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Summary.--Exact solutions are given for the inviscid flow past two cylindrical profiles in tile centre of a stream 
of limited depth. The first of these relates to a nearly circular cylinder and the second to a thin section giving a constant 
pressure drop over the greater part of its surface. The stream has either parallel walls, constant pressure wails, or tile 
boundaries may be partly parallel and partly of the constant pressure type. For the thin profiles the changes of thick- 
ness ratio required to give the same pressure distribution as in an unlimited flow are found. 

Introduction.--The present paper describes a contribution to the theory of two-dimensional 
wind-tunnel interference on bodies set at zero incidence in the centre of the flow. The work is 
limited to incompressible flow but it is hoped to extend section 2, which describes the flow past 
slender profiles, to subsonic compressible flow in a later paper. The  irrotational flow has been 
found between parallel walls and also in a free jet past two cylindrical sections. The first of these 
is a circular cylinder and the second is a slender profile with a uniform pressure drop over the 
greater part of the boundary. No account is taken of the wake which exists behind a body in 
a real fluid so that  t h e  tunnel interference represented in the present paper is that  usually 
referred to as solid blockage and the effects of wake blockage are not considered. 

The free-streamline method is employed for the calculation of the flow of a jet past both 
bodies so that  tile outward displacement of tile streamline is correctly represented and the 
approximations associated with the application of the method of images to these problems are 
avoided. The results are not limited therefore to examples in which the profile dimensions are 
small compared with the width of the jet. The free-streamline method has an additional 
advantage as the solutions can readily be adapted to deal with problems in which the outer 
boundaries of the flow consist partly of parallel walls and partly of free streamlines. 

Tile main application of the present work is to the theory of the use of adjustable or shaped 
walls in two-dimensional wind tunnels. The adjustable walls may be set under experimental 
conditions to represent a straight-walled channel or may be adjusted so that  the pressure along the 
walls is constant. Interest centres mainly in the correct positioning of the Wails between these 
limits to remove the effects of tunnel constraint. This subject has been considered in detail, 
for compressible flow, by Lock and Beavan (R. & M. 20051) (1944) who employed a doublet to 
represent the aerofoil, for the calculation of solid blockage, and then used the method of images 
to calculate the interference effects at the walls. The present work, though limited to incom- 
pressible flow, gives additional information for bodies whose dimensions are large compared 
with the depth of the stream and which cannot therefore be dealt with satisfactorily by a linearized 
method. 
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In section 1 the flow past a nearly circular cylinder in a stream of limited width is considered. 
The flow between parallel walls has been given by Lamb s (1932) and a direct transformation is 
now developed which converts this flow into that  of a free jet past the cylinder. In each case 
the distortion of the cylindrical boundary from the circular shape is negligible for diameters less 
than half the initial width of the stream. The maximum velocities over the cylindrical boundaries 
are compared for the two cases, and in addition the displacement of the wall of the free jet is 
compared with that  of the corresponding streamline of an unconstrained flow. 

Section 2 deals with the flow past a profile which has a constant pressure drop over the greater 
part of its surface. The unconstrained flow past a series of sections of this type has been given 
in an earlier paper, Whitehead (R. & M. 21613) (1942), and the simplest of the shapes described 
there is selected for the present development. The flow between parallel wMls is obtained by 
minor modifications of the method for the unlimited flow, but the flow of the free jet past the 
section is a somewhat more difficult problem. In this section the thickness ratios of profiles 
giving identical pressure reductions are compared for the three types of flow. The relative 
displacements of the wall of the free jet and of Lhe corresponding streamlines of the unconstrained 
flow are also compared for two examples. 

Notation 
a, e~ d 

b 
C 

C 
Lg 

h 
k 

~kr 

K , E  
M,M~ 

q 

qo 
ql 
t 

U 
U 

W = 4 , +  i~ 
2xo, 2(yo + y~) 

g 

(X 

~,~' 

tto 

p~, 

o(u) 

