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Summary.—This is a detailed study of the effect of the presence of walls on the flow past a symmetrical aerofoil at
zero incidence. The low-speed case is considered first, followed by solutions at a Mach number of 0-7. The methods
used are essentially arithmetical, but a new approach is used for the compressible case. The manner in which the
walls affect the pressure distribution is clearly shown.

1. Introduction.—In an earlier paper® a study was made of the compressible flow past a
cusped body in a channel. The present paper deals with the corresponding case for an aerofoil.
The first few sections describe in detail the arithmetical solution of the incompressible flow
past an aerofoil between parallel walls by a superposition method which is capable of dealing with
a variety of problems. This is followed by a solution at a Mach number of 0-70.  As this solution
was made using a grid of 10 squares to the chord some doubt existed as to its accuracy. Accord-
ingly the work was repeated with 20 squares to the chord.

1.1. In order to make a detailed study by arithmetical methods of the compressible flow past
a body between walls it is desirable to have a grid on which the solution can be conveniently
worked. This grid is the orthogonal net given by the incompressible solution.  As the object
of the investigation is to find the effect of the presence of the walls we really require two grids or
nets, namely the free-stream case and the walled or bounded case. In order to keep the effect of
the neglected terms as small as possible it was thought advisable to keep the two nets in the
vicinity of the body as similar as possible. Consider, for example, Fig. 1a where the depth of the
net is two squares and the quadrant of the body abcs is an integral number of squares. In the
free-stream case (Fig. 1a) the equipotential ¢ = 3 springs from the stagnation point s. If now
parallel walls are superimposed having a total spacing at infinity of 4 squares (2 to the half width)
the velocity past the body will rise and the equipotential spacing will decrease. The nets will
be no longer alike, especially in the neighbourhood of the stagnation point where the equipotential
¢ = 3 will no longer spring from s but from s, (Fig. 1c). To return it to s we must increase the
wall spacing or decrease the size of the body.

Having returned the line ¢ = 3 to s it does not follow that the foot of the intermediate equi-
potentials at b and ¢ have come back exactly to the same places as in the unbounded case. Itis
found that in fact ab shortens slightly, which means that walls tend to produce a greater rise in
velocity (or blockage effect) at the central portions of an aerofoil than towards the ends (see Ref. 1).
It is evident that the mean blockage effect over the whole aerofoil is approximately the percentage
decrease in the size of the aerofoil necessary to return the streamline ¢ = 3 tos, and the movement
of b and c is then a measure of the distortion of the flow produced by the wall.

In so far as this distortion can be neglected the method of this paper gives the grid constants
directly without laborious repetition. The movement of the intermediate points b and ¢ can .
then be calculated and allowed for in a second and, if necessary, a third approximation.

‘It will be evident from the above that we do not set out to solve the problem for a given ratio
of channel width to chord. The exact value we have used is only found after the solution is
complete.
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2. Theory of the Method for Incompressible Flow.—Fig. 1a shows the open field grid in the
% = x + 1y field and Fig. 1b the grid for the bounded field. Figs. 1d and le show these grids in
the w = ¢ 4- 7y fields. Let the relation between la and 1d (unbounded case) be z, = f,(w) and
that between 1b and le (bounded case) be z; = f5(w).

Then
logl + 28, = logfzﬁ’ = f'o(w) ]\
Go dw
. ‘ . . .. o .. - (1)
. o J _ )
logﬁ—]—wﬂ,_log 7 = f'3(w) J

or, subtracting
10g% + 40 — 00) = f'p(w) — f'o(w)
= say f'(w) . . . .. . (2)

Hence our problem is solved when we have found f/(w) since f’(w) added to the open field gives the
bounded field. So we start by calculating the value of 6 at d, e, f, g, etc., in the open field. The
corresponding values of 6 in the bounded field are zero, or if the walls are not straight and parallel
the 6 values are known. Neglect in the first place the movements of b and c. In other words
take (8; — 0,) zero everywhere along the lower boundary. Thus we have all the boundary values
and can ‘square’ the field directly. (Ref. 7.) ‘

Now since all the networks are conformal

0 o O
-ﬁlogg_a—w(%—ao). .. .. .. .. .. .. (3)

This gives the ratio g,/g, of the bounded to the unbounded velocity in the form
0(0g — 0,) d

. 95 oy
and
do __. 8(00 — 93) dy
logé_—[—a?— .7. PR P .« .. .. (4)

where, as before, the subscript O refers to the open field and B to the bounded. The integration
~ can be started at any point where the velocity is known, e.g., in the undisturbed stream.

