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Summary.---The flutter problems of high-speed aircraft are considered generally and specific consideration is then 
given to the new problems introduced by the use of new wing plan forms. 

The theoretical and experimental results on the coupled ('classical') symmetrical flutter of swept (including 
, 'barbed' and cranked forms) and delta wings is reviewed and presented to show the effect and importance of the body 

freedoms of the aircraft on the critical flutter speed and frequency. 
A criterion is proposed for deciding the 'dangerous type'  of fundamental normal mode to be considered in flutter 

calculations. The danger here is that  the fundamental normal mode can combine with the body freedoms and give 
rise to a form of flutter which is independent of the wing torsional stiffness. I t  is suggeste&that the deciding feature 
is the shape of the nodal line in the fundamental mode. If it is such as to indicate rotation of the fore-and-aft wing 
sections near the tip, then the mode is considered to be dangerous. 

1. Introduct ion.--In  classical t symmetrical fltitter of conventional wings the flutter motion is 
predominantly tha t  of the elastic modes of deformation of the wing in flexure and torsion, 
occurring at a frequency between the natural  frequencies of these modes (usually nearer to the 
higher torsional frequency) and the wing torsional stiffness is the main criterion for design. 
For wing plan forms involving sweepback, such as are now being used for high-speed aircraft, 
the normal modes contain greater bodily movements in pitch and vertical translation than for 
unswept wings, and flutter can arise in a form consisting of a single elastic mode and the body 
freedoms with a frequency below that  of the elastic mode. If the elastic mode is the first normal 
mode consisting primarily of wing flexure then torsional stiffness is unimportant  in this type of 

• flutter and the flexural stiffness is critical. 

The theoretical and experimental results of published and unpublished work have been re#iewed 
and are  presented to show the effect and importance of the body freedoms on the critical flutter 
speed and frequency. The reduction of the critical speed for one representative swept-back wing 
was of the order of 30 per cent. Three different forms of symmetric flutter are described all of 
which  can arise from the four degrees of freedom obtained from two normal modes and two body  
freedoms and particular at tention is paid to flutter which is 'insensitive to the torsional stiffness 
of the wing. A criterion is proposed for deciding whether the fundamental  normal mode to be 
considered in flutter calculations is dangerous. 

The direct effects of compressibility and shock-wave phenomena in modifying the aerodynamic 
derivatives of classical flutter and in producing new types of flutter are outside the scope of this 
report, but  a brief description is given of the work in hand. 

R.A.E. Report  Structures 37, received 9th June, 1949. 
t In the present paper the term 'classical flutter' is used to describe the growing oscillation produced by combination 

of two or more stable degrees of freedom. Aileron compressibility flutter does not fall into this class. 
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2. General Review of Flutter Problems of High-Speed Aircraft.--The most obvious effect of the 
present increase in speed of aircraft is to bring in a range where abrupt changes of the aerodynamic 
forces are to be expected, which will modify the aerodynamic derivatives of classical flutter and 
produce new types of flutter. Unstable oscillations of the control surface associated with an~ 
oscillating shock-wave pattern have been experienced in the U.S.A. 1 but  so far no similar incidents 
have been encountered in this country. 

The indirect effects of high speed are revealed in changes in control systems and main-surface 
plan forms. Controls have always been a source of flutter incidents and accidents and lengthy 
investigations have been needed to ensure adequate safety; moreover the present trend of 
modifications to existing systems and the introduction of new systems does not simplify the 
flutter problems. Thechanges  in spring tabs in the form of preloading the main spring or the 
inclusion of a n  auxiliary spring are examples.of the former, whilst the use of power Operation 
illustrates the latter. The introduction of powered flying controls has, in some cases, lent itself 
to the idea of deleting the control-surface mass-balance, which is theoretically unnecessary for a 
control which can be made irreversible. I t  is in any case possible to argue that  balance masses 
are bnly of use in combating classicM flutter, and since it may  be necessary to take steps to avoid 
compressibility flutter (e.g., by means of artificial damping, or irreversible operat ion) the  mass-  
balance weights may become redundant. But  although this scheme of control design appears 
very attractive at first sight, the requirements are by  no means easy to achieve in practice. 
A discussion of the merits and difficulties of powered flying controls together with the allied flutter 
problem is very relevant to the design of high-speed aircraft (see Ref. 2); indeed, Collar 3 has 
suggested tha t  .the time is near at hand when the use of irreversible powered flying controls will 
eliminate the control-surface flutter problem from this class of aircraft. On the other hand it is 
still felt Jn some quarters tha t  aerodynamic troubles (such as compressibility flutter) can be cured 
by  aerodynamic means, a n d  that  classical flutter can be cured by  mass-balancing, and neither of 
these run the risk of bl:eakdown ill service use that  must be faced by irreversible powered controls. 
But  the problems here are mainly of a practical nature, and their solution, one way or the other, 
must be left to the future. The changes in main-surface plan forms for high-speed aircraft and 
in particular the use of swept-back wings have very important  effects on the flutter problem.  
One serious difficulty is the lack of reliable information about the aerodynamic forces which act 
on the swept-back wing during the flutter m o t i o n . . T h e  unknowns' in this field present a great 
source of difficulty to the theoretician and it is clearly necessary to carry out as much wind-tunnel 
-testing as possible in parallel with any theoretical work; this applies equally to the actual calcula- 
tion of critical speeds and to the evaluation of flutter derivatives. At high subsonic Mach numbers 
the difficulties are acute; t he  derivative information is scanty and not always reassuring (Bratt 4 
has measured negative damping at the National Physical Laboratory), the current small aspect 
ratios render strip theory unreliable and the technique of .actual flutter testing is. extremely 
difficult. I t  is nevertheless necessary to do something to meet the demand of the aircraft 
designer for information as to.how stiff the aircraft wings should be, what is the optimum mass 
loading, and so on. 

I t  may be thought  tha t  the old established methods of theoretical estimation of wing flutter 
speeds have completed their span of usefulness, and tha t  new methods must be sought to at tack 
the flutter problems of high Mach numbers. But in spite of the handicap just mentioned, it is 
'the writer's opinion that the standard methods are still capable of yielding valuable information 
by which the required wing stiffness can be determined. It cannot be claimed that the prediction 
of critical flutter speeds in any specific case will be very accurate, but the importance of the 
various parameters can be investigated with considerable reliability, and provided intelligent use 
is made of wind-tunnel results, even though at low speeds, the general flutter picture of an aircraft 
can be obtained with reasonable accuracy. On the experimental side the work cannot be confined 
to wind-tunnel tests, although the Lockheed 'ump' technique ~ shows how much can be dealt with 
in the tunnel, and it becomes important'to develop a technique of testing rocket-powered missiles 
for Mach numbers near unity. It is believed that the combination of these methods will eventually 
guide us safely through the transonic speeds, and not the least important part of the work is the 
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investigation of the basic flutter characteristics of an aircraft by  means of the theoretical flutter 
calculations. 