Constants 
Distance of the stagnation points from the origin in the t-plane 
Distance of source and sink from the origin in the t-plane for flow with 

partly parallel walls 
Constant 
Semi-diameters of nearly circular cylinders 
Width of channel, initial width of jet 
Modulus of the elliptic integrals 
Complementary modulus %/(1 -- k s) 
Elliptic integrals of the first and second kinds: 
Constants 
Constant defining the distances of the source and sink from the origin 

in the t-plane 
e--=K'IK 

Resultant velocity on the curved wall of the thin sections 
Maximum velocity on the channel wall 
Complex variable 
Initial velocity of flow in channel or jet 
Argument of Jacobi's elliptic functions 
Velocity components divided by U 
Complex potential function 
Chord and thickness of profiles of section 2 
Complex variable in plane of channel and jet flow 
Particular value of u defined by the relation sn c~ = 1/pk 
Constants 
Strength of doublet in the t-plane 
Constants 
Jacobi's theta  functions 

1 dW 
Complex variable defined by the relation ¢ ---- log U dz 
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1. The Flow Past a Circular Cylinder.--1.1. Flow in a Channel with Parallel Wal ls . - -The  
flow between parallel walls past a nearly circular cylinder has been found by  Lamb*, who combined 
a uniform flow with a row of doublets spaced equally along a line perpendicular to the flow. 
The same flow is derived in the present paper by  an alternative method using a logarithmic 
transformation which facilitates comparison with the corresponding flow of a free jet past a doublet. 
The flow in the upper half of the straight-walled channel of width h, in a zl-plane, is transformed 
into the upper half of a t-plane, as shown in Fig. 1. In the latter plane the doublet is also at 
the origin and the points corresponding to the ends of the channel are located on the real axis 
unit  distance on either side of the doublet. The flow in the t-plane, corresponding to a flow 
from left to right in the zl-plane, is therefore from a source at the point (--1, 0) past a doublet 
at the origin to a sink, of strength equal to tha t  of the source, at the point (1, 0). Thus the 
potential  function in the t-plane corresponding to a flow with velocity U in the zl-plane is given by  

Uh log 1 + t no 
w = ~ + i~  - 2~ ~ t  + fight, • . . . . . . .  (~) 

and the streamline ~0 = 0 forms an oval boundary enclosing the doublet. The strength of the 
doublet/~0 is conveniently expressed in terms of b, the distance of the stagnation points from the 

hb ~ 
origin in tile #plane, so tha t  ~U = 1 -- b ~" 

The transformation to the z~-plane is carried out using the relation 

2~z~ 1 + t . .  (2) 
h -- log 1 -- t '  . . . . . . . .  . . . . . .  

which may be expressed alternatively in the form t = ~ann-~-.  Hence the potential function 

in the z~-plane becomes 

W =  U @ + h b ~ ~z/~ 
1 - - b  2c°th h / '  . . . . . . . . . .  (3) 

and this gives the flow past a boundary of nearly circular cross-section surrounding the doublet. 
The horizontal diameter 2f~ is represented by tile length 2b in the t-plane and is therefore given 
by the relation 

~fl = tanh_X b. 
h 

This may expand in a series which converges rapidly for small value of b, thus 

_ _  b ~ b 5 b 7 
~fl b + + + + (4) 
h - -  g ~ 7 . . . . . . . . . . . . . . .  

The vertical diameter 2g~ is found from equation (3) by  substituting zt = ig~ and equating ~0 to 
zero. Th i s  gives the relation 

~gl tan =gl b~ 
-h- -h - - -  1 - - b  ~'  

which may be expressed in the form of a series similar to (4) 

b 8 7 b~ 6 9  b7 ~gl __ b + + + + 
h ~ ~ ~ . . . . .  

(s) 

* And also by N. A. V. Piercy 
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(Aerodynamics. 1947), using a conformal transformation different from that given below. 
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The boundary differs only slightly from the circular form, even if the diameter is as large as 
half the width of the channel. 

1 dW 
The complex velocity ratio g -- if, given generally by ~ - ~  is determined directly from (3), 

and takes the form 

• 1 ~  7~21 
1 d W 1 - - b  ~com ~ -  

u dzl - -  1 - -  b ~ . . . . . . . . . . .  • ( 6 j  

On the upper wall where zl = x l  + ih /2  the expression reduces to 

9 z X  1 1 - -  b 2 tanh 2 -ff 

1 - -  b 2 . . . . . . . . . . . . .  (7) 

and its maximum value directly above the doublet is 1/(1 b2). On the cylindrical boundary 
the maximum value of the velocity occurs when zl = ig~ and, after substituting from equation 
(5), this can be expressed in the form 

¢g= 2 + ~]b ~ + ~l,~ ~ + . . . . . . . . . . . . . .  (8) 

Since the first term represents the  velocity on the cylinder in an unlimited flow the further terms 
show the increases arising from the presence of the straight boundaries. 