2.1. Second Approximation.—If s is measured along a streamline, ¢ = d¢/ds, so that ds = (1/q) d¢,
dx = (1/g) cos 0 d¢ and dy = (1/g) sin 0 d$. Thus from the first approximation we can by
integration find values of x and y at any point. At present we are only really interested in the
amount by which the points on the surface like b and ¢ have moved so as to find the true value of
05 — 0, at these points. It is not advisable to try to find x or y directly because, in the integrals,
1/g becomes infinite at stagnation points. The main virtue of the present solution is in fact that
this infinity at the stagnation points can be avoided by using the differences from the known
free-stream solution. We have

Xo =fl cos 0, dé
9o

L (5)
szfqlB_cos 6, dd JI' :

Neglecting the difference between cos 6, and cos 6, we have

6x=x3—xozf<é——q—lo>coseod¢. . .. . .. (6)
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If we integrate from one end of the body (or aerofoil) to the other we obtain the total reduction
in the chord, 7.e., the amount by which we imagine the aerofoil reduced in size in order to obtain

as nearly similar grids as possible in the open and closed fields (see section 1.1).

reduction éc we have

¥ = Colty = Col(Co — 6¢C)

as the ratio of the chords. Having then obtained éx for any point on the surface of the body,
and knowing x, we find x, from x5 = %, + éx. Then scaling this up in the ratio » we obtain

Ax = vxp — %o . .
Knowing the geometry of the body we have d6/dx and so
0y — 0o = A0 = Ax d6[dx .

Calling this

)

(8)

)

The values thus calculated are the new boundary values of 6; — 6, along the lower boundary

(v = 0} of the grid.

There is no need to begin to square the 6 field again completely. All we need do is to start a
new 6 field with the above values of 6 written at the appropriate points on the lower boundary
and with the upper boundary everywhere zero. Having squared this field it is simply complemen-
Thus we can proceed to obtain

tary to the original 8 field, which remains unaltered throughout.

a second set of values of A46.

It will be seen that throughout the whole solution we operate on the difference between the

open and bounded fields and so the accuracy of the result is increased.

3. Application of the Method for the Incompressible Case.—The method outlined in section 2

was applied to a symmetrical aerofoil. The aerofoil used is one of the series developed by Piercy,

Piper and Preston*® by transformation from a hyperbola. The trailing-edge angle was taken
as 0-3735 radians. This makes the maximum thickness ¢/c = 14-34 per cent at 34 per cent of

the chord. .

With ¢ = +2 at the leading edge and trailing edge respectively the co-ordinates #, y of any

point on the grid are given by

1 4+ cosh# cosv o smhu sin'y

~ {coshu +cosv)®’ - 7 (cosh# -+ cosv)?

where # and v are obtained® from }
a=4{(s +2)*+v*}, B=+{(p—2°

Coshzﬂ:wi_:ti Sin2v_‘m=0‘+ﬁ—-4

) 2o 1) 2o

o = 2(1 — o), 2no = v = trailing-edge angle.

The velocity vector is given by

1 (cosh v + cos v)¥?
_T‘a\/ﬁ (cosh # — cos v)

0:_75__11: -1 K4 — tan-t k4
gzl T TR g

where 7
__siny 1 — sinh?#% 4 cosh# cosv |
sinh# cos®v — 2 — cos v cosh #

p?} |

(10)

(11)

(12)

* 4 and v are not velocity components in the physical plane.
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The velocity has been multiplied by 2w * to make it equal to unity at infinity.

3.1. The co-ordinates of the aerofoil are given in Table 1 and Table4. Using the above formulae
values for 6,, the direction of the velocity vectors in the unbounded field, were calculated along
y = 4. But here 6; = 0, so the upper boundary of the (6, — 6,) field was known. On the lower
boundary (f; — 6,) was assumed zero in the first approximation. This field was squared (see
e.g., Ref. 7) and using equation (4) values of log ¢,/¢; were obtained. Then new boundary values
on the lower boundary were calculated according to equations (6) to (9). It was found that the
movements 46 were small, as will be seen by the values in Table 2.

