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Summary.--These notes aim at providing a framework to display what is known of the backward movement of the 
aerodynamic centre of wing shapes likely to be used for transonic operation, as the flow progresses from incompressible 
through subsonic to supersonic, the shock-wave r6gime being ignored. A new geometrical parameter ~ (see Figs. 1, 2) 
is taken as the main variable because (a) it gives a neat classification of the various wing shapes, (b) it expresses the 
results of supersonic theory in a simple form, (c) it simplifies the subsonic analysis by making direct use of the similarity 
law for three-dlmensional compressible flow, and so (d) it is possible to display on one diagram most of the theoretical 
and experimental data at present available. 

On the supersonic side, where very little experimental data is known in this country, the analysis is based on the 
conical solution by Puckett and Stewart 8' 4 for pointed tips; this has been extended on a simple but questionable 
assumption to cover blunt tips. On the subsonic side the laborious approximate theoretical methods have not yet 
yielded much data that is both systematic and reliable, and though model data is accumulating it inevitably lacks 
cohesion except in the case of delta wings. The work of R. T. Jones s on the aerodynamic centre of shapes so slender 
that it is independent of Mach number is linked up, so far as it goes, with the supersonic data, and should be extended. 

When the existing fragments of the subject are assembled within this framework as in Table 1 and Fig. 13, the 
problem begins to get into focus and certain general trends are broadly discernible, but no very definite conclusions can 
be drawn except for pointed tips in general and delta wings in particular. These summaries do however show what will 
be the most profitable lines of research to illuminate quickly the whole subject, and recommendations are made to this 
end (see conclusions, section 9). 

1. Introduction.--In passing f rom subson ic  to  superson ic  f low t he  m o s t  i m p o r t a n t  wing 
p h e n o m e n o n  a f te r  t he  d r a g  rise is t he  r e a r w a r d  m o v e m e n t  of t he  a e r o d y n a m i c  cent re .  A t  some  
s t age  in t h e  t r a n s o n i c  passage  t h e r e  will u s u a l l y  b e  a m i x e d  f low at  t h e  su r face  w h e r e  shock  w a v e s  
s e p a r a t e  regions  of superson ic  a n d  subson ic  flow. This  h a r d  core  of t h e  t r a n s o n i c  p r o b l e m  is 
m e n t i o n e d  here  on ly  to  pass  i t  by .  L e a v i n g  it  ou t ,  t h e r e  is n o w  an a c c u m u l a t i o n  of l inear i sed  
p o t e n t i a l  t h e o r y  and  e x p e r i m e n t a l  d a t a  cove r ing  t h e  shockless  subson i c  and  supe r son ic  r6gimes.  
B u t  t h e  wing  shapes  t h a t  are  be ing  cons ide red  for  s eve ra l  t y p e s  of o p e r a t i o n  are  e x t r e m e l y  var ied ,  
t h e  m o d e l  d a t a  are  no t  a t  all s y s t e m a t i c ,  and  t h e  r e l e v a n t  supe r son ic  t h e o r y  is still n o t  gene ra l ly  
wel l  known .  C o n s e q u e n t l y  t he  p r o b l e m  of t h e  a e r o d y n a m i c  cen t r e  needs  to  b e  a s s e m b l e d  f r o m  
t h e  ex is t ing  f r agmen t s .  These  no t e s  a im a t  s u p p l y i n g  a f r a m e w o r k  w h i c h  will d i s p l a y  in an  

* Footnote, 1952. This survey was made in 1948. Apart from a few footnotes t~ indicate roughly the advances 
since made ill the subject, no attempt has beeI1 made to bring the paper up to date. 

t R.A.E. Report Aero. 2325, received 25th June, 1949. 
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orderly fashion what is known of the subject. They refer exclusively to shapes which are likely 
to come into common use, viz., those of which the half-plan is a trapezium or in the limit a triangle 
(Fig. 1). 

2. The Scope of Theory a~d Experime~fal Checks.--The linearised potential theory is available 
for this problem in three sections : 

(a) Iscompressible flozv.--As is well known, the solution can only be obtained by a laborious 
approximation in which the fiat surface at incidence, and the wake behind it, are 
replaced by a continuous or discontinuous distribution of vorticity. There is in fact 
a continuing debate about the quickest and the mathematical ly soundest way out of 
this impasse. The labour involved in these lifting-surface theories has hitherto precluded 
any serious a t tempt  to map systematic solutions over the variety of shapes involved. 
I t  is essential tha t  this should ult imately be done, and a method recently devised by 
Schlichting 1 promises when fully developed to provide a relatively rapid and reliable 
tool for this job*. 

