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SUMMARY

Flutter calculations have been made on a straight-tapered unewept
wing of low-aspect-ratio both with and without wing engines to discover
the stiffness necessary to avoid flutter up to a Mach number of 2 and to
find whether wing engines can be used to massbalance the wing effectively.
Simple arbitrary modes of flexure and torsion were assumed and calcu-
lations were made using subsonic, transonic and supersonic derivatives.

It has been found that the stiffness required to prevent flutter of
the bare wing is not excessive and that wing engines have a powerful
masgbalancing effect if placed forward on the wing. The {ransonic case
is the most critical, but as the transonic deravatives used were two-
dimensicnal this sonclusion must be regarded as tentative.

-






LIS OF CONTENTS

4 Introduction
2 General data for calculations
5 Bare wing

%1 SBubsonic flutter
%e2 EBupersonic flutter

4 Wing with engines
i Subsonic Tlubter
4e2 Transonic flutter
ka3 Bupersonic flutter

5 Digcussion

Het Assumptions

5«2 Resgults
6 Conclusions
References

LI3T OF TLLUSTRATIONS

Plan View of Half Wing

Critical Wing Stiffnesses at Tip Section - Bare Wing - ¥ = C.9 -
Sea Level
Critical Wing Stiffnesses at Tip Section - Bare Wing - M = 1.4,

1.8, 2.5 - Effect of Heignt

Critical Wing Stiffnesses at Tip Section - Bare Wing - Sea Level,
10,000 feet, 25,000 feet - Effect of Mach Number

0.9 = Sea Level

Critical Speed v Wing-engine pogition = M

1.0, x]o’-{-, 1.8 -

i

Critical Speed v Wing-engine position = M
25,000 feet

as]
m—qﬁﬂo\mmmpwuum}g
24






1 IntroQuction

Unswept wings have been proposed for aircraf't designed to achieve a
Mach number of 2, In this report the flutter stability of a typical
unswept wing at subsonic, transonic and supersonic speeds is investigated
theoretically to find (a) the strustural stiffness necessery to prevent
wing flutter, and (b) the amount of relief given by suitable location of
the engines if these are carried on the winge Wing flutter only is
considered as control-surface flutter depends to a greater extent on the
detailed shapes of the modes and less drastic modifications are needel
to eradicate it.

The erbitrary wmodes chosen Tor the bare wing cese are parabolic
flexure and linear torsion zbout the Tlexurzl axis from root to tip.
Addsitional modes of persbelic flexure and linear torsion sbout the
flexural axis outboard of the engine centre-lines are included in the
wing-with~engines case. In both cases the wing is taken to be encagtré
at the root. The aercdynamic derivatives used are taken from different
sources and involve approximations, an extreme case being the use of the
transonic derivataives given by linear two~dimensional theory for a
relatively low-aspect-ratio wing. Owing to lack of data, no account is
taken of the aerodynamic effects of the engines and their nacelles, the
wing being censidered as unbroken in planform.

The results for the bare wing are given in the form of the necessary
wing stiffnesses to avoid flutter, whilst estimated stiffnesses were used
1n the wing-with-engines case and the variations of flutter speed with
chorderigse position of the engines are given.

2 General data for csleoulations

The half wing considered ig shown in Fig.1. The mean chord is 10
feet, the taper ratio (r) 1s % and the aspect ratic (&) of the whole
wing is 2.8. The wing section of a supersonic eircraft is likely to be
symmetric both about the chord and about a vertical line through the
mid-chord point, and the inertla axls hag accordingly been assumed at
the mid-chord. Since the trailing-edze controls will cover more of the
ghord than the leading-edge controls the flexural axis has been talten
to be ahead of the mid-chord line, at 45% chord. The sectional mass of
the wing is taken to vary as the square of the local chord and the radius
of gyration about the inertia axis 1s token to bhe a quarter of the loecal
chord. The wing engines zre assumed to be concentrated massez, possessing
mements of inertia in pitch, at mid semi-span. The inertia coefficients
are ovtained by spanwise integration. The gtructural stiffness
coefficients are represented by overall stiffnesses s¢ and mg baged
on the tip section.

3 Bare wing

For the case of no concentrated masses, such as engines, on the wing,
the flutter characteristics are determined on a binary basis. The assumed
modes are parabolic flexure and linear torsion of the wing about its
flexural axis. The flulter eguations were solved with the aid of desk
celowlating machines.

