zr m a y  be large for large values of r. 
when z ~ 0, it m a y  be proved tha t  

8Zl  2 R 8 R  R -  , ]  . . . . . . . . . . . . . . .  ( 6 S )  

w h e r e R S = ~ S q - a S ,  a n d a =  ] Y - - Y ,  [ . Let  

~(Y)  =_ K(X,,V)e.~(':~-x~ . 

Then the th i rd  integral  in (63) reduces to 

( / a =  s ~(Y)e-~R 8RO 1 )~ ) d ~ d Y  

= _~ Y - -  Y I  8 Y - o  R de d Y  . . . . . . . . .  (66) 

I t  is shown in Ref. 11 t ha t  

f 
~ e-i,~d~ 
oVf f  ~ T ,~s)  - Ko(~ )  - CTo(~) 

_ ~ -  + ira  - -  T logo v + Off 2) . . . .  (67) 

and, since ~ = My, 

fOOe_i(v~+Me) (oo e_iV(&t_MR ) 
o R de = Jo VT~ T -as) de 

moo e -i~ dt 
. . . .  

where t ~ ~ q- MW/(~ s q- as). Hence, by  (67) and (68), 

/ "e-'~(1 - e-'~') F ( 1 
o R de = V ( ~ s  ~+ 0 e-iv* 2) 

+ J0 V ( *  s + asfl s) 

= log~ (1 + M), - -  M ~a 2 
4 

and, therefore, when v --> 0, 

1-* ¢(Y)  8 [10ge(1 + M )  aS~S 
Ia = j_.~y __ Y1 8Y 4 

~2 S ~(Y) dY ~-~ - -  ~- logo z -~ . . . .  

where the  integral  has its s teady  value. 

This approximat ion  cannot  be used in the th i rd  
However ,  

1 ) 
V ( ~  s + a =fl s) de 

• v '~ logo v + Off  s) 

- -  - -  logo a + 0(~  ~)] d Y  

. . . .  , . 

. .  (68) 

. .  (69) 

From (18), (63) and (70) it then  follows tha t  the  integral  ./o is of order ~ 2 logo a. 
(ii) Two-d imer~s iona l  C a s e . - - T h e  integral  I defined b y  (28) m a y  be expressed in the  form 

2~I  = ;1 1 8 
-121 - x 8 2  [K(X)v , ( ,~ IX  - -  211)1 d X  

(~, _K(1)_ 8 • F -1 
. . . .  . . .  . .  

since K ( X )  = K(1)e -¢~(xq) in the  wake. 
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Since, when ~ -+ 0, 
~2 g4 

w(~ I x  - X1 I) ~ ,-~ ( x  - x d "  10go ~ + o(~"), (72) 

the first integral in (71) is of order zs logo ~. The second integral in (71) is denoted by  Is, where 

and 

/" _K(I) ~(v,e -`o~-'') d x  I~=  -- K(1)e-~.(xlq)Q-- 
J x,X1 -- X ~X 

Q = f [ x  1- x,  a2X[w('~lX - X'l)e-'~('=-':') ] ~lX 

(73) 

= [~v ~[~o(Mx)e_,X ] dx . . . . . . . . . . . . . . .  (74) 
oo X OXL / 

Next consider the limiting form of Q(e) as ~ -+ 0, where 

Q(e) = f ] ~  ~[10(Mx)e-% dx . . . . . . . . . . . . . . .  (75) 

fhe  function w is defined by  (26) and is expressible in the form 

~Mx [Y~(Mx) + iJ~(Mx)] (76) v,(Mx) = 1  + ~ . . . . . . . . . . .  

By subst i tut ing for !0 in (75), it m a y  be shown tha t  

Now 

= f~ t. 2fai ~O [e-'*(Yo + iJo)] --  ~ a fi(Yo + iJo)e -'~ - - - - - f - a  i e-i*~ dx.  

f 
~ e -  ix i ~  

dx ~-~ --  7 --  log s --  + 0(~), 
c . , ~  V " " 

(77) 

(7s) 

~i_~ [(Yo -k ij0,r ~e-;*q =2, 2 e-~[Y°(Me) +/J0(Me)] ' (79) 

Ms i= ) 
--  i ~ +.logo -~- + - f f  + 0(e) , 

and it is proved in Ref. 12 tha t  
c o  

f [Yo(Mx) + iJo(Mx)]e -;~ dx = - -  

o 

Hence, when e -+ 0, 

2 i  1 - -  ,V/(1 - -  M 2) 
logo ( so )  