Since much of the Wing flutter work in Great Britain has been based on binary calculations 
with the degrees of freedom wing bending and wing torsion, it is natural  that  the first investigations 
should deal with this type of flutter. The results.of much of this work are now well known, but  
for completeness the mat ter  is discussed in the next section. These preliminary investigations 
of the flutter of a built-in wing were followed by a consideration of the importance of the aircraft 
body freedoms. The body freedoms are known not to have much effect on the flutter characteristics 
of an unswept wing though their importance in other t ypes  of flutter was realised (Ref. 6). 
Lambourne, however, in some model tests on a flying wing of cranked shape 7 (see Fig. 1) had 
shown that  the bodily degrees of freedom could have an important  effect on wing flutter. On 
general grounds moreover, it seemed likely tha t  the body freedoms might be of more importance 
for a swept-back aircraft than for an unswept design, part ly because of the greater bodily motion 
in the fundamental  normal mode, and par t ly  because of the greater contribution to the overall 
pitching inertia which comes from the wings. 

The results of these investigations showed tha t  the bodily degrees of freedom are indeed 
important.  Moreover it was found that  the critical flutter frequency in certain types of flutter 
could have a value almost as low as half the frequency of the fundamental  normal mode. For a 
fighter aircraft the frequency of the fundamental normal mode could well be of the order of 
7 c.p.s, which might  yield a flutter frequency of about 4 c.p.s, which is of the same order as the 
high-frequency pitching oscillation encountered in longitudinal stabil i ty work. The establish- 
ment of this fact provides an interesting fulfilment of Collar's remarks in 'The Expanding Domain 
of Aeroelasticity '8 where he emphasises the importance of closing the gap between the s tudy  of 
aeroelastic effects (including flutter) and of rigid-body stabili ty problems. 

3. The Swept-Back Wing Fixed at the Root.--As the flutter of swept-back wings was first 
considered since the war some encouragement was found in the German results which b e c a m e  
available, for it was shown' tha t  quite good agreement would be obtained between theory a n d  
practice by  still using the methods of strip theory. I t  remained to carry ou t the  work of estimating 
critical speeds. 

P 

3.1 Theoretical Work.--One of the difficulties early envisaged from the point of view of the 
theoretical aerodynamics was t h e  effect of the change in camber of the aerodynamic section as 
the .wing bent: Minhinnick has suggested, in unpublished papers, that  the difficulty could be 
overcome by  considering the downwash at a point and comparing the results with those for an 
unswept wing. I t  is assumed (Fig. 2) tha t  sections perpendicular to the wing remain undistorted, 
then if the leading-edge deflection is denoted by z0 and the rotation by 0 we may write for the 
unswept wing 

z ~ zo + Ox , 

az V Oz whence downwash = w = ~-[ + ---~- 

w zo ivxO ' 
or V - iv c + 0 + - T - '  . . . . . . . . . .  , .  (1) 

~ C  
w h e r e  v -- 

V 

Similarly for the swept wing 

~z ~z, ~z 
downwash: w = ~ + V cos s ~-~ + V sin e ~-~ 

x ~0"~ w _ i  Z__o+o+ivxO + ( ~  ~ _ _ ~ / t a  n 
whence V cos e c c 
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¢oc where v -- 
V COS 8 

for the swept wing. 

By comparing (1) and (2) Minhinnick was able to deduce the substitutions 

V cos e for V 

z0 i ~ Z o t a n e q  c ~0 tane  forZ° 
c ~,3y ~ ~y c l (2) 

i c ~ O t a n e  for0 r "" ' "  0 
~P ~ J 

from which he modified the standard vortex-sheet derivative theory (e.g., that  of Ktissner and 
Schwarz 9) and obtained corresponding expressions for the swept-back case. 

Similar results h a d  already been obtained with a different (unpublished)method by Jahn, but  
Minhinnick's were the more readily adapted to existing methods of calculation and were therefore 
adopted in a number of subsequent calculations. I t  has been found, however, that  results which 
agree very closely with those given by Minhinnick's method can be obtained by  factoring all the 
standard aerodynamic derivatives taken in the line of flight by  cos e, and this semi-empirical 
rule has also been much employed in ad hoc calculations. 

If this approximate cos e rule is employed the flutter equations have the same form for a swept 
as for an unswept wing. As an example, consider the wing sketched in Fig. 5. In a practical 
flutter calculation it is usual to choose modes of vibration of the form bending and torsion along 
and about the swept-back axis respectively. In this way the aerodynamic coefficients become 
modified to a considerable extent in some cases from their relative values for the unswept wing, 
but  it may simplify consideration of the problem here to choose modes of the same aerodynamic 
form as for the unswept wing. We therefore adopt modes of bending with no aerodynamic 
twist, and of pure twist, given by 

Z = Z  r , 

o =o,FM, 

where z is the vertical deflection of the flexural axis (taken as the nodal line of the second mode) 
and the suffix r refers to a reference section; ~ is a non-dimensional spanwise co-ordinate made 
uni ty  at the tip, and f and F are modal functions. - ' 

The equations for the aerodynamic lift and pitching moment on a strip may be written 

Zz 
pV~sc d~ cos e . 

,o} , 

and 

where 

d M  
p V 2sc ~ d~ cos e 

~ ) Zt 
\ Cr /  \ Cr /  -G 

L \ Cr /  " c r /  

k = ivr --  i°JG 
Vo 

is the flutter frequency 
zz is the value of z at leading edge 
s is the semi-span 
l; etc., are aerodynamic derivatives (for an unswept wing). 
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In the expansion for the work done in the Lagrangian Equations ( =  
the coefficient of --pV~sc, 2 ~q= q~ cos s as (a=~ 2 + b,~ + c=~) where tile 
qt and q2 are given by  

z-z for the first mode, 
Cr 

q2 ~- 
I t  follows tha t  

0, for the second mode. 

1 2" 

cl = f ol f d'l, 
and similarly for the other coefficientS. 
and may be written 

A n  = c,2s 2 d ~  , 

£ / \ ' 1  . C 

' ax2 = c , ' s l m y ~ ) f F  d r ,  

" x 2 C 2 

where 

-- L Sz + M ~ ~) We write 
generalised co-ordinates 

The dimensional inertial coefficients are readily derived 

m is the mass/unit span 

jc is the distance between the inertia and flexural axes (wi th the  former aft) 

Kc is t f e  section radius of gyra t ion .  ' 

To make these coefficients compatible with the non-dimensional aerodynamic coefficients, 
they must be divided by  the factor psc, ~ cos s, 

I f  = whence a n  = m f  sec s d,/, . . . . . .  . . . . . .  (4) 
~Cr 2 

and similarly for a12 and 222. 

I t  will be seen that,  neglecting end effects, the aerodynamic and inertia matrices are numerically 
unchanged as sweepback is increased by rotating a wing about its root (as distinct from shearing 
it  back), for in an, for example, c~ and m will both be proportional to secs •. "Any dependence of 
the crit icalspeed on the angle of sweepback must therefore come from the elastic matr ix which 
on the assumptions, f ---- ~ 2 and F ---- ~ can be written 

(~2(/__~ + 4 sin=s~ cos2s, -- 2(c '~  s ins  cos s,~ , 
",S J \ ~ 0  / kS  J / . . . . . .  ( s )  

e = y  _ 2(c '~ s ins  cos s, 1 
k S , /  

where m0 is the torsional stiffness 

l~ is the flexural stiffness 

¢Yt 0 sec  2 e 
and Y p V 2sc, 2 cos s " 

At first sight the terms within the brackets Of (5) differ considerably from those for an unswept 
wing (s---- 0), but  in practice, for normal stiffness ratios and for moderate to large aspect ratios, 

* There will; in general, be some change in the aerodynamic derivatives for the new frequency parameter 
( =  v -= coc/V); however, if  the law given by (6) is obeyed exactly the frequency parameter will be unchanged for 
a constant flutter frequency. In any case the effect of a small change of frequency parameter on the derivatives is 
likely to be negligible. 
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the corrections are not large, and in particular the critical speed is known to be insensitive to the 
value of the flexural stiffness (i.e., to en). I t  might therefore be expected that  sweepback (by 
rotat ion about the root) would affect the flutter speed chiefly in accordance with a constant value 
of the parameter y. Since scr 2 is proportional to sec ~, this result implies tha t  

V o  o c  s e c  ~ .~ . . . . . . . . . . . . . . . . . .  (6) 
This broad argument helps to give a physical picture to the general effect of sweepback on the 

simplest form of wing flutter, and it is borne out to the extent that  binary calculations show a 
fairly small departure from the law (6). A more detailed examination of the results obtained 
will now, begiven in comparison with the results obtained from experiment. 