3,1 Subsenic flutter

The aerodynamic force and mament coefficients are estimated on the
basis of strip theory and equivalent constant strip derivatives, the
spanwise integration being carried out enalytically. The derivatives
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are evaluated according to the recommendations for low-aspect-ratio wings
given by Minhirmick!. Estimated steady moiion values are assumed for the
stiffness derivatives. The damping derivatives are assumed the same as
the equivalent stiffness derivatives where possible (e.g. vy assumed to
be ra); otherwise they are obtained by a comparison of the three-dimen-—
sional steady-motion derivatives and the turning point values of the
two-dimensional damping and stiffness derivatives. The inertia deriva-
tives are given their two-dimensional values. All these derivatives are
independent of frequency parameter. The steady-motion derivatives used
are estimates for a Mach number of 0.9.

The flutter equations define the relationship between the flexural
and torsional stiffnesses for flutter at a Mach number of 0.9. The
critical stiffnesses a2t sea level are given in Fig.2 and the curve is of
the usual subscnic type. The cratical stiffnesses at any height are
proportional to the dynamic head at that height and can be obtained frem
Fig.2 by altering the scale. It is obvious that flight at sea level will
call for the largest stiffnesses.

3.2 Supersonic flutter

The possibility of flutter 1s investigated for three values of Mach
number = 1o4, 1.8 and 2.5 - at heights of sea level, 10,000 feet and
25,000 feet. The derivatives for the two lower Mach numbers are taken
from s report by Acum? which gives derivatives for rectangular low-
agpect~ratio wings performing pitching oscillations at lach numbers of
T1e2, 1ok, 146, 148 and 2.0. The aspect ratio of the wing is too high
for the derivatives for a Mach number of 1.2 to be applicable, and for
a Mach number of 2.0 Acum's derivatives were not evaiuated for
sufficliently low frequency parameters. The fderivatives for a rectangular
wing having the same mean chord and aspect ratios as the wing under
consideration are used as constant gtrip derivatives.

The derivaltives for a Mach number of 2.5 are taken from tdbles3 of
Schwarz's two-dimensional derivatives. Approximations to the 1ift
distraibutions over the tip and root of the wing where the flow will not
be two-dimensional are obtained from a report by Watkinsh. This gives
the 1ift distribution over a rectangular wing of aspect ratic 4 per-
forming pitching oscillations at a low frequency parameter in a super—
sonic gtream. For the wing of Fig.1 the force distribution over the tip,
up to the intersection of the Mach line from the tip leadang edge with
the trailing edge, 1s taken to be the same as that for Watkinz' wing,
and the derivative distribution over the inboard mixed region is taken
to be the mean of the tip distribution and the constant two-dimensicnal
value. The loss of aerodynsmic force at the tip will be comparatively
greater for a parabolic-flexure mode than for a linear mode and it is
for this reason that the force distributions over the tip region, and
not the derivative distributions are taken to be similar for the two
wingms. If the derivative distributions are assumed similar the forces
on the tip will be overestimated. Lattle iz mown sbout the 1ift
distribution in the inboard mixed region but the assunptions made should
not be too seriously i1n error. The structural data used are the same as
thoze used in the subsonic case.

The flutter equations are sclved by assuming a frequency parameter
and determining the flexural and torsional stiffnesses for the critieal
flutter condition. Sets of derivatives for two frequency parameters
are used, the assumed frequency parameters being O.4 and 0.6 for the
Acum derivatives and 0.336 and 0,672 for the Schwarz derivatives. The
results are given in Figs.3 and 4. It was found that the eritical
stiffnesses were very insengitive to frequency parameter, and the curves
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of Pigs.3 and 4 make no differentiation in this respect. It will be seen
that the curves for the different Mach numbers and heights are very
similar in shape and show that for practical stiffnesses the torsional
stiffness necessary to avoid flutter is greater the greater the flexural
stiffness. This is a well known feature, and it arises from ths fact
that increasing the flexural stiffness brings the natural frequencies
closer together and incresses the effect of any couplings that are
present. The uncoupled flexural and torsional frequencies are coincident
when the flexural stiffness (¢,) is twenty times the torsicnal stiffness
(mg), and it will be seen that wings with this stiffness ratio lie practi-
cally in the middle of the unstable region in every case. As expected,
the flutter problem becomes easier at high altitudes due to the reduction
in the dynemic head of ths airflow ot a glven Mach number. In most cases
slightly less stiffness is nesded as the Mach number increases and the
flutter requirements are severest at the lower Mach numbers. This agrees
with the conclusion of Green and Peattied who have investigated theoreti-
cally the roll=torsion flutter of low-aspect-ratio rectangular missile

wings.
L  Wings with engines

Wing engines are likely to give lower modal frequencies, especially
for the overtone modes, and possible flutter modes camnot in general be
represented clozely enough by itwo degrees of freedom. For the wing with
engines, therefore, modes of parabolic flexure and linear twist about
the flexural axis of the wing cutboard of the engine centre-lines are
included in addition to the modes used in the bare wing case. Estimates
of the asscciated stiffnesses of e wing with a thickness/chord ratic of
3% were made and these stiffnesses are used throughout the calculations.

