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Summary.—This report investigates the wave drag of bodies of revolution with pointed or open-nose forebodies
and pointed or truncated afterbodies. The  quasi-cylinder * and * slender-body " theories are reviewed, a reversibility
theorem is established, and the concept of the interference effect of a forebody on an afterbody is introduced.

The theories are applied to bodies whose profiles are either straight or parabolic arcs, formulac and curves being
given for forebody and afterbody drag, and for the interference drag. The results of the two theories are compared
and are seen to agree well in the region of geometries where both theories are applicable.

1. Introduction.—The solution of the linearised equation for the supersonic flow past bodies
of revolution, originally due to von K4rman', has in recent years been extended by Lighthill*®
and Ward® to cover a considerable variety of shapes. In particular these authors have made
possible direct calculation of the lift and drag of open-nose bodies, the flow about which differs
fundamentally from that about a pointed body in that the flow at the open end is of a two-
dimensional nature. Two different types of approximation have been developed ; the * quasi-
cylinder * solution, which assumes that the radius of the body departs only slightly from some
mean, and the * slender-body * solution, which assumes that the maximum diameter of the body
is small relative to its length.

The present paper is concerned only with the wave drag of bodies at zero incidence, and is
an application of Lighthill’s theory to some particular cases. The work is simplified by dividing
the drag into the components shown below, and by a reversibility theorem which follows
directly from Refs. 2 and 3.

If we consider a body consisting of a forebody, a parallel mid-portion, and an afterbody, the
total drag is the sum of the following three components :

() The forebody drag

(8) The  principal afterbody drag,’ which is the drag that the afterbody would have if it
were situated behind an infinitely long parallel portion

(c) The interference drag due to the effect of the forebody on the afterbody.

* R.A.E. Report ‘Aero. 2420, received 29th October, 1951.
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It will be shown that, to the order of accuracy of the theory used, the drag of a body is equal
to that of its ‘ reverse * ; and therefore forebody drag and principal afterbody drag, which depend
only on the shape of the profile in question, are equal if the shapes are the reverse of one another.
Further, the interference pressure’ at any point on an afterbody depends only on the shape
of the forebody and on the axial distance of the point behind it. The interference drag decays

-rapidly as the length of the parallel position is increased ; when thijs length is of the order of the

forebody length, the interference effect is negligible.

The notation used in this report, which differs slightly from that of the original papers, is given
after Appendix I and is shown in Fig. 1.

Where equations are quoted from the original papers the numbers in square brackets indicate,
respectively, the reference number of the paper from which an equation is taken and the number
of the corresponding equation in that paper.

2. Summary of the Work of Lighthill—2.1. The Quasi-cylinder Theory.—In Ref. 2 the pressure
coefficient at any external point of a quasi-cylinder of mean radius R is found to be

@:%J Uz — s) dnls), e (1)
s=0- ‘ [2.79]

where the integral is taken in the Stieltjes sense®, and B = +/(M?® — 1), z = x/BR, 7(z) = dv|dx,
the slope of the body profile at any point.

U(z) is a function derived by Lighthill, and is tabulated in Ref. 2 for z =0 to 10. Some idea
of its behaviour is given by the properties
U(z) = 0forz < 0,
= 1forz =0,

~ % for z large.

U(z) and some associated functions, which are necessary for the work of the present paper, are
tabulated for z = 0 to 20 in Table 1, and are discussed more fully in Appendix I.

Writing Ulx) = — Wi{x), '

where the dash denotes differentiation, and applying integration by parts to (1), one obtains

Cj,:%[n(z)—JW(z—s)n(s)ds}. . i T .. (1a)

(1) and (la) are valid for profiles having discontinuities in slope, the change in pressure at a
discontinuity being the two-dimensional value

2
ACP:EAn. . .- . .. . . . . (2)
To the order of approximation of the theory the drag is given by
p [ o ,
W :JDC},QﬂRT](Z)BR az, - - .. | - o .. .. (3)
where ¢BR is the length of the body ; substituting (1a) into (8) gives
R2 [4 c 4 .
CD:R 2':4f 7%(2) dz—ZJ [W(|z—s|)n(z)77(s) dzdsJ. .. .. (4)
| ] e [2.84]

* When dealing with functions having discontinuities in an interval of integration, we shall be careful in this paper

b b
to write Stieltjes integrals in the form J Sflx) dg(x). By expressions of the form J f{x) g'(x) dx we shall mean the
r=a 4 X

sum of Riemann integrals taken between the points of discontinuity.
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9.2. The Slender Body Theory.—In Ref. 2 1ighthill also deals with bodies having a pointed
nose, continuous profile slope, and a maximum thickness £. The length of the body is considered
to be O(1). If the radius of such a body is R(x), and S(x) is the cross-section area, then the
‘pressure cofficient at any point on the body is* : ‘

. px—BR(x)
1 S")
Cp=— ' > o dy — R (x +Oi_4102t. . 5
S R/ oy - i 248

’ : J o
The integral in (5) may be considered to be due to a dlstrlbutlon of supersonic sources a} points
y on the x-axis, of strength S'(y)/2=. "An equlvalent form is