3.2 The Experimental Results and Comparison with Theory.--At the time when tile importance 
of sweepback was first realised a series of tests on tapered wings were in hand at the Royal 
Aircraft Establishment with a view to checking the latest proposal for a wing stiffness criterion I°. 
The proposed criterion was given in tile form 

mo ( g - - 0 . 1 ) 2  
pV2sc,~>C 1 - - O . 8 k + O . 4 k  2 ¢(M) ,  . . . . . . . . . .  (7) 

where s is the semi-span 

c,~ is the mean chord 

mo is the wing t~rsional stiffness between 0.7s and root 
V is tile design speed 

p is the air density 

gc is the distance of inertia axis from leading edge 

k is the ratio (tip chord)/(root chord) 

M is the Mach number 

and ¢ (M) = (1 -- m2) - ~ ,  0 < M < 0.8,  
----- 1.67 0 . 8 < M .  

C is a constant, the value suggested being 1.2. 

The checkwind-tunnel  tests  were being carried out in a low-speed open-jet tunnel and could 
not, therefore, check the .dependence of the criterion on Mach number. The ,other important  
parameters of inertia axis position and wing taper, were, however, catered for by four wings each 
of different taper with the inertia axis variable between 0.4 and 0.5 of the chord. The flexural 
axis was at 0.35 chord. 

These four wings provided a good means of checking the theoretical strip-theory calculations 
for the swept-back case as their rig was readily modified to permit sweepback u p  to angles of 
50 deg. To avoid the trouble of constantly changing the tip it was cut off parallel to the tunnel 
stream for a sweepback of 35 deg and was consequently out of true for the other angles of sweep- 
back (see Fig. 3). From these wind-tunnel tests the sixty different critical speeds were measured 
corresponding to four different tapers, three different inertia-axis positions and five different 
angles of sweepback. A typical selection of the results is given in Fig. 4. I t  will be seen that  the 
critical speed increases roughly with sec e, as was suggested by tile theoretical argument in the 
last section, but  t h a t  there is an initial lag where the critical speed actually decreases Slightly for 
very small  angles of sweepback. I t  will be noted that  the theoretical results (obtained by 
Minhinnick's method) which are also plotted on the same diagram agree closely in shape with the 
experimental values, though they are pessimistic to the extent of about 10 per cent, probably.as a 
result of using unfactored theoretical two-dimensional derivatives. I t  is noteworthy also that  a 
change Of inertia-axis position has much the same effect on the flutter speed of the fixed-root wing 
whether it is swept back or not. This fact is also true of tile wing taper. 

6 



f 

I t  is hoped that  similar results will be  obtained eventually for delta-shaped wings, b u t  to the 
time of writing v only one isolated specimen has been tested. The most interesting feature of this 
.test was the observation of the mode in which the model fluttered. This appeared to be a com- 
bination of the first two normal modes in still air, but each of these modes included bending and 
torsion in not very different ratios of amplitude, and as a result the flutt6r mode appeared to 
exhibit appreci£ble torsion a:bout half way along the wing but  none at a l l a t  the wing tip. The 
model was of very simple construction which may not have been adequately representative. 

4. The Free Aircraft with Swept-Back Wings . 'The  work which is described above gave results 
more favourable to the swept:back wing than had originally been hoped,  in comparison for 
example with similar work on aileron reversal 11. However, Lamb0urne's work 7 had clearly 
shown that  to solve the .flutter problem for a wing with fixed root was not sufficient for dealing 
with acomple te  aircraft. Further work was therefore carried out in which flutter calculations 
were made (mostly in ad hoc cases) with the bodily degrees of freedom taken into account as well 
as with various 'combinations of normal, or sometimes arbitrary, modes. The results were found 
to be of great importance. I t  was shown that  a quaternary calculation taking into account.the 
following Symmetric degrees of freedom. 

il) Fundamental  normal mode (wing bending) 

(2) .Overtone normal mode (wing torsion) 

(3) Aircraft pitch 

(4) Aircraft vertical translation, 

could in certain circumstances, yield three distinct types of flutter at about the same critical 
speed. The three types may be distinguished by the different amplitude ratios of the flutter 
motion, when if the unimportant  motions are ignored the three forms are : 

(a) 1-2 
(b) a-3-4 
(c)-213-4. 

The letters (~t), (b) and (c) are used throughout this paper to distinguish between the three 
types of flutter. 

The bodily freedoms p l a y  little part  in type (a) which is basically unaltered from the flutter 
described in section 2. On the other hand types (b) and (c) are quite unrelated to this form of 
f lu t t e r ,  and the former is even independent of the wing torsional stiffness. Experimental 
confirmation of these results is not easy as the experimental technique needed for carrying out 
flutter tests on a free aircraft model is in itself quite a difficult matteff. I t  has been demonstrated 
in the tunnel, howeveL that  freeing the body can in some cases make a considerable reduction 
in the critical speed of a swept=back wing. The results will now be examined in more detail. 

4.1. Theoretical Results.--4. i. 1. General discussion.--It is perhaps worth while introducing the 
subject of 'body-freedom flutter' by a brief physical consideration. As it is inconvenient in 
Such a consideration to deal with spanwise integrals, the aircraft wing will be supposed concen- 
t rated in a typical section of unit span (see Fig. 5). This section is carried on a light flexible 
arm from a massive centre-section; by way of compensation it  may be supposed that  if the true 
semi-span is s units, the Wing and air density over the section are increased s times. Probably 
the section should be situated at about 60 per cent of the span. 

4.1.1.1. Flutter involving wing bending.--The type of flutter designated (b) above is the only 
form in which wing bending is of prime importance. I t  is safe to assume for all practical purposes 
that  the fundamental normal mode consists of pure wing bending (which is taken along the line 
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whose sweepback in Fig. 5 is e) combined with some aircraft pitch and translation. ~But since 
the three degrees of freedom to be considered are: 

(1) 'Normal mode 
(2) Pitch 
(3) Vertical translation 

it matters little whether any pitch or translation is included in (1) or not. For the purpose of 
this illustration it is necessary, as before, to use an artifice which preserves the same aerodynamic 
terms (neglecting changes in frequency parameter) as the sweepback is changed. The co-ordinates 
chosen are: 

(1) Vertical motion of the section with 'no change of incidence. The actual bending mode is 
assumed parabolic, so this degree of freedom involves a complicated motion of the fuselage 

(2) Aircraft pitch about the section quarter-chord 
(3) Aircraft vertical translation. 

With these degrees of freedom the air forces for constant frequency parameter vary  with sweep- 
back in accordance with the factor sc ~ cos e which is constant if the wing is swept back by rotation 
about the root. 