~ w / ( 1  - M s) M 

Q ~. . i [V(1  -- M s) logo 

'.nd it follows from (71) and (73) tha t  

2=I  ~-~/yaK(l) -}- 0(~ s logo ~) 
,vhere 

M 
a --  logo -ff + ~/(1 - M s) logo 

1 - -  ~ / ( 1  - -  M2__.... ) _M] 
loge (81) i o o o o o o I 

2 /  

1 q- %/(1 - - M  ~) 
M 

. .  ( s 2 )  

. .  (s3) 
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APPENDIX II 

Summations 

(i) Evaluation of £1, E=, Ea and E 4.--By the use of the well-known relations 

2J',~(;t) = J,~_,(;t) -- J,,+z(z) 
2nJ.  _ j . _  , ÷ j .+ , 

, ,  . o  , .  

a n 2 2 foJ,,'~.cl2,-2"~[1 -'=-vta,, ÷ (1 -- ;~')J"l 
it may be shown that 

00 

~,~ = ~ J,,(J._, '  ÷ J.+,') 
~ t = 2  

_ _  1 

- -  ~ £ J . ( J . - 2  - J . +  2) 
n = 2  

= ½(JoJ= ÷ J J ~ )  . . . . . . . . . .  
and that 

oo 
2 n J . J . '  

n ~ 2  

oo 
! 

o0 

- ~ -  * ~ (J,,-l" - J.+l=) 

= l ( j ,  + j , ) .  . .  

Since, by (86), 
oo 

4 2, . n J J , / =  ,l(J, 2 ÷ ]=~). 
~t=2 

it follows by integration that 

2 ~ n J ~  = ~(J1 ~ +'Js'~) dx.  
n = 2  0 

Hence, by (84) and (88), 

2 ,3  

¢,a 

2, J,,(J._, ÷ J,,+,) 2 2`nJ,J 

1 ( j ,  + 
2 

2 [ J / = ÷ J ( 2 ÷ ( 1  - 1 ) J 1 = ÷ ( 1  - 4 ) J 2 = ] .  

The remaining series 

:~, y~ (J,~-, + J .+ , ' )  
n = 2  

oo 

__dY-'2 2 £ n r  T" 
- -  - -  - -  j n j  ~t, 

1 
_ d2,~ 2 d y_, nJ,J,~' ÷ _  ,., 2nT.,. '~ 

d •  /] d ,~  n,=2 ~ n = 2  

des 2 d  [ a ( J l = ~ J . 2 ) l  1 = 
- dz - - ,  d, +• ,,=~2 2nL '=  

~a 

J12 ÷ J~ ~ 1 £__2 2nJ,/~ 
2a + ~ ,,= " 

(84', 
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; ince  
2 .I0. 2J,, a da 

n~ T 2] 

= ,~2~2T ,2 d ] 1 ' 
L "" d2 (J 'J ' / )  - j 'J'~ ' 

t fo l lows t h a t  

. ( ) (  ) f~o . . . . .  32 2ny:~ d~ = ~ ~2 2ny,,' ~ - as a +  z d  ~_f~, 

rod ,  the re fo re ,  b y  (89), 

Z~d 
2 = E 2 n J , "  = - -  - -  (,a X3) + + Y,3 d;~. 

,,=2 2 d2 

kIence, b y  (90) a n d  (92), 

E 4 - -  * d 1 ra -a = = 

T A B L E  1 

Comparison of Results for  M = 0 . 7  (Mid-chord Axis)  

(91) 

(92) 

(9a) 

& 

0 
0.04 
0.08 
0-2 

0.4 

0.6 

0.8 

A 

0 
0.0199 
0.0538 
0:1404 

0"1517 

0.0127 

-0 .2493  

Approximations 

B 

0 
0-0199 
0.0539 
0-1407 

0-1534 

0.0149 

-0"2518 

C 

0 
0.0225 
0.0636 
0.1917 

0.3251 

0-3647 

0-3294 

Refs. e 
1 a n d 2  

0 
0.0223 
0-0629 
0-1849 

(0-193) 
0.2975 
(0.313) 
0.3120 
(0.360) 
0.2613 

(0.317) 

A 

4-399 
4-072 5 
3.766 
3.123 

2"587 

2.317 

2-150 

Approximations 

B 

4.399 
4.073 
3.767 
3.130 

2.611 

2.366 

2.232 

C 

4.399 
4.0655 
3.748 
3.086 

2"590 

2-442 5 

2"4675 

Refs.* 
1 and 2 

4- 399 
4.061 
3" 740 
3.054 

(3.05) 
2.504 

(2.51) 
2.269 

(2.25) 
2-172 

(2.12) 