TABLE 1
Co-ordinates of Aerofoil Profile. (¢ = 0-50438)
¢ % y

—2 0 0

—16 0:06043 0-01068

—1-2 0-11509 0-01901

—0-8 0-16745 002567

—0-4 0-21828 0-03077
0 0-26793 0-03426
0-4 0-31663 003600
0-8 0-36453 0-03570
1-2 0-41174 0-03276
14 0-43511 0-02950
1-6 0-45834 0-02565
1-8 0-48142 0-01901
2 0-50438 0

TABLE 2
¢ A6 (1st round) | 46 (2nd round)

—2 0 0

—1-6 —0-00003 —0-00003

—1-2 —0-00004 —0-00004

—0-8 —0-00005 —0-00004

~0-4 —0-00004 —0-00004
0 —(-00003 —0-00003
0-4 —0-00003 —0-00002
0-8 —0-00001 0
1-2 +0-00002 +0-00002
1-4 +0-00002 +0-00002
1-6 +0-00008 ~+0-00004
1-8 +0-00009 +0-00004
2 0 0

Evidently there is no need to make a further repetition. Differentiating across and integrating
along v = 0 in the 40 field incremental boundary values of log g,/¢gs were obtained and the field
squared. These values added to the values found from the first approximation give the final
values of log ¢,/q5.

The velocities in the unbounded case were found by calculating values of log ¢, from (1.1) on
the boundaries and in small regions around the leading edge and trailing edge. The rest of the
field was filled in by squaring.

The value of # from (7) was» = 1-0111.  Taking the chord ¢ = 0-5044 we obtain the channel
half width 2 = 0-5715. ' :
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The mean blockage as obtained from 1 4 e ==7ise==0- 0111. This can be ¢ ompared with the
usual value® .

e—(1+8)% 4 —o0113. .. .. .. . L. (13)

6 H*
Fig. 8 shows the blockage factor ¢ along the aerofoil and along the channel wall (see also Table 6).
~ Contours of ¢ are shown in Fig. 2 and contours of velocity in Fig. 4. Table 3 gives the free-stream

velocity and the increment in velocity due to the channel walls throughout the main part of the
field.

3.2. It is interesting to note in Fig. 3 how the blockage effect rises as the aerofoil is approached
along the axis, reaching a maximum behind the position of maximum velocity. The maximum
value is 4+ 5 per cent greater than the mean over the aerofoil. The distribution over the aerofoil
would be more uniform if the ratio of channel width to chord were larger as in most practical
cases it is. The increase in blockage effect as the wall is approached (Fig. 2) is perfectly normal
as can be seen by referring to Ref. 3, Fig. 7.

The total velocity due to the aerofoil and the walls is shown in Fig. 4. The value on the wall
opposite the aerofoil centre is 1-0321 (Table 3):

It has been shown by Thom and Jones (Ref. 6) that the ratio of the maximum incremental
velocity at the aerofoil produced by the walls to that on the walls produced by the aerofoil is

1 | 4=a*K?

F=stTsm

where K is the radius of gyration of the aerofoil profile about an axis through the centroid at
right-angles to the chord. In our example we have

Klc = 0-237 Hlc = 2-27 so that from (14)
R = 0-362.
To compare with this we have the following values calculated from the fields
Mean velocity over aerofoil (open channel) 1-12
Mean velocity over aerofoil (with walls) 1-12 x 1-0111
Incremental velocity on walls (Table 3) 0-0321

These give R = 0-39.

If we use the maximum increment in velocity on the aerofoil we find a larger value of R
namely 0-43.

(14)

3.3. Tt is believed that the above is a fairly accurate arithmetical study of the tunnel-wall
effect on a symmetrical aerofoil at zero incidence. The grid was 10 squares to the chord but as
we were operating on the difference of two fields no serious error is likely to have been thereby
introduced.

4. Compressible Flow.—For the compressible flow it was considered desirable to develop a
method depending on the use of the velocity vector which could possibly be adapted to cover
cases where a shock wave was present in the field. The method is shown to be capable of dealing
with the supersonic region but a discussion of shock waves is not included. It is proposed to
operate on the ‘grid’ given by the orthogonal network obtained from the incompressible solution
given in the preceding sections. '

4.1. Theory of the Compressible Solution.—Let the velocity vector for the incompressible case
be ¢, 6, and for the compressible case g, 6.