/Some simplifying assumptions are now made: 

(i) The line of bending is at the quarter-chord (sweep e) 
(ii) The section c.g. and also the fuselage c.g. is on this line 

(iii) The section mass (m) equals the half-fuselage mass 
(iv) The sectional radius of gyration is half the fuselage radius of gyration and equals ¼c 

where c is thesect ion chord. 
(v) l ( s e e  Fig. 5) = 2c. 

(vi) The co-ordinates (1) and (3) (denoted in general by q) are made non-dimensional by dividing 
vertical displacements by the section chord c. 

I t  is now a simple matter  to derive the inertia terms in the Lagrangian flutter equations. 
In non-dimensional form the inertia matrix (which is of course symmetrical) may be written 

[a] = 1 + s i n ~ e ( 4 s i n ~ e + } ) ,  - - s i n e ( 4 s i n ~ e + ~ ) ,  

+ 4 sin2 e, 

With ~ equated to zero (8) reduces to the form 

Ea]--- 1,0,!]~, . . . . . . . .  

1 + 2 sin2e 

- -  2 sin e 

2 

(s) 

(9) 

and in this condition the co-ordinates chosen above are quite usual, for it only needs some vertical 
translation to turn (1) into a normal mode. "As the wing is swept back. however, the equations 
(for constant frequency parameter) remain unchanged except in so far as the inertia matrix [a~ 
changes according to (8), and it will be seen that  the coupling terms a12 and  a2~ have been in t ro-  
duced and grow with increasing sweepback. Both these coupling terms have negative signs and 
from this it appears that  the part  played by the pitching degree of freedom in any flutter which 
may  occur from (8) is not quite analagous to that  of torsion i n  flexure-torsion flutter, when 
(with the usual location of the inertia axis aft of the flexural axis) the coefficient al~ would be 
positive. Nevertheless, the growth of the coupling terms given by (8) may promote flutter. 
As an indication of the circumstances in which this is so, we may examine the problem in the 
light ,of normal modes. 



4.1.1.2. Consideration of the normal mode.--The three degrees of freedom used in the last section 
corresponded to a parabolic mode of wing bending, pitch and vertical translation of the aircraft 
as a whole. From these three degrees of freedom a normal mode can be derived, and as it is a 
matter  of experience that  the fundamental  normal mode of an aircraft consists of parabolic wing 
bending and body freedoms alone, this normal mode will be fairly representative. If this normal 
mode is now used in place of degree of freedom (1) in the ternary calculation, the result will, of 
course, be unaltered. In passing it may be noted that  physical considerations necessitate tha t  
ill general some aircraft pitch will be introduced into the normal mode. 

I t  is known that  flutter is well-nigh impossible unless one of the constituent degrees of freedom 
involves a change of wing incidence--as opposed to translation12. Now for an unswept wing the 
ternary; 

(1) ~ normal mode 

(2) pitch 

(3) vertical translation 

is stable, so it is a reasonable deduction to suppose that  the possibility of this  type of flutter with a 
swept-back wing must be dependent on the amount of incidence change in the normal mode. 
Or with the modified co-ordinates introduced above, it must depend on the amplitude of q2 in the 
normal mode. The equation to the normal mode is 

KEa][q] = Ee-lE(I, . . . .  . . . . . . . . . . . .  ( 1 0 )  

where K is a scalar constant and q is the modal column. Equation (10) may be written, since 
there is only one elastic term, 

K [ all  -- e, al2, 

a21, a22, 

a21, a32, 

from which tile amplitude ratios are 

ql  q2 q2 = la22, 

I a22, 

a121 
a23 ] 

a 2 3 /  

ql ]  = 0,, 

q~ 

q2 

. .  . . . . . . . .  (11) 

a22 • _ [ a21, a23 { " a21,  a22 o 

aa2 l a21, a33 ] a21~ a32 

. . . . . .  (12) 

(negative) value for a sweepback given by 

= sin-%/  . .  

-- 21 deg approximately. 

(14) 

We may therefore argue tha t  flutter of this type Js most likely to be experienced with angles of 
sweepback of about 20 dog, and conversely that  when the sweep reaches about 40 deg the likelihood 
is passed. 

I t  will be interesting for the purpose of comparison with results to be given later to investigate 
the position o5 the node in the vibration mode both on tile centre-line and at tile current section 
of the  idealised aircraft. T h e  amplitude ratios for 20-deg sweepback are 

q l :  q~.: q2 = 1 " 0 9 :  - - 0 " 3 5 2 : - - 0 " 7 9 4  . . . . . . . . . .  (15) 

9 

By equation (8) it follows that  the amplitude q2 is proportional t o  

( 4s in  2 e + ~ s i n e ) ,  . .  . . . . . . . . . .  (13) 

and i t  is to be noted with interest that  its value is zero not only when e is zero, but  also when 
has the value sin-Iv'}, or about 38 dog. Furthermore the expression (13) has its maximum 



This gives nodal points (shown in Fig. 6a) situated about 0-4c ahead of 0 on the centre-line - 
and 0.85c aft of A in the section. With sweepback 40 deg (Fig. 6b ) the  node on the centre-line ; 
is somewhat further forward, and, of course, the section node is nearly at infinity (forward in this 
case); the amplitude ratios are 

ql" q~" q~- - - -2"28"0"08"  - -2"03  . . . . . . . . . . .  (16) i 

The probable shapes of the nodal lines are shown ~dotted on Fig. 6. For the critical case the 
nodal line assumes roughly the shape of a parabola with its axis on tile aircraft centre-line and 
its vertex forward of the aircraft c.g. in such a way tha t  it passes through tile rear of ihe typical 
section. I t  will be seen later that  this type of nodal line in tile fundamental mode is almost 
always associated with flutter of the type fundamental mode combined with body freedoms. 

4.1.1.3.. Types of flutter involving wi~¢g torsion.--The forms of flufter which depend primarily 
on wing torsion are less difficult to deal with than that  depending primarily on bending, since it  
is quite usual for the torsional stiffness of a wing to be prescribed by flutter considerations, 
whereas the bending stiffness is determined by strength considerations. In the case of flutter 
involving equally the bending and. torsional stiffnesses (type (a) above) it is equally true for the 
swept wing as for the unswept wing that  the torsional stiffness is (for normal stiffness ratios) the 
important  parameter, and so it is also in type (c) as well as in antisymmetric flutter. 

Comparatively little at tention has been paid to antisymmetric flutter for it was expected that  
sweepback would have a greater effect on tile symmetric modes of vibration than on the anti- 
symmetric. Although this has in general proved to be true, the first flutter test of a tip-to-tip 
swept-back model in a tunnel at the R.A.E. showed that  anti-symmetric flutter could not be 
neglected, for as tile sweepback was increased the type of flutter changed from symmetric to 
antisymmetric. As a result of this a series of flutter calculations has been started on this form 
of flutter, and critical speeds comparable with those of tile symmetric modes from the combination 
of wing torsion and aircraft roll have been obtained. These two degrees of freedom are found to 
be the important  ones in tile consideration of antisymmetric wing flutter without sweepback, 
although a certain amount of wing bending is always associated with the aircraft roll. It  appears, 
however, that  for a swept-back wing the critical speed can in some circumstances be relatively 
less than for tile corresponding unswept wing. 