The quaternary flutter equations were solved on the R.A.E. flutter
simlator® for oriiical flutter speed and frequency with different
positions of the engine centres-of-gravity.

The estimated flexural and torsional stiffnesses of the whole wing
masured at the wing tip in the gemi-rigid modes of the binary caleculation
are 2,7k and 1.21 1b Pt 106 tespectively, in the semi-rigid modes of the
quaternary calculations are 2.74 and C. 9 1h £ 106 and for concentrated
loads at the tip are 2.74 and 0.76 1b £t 10°. The flexural and torsional
stiffnesses of the outer wing alone arg 2,66 end 1.21 1b £t 106 in the semi-
rigid modes and 2,66 and 0.99 1b £ 106 for concentrated loads at the tip.

Lel Subsonic flutter

The serodynamic derivatives used are those previously used in the bare-
wing case and no account is taken of the flow through and over the engine
nacelles, which are ignored in the evaluation of the serodynamic coefficients.
The curve of sea-level flutter speed against chordwise position of the
engine is given in Fig.5.

Plutter iz shown over an extensive speed range but the derivatives are
for a Mach number of 0.9 and, strictly, the curve is accurate only in the
region of 600 knots., The results at other speeds have some practical
significance, however, The elements of the flutter determinant can be
expressed in the form =-wlA + iwVB + V20 + E where w and V are the frequency
and airspeed, A, B, C and E are coefficients and in particular E is the
structural stiffness ccefficient. If w and V are such that the dsterminant
is equael to zero (corresponding to a critical flutter condition) the
determinant will also be zero for kw and kV when the structural stiffness

coefficient is k?E. The frequency parameter |v = Q@ s+ on which the

coefficients B and € depend, will remain the same. Thus 1000 ft/sec for
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one wing is equivalent to 500 ft/sec for the same wing with all the
structural stiffnesses quartered, With the stiffnesses assumed it is
necessary to have the engine centre—of-gravity forward of 404 chord to
avold flutter. If this is achieved it would seem from the steeply
rising curve that the wing stiffness could be reduced quite con-
siderably without any ill effects on the flutfer stability.

The results show soms agreement with low-speed wind-tunnel tests by
Gaukroger/ in respect of the massbhalancing effect of the localised mass
over the c.g. range of Fig.5. He also obtained an overtone flutter, for
forward centres of gravity of ths mass, which was essentially flexure-
torsion flutter of the wing outboard of the mass. If the effect of the
lower aspeect ratio is ignored, Fig.2 shows that, for the estimated stiff-
nesses (Section L), the ocutboard wing is well clear of binary flutter.
The lower aspect ratio of the ocuthoard part of the wing would probably
make for even greater stability.

The rapid disappearance of flutter is due to the massbalancing of
the fundamentel wing modes by the engines when they are forward on the
wing, The effect is probably accentuated by there being a near coinei-
dence of the fundamental frequencles when the engines are in this area.

L.2 Transonic flutter

Unfortunately no derivatives were available for low-aspect-ratio
wings in transonic flow and the derivatives used are those given by
JordenS, which are based on linear two-dimensional theory. Figure 6
shows the results that were obtained for a height of 25,000 feet. The
flutter curve has two branches and the range of speeds covered is great.
In fact the vertical extent of the curves is such that the only way of
achieving stability is by careful location of the engines. For the
stiffnesses assumed the engine centres-of-gravity have to be between 20y
and 45% of the chord. The extent of the stable regiom remains nearly
constant with variation of the stiffness but the range itself moves
rearward as the stiffnesses are inereased. The left-hand branch has not
been investigated fully but it is probably due to the forward position
of the engine inducing a normal mode which has negative aerodynamic
damping. A reasonable amount of structural damping was included when
the squations were solved on the simulator.