' f t .  • - 

1.2. F l o w  o f  a T w o - d i m e n s i o n a l  J e t  1bast a Circular C3~l inder . - -The  flow of a jet with constant 
pressure along its boundaries past a doublet is found by-transforming the same flow in the t-plane 
shown in Fig. l a, into 'a g-plane which is defined by, 

1 dW 
, g = ~ + i~ = l o g  u dz . . . . .  . . . . . . . .  (0) 

The appropriate g-plane boundary is shown in Fig. 2a and consists entirely of straight lines. 
The corresponding flow past the doublet in the z-plane is indicated in Fig. 2b. The straight lines 
AB and 'AH in the ~-plane parallel to the ~ axis correspond to the parts of the axis of symmetry 
in the z-plane between the stagnation points on the oval boundary. They are separated by 
distance ~ from the lines BC and HG which represent the remainder of.the axis of symmetry 
because the flow along them in the z-plane is in the opposite direction. The short barrier 
CDEFG lying along the ~ axis corresponds to the free streamline wall of the jet. The g-plane 
boundary for the flow between parallel walls, already described, differs only in that  the section 
CDEFG is replaced by a short extension of BC and HG along the  ~ axis to the right of the origin 

i~p to a point E, whose co-oi-dinates are log 1 _1 b~' 0' 

The transformation from the t to the g-planes is found by the method of Schwarz and Christoffel 
which gives, for this example, the relationship, 

dg t ~ -- d ~ 
-dr = m t(p - -  b 2 ) ~ ( P  - -  1)" 

The points on the free-streamline wall  which have the  maximum Vertical component  of velocity 
are defined by the new constant d whose value is greater than. unity.: The expression is integrated 
by use of the substitution s = ~/(t ~ -- 1) and the relation between g-and s takes the form 

g = i m  ~ l o g  s - i - - i ~ / ( ~  - b ~) : ~ (10 )  
s+-~-~ + 2 b ~ / ( 1  b 2) l °g  + i V ( l _ b ~  ) ; ~ b ~ ,  -~ 
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The Constants m and d are found from the conditions that  the walls AB and AH are distant 
2~ apart from that  BC and HG coincide instead of merely being parallel to one another. The 
first condition gives 

imd ~ - -  im  (b ~ - -  d ~) 1 
2b ~ -- 1 and the  second 2b~/(1 _ b 2) = • 

The constant C is zero since ~ is zero when s is zero. The transformation formula, expressed in 
terms of t, becomes therefore 

~/ ( t  ~ - 1) + ¢ v / ( t  ~ - 1) - i V ( 1  - b ~) . (11) 
¢ --- iog V ( t ~ _  1) - i ~/(t~ - 1) + iV(1 - b ~) ' "" " 

and, after substituting from (9), dW/dz  may be found in terms of t. dW/d t  is determined from 
equation (1) and, if/~0 is expressed in terms of b, this gives the relation 

1 d W  h( t~ - -  b~) (12) 
U dt - -  ~ ( 1 - - b  2) P ( P - 1 )  . . . . . . . . . . . .  " 

Combining equations (9), (11) and (12) to eliminate W ,  dz/dt 'is found in terms Of t so relating 
the z-plane, in which the flow of a jet of width h past a doublet is required, to the t-plane in 
which the potential function is known. The transformation takes the form 

dz h{~/(t ~ -  1) + i ~ / ( 1 -  b~)} ~ (13) 
d r -  ~ ( 1 -  b~)(t ~ -  1 ) { V < -  1 ) +  ¢? '  • . . . . . . .  - 

and is integrated after making the substitution t = tann %--. Comparison with equation (2) 

shows that  this changes (13) into a direct transformation from the flow in the zl-plane past the 
doublet between parallel walls, shown in Fig. lb, i n to the  flow of a jet past a doublet as indicated 
in Fig. 2b. dz/dz, is then given by 

dz l / V (  - -  b ) + cosh  T 
_ = , . . . . . . . .  (14) 

1 Z17C ! dz~ + cosn -~ / 

and becomes after integration 

z = z ~ +  ~ ~/(1 b 2 ) - 1  t anhZ~  - _ ~ - Z + ~  v~(1 _ b~) 
1 f ( t a n h  z1~ 1 .  ,3zlzc'x " zann ~ ) .  (15) 

2h 3 

The horizontal diameter 2f and the vertical diameter 2g of the resulting cylindrical boundary 
may be found directly from (15) by substituting for zl the values f l  and igl, appropriate t o  the 
flow between parallel walls. The resulting expressions are 

and 

~ f - -  b -+- 5 3 61 b5 481 b7 
- A -  g b + g6  + ~ + . . . .  