T A B L E  1--continued 

0 
0.04 
0.08 
0-2 

0-4 

0.6 

0.8 

Approximations 

A 

4.399 
4.078 
3.783 
3-177 

2-693 5 

2"469 

2. 345 

B 

4-399 
4 '078 
3"781 
3"169 

2-667 5 

2-417 

2.258 

C 

4.399 
4.071 
3.762 
3.124 

2.647 

2.493 

2-494 

1 and 2 

4.399 
4. 066 
3. 757 
3-117 

(3.11) 
2.637 

(2.63) 
2.471 

(2.435) 
2.448 

(2.38) 

Approximations 

~A 

- - o o  

--11-402 
--7"4755 
--2-738 

--0.3128 

0.5374 

0-9311 

B 

- - o o  

--11.400 
- -7 .472 
--2.7275 

--0.2979 

0.5503 

0.9369 

C 

- - o o  

--13.041 
--8-993 
--4.002 

--1-3705 

--0.4213 

0.0287 

Refs. * 
1 and 2 

- - o o  

--12 "981 
--8.903 
--3 -881 
(--3-85) 
--  1. 2775 
(--1.45) 
- -0 .370 5 
(--0.46) 

0.032 
(--0"07) 
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m m  z 

TABLE 1--continued 

- - m k  

60 

0 
0.04 
0.08 
0.2 

0-4 

0.6 

0.8 

Approximations 

A 

0 
--0-0058 
--0 .0167 
--0-0536 

--0 .1069 

--0"1523 

--0.1951 

I B 
I 

: 0 
- -0 .0058 
--0 .0167 
- -0 .0538 

- -0 .1080 

--0"1559 

--0-2040 

0 
- -0  
- -0  
- -0  

- -0  

- -0  

- -0  

C 

.0065 

.0191 
-0664 

.1509 

.2460 

.3612 

Refs.* 
1 and 2 

0 
- -0 .0064 
--0 .0188 
- -0 .0629 
(--0.063) 
--0.1330 

(--0.147) 
- -0 .2016 

(--0.212) 
- -0 .2768 

(--0.288) 

A 

- -1 .0998 
- -1 .0168 
--0.9383 
--0"7719 

--0.6352 

- -0 .5727 

- -0 .5416 

Approximations 

B 

--1"0998 
- -1 .0170 
--0 .9384 
--0"7724 

- -0 .6362 

--0"5736 

- -0 .5423 

- -1 .0998  
--1-0146 
- -0 .9316 
- -0 .7496 

- -0 .5859 

- -0 .4938 

--0 .4286 

R e f s .  e 

1 and 2 

--1.099: 
- 1 . o 1 3 e  
--0.928¢ 
- -0-743 

(--0-745) 
- -0 .5808 

(--0.582) 
-0-496C 

( - 0 . 4 8 7 )  
- 0 . 4 4 0 £  

( - 0 . 4 2 7 )  

- - ~ ' t c ,  

0 
0.04 
0.08 
0-2 

0.4 

0-6 

0.8 

Approximations 

A 

- -1 .0998  
- -1 .0185  
- -0 .9428  
--0"7872 

- -0 .6684 

- -0 .6240  

- -0 .6129  

B 

- -1-0998 
--1"0184 
- -0-9426 
--0-7867 

- -0-6676 

--0-6235 

- -0-6133 

C 

- -1 .0998  
--1.0161 
- -0 .9358  
- -0 .7638  

--0"6173 

- -0 .5437 

- -0 .4996  

Refs.* 
1 and 2 

- -1-0995 
--1"0148 
- -0 .9333  
- -0-7595 
--0.755) 

- - (0 .6166 
- (0.617) 
- -0 .5474  

(--0.532) 
- -0 .5040  

(--0.488) 

A 

CX3 

3.6453 
2-6463 
1.4261 

0"7915 

0-5654 

0.4589 

Approximations 

B 

0O 

3.6450 
2.6453 
1.4228 

0.7848 

0.5557 

0.4465 

0(3 

4.0547 
3.0245 
1.7391 

1.0529 

0.8058 

0.6921 

Refs.* 
1 and 2 

oO 

4" 0297 
2. 9808 
1- 6690 

(1.670) 
0.9761 

(1.01) 
O. 7350 
(0-770) 
O. 6301 

(0.648) 

e Values in brackets were obtained from tables given in Ref. 2. 
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