C,= ;1 FS”(O) log x + S"(x) log - BR(x )—{—J log (x — ) dS”(y):‘__R.’z(x)
+5(z410g2z), e L o [2.80]
_ 10 208 — ) ;o0 s
= j N log “BR(x) S"(y) — R™(x) + O(¢ log*?). - .. [3.2(8%

(6) is not correct in small regions immediately downstream of any discontinuities in S”(x). In fact
if such a discentinuity occurs at ¥ = a, the change in (5) only becomes effective at x ==a 4+ BR(a)
and the alternative form (6) gives a logarithmic singularity at x = a. Neither of these are physi-
cally probable, but their effects are confined to reglons of length O(f) ; and 1t may be shown that

in the drag integral | ‘ ’
2 . . .
D , '
%pW:JCP.S(x)dx e . . . (7)
2 . ,

- the error will still be of O(#* log®#). In Ref. 2 Lighthﬂl int.egrated (6) for bodies having a pointed
nose, [S'(0) = 0], and either zero profile slope or a pointed tip at the rear [S'()) =
2=R(I)R'(!) = 0], giving ,

1
D 1 | B ‘
L5 = o lo S"(x) S"(v) dx dy+ O(* log® 1). .. . 8
LY 2. J JO B r—y]> W) dxdy+ O log*) [2.?£6%
However, only the condition S'(0) = 0 and continuity of profile slope are necessary for the appli-

~cation of (6), so that for a body having a truncated afterbody we obtain
i

! 1
D 1 O 1
LV 2 L Jolog |x~_yl5 (x) S” (j)dxdy _ J S"(x)log T xcix

0

1’2 2 ] 2
+g, S Wloggry HOEIgY. . (9)

It may be noted in passing that the condition S’(0) = 0 is satisfied by afterbodies situated behind
a long parallel portion, and whose initial slope is zero. Hence the above results can be applied
to such bodies.

In Ref. 3 Lighthill has extended his work to slender bodies with discontinuities in profile slope.
He considers a body whose profile extends from x = a, to a, and is defined by » = R(x). R(x) is
continuous in. a, < x < a, and analytic in each of the intervals g, <x <@, &, <x <a,, ...,
a,_; < x <a, The change in s’lope at the points of discontinuity is given by. b, i.e.,

b= R'(a+) — R'a,—), »
and thisisinterpreted for: =0andz=un» by specifying that R'(x) =0forx <a,andx > a,. R(a)is
written as K,

* The order terms here are based on the work of Ward” and of the present author® and are not always exactly those
given in Refs, 2 and 3,
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Apprommatmg as above, nghthﬂl has shown that the pressure cofficient at any point. on the
body is

x — BR(x)
1 S"(y)dy : $ 2b (
C,=— Ry U 10
" L A [(x — y)F — BR(x)] 2B BP [3f23%

where U is the function introduced in 2.1 above. . In regions of length O(¢) immediately behind
the discontinuities the error is O(t*) because the U-term only gives the two-dimensional pressure
change to first order. Asin (5) one may replace the integral in (10) by

1 2% — ) e |
;Jyzao_ lOgB—R(;c)—dS J(y). . .. . .. . . [3(;}%
If Ul(x)szU(t) dt, [U,(0)=0], O 6 1)

the contribution to the drag integral (7) of the third term in (10) is the sum of terms like

ZbJ U(BR )s :_szf U<BR )ds - [3%3%

Hence integrating (10), and using (11) and (13), we eventually obtain

D 1 a‘ﬂ uﬂ 1
=5 | S"(%) S"(y)log ——— dx d
L7 %, L [ () S"(y) log 1 5]

1 2 ’2
- 27’: 120 IOgBR [S (6! +) — S (Ol ——)]

" S | " X — a
+ E’o 2b.R; Uuﬂ S"(x) log i x dx — J'ﬂ. S (w,) Ul<—~-l-3~k:- d:»:|

2

— 5 3 4abbRR, .U oF). .. .. .. .. (14

g T
i=0 f=it1 BR;

A further approximation is possible. The asymptotic expansion of U,(x) is (Appendix I),

Uy(x) ~ log 2x + O(x7? log %), .. .. .. . .. . [3.7]

so that one may write |U,(x) — log 2| < A 2log % for ¥ > A,, say, and for x < A, we have
Uy(x) < 4,, say. Hence 1f we replace Uy[(x — a;)/BR;] by log [2(x — a,)/BR;] in the fourth
term of (14), the error will be at most the sum of terms like

2b,R; 1S"(x < ) — %
ai—}-AlBR
2(x — a,)

a,+4,BR; :
+ 2R, J 1S (x)l[Az + R de.

log =5~

i
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‘This expression is O(#), and (14) therefore becomes

D 1 %y ,“n , , 1 )
LV 2 LO L} 5"(x) 5"(y) 1og rmp ke

12 2 2
— 5 go log BR, (S*a; +) — S™a;, —)]

» K ” 1 .
-+ i?ﬂ Zb,R,J S (%) 10g Iﬁft—ﬁz—l ax

llo

" 2 J=n ’ I
- igﬂ ZbiRi log ER—”’:%H [— S'(aj1 +) + S'(a; —)]

a;, — a; : '
L 4nblbleR] . Ul <_]BR£ > —I—O(is) ' . . ' (15)

" 7
- 2 2

i=0 j=i+

In the last term of (15) we may write

@ — &\ _ 2 —a) ‘
U1< BRi>__log T N

and the error will be O(¢° log ), provided that the distance between the discontinuities concerned
is large with respect to the thickness of the body. This restriction becomes important when we

consider a forebody and an afterbody joined by a parallel portion, and let the length of the
parallel portion tend to zero.