We wish first to obtain suitable expressibns for v * log 1/g and v % since these are zero for
the incompressible case.
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Take the fundamentals in the form:

Bernoulli
1 0g*® 1ap e
Zox T 00 1
19g® | 12p _ '
2oy Tpoy T =0 J
Continuity
2pu) | 3pw) _
o0x - oy =0
Vorticity
v ou __ ¢
By

Putting a® = 9p/2p, where a = velocity of sound, Bernoulli’s equation can be written
g y , q

Log® 10 v 1

20> 0x  pox a®

and 1 8g®  10p -I-C% '
2a® 2y pay a®

Using these, the continuity equations can be written

01 87) 8q aq
ax v ( o

Put #=gcosb, v=gsind, A:g%—}—qa__, B:ﬁ—g_

and Ay = <_._ cos 6 —1— sm 6)2
Then (19) can be written

Acost + Bsind = g, .
Similarly (17) can be written

Asnb® — Bcos =¢ .
Solving these for 4 and B and noting that

_lgl__—_l._q we find
2 " q q9y
0 e .
—g_glogé:zosma—gcosa 1
and ie_—;a_loglz/lgcosﬂ—l—ésine
oy g q J
Differentiating and combining we obtain
sy D ¢ ? ¢ . )
V20 = é}(’“sme écos 0>+ @(ZOCOSO —f—gsm 0>
21yl 0 0 1S @ ¢ '
Y« loga_— a—x(lo cos 6 + 551n 6> @(Zo sin 6 gcos 6> J'

6

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)



It would probably be possible to use these for squaring ¢ and log 1/g but it is better to transform
to the w field which is given by the Laplacean solutlon already obtained for the field having the
same boundaries. We have

w=¢ + iy, 912=<%2+<%2

Further let 6, be the angle between the x-axis and the incompressible velocity vector; and let
« be the angle between the incompressible and the compressible vectors.

Thus 6 =86, + «.

Then we get
vwzozz——’i(/lsinoc—icos'oc —{—i(lcosoc—{— E—sin oc)
o0¢ 99 oy 991 (25)
1 0 0 . ¢
Vyilog 2 = — A cos & _smoc — —(Asin &« — = cos « J
8 q ( T 991 ) 81/)( g9 >

_1 g
where A < cos « + Wsm )

Again these could be used as working formulae but the real 51mp11ﬁcat10n of the method is
obtained by operating on « instead of 8. Thus note that v,%, =0 and v ,*log 1/g, = 0.
Subtract these from (24) and so obtain the final forms.

0 . ¢ 2 [
Vpla=——(Asin &« — 2-cos a ~(4cos -+ = sin «
' a‘f’( q99: + 81/)< +QQ1 > 1

.. (26)
0 . ¢ . I
V2lo = — —(4cos = sin &) — —(Asin &« ——— COS &«
804 o ( >t 491 81/)( * 991 > J

_ 1 9q* . ' |

2_ N3¢ soc—l— smoc)

1:

2a 2U2{1—%M2<%—1>} O (27)

M and U being the free-stream values.

In practice considerable simplification takes place. Except behind shock waves ¢ is zero.
It is evident that o« will in general be a very small angle being simply the change in direction of
the streamlines due to compressibility. Thus the terms containing sin « are negligible over a
great part of the field.

5. A Comgpressible Solution at M = 0-7.—The method described in the last section was applied
to the aerofoil used previously in section 3.

Neglecting in first approximation the terms containing sin « we have

_ 1 o*
2a® ¢
and
2, O
vw“——'a—,(;

For a start a first set of 4 values was obtained from the incompressible velocity values.
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Having settled the a-field we obtain the values for log ¢,/g from

0 g\ . fo ..
_8_'(/; 10g§> —— E{) Asin o 1 (28)
i(long):Ei“n—lcosa [ » . .. v e . . . ..
o q oy
which become
$
log Lt = 9a A cos a ) d¢ along constant y-lines
g g 1.\ g
9 ["(_ 0a _~,1 n H
and log . L( 5 sin oc) dy along constant ¢-lines. .. .. .. . (29)

To avoid any possible trouble at the stagnation points the integrations were done along the
top boundary and down each equipotential. With the new values for g another set of values was
calculated. As the values for ¢ go up, the first neglected parts have to be taken into account
near the aerofoil, so that we now use the full expressions for 1 and ¥ *a given at (26) and (27)

The process was found to converge fairly quickly to the solution shown in Fig. 5. It can be seen

that a small supersonic region has developed at this Mach number, but this presented no
difficulties. .