(b) Compressible subsonic flow.--The G6thert development of the Prandtl-Glauert law 2 
yields a simple rule for deriving the aerodynamic centres of any number of shapes at 
various Mach numbers, once the incompressible solutions are known. The in- 
compressible aerodynamic centre of a given plan-form applies at Mach number M, 
to a plan form obtained by multiplying the lateral dimensions of tile original shape 
by the factor ( 1 -  M2) -I/~. The limits of application of this rule still need to be 
established experimentally, but it is clearly very useful as a rough guide in mapping 
the compressible field before the onset of shock waves. 

(c) Supersonic flow.---Puckett and Stewart, in two important  papers *,4 have given the 
pressure disiribution for conical flow over a delta wing of infinite extension. At 
about the same time Robinson 11 obtained tile same results by a different method. 
Puckett  and Stewart show how to derive from this the aerodynamic centres of all the 
shapes of Fig. 1 with pointed tipsy, provided tha t  the Mach angle is such that  the 
flow over tile finite wing remains conical. 

In the trapezoidal wing, the Mach cone springing from the tip leading edge makes 
the flow non-conical and considerably complicates the theory. I have not yet had an 
opportunity of examining the American work in progress on this by Cohen, Langerstrom 
and others. A crude approximation, based on the pointed tip solution in what is likely 
to be the most practical case, is suggested below to cover smallish taper ratios. 

tn  this summary of what is known in theory, it will be noticed that  the vital shock-wave gap 
occurs between (b) and (c). 

Puckett 's  and Stewart 's work can be used to provide a very compact framework for a supersonic 
survey (Fig. 6). But as mentioned above there is no correspondingly explicit subsonic solution, 
and as yet very little in the way of systematic approximate solutions. Hence in using this 
diagram for the subsonic theory, all tha t  can be done is to put in a few guiding lines and suggest 
what  should be the general trend of the curves if we knew them. 

When we come to fill in such a diagram with test data (Fig. 13), the situation is exactly 
reversed. There is a rather scattered collection of subsonic results which tend to cluster about 
those shapes, for instance the delta, the straight wing, and a few arrow-heads, on which m o d e l  
work has most concentrated. On the other hand, experimental support for the supersonic theory 
has hardly begun to appear. The only model check on pointed wings known to me gives excellent 
agreement. 

* Footnote, 1952. Schlichting's method has run into unexpected mathematical difficulties, but in the interval 
iVfulthopp 2 has approached the matter differently and his method is now coming into use. Garner 13 has recently given 
some critical discussion of the methods now being used. 

t Their calculation covers shapes (1) to (3) of Fig. 1, but it seems extensible in principle all the way to the reversed 
arrow-head. 
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3. The Choice of Parameters.--The aim of these notes being in effect to produce data sheets, 
the first step is to choose parameters which give the most compact and physically significant 
display. 

The shape of a trapezium is defined by three non-dimensional quantities. These might be, 
for instance, the angles ~o0 and o~1 of the leading and trailing edges and 1 the taper r a t io  (Fig. 2). 
The three in commonest use in aerodynamic work are: 

¢,, angle of sweep of the locus of points dividing the local chord in the ra t io  
• 1 -- ~. In  what follows, such a point will be called the mchord point; 

the quarter-chord point (n = 2) is a familiar appellation 

A aspect ratio 

,~ taper ratio. 

In the following analysis we use a new variable a defined as follows, see Fig. 2. The leading 
and trailing edges AP, BQ of the trapezium are produced to meet at C. Then a is the ratio of 
BD, the projection of BC on the central line, to AB the root chord, d is positive or negative 
according as C is downstream or upstream of B. The whole ___ oo range of d separates tile shapes 
in reference to flight into six classes--the arrow-head, the delta, the two lozenges, the reversed 
delta, and the reversed arrow-head*--as shown in Fig. 1. 

Pucket t  and Stewart use the less convenient parameter a, which is the ratio of the projections 
of BC, AC on the central line. I t  easily follows tha t  

a tan COo 
. . . . . . . . . .  (1 )  

a =  l + ~ = t a n c o ~  

The proofs of this and other formulae are given in Appendix I. 
For the second parameter we retain the taper ratio 1, and for the third we can use either 

aspect ratio A or sweep angle ¢,, The variables under discussion are connected by  the formula" 

1 - - t  
A tan ¢,~-- 4 y ~ - ~  (1 -- ~z + ~) . . . . . . . . .  (2) 

Hence if we fix a and t we get a family of shapes--as sketched for example in Fig. 3--for which 
the variation of A with tan ¢, is hyperbolic, large sweepback occurring with small aspect ratio 
and vice versa. 