If the discontinuities are all spaced well apart, we may use (16), and (15) becomes

D 1 ailr an . ) 1
o7 = J J S"(x) S (y) log [—— dx dy

a
n

A Y. b
-+ i:EU 20.R; Lo S"(x) log & — ) dx

-}_ %: > 475 btbjl\)zR] ].Og —"*"I—“M

i=0 j=1+1 @] —
' 2 ) | _
-+ 3 2%b2R log zr Tt oy, .. e . " - .. (17)
=0 S [3.35 and 3.36]
As is shown in Ref. 3, this may be written

@, - a, -
D 1* " " 1 ey .y
W 2 f J o By S

y

43 %R0 2+ OF) .. .. .. .. .. .. (17a)
-0 BR; [3.38]
where the asterisk denotes the * finite part of ’ the Stieltjes integral.

weputby=0b,= ... = b,_, =0, and either b, or R, =0, (17) reduces to (9).
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3. Further Resulis of the Theories.—3.1. Reversibility Theorem.—The drdg of a quasi-cylinder
is given by (4). We write z=¢ — Z and s = ¢ — S, and (4) becomes

Cp= RZ‘;XZ {4 chc —Zydz —2 Jrc J c W(Z — S|)n(c — Z) n(c — S) dZ dSJ s

0 0

But the ‘ reverse * of the body, which we denote by subscript #,is defined by
n(Z)=—nlc—2)and R, =R,
so that we may write (18)

Cp= Zfr 2|i4 J VA dZ_ZJ J (1Z — S nZ)m,(S) dZdS:'. .. (19)

0 0 0

Hence a quasi-cylinder and its reverse have the same drag. The reversibility of slender bodies
with all discontinuities spaced well apart may be shown similarly from (17) or (17a). If the
distance between certain pairs of discontinuities, denoted by x = a,, and «,,, ;, is O(¢), (17) is
. no longer applicable, but the reversibility theorem still holds. In this case the drag may be
written as the reversible form (17) plus

E4nb7}lbm-]~IRULRI)L+1 ‘:1Og Z(ﬂm‘é‘;e_ a’”) - Ul (am EZ?— am)] 3 . (20)

where the summation refers to the different pairs of discontinuities close to each other. Clearly
these terms are reversible if R,, = R,,  ,, which is the case if @;, and a,,, , denote the end points of a
parallel portion. If R, R, ,, we have

/

Pm-lAl - Rm + ( m—(—l - a/n)Rl<a’m) _[_ [
== Rm + O(zz))

and the difference between (20) and the equivalent terms for the reversed body will be O(#),
and therefore negligible.

3. 2 The Two Components of Afzferbociy Drag.—Consider a quasi- cyhnder with forebody ex-
tending from z = 0 to «, a parallel portion from « to b, and an afterbody from & to c. We denote
the fore- and afterbody by subscripts © and 4 respectlvely Then by (1) the pressure coefficient
at any point on the afterbody may be written

Cp 4 = CpAl ‘I— C;b/m:

rz

2
where Copar = B Ulz — s) dny, (s), . . .. . .. .. (21)
J s=b—
‘ 2 frat
and Cram="% Ulz — s) diy(s)
o ¢ . ) i
:———EJW(z—s)nF(s)ds. .. .. .. - e (22)
0

(,P 41 1s the pressure coefficient associated with the afterbody profile alone (.e., if it were situated
behind a long parallel portion) ; we call the integral of C, ,; over the afte1body the principal
afterbody drag, Cp .. C, .. gives the interference effect of the forebody ; (22) shows that this
depends only on the forebody shape and the distance of the point # behind it. Also, in view of
the asymptotic expansion of U(z), C, ,, — 0 as z — oo ; this decay is quite rapid.
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~ The principal afterbody drag is an integral like (4); the interference drag may be written

4r? | -
Chigs = — % ZJ 77‘4(z)dzJ W(z — s) ng(s) ds: - .. .. .. (23)

0

A similar procedure can be applied to slender bodies. Let the parallel portion of such a body
extend from x = a, to a,,;. Then from (10) and (11) we have

— L ' M " ra Y —d;
CP A1 — 7 Jy_a ~ 1Og BR(%) as (y) — R (’)
k41 .
, [ 2 — 3) s 2b, — g
Cra= ﬁ,zﬂo_log BRE) 0N 120 B U< BR >
1 (s v 0 % —a; - -
_%Lx Ly +LEU <BRi : S )

C, 4 and C, 4, obviously have the same characteristics here as were mentioned above for the
quasi-cylinder case. The interference drag is

DA 2 _i [‘“” , ,‘ (% S”<_/y)
P w |, SWe] e 5BR, <BP 45" (x
- 1 J % -y
[ ' @, ray, S” (y) I{\ e 2( a_) 7
— ! i . 2 Nl W) p .
7 JM;MS <x) dxd ag (96 —y) dy i:() .bl[\z. . log B]) ‘5 (4‘/) d\, |

(26)

55 abbRRU (S
Zojeitn T TBR,
In general the interference drag is appreciable only when the parallel p01t10n 1S short S0 that
we shall not want to 11’18.1&8 the substitution

Ay — A = log ak -1 “>
BR/ \5 .