Fig. 6 shows the pressure coefficient along the aerofoil as calculated from

_ 10 /5 + M2N? J .
C, = L [ 5T ML2> 1 for compressible flow

and C,=1—g¢g,’ for incompressible flow.

Due to the coarseness of the grid used (10 squares to the chord) the curves shown are uncertain
in the neighbourhood of the stagnation points but this is investigated in section 6.

To obtain a comparison with the linear perturbation theory we apply the theorem enunciated
by Goldstein and Young® namely:—for compressible flow in a tunnel of breadth 24 the increase

in the longitudinal velocity is 1/ times the increase in the longitudinal velocity in incompressible
flow in a tunnel of breadth 28%’.

We have from section 8 the incompressible velocity in the unbounded case and in a channel

of width H. To obtain the velocities in a channel of width §H we write by analogy with the
usual blockage expression®

en = (g5 — 90)/q0 = Kic/H*

where g and g, refer to the velocities in the bounded and unbounded cases. It is thus possible

to calculate K for each point on the aerofoil. Then we assume that the same value of K applies
to the narrow channel so that

egn = Kic|p*H? .
The velocity in the narrower tunnel is then
Gorr = Jo(1 + eBy) .
Thus, applying the rule given above, the compressible velocity is

g=1+(@m—1/p... .. . . . . (30)

* When the blockage effect is only a few per cent it is immaterial whether we use this form or
& = (g0 — ¢8)/U

where U is the velocity far upstream, but care has to be taken as to which form is used when the effect becomes so
large as it does in this paper in the compressible case.

8



These values are compared in Fig. 7 with the velocities from the arithmetical solution. It is
seen that in the region of high velocity the linear perturbation theory gives too low a value.
Things would be improved if instead of using 1/8 in (30) we used the Kriman-Tsien factor but it
seems that a still larger factor is necessary to give agreement.

8. Check Calculation with Finer Grid.—The process described in the preceding sections has
been repeated for the same aerofoil between walls with the same spacing but the work was done
on a finer grid; 20 squares to the chord. :

8.1. The comparison of the two sets of results is given in Table 4 and shown in Fig. 8. The
agreement is seen to be good except that near the leading edge (at 4 = 1.6) the coarse grid
velocity is slightly lower. ’

The table also contains the ordinates of the profile at all the grid points.

7. Open Field Compressible Flow.—To obtain the tunnel-wall effect it is necessary to have the
solution for the same aerofoil in an unbounded stream. This solution was obtained (as in
section 3) by operating on the difference in direction between the compressible and incompres-
sible flows. It is shown in section 6.1 that there is no great gain in accuracy by using 20 squares
to the chord as against 10. So, as we are interested in the difference between the bounded and
unbounded cases, it is sufficient to use 10 squares.

It has been shown by Woods (Ref. 11, Part N) that .

g (6, v) = [g.(d, Bv)]"® .. .. .. .. .. .. .. .. (31)
and 0 (¢, v) = 0,(¢, By) .o .. .. .. .. .. .. .. (32)

where ¢, 6 refer to the compressible flow and g,, #, to the incompressible. (31) and (32) were
used to start the solution. An outer boundary was taken at ¢ = 4 or roughly one chord distant
from the aerofoil. The values of a=0 — 6, were calculated along this boundary by making
use of (32). In brief, this reduces to using

w— | 1 2108 19 7, where 2.857 = 48
s o4

to find the boundary values. The assumption is that (32) is likely to be a good approximation
at points well back from the aerofoil and that any residual error there will not seriously affect
the values on the surface obtained by squaring from » = 4 to the aerofoil.

Two complete rounds were worked on the field; from these the values of ¢ in Table 5 were
obtained. It will be seen that the values are still altering slightly after the 2nd round. Final
values obtained by extrapolation are shown in Table 8. The method of extrapolation used has
already been described in Ref. 1,§9. Table 6 also contains blockage factors deduced by a compari-
son with the bounded case in Table 4. The blockage for the incompressible case is given for
comparison.