. . . . . .  (16) 

~g 5 b8 577 b5 7967 -7 
-~ = b + ~ + ~ - 0  + 10---.680 b + . . . . . . . . . . .  (17) 

In this case the difference between the diameters is even smaller than for the flow between 
parallel walls. This is due part ly to a reduction in the difference between the c0efficieii{s of b 5 
i n  (16) and (17) as compared with (4) and (5) and part ly to the fact tha t  a given value of the 
parameter b corresponds to a relatively larger cylinder for the flow in a free jet. 
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The velocities in the flow are found by dividing equation (6) by equation (14). The maximum 
value of ~/on the boundary at the point z = ig takes the form 

a = 2 - -  ½ b 2 - -  x ) ~  b 4 . . . . .  . . . . . . . . . .  ( i s )  

Comparison with equation (8) shows that  the coefficient of b 2 is opposite in sign and has one half 
of its previous value. This is in agreement with the results obtained by Lock (R. & M. 12754) 
(1929) and Glauert (R. & M. 15665) (1933) for small bodies, using the method of images. The 
coefficient of b 4 in (18) is smaller than in (8) so that  for larger bodies the effects of the two types 
of constraint will no longer bear a ratio of two to one. To illustrate the changes which occur 
with the size of the cylinder, a comparison of the velocity ratio is plotted against the ratio of tile 
diameter of the cylinder to the initial breadth of the channel, in Fig. 3. Curve (a) shows results 
for the parallel walled channel and curve (b) the corresponding values for the free jet. When 
the cylinder diameter is h/4 it is seen that  the ratio of the tunnel constraint effects increases to 
approximately 2.5. 

The co-ordinates of the free-streamline boundary are determined directly from equation (15) 
by the substitution zl = xl  + ih/2. The maximum displacement will clearly occur at x~ = 0 
and its value is given by 

~ - -  2 (  1 2 1 
h ~ / ( 1  - -  bY) - 1 ) + ~ (  ~ / ( 1  - -  b ~) - -  1 )2  . . . . .  (19) 

I t  is plotted, in Fig. 4, against g/h and is compared with the displacement of the corresponding 
streamline of the unconstrained flow past a circular cylinder. For a streamline initially h/2 from 
the axis the displacement for an unlimited flow is given in terms of the radius a of the cylinder as 

= ;~ ~ / ( 1  + ( 4 a / h )  ~) - 1 . . . . . . . . . . .  ( 2o )  

The ratio of the values of the displacement is ~/2 for small cylinders but  differs less from unity 
as the size increases, as is shown in Fig. 4. 

1.3. F low with Part ly  Rig id  Walls  a~d Part ly  Free-Streamline W a l l s . - - A  modified arrangement 
in which the boundaries of the flow are free-streamlines near the doublet but consist of parallel 
walls upstream and.downstream of the central section can also be found using the transformation 
formulae (9) and (11). The change required to produce the new configuration in the z-plane, 
shown in Fig. 5a, consists merely of shifting the source and sink in the t-plane to points P and Q 
distant c from the origin, c being less than unity. The source and sink then lie to the left of the 
origin in the ¢-plane, as indicated in Fig. 5b, so that  the velocity of the flow at infinity is changed 
from U, which now becomes the velocity on the free-streamline part of the wall, to the lower 
value 

1 + ~ / ( 1  - -  c 2) ~ / ( 1  - -  b 2) - -  V ( 1  - -  c2) 
U2 = U 

1 - V ( 1  - c ~) V ( 1  - b ~) + ~ / ( 1  - -  c~) • 

Equation (1) is then replaced by the relation 

c + t  2 b y c  ] Uh log + 
2~ c - -  t (c 2 - -  bY)t J ' W m 

and equation (12) by 

d W  
dt 

U h c  ~ (t ~ - b ~) 

t~(c 2 _ t~)(c  2 _ b~) • 

(21) 

(22) 
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The width of the stream away from the body increases to hU/U~ as the strengths of the source 
and sink have not been changed. The transformation from the t to the z-planes therefore becomes 

dz c3h {V/(t ~ -  1) + iVY(1-  b~)) (23) 
d-/ - - - - -~(c  ~ -  b ~) (c 2 - -  P ) { ~ / ( f f  - -  1) -¢- i} 2 . . . . . . .  