However, if a,,; — a, >> BR,, the expression for D, similar to (17)

1

e i
Das l-f S"(y) dyj S"(x) log = d

LyVE T
2PV 7 “0 %1

i

1+ S %R, [ S"(x) log —— dx
] ) X —a

(Lk

1+ S 2R, J S"(x) log —— dx
i<k 0 a; — x

+ 3 3 4abbRiR;log a—1—~ (27)

=0 j=k+1 1 — a,
It may be noted that this is independent of Mach number.
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4. Applications.—4.1. General.—Most of the following work is based on the slender-body theory,
because comparison of the two approximations (section 4.4 and Figs. 9 and 10) shows that for
area ratios 5,/S,,, > 0-6—that is, in the region of geometries where we may have considerable
confidence in the quasi-cylinder theory—the slender-body theory gives good agreement with the
quasi-cylinder theory even for bodies whose fineness ratio is so low that the use of the slender body
theory can no longer be rigorously justified. On the other hand the quasi-cylinder theory does
not give good agreement for slender bodies of small area ratio.

We have of course no justification for either approximation in the region where the fineness
ratio and the area ratio are both of low value. However, as Lighthill has pointed out in Ref. 3,
the slope of profiles in this region is too great to permit use of the linearised equation, so that there
1s little to be gained by solving this equation exactly (which can be done by the numerical solution
of an integral equation). In fact it may be shown that the difference between the slender

body solution and the exact solution of the linearised equation is, mathematically, of the same
~order as the error which results in either case from neglecting higher-order terms of the exact
equation.

Thus it may be argued that the drag of all bodies to which the linearised equation is applicable—
that is, bodies whose profile slope is reasonably small—may be calculated adequately by the
slender-body theory. Nevertheless the quasi-cylinder theory should not be dismissed entirely,
because for bodies with area ratios > 0-6 it has the following advantages: (a) It gives a pressure
distribution which is more realistic than that of the slender-body theory in the vicinity of points
of discontinuity of $”(x) ; and (b), the algebra involved in the use of the quasi-cylinder theory is
in general less cumbersome. '

The effect of Mach number on the validity of the theories should also be mentioned. In the
derivation of the theories 4/(M* — 1) is assumed to be O(1) : in practice a lower limit to the Mach
number range may be provided by the requirement that the flow be supersonic everywhere,
and an upper limit by the requirement that the product of 4/(M*— 1) and profile slope be small.
Thus, as far as the upper limit is concerned, ‘ fineness ratio’ in the discussion above may be
interpreted to mean the parameter //R+/(3*— 1) which appears in the figures.

If it is required to find the pressure distribution on a given body to a greater accuracy than that
of the approximations given here, this can often be done quite simply by fairing the curves given
by the approximate theories into known exact values at certain points. For example at the nose
of a pointed body, or at a discontinuity in slope or in curvature, the exact pressure changes can
easily be computed, and it is just at these points that the approximate theories tend to be
seriously in error. Such a procedure has not been followed in this report because the simplicity
of the drag formulae would be lost, so that a limited amount of calculation would no longer
yield anything like the same number of results. Even the calculation of pressure distributions
as given by the above theory for the range of geometries and Mach numbers considered here
would require very much more labour than is required to find the drag coefficients.

Only results are quoted in the sections below because the integrations which lead to them are
straightforward in all cases. We define the fineness ratio of a forebody, afterbody or parallel
portion as length/maximum radius, and that of a complete body as length/maximum diameter,
in order that the two halves of a symmetrical body may have the same fineness ratio as the
complete body. In the expressions for drag the shape of a forebody or afterbody is described
by the nature of its profile, its fineness ratio, and the ratio of the length of the body to the length
of the corresponding pointed body (.e., the same body continued to a point at the smaller end).
In the figures, however, this last ratio has been replaced by an area ratio, which was thought to
be more convenient from the practical point of view. )
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- 4.2, Bodies of Parabolic Profile—1t may be mentioned in passing that the difference between
a parabola (near its vertex) and a circular-arc is small. If we consider two bodies of equal overall
dimensions and of thickness ratio. ¢, one having a parabolic and the other a circular-arc profile,
the difference in radius and slope at any other point is O(f)), and it may be shown that the
difference in drag is O(#* log #). Since slender-body theory only gives drag correct to o) =0,
* the difference between the two profiles is negligible, and the results derived below for parabolic
profiles may also be used for circular-arc profiles, (ogives).