The symmetric forms' of flutter in which wing torsion is most important  all bear a close resem- 
blance to the familiar flexure-torsion flutter of an unswept wing. Type(a)  has been found to 
occur at some speed on wings of all plan forms for suitable positions of the fiexural and i n e r t i a l  
axes. The flutter is curable by 'mass-balancing', i.e., by locating the inertia axis well forward. 
I t  also exhibits the familiar characteristic that  for normal stiffness ratios a decrease in flexural 
stiffness is slightly beneficial. Finally, flutter of type (c) involving torsion and body freedoms 
only can also be prevented by moving the inertial axis to a forward position in the wing. 

4.1.2. Theoretical calculations on a hypothetical swept wing.--The plan form of the wing con- 
sidered is shown in Fig. 7. The aspect ratio is 8 and the ratio of the root chord to the tip chord is 2. 
The calculations were made primarily with a view to finding in what circumstances the b o d y '  
freedoms became important  in the flutter. Accordingly the positions of the inertial and flexural 
axes, which are usually regarded as important  parameters, were kept fixed and coincident at 
the half-chord, and instead the sweepback and the fuselage mass were varied. A further impor- 
tan t  part  of'the investigation (which is not yet ~complete) was to provide a check on two theoretical 
points: one is the question of deciding whether tile simple factor of cos ~ applied to the aerodynamic 
derivatives is satisfactory, and the other is whether normal modes should be used in preference t'o 
arbitrary modes. 
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The derivative question was soon disposed of. Comparative calculations were made between 
Minhinnick s method and tile simple factor of cos e on the derivatives. In all cases the derivatives 
used were the acceleration potential derivatives of Dietze 13 for a Mach number of 0.7. The method 
of calculation, as in the calculation of the next section, w a s  tQ assume a mean frequency parameter 
(v) and then to Work out aerodynamic stiffness, damping and inertia coefficients which were then 
treated as independent of frequency parameter. This assumes that  the derivatives are insensitive 
to frequency param/ter ,  which is true only for relatively small variations in tile range where body 
freedoms are important  (v between about 0 .2  and 0.6). A few results for 30-deg sweepback are 
given in Table 1. 

TABLE 1 

( 

Type of 
flutter 

Speed parameter 

Minhinnick cos e. 

8 .0 8.9 
7.1 7.3 

20.0 27.4 
7.3 7.2 

Minhinnick 

0"21 
0"24 
0"17 
0"23 

C O S  E: 

0,22 
0.22 
0 .16  
0.22 

Assumed v 

0 " 2  . 

0 . 2  
0.2 
0.2 

T h e  speed parameter of the second and third columns is directly proportional to the critical 
speed. The two methods agree quite Well in most cases; a margin of 10 per cent would cover the 
difference except in one or two isolated cases, e.g., tha t  of the third row of Table 1. The larger 
discrepancies, however, seem to be associated either with very high critical speeds or with some- 
wh~it unreal physical conditions. • . 

The desired check on the relative merits of the method of calculation using respectively normal 
and arbitrary assumed modes of vibration was not so easy to carry out. The desire to obtain 
this check arose from the following considerations. I t  is clearly necessary to make some form of 
flutter assessment in the early design stages of a high-speed aircraft, and often the only satis- 
factory way of doing so will be by means of flutter calculations. At this stage normal modes 
will not readily be available and a considerable saving in time will be possible if a calculation 

• using arbitrary modes is satisfactory. I n  considering the flutter problems of unswept wings 
we were fortunate in that  experience showed little to choose between tile two methods12; but  
early calculations on swept-back wings suggested tha t  this state of affairs was no longer true. 

The scheme of tile check was to prescribe an aircraft whose flexibility was restricted to six 
'semi-rigid' degrees of freedom: the two body freedoms, two modes of flexnral displacement and 
two modes of torsional displacement. The four elastic modes thus prescribed were treated as 
the arbitrary modes, and the four comparable normal modes were worked out. The programme 
which followed, and is by  no means complete at the time of writing, was to solve all the 
relevant binaries with arbitrary modes followed by the relevant ternaries, quaternaries and so on 
up  to the senary and then to repeat this process with tile normal modes. A comparison between 
tile two methods would then show which most quickly approximated to the full solution. This 
process has the merit tha t  if  also shows how rapidly in an absolute sense it converges, and therefore 
how many  degrees of freedom need be taken into account for a complete aircraft--provided tha t  
the six degrees of freedom prescribed are sufficient. Unfortunately all the results are not yet  
available, and all that  Can be said at present is that  tile method using arbi trary modes seemsto  
introduce some very pessimistic results--even in a ternary solution--which are not present to the 
same extent in tile normal mode calculat ions.  A section of the results for arbitrary modes is 
given in Table 2. 
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TABLE 2 

Binaries: 

Ternaries: 

Quaternary: 

Sweepback--30 deg 
F is parabolic wing flexure V is vertical translation 
T is linear wing torsion P is pitching. 

Critical speed is proportional to upper figure. 
CfiticM frequency is proportional to lower figure. 

FT  FV 
4.58 
1.17 

FTV 
4.65 
1 . 2 4  

FP TP TV 
3.38 2.86 7.05 
0.54 0- 50 0"86 

FVP FTP TVP 
- -  2 . 2 4  5 . 2 6  
- -  0.38 0.91 

FTVP 
6.68 / 

1 "32 

I t  is evident from this diagram that  quaternary solutions at least are necessary if the calculation 
is to be made using arbitrary modes. Moreover the' arbitrary modes used in this test case possess 
a much closer relationship to the modes which are possible in this hypothetical aircraft than they 
would for a real aircraft in which an infinite number of modes is possible. Unfortunately the 
final answer for the senary is not yet  available so it remains to b6 seen whether the quaternary 
gives a sumciently close approximation to it. 

In the parallel investigation using normal modes the lowest critical speed number obtained was 
for the binary of second normal mode and pitch (similar to TP above) and had the value 4.76. 
In both cases a noteworthy feature is the absence of flutter of type (b)--FVP. 

Normal mode calculations have been made on the hypothetical wing to determine how the 
flutter characteristics of those forms of flutter which involve body freedoms are affected by  the 
shape of the relevant normal mode. The parameter used to vary the shape of the normal mode 
was the relative mass of the fuselage and the wing for a sweepback of 30 deg. The results are 
given in Fig. 7. The first five diagrams relate to the fundamental normal mode, and each one 
shows the position of the nodal line for a ratio of fuselage-mass to wing-mass that  varies from 
0 to 15/7. With  each diagram is a statement of the calculated critical speed obtained from the 
combination of the normal mode with the body freedoms in terms of the same units Used in Tables 
1 and 2. I t  will be seen tha t  the critical speed increases with the relative mass of the fuselage 
and becomes imaginary for some va lue  of the mass between 3/14 and 3/7 of the wing mass. 
At the same time the nodal line in the fundamental  normal mode changes its shape from roughly 
parabolic, thereby involving considerable change of incidence, to a straight line running across 
the wing and giving practically no change of incidence. For the heaviest fuselage-mass considered 
the nodal line again takes up a somewhat parabolic shape but  carries with it no change of incidence 
over the outer half of the wing. The mass ratio of 3/7 was used in the calculation leading to 
Table 2, and explains the absence of flutter of type (b). 

The other three diagrams relate to the first overtone, i.e., the first mode of a primarily 
torsional character. In this case increase of the fuselage-mass from zero rapidly promotes the 
flutter, which now belongs to class (c). After quite a small increase of fuselage-mass the normal 
mode settles down to a shape which is practically unchanged even with a very heavy fuselage, 
and consists of simple torsion of the wing. 