This equation may be integrated by splitting it into partial fractions but  certain features of the 
flow can be found without this step. The length of the flee-streamline wall above the doublet 
is given by the relation (¢c -- ¢~)/U and this may be evaluated directly from equation (21). 
The maximum velocity on the cylindrical boundary is found from equations (21) and (11). The 
co-ordinates of the point in the t-plane where the streamline ~0 = 0 crosses the imaginary axis 
are first found, and the corresponding real value of ~ follows. The velocity is then found from (9) 
and may be compared with the value 2U2 for an unconstrained flow. For this type of flow, 
particular examples will exist in which the pressures on the cylinder differ only slightly from 
those in an unlimited flow.* 

2. The Flow Past a Slender Section.--2.1. Flow in an Unlimited Stream.--This section describes 
the methods of calculating the flow past slender profiles with a constant pressure reduction over 
the greater part  of the surface. The flow past aerofoils of this type in an unlimited stream has 
been considered in an earlier paper (R. & M. 21613) and the flow past similar profiles midway 
between parallel walls and in a free jet are given below. In the latter example a similar modifica- 
tion to that  used for the circular cylinder yields boundaries which are partly parallel and part ly 
free streamline. The thickness ratio of sections giving identical pressure distributions are 
compared for the various cases instead of calculating the change of velocity due to tunnel 
constraint for a single profile. 

The simplest of the sections described in R. & M. 21613 is employed, and is shown in Fig. 6. 
The boundary is doubly symmetrical and has straight sections perpendicular to the stream at 
the front and rear which are joined by curved walls along which the velocity is constant at a 
value higher than tha t  of the undisturbed stream. The relative length of the straight section 
of the boundary decreases rapidly when the thickness ratio is reduced and the thin profiles of 
this type differ only slightly from an elliptical cylinder. 

The flow past the cylinder profile in the z-plane in an unlimited flow is defined by the relation 

dW .v/(W2-- 1) -- W~/(1 -- k ~) (24) 
d z  - -  qo v'(k W - -  1 )  ' " . . . . . . .  

which is obtained by simplifying the general equation (7) of R. & M. 21613. The stream function 
is zero on the cylindrical boundary, as well as on the x-axis, and ¢ is zero on the vertical axis 

of symmetry. The limits of the curved wall, along which the velocity has a constant value qo, 
are defined by ¢ : ~ 1 and the stagnation points correspond to ¢ ~ ± 1/k. The constant k 
is found from the condition tha t  the velocity of the undisturbed flow, corresponding to large 
values of ¢, is equal to U, so tha t  

U 1 ~v/(1 k~) or k = 1 + ~ / .  . . . . .  
q0 k 

The horizontal projection 2x0 and the vertical projection yo of the curved wall, and the length of 
the straight wall Yl adjacent to the stagnation point are obtained by integrating (24) along the 
streamline ? ~ 0. The equations expressed in terms of the non-dimensional velocity components 
take the general forms 

x----~ ~2~_~.dCandy----~ ~2~2d¢. 

* Further computation has shown that this occurs for a small cylinder when the length of the free-streamline I is 
about 1.51h, the value of l/h increases only slowly with the size of the cylinder. 

7 



The lengths Xo, Yo, y l  are therefore given by 

1 - ¢s) d¢ yo < / ( 1  - ks) e¢  

and 

~fl/~ v'(1- k~¢~) de 
y l  = ~ / (¢~  - 1) - ¢ .  ~ / ( 1  - ks) • 

. . . . . .  (26) 

These relations can be expressed in terms of the elliptic integrals of modulus k and of the com- 
plementary modulus k ' ,  defined by 5/(1 -- kS). Employing the usual notation for the complete 
elliptic integrals, they take the final forms 

1 [ ] k'(1 - k') 
Xo - -  qok ~ E - -  k ' S K  , Yo = qok 2 , 

• ' ( 2 7 )  