Fig. 2 shows, as an example, the pressure distribution about a symmetrical, pointed body of
~ parabolic profile. The length of the body is 1 and the maximum diameter £ ; hence

R(x) = 2¢(x — x7). . . .. . .. . . (28)
(5) and (6) become, respectively, :
"Q_ 242\ 42 242,.3 242 .4 V ——1__1
4t2——2[1—6x+(6—i—12Bt)x 24B%%* + 12B*%*x"] cosh 9BI1 — %)
+6(2x — 3x%)4/ (1—43%2 - 8B%:x — 4B**x%) — (1 — 2x)%, . (29)
and %’i = 2(1 — 6x 4- 6x%) log Bt(Tl——x) — 1 4 16x — 2242, .. . .. | {30)

The two forms are virtually coincident for the case Bt = 0-1; for Bf = 0-4 the difference is appre-
* ciable but its effect upon the drag would not appear to be large, and the error due to the

logarithmic form is conservative. ‘
The (principal) drag of a parabolic forebody (or afterbody) is, from (9) or (17),
4 286 *

CD.aZ:b—S[Z(bZ—1)21053{62_1—%g lzlbz—b4J .. . . (31)
where a and ab are the fineness ratios of the body and of the corresponding pointed body, respec-
tively, and g = a/B. Tor pointed bodies (b= 1) the drag coefficient is independent of Mach
number and is

Cp.a>=14/3. .. . e .. . .. . (32)
Equation (31) is plotted in Fig. 3, the ratio b being replaced by an area ratio (which depends on
b only). The portions of the curves which cover low values of both the area ratio S,/S; and the
parameter I/R,4/(M?— 1) correspond to regions where there is no justification for the theory
and are shewn chain-dotted. Such a separation of ‘acceptable’ from ‘unacceptable’ values
is of course rather arbitrary ; the criterion used here is that for the acceptable values

(maximum profile slope). /(M* — 1)< 1/5.

A limited number of comparisons with exact theory and with experiment indicates that at the
boundary of the two regions the theory is in error by -about 10 per cent for forebodies and 15
per cent for afterbodies.

For pointed bodies consisting of two parabolic parts and a parallel portion the drag is the
sum of two terms like (32) and the interference drag. (26) or (27) give the interference drag as

Cpay - 4> = —;‘; {[(— 14+ 01— %) — 3814 ¢%)p — (3+ 262 8c9)p™+ (1 +-¢*)pi— 42 log (1+c+p)

A+ [(— ¢t 4 %) - %P + (20° + 8NP — (1 4 ¢*)p + 5p°] log (¢ + )

+ [(1 =) + 52+ (8 +26%)p" — (1 + *)p* 4 54 ) log (1 +p)

+ [— 2%+ (1 + )t — 3" log p

+(c—46* — ¢ — Fet H4-¢°) -+ #(11e — 3c* — 3¢+ 11cf)p

32— 3+ 2P e+ — g0y, . o o (39)
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where a, ap, and ac are the fineness ratios of the afterbody, parallel portion, and forebody respec-
tively. (33) is plotted in Fig. 4. When the parallel portion is as long as the for ebody or longel
the interference drag is less than 3 per cent of the total body drag.

“For a body having a pomted forebody, a truncated afterbody and no parallel portion, the
interference drag is

Cpas. 0= T 4{ [(2—30%) — (1 — 20%)c* - b%c* — ¢ log (1 +¢) — (b* — ¥t log ¢
— (2—=3%c+ (1 —38b%)c* + (3 — bz)c““— T SN S . . - (34)

where a, ab and ac are the fineness ratios of the afterbody, the pointed equivalent of the after-
body, and the forebody, respectively. Equation (34) is plotted in Fig. 5.

In Fig. 6 equations (31), (32) and (34) are used to show the variation of drag with the location
of the maximum section of a number of bodies whose forebody and afterbody profiles are para-
bolic arcs.

4.3. Comical Bodies.—The drag of forebodies or afterbodies whose geometry is the frustum
of a cone is shown in Fig. 7. The slender body theory gives this drag as

CD a’ _%‘1[2(262 26 1) log 2{3’ 2(b—1)% log < >—1] TR (35)
The notation is the same as in 4.2. With b =1, (35) reduces to the first-order cone value : -
Cp.a>=2log2s—1. .. . .. .. .. . .- .. (36)

Comparison with parab'olic bodies (I'ig. 7) shows that in general conical bodies have a con-
siderably lower drag.

Fig. 8 shows the interference drag of some double-cone bodies, given by ,
. 2 .
Copa-@® = 5 {= (1 +c+p)log (1 +c+2)+ (¢4 p)(2 4 ¢ + p) log (¢ + 2)

(A +20+ce)p+pY)log(l+p) — (2+2c+p)plogp —c¢ :
+210g [28(1 4+ p)] — 26U (BP)}. .. .. .. .. .. (37

It is clear from Fig. 8 that the interference drag of conical bodies is in general greater than
that of parabolic bodies. The physical explanation of this is as follows. Interference drag may
be considered to be due to the negative pressures which would exist on a parallel portion situated
in the region of the afterbody, acting on the actual afterbody. Now the suction on a parallel
portion behind a conical forebody is greater than that behind a parabolic one ; and, furthermore,
a conical afterbody has more projected area near its forward end, where the suction is greatest,
than a parabolic afterbody. Both these effects lead to a higher interference drag. However, for
low values of ¢ =1;/Ry+/(M*—1)(< 2), equation (37) gives negative values of interference drag.
This marks a definite collapse of the theory, for exact solutions for a cone ahead of a parallel
portion always give a negative pressure coefficient immediately behind the shoulder, indicating
positive interference drag.