The family for which ~ = ~ -  1 is distinguished by the fact tha t  its sweepback is zero, 
3 a family with no sweep of independent of A. Thus for example if n = -} we have at d -- 

the quarter-chord line, the familiar ' straight wing '  series. 
I t  may help to grasp the connection between a and sweepback to notice from (2) tha t  for 

family of shapes for which aspect ratio and taper ratio are fixed, d and tan ¢,~ increase together 
in a linear relation. 

The choice of what may seem at first the rather outlandish quant i ty  a as the main variable is 
made for two reasons" 

(a) The supersonic solution for pointed tips, in what is probably the most important  
operational case, namely when the Mach cone l ies outside the surface, shows tha t  the 
aerodynamic centre depends only on a ; and the variation is moreover approximately 
linear. 

(b) If, as in Fig. 3, one considers a family of shapes at constant a and 1, it is clear tha t  one 
member of the family can be derived from any other member by  multiplying its lateral 
dimensions by a constant factor. The compressible law of similarity (section 2 (b)) 

* In  this  nomencla ture  only the  del ta  is fully descriptive.  Arrow-head  and lozenge are  used because they  are roughly 
descr ipt ive  of t i le ~ classes to which they  refer when the  aspect  ra t io  is small,  i t  being necessary to have some such 
shor thand  in the  course of the  analysis.  
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can therefore be directly applied to such a family. I t  will appear in fact that  in the 
Prandtl-Glauert r6gime the speed factor can be combined with the variables already 
discussed, and it follows that  the aerodynamic centre is a function of 8, ,~ and /3A or 
tan ~,,//7, where /3 = %/(1 -- M2). 

The limitations of the framework of analysis indicated in equation (2) or Fig. 3 should be 
pointed out. I t  rests on the pointed-tip shape as prototype, and we may therefore expect that  
it would fail in practical application to shapes with very blunt tips. I t  is clear by considering 
equation (2) or the implications of Fig. 3 how the constant-chord swept wing slips through this 
net of classification. If ,~ = 1 and d is finite, then either A or ~ must be zero. Alternatively 
if ,1 ---- 1 and both A and qS,~ are finite (the general case of the constant-chord wing), then a must 
tend to oo. Wings of finite aspect ratio and sweepback which approximate to constant chord 
therefore retreat towards infinity on a d diagram. A separate analysis for the constant 
chord wing is used in section 8.3 below. 

4. Aerodynamic Centre on Simple Loading Assumptions.--The main scheme is then to plot 
aerodynamic centre position as a function of d, using additional parameters where necessary. 
I t  will be useful, as part of the framework of such a diagram, to indicate where the aerodynamic 
centre would be in simple cases of lift distribution. 

At the spanwise section ~ -- y/s let the local aerodynamic centre be at the n-chord point and 
let the spanwise loading* be f(~). The aerodynamic centre can then be found if n and f are 
known as functions of ~. Let us first suppose that  n is constant. 

With th~s assumption it is shown in Appendix I that  the distance of the aerodynamic centre 
behind the apex of the surface, in terms of the mean chord, is given by 

- . . . . .  (a) 

I t  is to be noted tha t  this is a linear function of 8. 

Two simple assumptions as to spanwise loading will be particularly useful. 

(a) If the spanwise loading is proportional to the chord, so tha t  f(~7) = 1 -- ~7(1 -- ,~), we 
have from (3) for the position of the ' mean geometric n-chord point ' 

h~ .... t,io= 1 + , {  n +  3( lq- ,1)  ( 1 - - n - F s )  . . . . .  (4) 

(b) If the spanwise loading is elliptic, so that  f(~7) = %/(1 -- ~),  we have for the position 
of the ' mean elliptic n-chord point ' 

2 { 4 t 
k,o ,,p.c - -  1 + z n + G (1 - -  - -  + . . . . . . .  (5) 

A good deal of use will be made of the reference points defined by (4) and (5) in what follows. 
For the present it may be noted that  

(i) The mean geometric quarter-chord point (n = ¼) is the familiar ' quarter-chord point ' 
which is commonly used as a datum for aerodynamic centre in subsonic flow, and the 
corresponding elliptic point is equally useful as a reference. 