1 k , ~ l  . . . 
and Y l  - -  qok s I E '  - -  k'~K ' + 

The thickness ratio of the resulting profile is therefore 

E - -  k ' 2 K  . .  (28) 
E '  - -  k~K ' + k '  

2.2. F l o w  B e t w e e n  Para l l e l  W a l l s . - - T h e  flow past a similar profile in the centre of a parallel- 
walled channel of width h is found readily by using transformations similar to those employed 
for the isolated aerofoil. The configuration in the C-plane defined in equation (9) is shown in 
Fig. 7a together with the corresponding z-plane diagram in Fig. 7b. The straight sections of the 
boundary are AB and CD and BC is the constant velocity portion. PEQ is the straight wall of 
the channel. The C-plane is transformed into the upper half of a t-plane in which the flow is from 
a source at P to a sink at Q and in which E lies at infinity. The relation between the C-plane 
and the t-plane is identical with that  connecting C and W for the profile in an unlimited stream. 
Hence for the present case, expressing ¢ in terms of d W / d z  

d w  V ( t  s -  1) - k't 
dz - -  qo ~/(kSt  s _  1) . . . . . . . . . . . . . .  (29) 

The p o i n t s A a n d D  correspond to t =  ! 1 / k a n d B  and C t o t =  q- 1. On the wall PQ the 
velocity is greater then U and has its maximum value above the centre of the profile at E. This 
point corresponds to the end of the barrier in the C-plane, whose co-ordinates are defined as 

log ~ ,  0 . Since the corresponding value of t is infinite, k may be expressed in terms of q0 

and ql from the relation (25), ql replacing U. The points P and Q at the origin in the $-plane 
correspond to t = q- p and, as at these points the velocity in the z-plane is U, p is found in terms 
of k from the relation 

1 = q o .  x / ( p  ~ -  1) - k 'p  
u v~(ks:~ ~ -  1) (30) 

If k'0 is defined as the value of k' appropriate to the section giving the same velocity qo for flow 
unconstrained by the presence of the walls, this equation may be expressed in the form 

k " 0  . . . . .  

~b = ~¢~{(k'o + k ' ) ( k ' o -  k')} . . . . . . . . . . . . . . .  (31) 
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The potential function in the t-plane for the source at the point t = -- p and the sink lat the 
point t = p with a boundary lying along the real axis is given, for this case, by 

U h l o g  p + t  . .  . .  (32)  
W - -  2~ p - - t '  "" . . . . . . . . . .  

the strength of the source being chosen to give a channel of width h. The flow in the z-plane is 
found from the t-plane by eliminating W between equations (29) and (32). From (32) 

a W  u ~  
dt ~ t 2 - -  p "~ ' 

and hence 

dz aq0 {~/( t" - -  1) - -  k ' t } ( t  ~ - -  p2 )  

,~t - - "  U ~  V'(k"t ~ - -  1) 
(33)  

The dimensions of the cylindrical boundary are found by integrating this relation for real values 
of t. The restflting expressions for x0 and yo, which define the dimensions of the curved part  of 
the profile, are given by 

crh~ [~ (1 - t~)at w p  f ~  k't at 
x0 -- :~qo J0 (t" -- F)~/(1  -- k"t 2) and Y0=  -~o~JO it 2 _ p . ) v ' ~ l _  k't")" 

The first of these may be expressed in terms of elliptic integrals and the second in circular functions 
by the relations 

Uh I K  "v/(P~--  1)~(K E(~z) ~ E ) I  . .  (34) 
~ °  - ~ q 0  ~ ~ / ~ -  i) • " ' . . . . . .  

sn c~ = 1 / p k ,  i 

I 1 1 yo = ~ ¢ o v ' - W F -  1) t a n - ~  V'(k~p ~ - -  1) - -  t a n - 1  v~(k"p" - 1) • . . . .  (35) 

where 

and 

The height of the straight wall AB is given by the relation 

u h ~  f~'~ v ' ( 1  - k2t 2) dt  
y l  - ~¢o  J~ { ~ / ( t '  - 1) - k't}  (t' - ~ ) ,  

which may be i:earranged in the form 

Y~-  qo L~/ (p"k" - - f ) "  tan-~ V ( k ~ p  ~ -  1 ) - - V ~  ~- -1)  " 2-K - -X°-K"  (36) 

Equations (34), (35) and (36) enable the thickness ratios of the profiles to be determined. I t  is 
convenient to select initially the velocity on the profile qo and ql, the maximum velocity on the 
channel wall. For a given value of qo the chord of the section increases as ql is increased and the 
thickness ratio falls. 