This series of diagrams has led to an a t tempt  to provide a simple criterion for the purpose of 
deciding whether a given normal mode is likely to be dangerous (i.e., likely to yield a real critical 
flutter speed on combination with the body freedoms) or not. In the case of the fundamental  
normal  mode the critical factor appears to be whether or not there is a change of incidence over 
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the 'outer half of the wing--a  similar result to tha t  used in the i l lustrat ion at the beginning of 
the paragraph (section 3). That  this is. a necessary condition seems physically obvious, but  
diagram (f) of Fig. 7 shows that  it is not sufficient, and Minhinnick has put forward the proposal 
illustrated by Fig. 8. He takes a point A half-way out along the wing span and at mid-chord 
and defines a quadrant BAC by drawing AB perpendicular to and AC parallel to the aircraft 
centre-line in the sense indicated by Fig. 8. If now the nodal line in the normal mode runs into 
the sector in a roughly radial direction from A, then the mode may be classed as dangerous. 

This test has been used successfully in a number of cases, and is sound enough even to give a 
rough idea of the order of magnitude of the associated critical speed*. The lowest speeds for a 
given frequency are associated with thos~ modes whose nodal lines run along the middle of the 
wing (as in Fig. 7h), whereas if the nodal line runs nearly parallel to AB or AC the critical speed, 
if it  exists at all, will be comparatively high. For a given modal shape and for a given size of 
aeroplane the critical flutter speed is directly proportional to the natural  frequency of the mode t .  

Finally a set of calculations have been made to determine the effect of sweepback on flutter of 
type (b)--the fundamental mode associated with body freedoms. Tile results bear out those 
which were suggested by the investigation of section 3.1.1. With  tile fuselage-mass zero 
(apparently tile worst condition for this type of flutter) a real critical speed is obtained for sweep- 
back of less t han  10 deg, and in this case the lowest critical speed is associated with about 10 deg 
sweepback, but  the speed remains quite low up to 30-deg sweep, beyond which tha t  particular 
set of calculations was not extended. This type of flutter has not yet been found in calculation 
for a sweepback of more than about 40 deg. 

4.1.3. Theoretical calculations on a hypothetical delta.--One problem which immediately suggests 
itself in the consideration Of wing flutter of a delta aircraft is the question of whether distortion 
of the wing aerodynamic sections will prove to be important.  However, as it was desired to 

• acquire a certain amount of basic data as quickly as possible, this problem was left in abeyance 
while the early calculations were carried out. 

The wing geometry assumed is illustrated in Fig. 9. The aspect ratio is 2.5, the taper ratio of 
the tip chord to t h e r o o t  chord is 0" 15 and the sweepback of the quarter-chord line is 45 deg. 
The fuselage-mass was assumed to be one-quarter of the wing-mass and the wing-inertia axis was 
taken to be at 40 per cent of the chord, with the overall c.g. at the middle of the root chord. 
Two-dimensional derivatives were used appropriate to a Mach number  of 0.7. The frequency 
parameter (v = ~oc/V) was varied over the span with an assumed mean value of 0.4, but  an approxi- 
matioli common in British work Was made in that  it was assumed that  the aerodynamic forces 
could be expressed as coefficients of q, q and ~$, and that  the variation of these coefficients with 
frequency parameter could be neglected for values of v not very different from 0.4. 

Four degrees of freedom were considered: 
(1) Parabolic flexure of the mid-chord line with no change of incidence in  the line of flight 
(2) Linear twist 0I sections in the line of flight about a lateral axis through the mid-chord of 

the section 
(3) Pitch of the aircraft about its c.g. 
(4) Vertical translation of the aircraft. 

* The success of a similar a t tack  for an unswept wing was demonstrated by  Kiissner 1~, 15,16 and led to the s imple 
formula 

Vc oc ¢4c / 

where n is the lowest 'dangerous'  resonance frequency of the wing (for most  cantilever wings with mass-balanced 
ailerons n --= natural  frequency of wing in torsion, approximately).  

c is the mean chord of 'oscillating par t '  of wing. 
t This is only strictly true if the inertias are kept  constant, bu t  tile erroiris-probably no tgrea t  for practical variat ions 

from this. In  all tile calculations referred to in this section the wing mass is distributed in proportion to the square 
of tile wing chord. The radius of gyration of the wing is equal to one-quarter of tile local chord and of tile fuselage 
is most ly  0.3I where I is the length of the wing. 

J~ q is a generalised co-ordinate. 
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Modes (1) and (2) are semi-rigid modes chosen for their convenient aerodynamic properties, 
and as a result there is an elastic cross-stiffness between the two. For the purpose of presenting 
the results the two normal modes given by these four degrees of freedom were worked out, and 
the ratio of the natural  frequencies of these two modes ( =  f,/f~) was used as one basic parameter. 
The second basic paramter (t~) is the amplitude ratio q~/ql in the fundamental normal mode. 
The whole of the elastic matrix can now be expressed in terms of a single typical stiffness 
parameter and in terms of the variables t~ and f ,/f~. 

The stiffness parameter actually used was in terms of the frequency f~, i.e., (f~I/V) ~ as this is 
the most logical way of expressing the stiffness. (An alternative would have been rno/pV~sc,~ 2 
where mo is the wing torsional stiffness measured in any specified manner, V is the critical speed 
and sc,~ ~ makes the parameter n0n-dimensional.) 

The quaternary calculations which followed might be expected to yield three solutions in some 
cases corresponding to the forms (a), (b)and (c) quoted at the beginning of this section, but 
so far flutter of type (c) has not yet been found in this series of calculations. A typical set of 
solutions is given in Table 3. 

TABLE 3 

tl 

--5 

--1 
--1 

(f~/A) ~ 

20 

20 
5 

20 
5 

20 
10 
5 

First solution 

k z / v  

0.386 

0.258 
0.278 

0.141 
0.212 

0.129 
0.176 
0.224 

0.445 

0.421 
0"443 

0.376 
0"506 

0 . 7 6 5 }  
0.828 
0"861 

Second solution 

Az/v 

0.537 

O. 324 
O. 368 

0.251 

0.112 

0.116 } 
0.113 

} 

Location of nodal !ine 
in fundamental normal 

mode relative to 
critical region 

inside 

inside 

just inside 

outside 

The absolute magnitudes of the numbers in the first column are appropriate to the generalised 
co-ordinates q~ = (vertical tip deflection)//, and q~ ---- tip rotation, where 1 is the length of the 
quarter-chord line. Each assumed value of tl defines the shape of the two normal modes and 

t h o s e  giving shapes corresponding to practical experience are -- 1, 0 and 1. The critical speeds 
are given in terms of the parame te r f~ l /V  and a blank indicates that  the critical speed for that  case 
is imaginary. The values of ~ (the frequency paramter) are those which were obtained by the 
calculation and bear comparison with the assumed value of 0-4. The last column indicates the 
general shape of the nodal lille with reference to the critical region just described (section 4.1.2). 