We consider finally the interference drag of symmetrical, open-ended conical bodies ; this is
Coin-a* = (1 —2b— b*—20p—4p) 10g (2-4) — (1— 2 — b — 4bp — °) log (1 + )
— (2bp+ 1) log p— 4+ Bt log [28(1 + )] — BULERY. .. .. (38)

The results of (38) will be compared in the following section with those of the quasi-cylinder
theory.
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4.4; Some Comparisons of Quast-cylindér and Slender-Body Theory.—The qu351 cyhnder
solutions for parabohc and conical forebodies or aftelbodles are respectively,

O

[where T(0) = #Us()—Ui2) and Us(s) = J : Uy dt}

a‘nd‘ | v; C, . a ——4<m> <m> . S o o . (40)

m 1s the ratio of mean to maximum radius RR . (39) has also been obtained by Owen (Ref. 5),
and (40) by Warren (Ref. 6) ; both these authors, however, used mean radii different from those
used here. Throughout this report we take the arithmetic mean of the initial and final radii,

1.e., we write
R =R, + R)). . .. .. .- .. .. .. .. (41)
(39) and (40) now become

Cp . 2/3(%2—1) (21722/35%), P (42)
and _<Zb_1> <2§ﬁ_bl> R 77

These results are compared W1th those of the slender—body theory in Figs. 9 and 10. The
remarkable agreement in the case of conical bodies may be partly explained by considering the
pressure distributions given by (1) and (10). (1) gives

2 X
“=Fa Y ﬁ>’
and this is also the dominating term in (10), with R replaced by R,. However, a comparison of

the pressure distributions would not always show as good agreement as is seen in Fig. 10 ; some
cancellation of differences occurs in the integration. : :

In the case of the parabola, profile curvature introduces marked differences and the two sets
of values only agree over a rather narrower range, S,/S; > 0-6. It may be noted, however, that
in this range the agreement persists for very low values of the parameter-g =//R,+/(M*— 1).
It is also fortunate that in the range 4 < /R, v/(M* — 1) < 12, in which we are most interested at
present from the viewpoint of application, the agreement between the two approximations is
quite good down to fairly small values of the area ratio.

The quasi-cylinder solutlon for the interference drag of symmetrical, open-ended, conical
bodies is

Com . a® _4@) {ZU [ 1“5)] U{/ﬂ;—@] [ﬁﬂ} o (44)

and, introducing the mean radius defined by (41), we have

o= (B f. [P0 AR o [0

The results of (38) and (45) are shown in Fig. 11. In all cases the difference between the two
approximations is small with respect to the total drag of the body; and as the area ratio
approaches unity, the two solutions tend to coincide.

1




3. Conclusions.—The following general conclusions may be drawn, but it must be remembered

that they are valid only to the order of accuracy of the theory and for profiles of reasonably
small slope.

(@) The (principal) drag of a pointed or open forebody (or afterbody) is less for a conical

than for the corresponding parabolic body (or ogive) except for pointed bodies with
URA/(M?— 1) = 9.

(6) TFor a body whose parallel portion ié shorter than its forebody, the interference drag can
be appreciable : it is in general higher for a conical than for a parabolic body.

(c) Comparison of the quasi-cylinder and slender-body approximations has shown good
agreement for bodies of area ratio S,/S,,.« > 06, even where the fineness ratio was small.

The slender-body theory may therefore be applied with some confidence to all bodies
of small profile slope.

APPENDIX 1

Special Functions

The function U(z) is derived in Ref. 2. TIts definition in terms of z is lengthy and will not be
quoted here, but it is readily defined in operational form (Refs. 3 and 4) by

m@:%%a.. T )

where the K,’s are modified Bessel functions of the second kind, and p is the Heaviside operator
such that

p“l‘:J:ds.

The Heaviside unit function which strictly speaking should appear in the equations above,
is omitted here for simplicity.

It is apparent from the equations for pressure coefficient and drag in the main text, (1), (3),
(10), (15), that functions of the following form may also arise in the calculation of drag:

-M@:ﬂU@@ 1Y)
UA@::JisU@)ds e )
m@:j&m@m... N § 2

Ul(z) is tabulated in'Ref. 2 for z =0 to 10, and U,(2) for 2= 0 to 10 has been calculated by Warren
and Gunn (Ref. 6) using numerical integration.

In the present paper U,(z) and Us(z) for z=0 to 10 have been calculated by numerical integra-
tion, and values of the four functions for z = 10 to 20 have been calculated from the first three
terms of their asymptotic expansions. The expansions were obtained in the following manner,

which is similar to the method used by Ward (Ref. 4) to find the asymptotic expansion of
W(z) = — U'(2).
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Expanding the right side (I.1) in ascending powers of p, we obtain

TAB) . plog p+ (105 2—p)p -+ 4#° log? p — H(1 — 2y + 2Tog 2)p* log 3

Ki(p)
: + 12— 2 —4dylog2+21og* 2+ 2log 2+ )PP+ ..., .. (1.5)

where y is Euler’s constant. If we write the digamma function as ¥(¢) we have the standard
forms

d . . 1 1 1
WZ):d_f(logd):}zﬂ(log%”u1_c+2"‘ —CJF%),
and ‘ y = — ¥(0).