2.3. F l o w  in  a Free  J e t . - - T h e  flow within a jet with constant pressure walls past the profiles 
is next considered. The problem is more complicated than those dealt with earlier as the trans- 
formation from the ~ to the t-planes invblv~s the introduction of, elliptic functions and the 
boundary dimensions must be determined finally by numerical integration. The ~-plane and 

' L 
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z-plane boundaries for this flow are shown in Figs. 8a and 8b. The t ransformat ion of the  upper  
half of the  t-plane into the C-plane is found by the  Schwarz-Christoffel me thod  and takes the  
form 

de t 2 --  e ~ 
dt - -  i M  ( t ~  a 2 ) ~ / { ( t 2  1 ) ( k ~ t 2  1)} . . . . . . . . . . .  (37) 

The points B and C at the  end o! the  curved wall of the  profile are again s i tuated at t = ± 1. 
In  this problem, howeverl k is defined differently and the  points t = ~: 1/k correspond to P and 
Q, tile positions at which the  source and sink are located. The s tagnat ion points now correspond 
to t ---- -t- a. Equa t ion  (37) is in tegrated after making  the  subst i tut ion t = sn u, this t ransforms 
the  upper  half of the  t-plane into a rectangle of sides 2K and K '  in the  u-plane. The points on 
the  rectangle corresponding to the profile and the  wall of the  jet  are indicated in Fig. 8c. The 
constant  a defining the  s tagnat ion points, is expressed for convenience in terms of a new constant  

by  the  relation 

1 
a - - - - s n ( K + i K ' - - i t ~ )  = k sn (K _ i~) , 

and e is similarly replaced by 

1 
e = s n ( ~  + i K ' )  = k s n  

With  these substi tut ions (37) becomes 

de [ 1 - - k 2 s n ~ v . s n ~ u  ] 
d u - - i M ~  1 - - k  2 s n 2 ( K -  i¢ ) sn2u  ' 

and may  be integrated in terms of the ta  functions giving the  relation 

[ °l(u + i")l = iM~ r u  + i~ log ®~(u _ itt) j + C "  .. ( 3 s )  

The real constants  r and ¢/are defined in terms of # and ~ as follows 

s n  ( K  - -  - -  s n  

ifl = 2 sn (K --  its) cn (K --  it*) dn (K --  its)' 
and 

O ' ( K - -  i#) 
~,-= 1 + 2ifl ® ( K - - i # ) "  

q0 
The value of ~ at the  point  N is log U and is equal to the  constant  C in equat ion (38), since the  

qo other  terms vanish for u = 0. At the  point u = K the  corresponding value of ~ is log U + i~/2, 

and hence it ma y  be shown tha t  

MI~, = ~ / 2 K  . . . . . . . . . . . . . . . . . . .  (39) 

Both  the  points u -= K + i K '  and u = i K '  correspond to ~ ---= 0 and these conditions lead to the 
two relations between the  constants  

~,K ---= - -  ¢~ and log qo _ ~ K '  - -  
' O K (40) 
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Expressing ¢ in terms of dW/dz  from equation (9) and substituting for ~ and/~ from (39) and 
(40), the final relation between dW/dz and u takes the form 

d W  O~(u )~1~ 
dz = qo ( + it,) e~,,/~K . (41) -.¢t,) . . . . . . . . . . . .  

The parameter k is the main variable defining the ratio of the chord of the section to the initial 
width of the jet h. Small values of k correspond to aerofoils of small chord and as k approaches 
unity the chord increases rapidly, as also does the ratio K / K ' .  The constant # is found directly 
from equation (40) but v is required only for determining the point on the free streamline wall 
of the jet which has the maximum vertical velocity component. 

The flow in the t-plane, and hence in the u-plane from a source at P to an equal sink at Q is 
given by 

Uh 1 + kt . .  (42) 
W = ~ log 1 -- kt . . . . . . . . . . . . .  