The two solutions given relate to different types of flutter, and although the amplitude ratios 
have not been worked out, the general character of t he  results together with the frequencies 
indicate that  the first solution corresponds to flexure torsion flutter (a), and the second solution 
to flexure-body-freedom flutter (b). Evidently the case ti = 0 represents a transition case 
between the dangerous type of nodal line and the safe type, and this being so the results bear out 
the nodal line criterion very well. Another noteworthy feature of the results is that  where a 
second solution exists at all the associated critical speed is lower than that  for the first solution, 
although it is possible that  if the results ,were corrected for t h e  true frequency parameter this 
conclusion might be modified. The flutter frequency in the second solution is considerably lower 
than that  in the first solution, and is in fact less than the frequency of the fundamental normal 
mode f ,  This fact is in accordance with other experience of flexure-body-freedom flutter. 
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The critical speed parameter mo/p V~s% ~ has been much used in Great Britain in the form of the 
design criterion 

1 ( mo "~11~ . (17) K ~ = - -  ~ , . . . . . . . . . . .  
V fldc.~ Y 

where Vd is the design diving speed. For aircraft of high wing density the stiffness requirement 
has been specified as Ke >~ 0.04 for wings without engines. This value may be compared for 
interest with those obtained in one or two cases for the delta wing for the corresponding critical 
speed criterion 

1 (~'t$0~ 1l~ 
K~ = ~0\d--c ~/ , . .  . .  . . . . . . . .  . (18) 

where Vc is the critical speed. To avoid  flutter K~ must exceed Kc, normally by a margin of 
about 25 per cent. Values for K~ in the delta calculations are about 0.02 or slightly larger as 
based on the torsional stiffness of mode 2 alone (these are taken 0nly from the first solutions of 
Table 1), so that  the criterion (17) with K~ = 0.04 appears unnecessarily severe for a delta wing; 
K~ = 0.03 would be better. 

4.1.4.. The cranked wing.--No systematic series of Calculations has been made on wings o f  
this plan form (see Fig. 1) but  one specific case has been investigated by normal mode flutter 
calculations. This shape of wing is adopted chiefly in flying wing designs, and as the sweepback 
is not intended primarily to delay the drag rise, tile type of design is not required specifically for 
high speeds. Nevertheless the results are of interest, because the Iow fuselage-mass and moderate 
degree of sweepback render this plan form one of the most l ikelyto encounter flutter of type (b). 

In the case considered, the four degrees of freedom were: 

(!) first normalmode  (frequency 1 .26 )  
(2) second normal mode (frequency 3. t4) 
(3) aircraft pitch about the c.g. 
(4) Vertical translation, 

where the frequencies are given in terms of the final flutter frequency. The nodal line in the 
fundamental mode was of the dangerous type, similar to that  of Fig. 7a, but in the first overtone 
was not. The calculations gave the  following results:--  

TABLE 4 

Flu t t e r  speed . .  
F lu t t e r  f requency  

1-4 

0.71 
0 .73  

All o ther  
binaries 1 -2-4  

0"72 
0 '61  

1-3-4  

1 "08 
0"74 

1 - 2 - 3 - 4  

1 "00 
1"00 

On this occasion the ternary solution, inchiding the normal mode and the two body freedoms 
gives a rather optimistic answer, and the general effect Of aircraft pitch as a separate degree of 
freedom is apparently to raise the flutter speed. 

• 4.1.5. The barbed wing.--This shape of wing has certain advantages from an aerodynamic 
point of view in that  the tip-stalling characteristics are improved. One specific case has been 
investigated theoretically, but  the fuselage-mass, unlike that  of tile cranked wing, is.not negligible, 
and the mean sweepback though moderate is greater than for the cranked wing. The nodal line 
in the  fundamental mode of vibration was just outside the danger area of Fig. 8, running roughly 
parallel to AC. The second mode, which represented an overtone in bending rather than a.  
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fundamental  torsional mode, was also of the safe type, but  the third mode had a torsional shape 
similar to tha t  of Fig. 7g of the dangerous type. Table 5 gives the r e s u l t s : -  

TABLE 5 
1 - - f u n d a m e n t a l  m o d e  

2 - - f i r s t  o v e r t o n e  

3 - - s e c o n d  o v e r t o n e  

4 - - p i t c h  a b o u t  c.g. 

5 - - v e r t i c a l  t r a n s l a t i o n  

1-4-5  2 - 4 - 5  3 - 4 - 5  1 - 3 - 4  1 - 3 - 4 - 5  

Cr i t i c a l  s p e e d  • • - -  - -  O. 99  1 . 0 4  1- O0 
Cr i t i c a l  f r e q u e n c y  - -  - -  O. 52 O. 98  1.  O0 

i 

As would be expected the calculations involving the two lowest modes only are stable. The 
third mode yields flutter when combined either with the body freedoms (type (c)) or with the 
fundamental  flexural mode (type (a)), but  in the quaternary only flutter of type (a) is encountered. 
The lower frequency flutter of type (c) is only just avoided in the quaternary, and a slight increase 
in flexural stiffness would be sufficient to  promote it. I t  is not easy to see why this particular 
effect exists, as the curve of ell against e33 (the stiffnesses of the first and third modes respectively) 
is very complicated, but  an increase of about 30 per cent in the stiffness ratio would be efiough to 
introduce the second type of flutter at higher speeds (beyond the speed range of the aircraft). 

4.2. Experimental Results with Body Free.--Unfortunately no quanti tat ive results can be 
quoted in this section because the difficulties of the experimental technique have not yet  been 
mastered. 

4.2.1. Cranked wing.--The importance of the  bodily freedoms on the flutter of 'flying wings' 
was stressed by Frazer 7a and borne out in the subsequent experimental Work by LambourneL 

A considerable amount of work was carried out on a tip-to-tip model of a cranked wing, but  
the author 7 expressed dissatisfaction with the experimental technique used. Qualitatively there 
is no great disagreement between his results and those of the present paper, but he made the 
interesting observation that  as the mass of the fuselage is increased indefinitely the critical speed 
tends to an asymptotic value different from and  less than that  with the body locked while the 
critical frequency tends to zero. 

4.2.2. Swept wing.--The tests which were made at the  R.A.E. on the series of tapered model 
wings with fixed root have now been extended to cover the case of a free bodv. As in Lambourne's 
work a variable fuselage inertia is provided, but instead of the aircraft t~eing allowed to pitch 
about two parallel axes it is supported in such a way as to give complete freedom for symmetrical 
motion. The wing is supported by three rigid vertical rods each of which is fixed to the tunnel 
floor by  a universal joint and also to a plate carrying the wing by a universal joint. The system 
is sketched in Fig. 10; light centring springs are now shown in the diagram. Fore-and-aft 
motion of the plate is prevented by a roller which rolls on a fixed lateral beam-- th is  device is 
not shown in Fig. 10. The Critical speeds which have been measured up to the time of writing are 
in many cases less than the corresponding speeds obtained with the body locked, and in some 
circumstances the reduction Js considerable (30"to 40 per cent). I t  is confirmed that  in most of 
these cases the flutter mode consists primarily of wing bending and pitch combined as in the 
fundamental  normal mode; the axis of pitching appears to describe an elliptical motion, thus 
indicating some out of phase vertical translation. The frequency of the flutter, as would b e  
expected is much less than with the body fixed. It  is also shown that  the body-freedom forms 
of flutter occur readily at low angles of sweepback. For a s~veepback of 50 deg it is difficult to 
obtMn the body-freedom flutter. 
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In addition to this work wiaich is being continued, certain very simple tunnel tests have been 
carried out. A diagrammatic illustration of a typical model of this sort is given in Fig. 11. Tile 
construction 'is a simple wooden spar with variable sweepback; the ribs are of balsa and the skin 
is silk doped in Vaseline. This type of model is used only for qualitative visual observations, but  
in view of the extreme ease with which it can be built and tested (the overall span is about 2 It) 
it h a s  proved of considerable help in a physical  sense. As will be seen from Fig. 11 t-he model 
actually flies in the ~unnel and is reasonably free in all body motion, though the swinging link 
obviously imposes some sort of restraint on the motion. The first such model to be tested behaved 
very well and provided flutter without body freedoms at zero sweep and flutter with body freedoms 
for 30-deg sweep at about  the same critical speed; the lat ter  form was, however, anti-symmetric. 
This result led to theoretical investigations on flutter of the form torsion-roll mentioned earlier. 