The velocity distribution on the aerofoil surface is compared with the incompressible and with
the linear perturbation theory value in Fig. 9.

8. Compressible Blockage.—Tig. 10 compares the compressible and incompressible blockage
factors and Fig. 11 shows their ratio. On the linear perturbation theory the ratiois 1/8° or 2-75.
It is seen that in the region of maximum thickness the blockage factor is much higher than
towards the ends. In Ref. 10 Woods shows that the blockage effect is a maximum near the
centroid of the section.

8.1. Comparison with Mass Flow Theory—In Ref. 9 it is shown that on certain assumptions
the blockage factor is given by ‘

_a.z o 1
e =20 5W+0 3W.



Replacing the first term by its more usual value and substituting M = 0.7, #/c = 0,147,
Hlc =2-27, Ajc®* = 0-102 we get

x A £?
s T 3mp
=0-029 +0:015 =0-044 .

Even this value is not so high as the peak in Fig. 10 but it happens to be not much different
from the mean taken over the chord, namely 0-046.

&

Conclusions.—In sections 2 and 3, a method of finding the incompressible flow past an aerofoil
in a channel is developed and used. In sections 4 and 5, a method is given and used of solving
the compressible case of the same problem. The advantage of this method is that, as we work
directly on the difference in the velocity vector brought about by compressibility, a fairly
accurate solution can be achieved, even if the grid is somewhat coarse.

The actual example worked is that of an aerofoil 14} per cent thick between walls 2.27 chords
apart. For these values we draw the following conclusions:

(@) The effect of the walls is to raise the surface velocity on the aerofoil rather more towards the
centre than at its ends; the maximum occurring about 0-45c.

(b) The effect of compressibility alone is to raise the velocity much more in the region of
maximum thickness than elsewhere, the maximum change occurring about 0-26¢.

(c) The effect of walls and compressibility is to raise the velocity most at an intermediate
position, namely near 0-29c.

(d) The mean value of the blockage effect over the chord is roughly 50 per cent higher than
that given by the usual image theory combined with the linear perturbation theory. The
maximum value being some 70 per cent greater than the mean shows that for an aerofoil of this
size, relative to the channel, no single blockage factor can give a representation of velocity
over the whole surface.

Physically it would be necessary to use a thinner aerofoil in a wind tunnel to give a proper
representation of the velocity distribution on an aerofoil in free air. It should, however, be
remembered that the example chosen is an extreme case. Normally such a large aerofoil would
not be used in a wind tunnel.
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LIST OF SYMBOLS

é, Velocity potential and stream function, incompressible flow
g, 01 Velocity vector, incompressible flow
go, 0o, etc. Refer to the unbounded or open field
gz, 05, etc. Refer to the flow between walls
H 2%, Distance between walls
4 Area of aerofoil profile
c Chord of aerofoil
¢ Thickness of aerofoil
Lo Defined by equation (20)
A Defined by equation (25)
® 6 — 6,, Rotation of streamline due to compressibility
7 See equation (7)
U Undisturbed velocity
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"TABLE 3

Velocities in the Unbounded Field with Increments due to the Walls. Incompressible Flow