To interpret (1.5) we apply the following operational laws. ¢ is a complex variable and M
1s a contour consisting of a small circle about the origin and the upper and lower sides of a cut
along the negative real axis.

r

1 1

t = o mletdl = - . . . .. .. I.6
) v M ‘
= 0 for » a positive integer. .. o . . . .. (L.eb)
, - r
1 ‘ 1
p"log p = 97 {"*log ¢ e*d¢ :Z”—(W[T(” n) — log z] . . (L.79)
S ‘ . )!
— 1) (n — 1) ‘ '
= LL;:’E_” for # a positive integer. .. .. .. .. (1.7b)
. Pn 10g2]5 — _]‘~ J Cu——l 10g2 C ezC dC
S R ’
M
= (1_ ] log*z — 2log s W(— n) + ¥ — n) — ¥'(— n)], . (.I.Sa)
- (= 1) — D! 2(— 1)"(n — 1) 1 1
= — 2log o + o —y—{—1+2...—[—n-————_1
for n a positive integer, .. .. . . .. .. (1L8b)
Applying these results to (I.5) we obtain .
1 1
U(z)NZ——I—E(ZlogZZ——Z)—[—... . .. . .. . .. (1.9)

(I.9) could also have been obtained by writing
U() = Wis) ds,

and applying Ward’s expansion for W(z), but the following expansions could not be obtained in
such a manner.

The operational form of U,(z) is Ky(p)/pK.(p) and so we obtain
Ui(z) ~log 2z - —lez(l—ZlogZZ)—{—... . . e . . (L10)
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We now write, integrating (1.3) by parts,
Usl(z) = 2U,(z) — j Uls) ds

= 2U(2) — i)

PR(p) |
Nz——?logZZ—l—.... . .. .. .. .. o (L1
Also Uy(z) = 2Us(2) — 2| sUL(s) ds . T § 4 521
To obtain the operational form of zU,(z) we use the result that if F(p) = f(z),
Flo) — — p O [ ELP)
=235 | )
so that (I.12) becomes ‘
e A | _Eyp)
Us(2) =z Ul(Z)+Zd]5I:P2K1(P)J . . . . . .. (1.13)

In evaluating the last term we obtain the correct result if we reverse the order of differentiation
and expansion in series, but to justify this step is no simple matter. We therefore proceed as
follows.

. , d
Since K/(p) = — Ku(p) and g [pKu(p)] = — pKilp),
1 I )L s LR
ap | p-pE(P) Pt PEL(p) PP LKD)
We expand this by means of (L.5), and, interpreting (I.13), we finally obtain -
Us(2) N% _ 2log 22+ log? 2 — WHO), .. .. .. .. .. (L14)
2 ‘
where PO)=1+44+L. .. = %. (1.14)
NOTATION
@ = I/BR of a quasi-cylinder forebody (section 3.2) also, fineness ratio (length/
maximum radius) of a fore- or afterbody, /z/R; or [,/R, (section 4)
a; .~ -Values of x at which discontinuities in slope occur |
b = [/BR of a quasi-cylinder forebody + parallel portion (section 3.2) also,

ratio of length of the corresponding pointed body to length of a fore-
or afterbody (section 4) :

b, Increase in slope at a discontinuity
B = (-1
14
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NOTATION—continued

I/BR of a quasi-cylinder (sections 2.1, 3) also, ratio of forebody length

to afterbody length ///, (section 4)
Pressure coefficient (p — $o)/3p0V o
Wave-drag coefficient based on S,
Wave drag
Length
Ratio of mean to maximum radius of a quasi-cylinder
Free-stream Mach number

Ratio of length of parallel portion to afterbody length /,//, (section 4)
also, Heaviside operator (Appendix I)

Mean radius of a quasi-cylinder

Radius of slender body at any point

Radius of slender body at a point of discontinuity in slope, R(a;)
Cross—sectioh area

Thickness ratio (maximum diameter/length)

Function associated with U(x) (section 4.4)

Function derived and tabulated by Lighthill {Ref. 2 and Appendix I)
Functions associated with U(x) (Appendix I)

—U'(x)

Axial co-ordinate measured from nose of body
x/BR for quasi-cylinder

a/B, 1.e., Iz/Rin/(M* — 1) or I,/Rsn/(M* — 1) (section 4)
Slope of quasi-cylinder dr/dx

Digamma function

Afterbody

Forebody

Maximum cross-section (in general cases)
Maximum cross-section (in some particular cases)
Parallel portion

Differentiation

15



&

n

Author

Th. von Karman and N. B. Moore

M. J. Lighthill

M. J. Lighthill

G. N. Ward

P. R. Owen and R. G. Anderson

C. H. E. Warren and R. E. W. Gunn ..

G. N. Ward

L. E. Traenkel

REFERENCES
T1tle, etc.

Resistance of slender bodies moving with supersonic velocities,
with special reference to projectiles, ~ Transactions of the 4.5.M.E.,
Vol. 54. 1932,

Supersonic flow past bodies of revolution. R. & M. 2003. January,
1945.