Although the experimental results mentioned in this section must be accepted with some 
reserve, yet  their emphasis on t h e  importance of the body freedoms is unmistakable. The 
investigations are still in an early stage and it will be some time before a clear idea can be obtaif~ed 
of the effects of all the relevant parameters. 

5. Aerodynamic Derivatives.--It is quite beyond the scope of this paper to give any detailed 
report~on the progress of our flutter derivative knowledge, but a few general remark s may  not 
be out of place. In Great Britain recent progress on the theoretical  side has  been due almost 
entirely to the work of W. P. Jones at the N.P.L., and some of the more important  aspects of his 
recent work are indicated in the Reference list, (17 to 21). I t  is, however, clear tha t  although the 
supersonic and subsonic fields can be studied with some confidence when shock-waves are absent, 
the intervening region of Mach numbers near uni ty  is-intractable mathematically. 

Brat t  has carried out two-dimensional derivative measurements both at supersonic and at high 
subsonic Mach numbers ~ in the course of which he encountered negative aerodynamic damping, 
but  these results represent a very small fraction of what is required for the confident prediction 0f 
flutter speeds at high Mach numbers. 

6. Flutter Experiments at High Speed.--For ad hoc work of the immediate future, a more hopeful 
line seems to be the measurement of critical speeds on flight models. I n th i s  type of experimental 
work the  model may either be dropped-- in which case its own weight provides the acceleration 
necessary to achieve high speeds--or propelled by rocket power. In these circumstances the 
ult imate speed a n d  Mach number can be regulated to have any desired value, and telemetering 
equipment mounted in t h e  body can be used to transmit  the flutter motions (critical speed, 
frequency; and some indication of the mode) back to a recording base. The experimental 
difficulties associated with tile body freedoms are still present, however, in the testing of dropped 
bodies. For the mass of the body itself is so great in order to obtain the required acceleration 
t ha t  it is not comparable with that  of an aircraft fuselage. Even with the rocket-propelled models 
the necessity of installing telemetering apparatus leads to a body of unrepresentative size and 
weight. Various schemes are, however, being considered for overcoming these difficulties as it is 
felt tha t  the correct provision of body freedoms is essential if a direct relation to full-scale is 
desired. 

Another form of flight testing which has been considered is tha t  of carrying small  models on 
high-speed parent aircraft. For this series of tests built-in models wer e envisaged, and the tests 
were intended to be used as a check on aerodynamic derivative theory rather than for direct 
application to full-scale. One of the chief drawbacks to the scheme appeared to be the doubt as 
to the exact influence of body intereference on the aerodynamic flow. 

7, Prevention of Flutter of High-Speed Aircraft.--The important  effects on wing flutter of the 
bodily degrees of freedom of.the aircraft have been clearly demonstrated, but although considerable 
effort has been concentrated on the problem at the R.A.E. the investigations are still in a compara- 
t ively  preliminary state due to the length of the calculations and many  results quoted have had 
to be taken from incomplete researches~ In particular the experimental side of tl~e programme 
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is only just beginning to yield results and as yet none of these relate to high Mach numbers. 
On tile other hand the implications of the theoretical work cannot be overlooked and it becomes 
an important  matter  for the designer of an aircraft of swept-back or delta plan form to satisfy 
himself not only that  the wing torsional stiffness is adequate to prevent flexure-torsion flutter, 
but  also that  his design is equally immune from the other forms of flutter discussed in this paper. 
This task is difficult to carry out in a logical manner, for the types of flutter dependent on body 
freedoms may prove to be sensitive to parameters which are not known in the early stages of 
design. To determine the necessary flutter precautions, for example, the strictly logical approach 
would be to make a provisional design; normal mode calculations would then be made and on the 
basis of these flutter calculations would be carried out including the two body freedoms. Tile 
next step would be to determine what .modifications would be necessary to avoid flutter, and then 
to repeat, the calculations from the beginning. In this way, by  a process of Successive approxima- 
tion, the efficient design should eventually be reached, but  the cost in time and labour would be 
very severe, in addition to the risk of modifications from other sources throwing the train of 
calculations out of gear. 

Unfortunately, once having decided to cut Short this process, it is still difficult to see what method 
provides tile soundest basis for doing so. On the one hand the calculation of normal modes might 
be omitted and reliance placed on direct flutter calculations using arbitrary modes. At tile 
opposite extreme it may be thought more profitable to calculate the normal modes but  omit tile 
flutter calculations, ill which case criteria or experience would have to decide whether the results 
were satisfactory. Another lille of attack, which-has much to recommend it, is to build an 
elastic-inertia model of the aircraft (this can be of simplified construction) and then to rely on the 
model for obtaining normal modes and i f  necessary the effect of mass variations; in this case 
flutter calculations would be carried out on the modes obtained from the model but it would be 
quite reasonable first to t ry  and improve, say, the nodal line positions, by some adjustment of 
design. The use of flutter models for specific aircraft using the techniques outlined in section 6 is 
a supplementary or alternative approach. 

But whatever method is decided upon, there can be little doubt of tile important  part to be 
played by the ground resonance test results obtained on the completed aircraft. These must 
give the final criterion of the basic flutter picture, and if they show up bad features from the point 

, of view of flutter, elaborate investigations (calculations and/or experiments) may have to be 
undertaken to clear tile aircraft. In view of tile importance of these ground resonance tests, 
it is essential that  they should be carried out both accurately and efficiently; to this end any 
improvements which can be made in tile measuring or vibrating apparatus will be very valuable. 

8. Conclusions.--The' work reviewed and presented in this report shows tile important  effects 
of the bodily freedoms of the aircraft on the flutter of the wings of high-speed aircraft and the 
need for thorough theoretical and, experimental investigations to prevertt the flutter of swept and 
delta aircraft. 
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LIST OF SYMBOLS 

Torsional mode 
! 

Mach number 

Forward speed 

Non-dimensional structural inertia coefficient 

Non-dimensional aerodynamic damping coefficient 

Wing chord and mean value 

Non-dimensional aerodynamic stiffness Coefficient 

Non-dimensional elastic coefficient 

Bending mode - 

Natural frequency of normal mode 

Fraction of the chord of inertia axis aft of leading edge 

Ratio of tip chord to root chord 

Length of wing along swept-back axis 

Flexural elastic stiffness 

Aerodynamic derivatives (lift) 

Torsional elastic stiffness 

Aerodynamic derivatives (pitching moment) 

Generalised co-ordinate 

Semi-span 

DoWnwash 

Chordwise dimensiorl 

Spanwise dimension 
also in equations (3), (4) and (5) non-dimensional stiffness=speed parameter 

Vertical dimension (- 

N o n - d i m e n s i o n a l  aerodynamic inertia coefficient 

Angle of sweepback 

Angle of twist or incidence 

Frequency parameter = ~clV 
ivr 

Air density 

Critical frequency 
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