(ii) It  might be expected that  the geometric and elliptic half-chord points would have an 
analogous use in sorting out supersonic results ; some refinements of this idea will be 
put  to practical use below. The geometric half-chord point is of course the centre 
of area. 

* The spanwise loading is defined as the ratio of the load per unit span at section ~ to the load per unit span at 
~7=0.  



5. Superson ic  Conical Solu t ion  f o r  Po in ted  T i p s . - - 5 . 1 .  Delta L i f t  D i s t r i b u t i o n . - - T h i s  section is 
based ent i rely on Pucke t t ' s  and Stewar t ' s  analysis 3, ~. There  are two r6gimes for conical flow over 
a del ta  wing. In  the  first the  Mach cone is outside the  wing surface ; in the second the  Mach 
cone intersects it. These will be called respect ively the  external  and the  in ternal  solution. 
If  coo is the semi-vert ical  angle of the  delta, and  ~ is the  Mach angle, the  speed pa rame te r  is 

k = tan  coo t an  

and  so for the  external  solution we have  k < 1 and  for the in ternal  solution k > 1. 

In  conical flow the  lift d is t r ibut ion depends only on the  angular  co-ordinate  co measured  from 
the  apex of the delta. 

The external solution is 

Ap 4 tan  2 coo 
~-q = E[~/(1  --  kS)]~/(tan ' coo --  t an  s co) . . . . . . . . .  (6) 

The in ternal  solutio~ is 

Ap _ 4 t an  coo [ 2 . -1 / ( t a n ' ~  --  t an  s co'~7 
aq - -  %/(k s -  1) " R 1 - - ~ s i n  ~ / L t ~ c ~  0 ~ } - a n ' ~ / _ ]  . . . .  (7) 

where  Ap pressure below wing minus  pressure above wing 

c~ incidence 

q dynamic  pressure 

E the  complete  elliptic integral  o f  the  second kind 

and  R signifies the  real par t  of the  function.  

W h e n  k------~ 1 the  in ternal  and  external  solutions coincide" 

A p  8 tan2 coo 
~q ~ W/( t an '  coo --  t an '  co) . . . . . . . . . . .  (8) 

5.2. Speed  L i m i t s  f o r  Conical Solu t ions  over F in i t e  W i n g s . - - T h e s e  solutions can be applied to 
all the  finite shapes of Fig. 1 so long as the  presence of the  t rai l ing edge does not  affect tile flow 
over  the  wing. Geometr ical ly  this means  t ha t  the Mach cones springing from the  t ip and  the  
rear  end of the  root  chord mus t  not  cut  the  wing. This imposes speed limits for which  each 
solution is valid for any  given shape. These m a y  be summarised,  in terms of Mach angle/~, in 
the  following table, which  refers to Fig. 4 : -  

Arrow-head  ~ > o)1 co1 > ~ > coo coo > l* > 0 
co1 < ~/2 

rear  cone external  in terna l  
cuts  wing solution solution 

Lozenge 1 ~ > zc - -  ~1 .~ - -  ~ > I~ > coo COo > I~ > 0 
co1 > ~/2 

t ip cone external  in terna l  
cuts wing solution solution 

- -  CO 1 ~ CO O 

Lozenge 2 t~ > ~ - -  co1 :~ - -  co~ > I~ > 0 
~ol > ~/2  

tip cone no external  in terna l  
cuts  wing solution ,solution. 

~ 0 ) i  " ~  COO 
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~: I t  will be found  t h a t  the  limits for the  external  solution where  it exists are given by  

1 ~< k ~- l a I o r  (9) 

since the  upper  l imit  for/~ is 0), or a - -  o ) 1 ,  whichever  is less t h a n  ~/2. 

I t  follows tha t  if Mm~n, M .... are the  l imits of Mach n u m b e r  for the  external  solution at  a given 0, 
then  

This relat ion is p lo t ted  in Fig. 5. 
a rhombus ,  d = --  1 -2-. 

1/= (lO) . ° . . . .  • • ° 

The external  solution ceases to exist when  the  shape becomes 

5.3. Aerodynamic Centre.--H, the  dis tance of the  ae rodynamic  centre  behind  the  apex, d ivided 
by  the  mean  chord, is obta ined  by  in tegra t ing  the  pressures from (6) and (7) over  the  surface, 
the  general  formula  being 

H = f f Apr cos o) . r dr do) 

where  r, oo are polar co-ordinates f rom the  apex and g is the  mean  chord. 