v
¢

0 0-8 1-6 2-4 3-2 4
—4 0-9848 0-9870 0-9915 0-9956 0-9984 1-0001
72 73 73 71 66 58
—36 0-9806 0-9843 0-9909 0-9961 0-9993 1-0009
78 79 79 78 75 68
—3-2 0-9742 0-9810 0-9909 0-9972 1-0005 1-0020
83 83 86 86 85 80
—2-8 0-9631 0-9774 0-9920 0-9991 1-0021 1-0032
88 89 92 94 96 94
—2-4 0-9396 0-9757 0-9951 1-0020 1-0042 1-0046
91 96 99 103 107 94
—2 O(T.E.) 0-9820 1-0011 1-0059 1-0067 1-0062
100 106 112 120 128
—1:6 0-9906 1-0013 1-0100 1-0107 1-0094 1-0078
105 108 118 120 131 146
—1-2 1-0497 1-0265 1-0208 1-0161 1-0123 1-0094
115 115 119 128 141 164
—0-8 1-0901 1-0502 1-0317 1-0212 1-0148 1-0108
123 121 124 134 150 177
—0-4 1-1219 1-0696 1-0408 1:0254 1-0168 1-0119
128 125 129 139 158 186
0 1-1483 1-0837 1-0470 1-0280 1-0181 1-0125
133 128 130 142 161 195
0-4 1-1705 1-0911 1-0490 1-0286 1-0183 1-0126
135 129 130 142 162 195
0-8 1-1883 1-0891 1-0459 1-0270 1-0174 1-0121
137 128 130 139 159 | 191
1-2 1-1996 1-0734 1-0376 1-0232 1-0156 1-0112
135 123 125 134 153 180
1-6 1-1908 1-0396 1-0253 1-0180 1-0131 1-0098
130 116 120 129 144 166
2 O(L.E.) 0-9979 1-0121 1-0122 1-0101 1-0082
107 115 121 134 150
24 0-8979 0-9756 1-0014 1-0067 1-0072 1-0066
92 101 107 114 122 131
2-8 0-9449 0-9728 0-9947 1-0023 1-0045 1-0049
' 93 - 95 100 105 109 113
32 0-9640 0-9763 0-9916 0-9992 1-0023 1-0034
89 90 93 95 o8 96
3-6 0-9742 0-9805 | 0-9906 0-9972 1-0006 1-0021
84 85 87 87 86 82
4 0-9804 0-9840 0-9907 0-9961 0-9994 1-0011
79 79 79 79 76 69
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TABLE 4

Aerofoil Profile and Comparison of the Surface Velocities from the Coarse and Fine Grid. Bounded case
M =07 Hlc =2-27
Area of Profile 4 = 0-101c?
Centroid ¥ = 0-43c¢

9B 9B
& xfc yle Coarse grid | Fine grid
Trailing edge —2 1-00000 .| 0-00000 0 0
—1-8 0-93726 0-01146 0-9335
~1-6 0-88018 0-02118 0-998 1-0009
—1-4 0-82528 0-02728 1-0522
—1-2 0-77182 0-03769 1-093 1-0948
—1-0 0-71947 0-04468 1-1335
—0-8 0-66801 0-05089 1-170 1-1696
—0-6 0-61730 0-05633 1-2057
—0-4 0-56724 0-06100 1-238 1-2366
—0-2 0-51776 0-06487 1-2678
0 0-46880 0-06792 1-300 1-2081
+0-2 0-42030 0-07011 1-3302
0-4 0-37224 0-07138 1-365 1-3638
0-6 0-32457 0-07164 | 1-3985
0-8 0-27727 0-07078 1-423 1-4219
1-0 0-23031 0-06863 1-4253
1-2 0-18368 0-06493 1-399 1-4024
1-4 0-13734 0-05928 1-3542
1-6 0-09130 0-05086 1-262 1-2836
1-8 0-04552 0-03769 1-1551
1-9 0-02273 0-02725
1-95 | 0-01136 0-01947
Leading edge +2 0-00000 0-00000 0 0
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TABLE 5

Velocities on Aevofoil Surfaces, Open Field

[ Starting go After Ist round | After 2nd round
—2 0 0 0
—1:6 0-9868 0-9740 0-9724
—1-2 1-0702 1-0660 1-0615
—0-8 1-1284 1-1278 1-1278
—0-4 1-1147 1-1786 1-1821
0 1-2136 1-2224 1-2269
+0-4 1-2466 1-2607 1-2679
0-8 1-2734 1-2932 1-3056
1-2 1-2902 1-3047 1-3101
1-6 1-2770 1-2290 1-2258
+2 0 0 0
TABLE 6
Blockage Factor
M =07 M=0
¢
9o € &1 el
—2
—1-6 0-972 0-027 0-0106 2-5
—1:2 1-061 0-030 0-0109 2-8
—0-8 1-128 0-037 0-0113 3-3
—0-4 1-183 0047 0-0114 4-1
0 1-230 0-057 0-0115 4-9
+0-4 1-274--0-002 0-072 0-0115 6-3
0-8 1-32040-005 0-078 0-0115 6-8
1-2 1-3134+0-002 0066 0-0113 5-8
1-6 1-225 0-030 0-0109 2-8
+2-0

U = velocity at infinity, is unity throughout.

& = (g8 — qo)/qo.
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