4.3 Supersonic flutter

The aerodynamic coefficients used are those used in the bare-wing
case and no account is teken of the airflow through and over the engine
nacelles, which are ignored in the evaluation of the aercdynamuc
coefficients. The curves of flutter speed at 25,000 feet against chord-
wise position of the engine are given in Fig.6 for Mach numbers of 1.4
and 1.8.

The flutter curve has one branch at rearward positions of the engine
centres—of-gravity, It has much the same shape as the equivalent curves
in the transonic and subsonic cases snd shows a large inorease in flutter
gspeed when the engine centres~of-gravity are near to the flexural axis.,
Again the curves are only correct near one speed in each case with the
agsuned stiffnesses, but the variation of the conditions for flutter
stability with aireraft stiffness can be estimated as before. The curves
near the points where the speeds are identical with the assumed Mach
numbers are nearly vertical and agree well with the transonic result.
If all the stiffnesses of the aircraft are increased in the same proportion



the furthest rearward position of the engine for flutter stability moves
aft and evanfually & condition can be reached in which the stiffness is
sufficient to prevent flutter with the engine in any position. Such a
stiffness however is not likely to be countenanced on weight grounds and
correct location of the engines must be relied on for the prevention of
flutter. For the assumed stiffnesses stability is achieved if the engine
centres~of-gravity are forward of 45% chord, The wing stiffnesses can
then be decreased without incurring much further limitation of the chord-
wise position of the engines.

It might be noticed that the assumed frequency paramster for the

M = 1.4 case was 0,6 whilst that for the M = 1.8 caze was 0.2. A value
of 0.2 is more appropriate for the M = 1.4 case but the pertinent aero-
dyenmic coefficients led to oscillations of an ill-defined character on
the simulatoxr. The M = 1.8 case was done for both frequency parameters
and the results differed little from each other. It is reasonable to
assume that the same insensitivity to assumed frequency parameter will
hold at a Mach number of 1.4.

5 Discussion

5.1 Assumptions

The value of the results is limited by the number of assumptions
that have been made, especially in evaluating the aerodynamic forces on
the wing. Such assumptions are inevitable until mors data are obtained
on wings in three~dimensional flow, but until they are obtained as much
information as possible must be gleaned from calculations of this kind.

The structure of a wing with a thickness/chord ratic of 3% is likely
to be comparatively simple, and the assumption of simple modes of
vibration should be better than it is for conventional wings. The
flexibility of the wing~nacelle joints will affect the modes bhut the
amount present will depend on their design and is difficult to estimate.
Chordwise distortion of the wing will probably be present but as yet
there is no evidence of its effect either from calculations or experience
with aircraft alrveady flying. It will probably be most severe on the
inboard wing which does not play a very great part in flutter. Ignoring
the nacelles aerodynamically should not introduce a large error; steady-
motion results suggest that whilst the nacelle centres of pressure will
probably be ashead of those for the wing the forces on the nacelles will
be smaller than those on the wing, and these two effects will tend to
cancel each other.

5.2 Results

The results of the celculations show that flutter stability of a
supersonic {( M®2) aircraft wing carrying no concentrated masses should
be achieved with reasonable stiffnesses. Considering the supersonic
results the stiffnesses show a tendency to increase as the lMach nuaber
is reduced, bringing the transonic range into a position of importance,
but unfortunately no adequate aserodynamic derivatives exists with which
to investigate this range effectively. The evidence available from
rocket tests suggests there is no sudden change in flutter stability at
sonic speeds. In the wing-with-engines case the transonic derivatives
used give results, for flutter with rearward engine positions, that
compare well with those from supersonic derivatives.

For the wing~-with-engines case the flutter stability depends on the
chordwise position of the engine., With favourable location of the engine
flutter will be avoided with quite low stiffnesses, and divergence and



aileron reverzal will set the lower limit to the wing stiffness required.
Limitations on engine position due to overall c.g. requairements do not
appear likely to conflict seriously with these flutter requirements.

The forward limit set to the engine position in the transonic case might
prove troublesome; it 1s considered that this feature requires further
considerstion, particularly in view of the aerodynamic assumptions used
in the present investigation.

& Conclusions

A limited theoretical inveatigation of the flutter stability of an
unswept aireraft wing of low aspect ratic both with and without wing
engines has been made up to Mach numbers in the region of 2. It has
been found that the stiffness required to prevent flutter of the bare
wing is not excessively large and that wing engines can have a powerful
massbalancing effect. The transonic case appears to be the most critical,
but as the transonic derivatives used were two-dimensional this conclusion
must be regarded as tentative.
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