Supersonic flow past slender bodies of revolution the slope of whose
meridian section is discontinuous. Quart. Jour. Mech. and Appl.
Maths., Vol. 1, Part 1. March, 1948. '

The approximate external and internal flow past a quasi-cylindrical
tube moving at supersonic speeds. Quart. four. Mech. and Appl.
Maths., Vol. 1, Part 2. June, 1948,

Unpublished work on intake drag at theRoyal Alircraft Establishment,

Estimation of external drag of an axially symmetric conical nose
entry for jet engine at supersonic speeds. R.A.E. Tech. Note
Aero. 1934. A.R.C. 12,009. January, 1948.

Supersonic flow past slender pointed bodies. Quart. Jour. Mech.
and Appl. Maths., Vol. 2, Part 1. March, 1949. .

Supersonic flow past slender bodies of elliptic cross-section. R.AE.
Report Aero. 2466, 1952. g

16




TABLE 1

Special Functions

Uy(#) = | Uls) ds, Us(z) = | :sU(s) ds, Unle) = | s'U(s) ds.

0
T(z) = 22U(2) — Us(2).
Oregin of tabulated values

z=0to 10 U(z) from Ref. 2.
U.(z), Uy(z) Us(z) by numerical integration, U,(z) being taken from Ref. 6.

z =10 to 20 First three terms of the functions’ asyinptotic expansions (Appendix I).

2 Ufz) Ui(2) Us(2) Us(2) 7(z)
0 1-00000 0 0 0 0
0-2 0-90703 0-1905 0-0187 0-0025 0-005
0-4 0-82646 0-3636 0-0704 0-0185 0-040
0-6 0-75621 0-5217 0-1492 0-0583 0-130
0-8 0-69462 0-6667 - 0-2505 0-1295 0-297
1-0 0-64034 0-8001 0-3703 0-2377 0-562
1-2 0-59229 0-9232 0-5056 0-3867 0-943
1-4 0-54960 1-0374 0-6538 0-5796 1-454
1-6 0-51149 1-1434 0-8127 0-8181 2-109
1-8 0-47737 1-2422 0-9806 1-1036 2-921
2-0 0-44672 1-3346 1-1560 1-4369 3-901
2-2 0-41907 1-4211 1-3376 1-8184 5-060
2-4 0-39408 1-5024 15244 2-2482 6-406
2-6 0-37140 1-5789 1-7156 2-7262 7-947
2-8 0-35080 1-6511 1-9104 3-2523 9-692
3-0 0-33201 1-7193 2-1082 3-8261 11-648
3.2 0-31483 1-7840 2-3086 4-4472 13-821
3-4 0-29909 1-8454 2-5111 5-1154 16-217
3-6 0-28464 1-9087 2-7152 5-8299 18-842
3-8 0-27134 1-9593 2-9208 6-5906 21-702
4-0 0-25906 '2.0123 3-1275 7-3969 24-800
4-4 0-23721 2-1115 3-5436 9-144 31-73
4-8 0-21840 2-2025 3-9620 11-069 39-68
5-2 0-20209 2-2865 4-3819 13-169 48-66
5:6 0-18785 2-3644 4-8025 15-440 58-71
6-0 0-17534 2-4370 52232 17-880 69-85
6-4 0-16428 2-5049 5-6439 20-488 82-11
6-8 0-15445 2- 5686 6-0642 23-262 95-51
7-2 0-14567 2:6286 Y 6-4840 26-201 110-07
7-6 0-13778 2-6853 6-9031 29-303 125-80
8-0 0-13068 2-7389 7-3216 32567 142-72
8-4 0-12424 2-7899 77394 35-992 160-86
88 0-11839 2-8384 8-1564 39-579 180-23
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TABLE 1—continued

Ulz) Ui(2) Usg(2) Us() T(z)
2 0-11304 2-8847 8-5728 43-326 200-84
-8 0-10815 2-9289 8-9883 - 47-232 22270
-0 0-10366 2-9712 9-4032 51-299 245-82
-0 0-10399 2.971 9-401 51-36 245-7
-5 0-09879 3-021 5-470 56-74 276-4
-0 0-09405 3-070 10-438 6225 309-2
-5 0-08976 3-116 10-955 6806 344-0
-0 0-08586 3-159 11-470 74-12 380-8
] 0-08227 3-201 11-985 80-42 419-8
-0 0-07898 3-242 ©12-499 86-97 460-9
-5 0-07594 3-280 13-012 - 93-77 504-1
-0 0-07313 3-318 13-524 100-81 547-5
) 0-07052 3-354 14-036 108-10 597-0
0 0-06809 5-388 14-547 115-64 646-7
-5 0-06582 3422 15-057 123-42 698-6
-0 0-06370 3454 15-567 131-46 752-8
-5 0-06172 3-485 16-076 134-73 814-2
-0 0-05985 3-516 | 16-585 148-26 867-8
-5 0-05810 3-545 17-094 157-03 928-7
-0 0-05644 3-574 - 17-602 166-05 991-9
-5 0-05488 3-602 18-110 175-32 1057-4
-0 0-05340 3-629 18-617 184-83 1125:2
) 0-05200 3-655 19-124 194-59 1195-3
-0 0-05067 3681 19-631 204-61 1267-7
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