As in earlier examples the strength of the source is taken as Uh so that  a jet of initial width h 
and velocity U is obtained. Differentiating equation (42) and eliminating W from (41) yields the 
relation 

dz Uhk e-~"/~K ( O~(u - -  iff) ) ~/~ 
d ~ =  ~rq----~ dn2u ®,(u + i t*)  . . . . . . . . . . .  (43) 

For the curved section BC, 1 > t  > - -  1 and u is real, lying in the range K > u  > - - K .  
Values of u corresponding to given values of t are therefore found directly from tables of elliptic 

Ol(u 
l 

] is equal to unity and argument 20) is found by expanding integrals. When u is real 01(u + i~) 

the theta functions in terms of q = e -"K'/~. Tan co then takes the form 

2 Eq"~ sin ~ • sinh 
tan o, = 1 . . . . . . . . . .  (44) 

1 + 2 Xq "~ cos --K-- cosn K 
1 

q is small for sections whose chord is less than h, the width of the jet, and the series converge 
rapidly. Using values of o~ found from (44), equation (43) gives 2xo and Y0 which are the horizontal 
and vertical projections of the curved wall BC. They are expressed in a form suitable for 
numerical integration by 

~vr;h~j0c°s ~-K--co Uhk sin ~-~ co 
- -  1 --  k2t ~ dt and 3'0 -- ~q0 1 -- k2t ~ dt . . . . . . .  (45) :go 

The length of the straight section 
found similarly. In this case the 
the theta functions is imaginary. 

Uhk [ ~'-~ e~i~_K,)l~ sn (2, 
Yl -- ~qo J0 cn (2, 

[sinh ( K '  + t* -- _2)~ 
2K 

sinh ( K '  2K 

of the boundary AB in the vicinity of the stagnation point is 
limits for u are K and K + i (K '  --  ~), and the argument of 
Integration along AB in the u-plane gives, for Yl, the value 

k ' )  

k') 

- -  q~ sinh 3 (  K'/+#2Kt* -- ~)~r):r . . . .  11/~ 
_ _ . . . . .  

- -  q~ sinh 3 ( K '  2K . . . .  
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which may be evaluated numerically after making a substitution, of the form 

sinh ( K ' - - ~  -- ,1) 
I 

to eliminate the infinite values of the integrand in the vicinity of ,~ = K' --~. 

To illustrate the effects of tunnel constraint on the flow past these sections, the dimensions have 
been calculated for a series of profiles all having a velocity of 1.15U over the curved surface. 
In an unlimited flow the section producing this velocity has a thickness ratio of 16 per cent. 
Smaller thicknesses are required for flow between parallel walls, as is shown by the curve (a) of 
Fig. 9. The thickness ratio is reduced to slightly more than 10 per cent when the chord is equal 
to h, the distance between the walls. For flow with constant pressure boundaries, as in a free 
jet, a larger thickness ratio is needed to produce the chosen velocity distribution though the 
changes are numerically smaller than for sections of equal chord between parallel walls. The 
corresponding curve is (b) in Fig. 9. 

Calcuiations of the maximum displacement of the wall of the jet due to the presence of the 
aeroIoil, show tha t  the displacement bears an almost constant ratio to tha t  of the corresponding 
streamline of an unconstrained flow. For sections of small chord the ratio is ~/2 as in the case 
of the circular cylinder, but  falls slightly to 1" 53 for a chord of 0" 55h and a thickness ratio of 
17.4 per cent, and to 1.50 for a chord of  0" 82h and a thickness ratio of 18.9 per cent. These 
values have been calculated by integrating along the l~ne NE perpendicular to the flow. 

Conclusions.--Methods of calculating the irrotational flow past a circular cylinder and an oval 
section in channels of finite width are presented. The channel walls may either be parallel or 
may be shaped so as to give constant pressure and to correspond therefore to flow in a free jet. 
The free streamline method is employed for the latter calculations so that  the displacement of 
the walls is correctly represented, and the results are not limited to bodies which are small 
compared with the width of the stream. 

For a circular cylinder between parallel walls, the maximum velocity on the boundary rises 
sharply as the diameter is increased and a much smaller change of opposite sign occurs in the 
free jet. For the constant pressure profiles the variation of the thickness ratio with the chord, 
which is required to give a particular pressure distribution, is determined. 

The ratio of the maximum displacement of the free-streamline wall of the jet to tha t  of the 
corresponding streamline of an unconstrained stream is found in each case. The ratio decreases 
as the size of the body increases for both examples but the effect is considerable only in the case 
of the circular cylinder. 

I t  is shown that  the method of calculating the flow within a free jet may be modified to give 
flow bounded by par t ly  parallel walls and part ly constant-pressure walls. 
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