The  internal solution obta ined  by  Pucke t t  and Stewar t  f rom equat ion (7) is a funct ion of a 
and  k: 

~ H  = (1 - -  a ~ ) ( 1  - -  a~/h~) 3/~ + (1 - -  a~ ) (1  - -  1/k~) I/~ + k ~ -  a ~ . .  ( 1 1 )  

c o s - l ( -  ~) a cos-~(~)  

(1 - a~/k~) 1/~ + (1 - 1/k~) 'j~ 
This is val id  for k ~> 1. 

For  the  external solution we note  from (6) t h a t  as the  speed t e rm occurs as a factor of Ap, the  
ae rodynamic  centre  mus t  be independen t  of k and a funct ion of a only. Bu t  the  external  and 
in ternal  solutions coincide at k = 1. Hence  t h e  external  solution is obta ined  from (11) by  
le t t ing k--+ 1. This gives for the  external solution: 

cos -~ ( -  a) 
a(4 --  a 2) -t- (2 + a 2) V'(1 --  aS) - . .  . (12) 

~-H . . . . . . . .  _ COS-1%~).] 
(1 a~)[ a +  V(1 

for which the  range of va l id i ty  is 
1 ~< k ~< faI. 

5.4. Numerical  Results for  Aerodynamic Centre.--The computa t ion  of Ref. 3 covers the range 
0 .8  in a, or 4 to --  0 .45 in ~ ; t ha t  is, f rom the  nar row arrow-head almost  to the  rhombus .  

The  external  and in terna l  solutions are p lo t ted  together  on a ~ base wi th  k as pa rame te r  in 
Fig. 6. The single curve for the  external  solution is t aken  from Table  1 of Ref. 3 and  is fairly 
accura te ;  the  family of curves for the  in terna l  solution are t aken  from a small d iagram (Fig. 16 
of Ref. 3) and are much  less accurate .  

The following points should be n o t e d :  

(a) The exte_rnal curve has small  curvature .  This will be e laborated below. 
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(b) For arrow-heads the aerodynamic centre is furthest back for external flow and moves 
forward as the speed increases through the internal flow r6gime. Tile situation is 
reversed for lozenges. 

(c) For arrow-heads the forward movement of aerodynamic centre is greatest when the 
Mach cone enters the surface. I t  slows down as speed increases, and the variation 
has apparently ceased when k = 2.5. 

(d) The curves all intersect at ~ ---- 0. This emphasises the central position of the delta in 
the development of the theory. The aerodynamic centre of a delta wing is at its centre 
of area for all supersonic speeds. 

In order to relate this diagram more clearly to the shapes involved and the actual position of 
the aerodynamic centre in plan, sketches have been added of typical shapes at ~ = 4, 2, 0.5 
(arrow-head); ~ = 0 (delta); and ~ = -- 0.25 (lozenge). At each value of ~, two sketches are 
shown, giving the flow conditions for the external and internal r~,gimes. On these are marked 
P the (constant) aerodynamic centre for external flow, and P2 the aerodynamic centre at k = 2 

f o r  internal flow. The difference between P and P2 at any ~ gives a clear idea of the total  shift 
in aerodynamic centre at supersonic speeds in relation to the general shape of the wing. 

I t  will be realised of course that  the shape sketched at any value of ~ is only one of a family 
of shapes thereby defined (see Fig. 3). 

5.5. Ap~broximations to the External Solution.--Current opinion seems to be settling in favour 
of designing a supersonic wing with so much sweepback that  it operates with conical flow inside 
the Mach cone. The argument that  this minimises the wave drag while retaining a high value 
of the lift slope probably outweighs the penalty noted above tha t  the aerodynamic centre is in 
general furthest back in this r6gime. We may therefore concentrate on t h e  simple external 
solution. 

In Fig. 7 the external solution is plotted with the straight lines (obtained from equations 
(4), (5)), representing the mean geometric half-chord point and the mean elliptic half-chord point. 
The geometric half-chord line intersects the exact solution at d ---- 0, as it must do since the 
delta's aerodynamic centre is its centre of area; but  for arrow-heads the aerodynamic centre is 
always to the rear of the geometric half-chord point. On the other hand the elliptic half-chord 
line is a rough first approximation to the internal solution : its slope 8/3= is in fact the slope of the 
external solution at ~ = 0. 

We can get a closer linear approximation to tile external solution by assuming an elliptic 
spanwise lift distribution and choosing the best value n of the chordwise loading point. The 
straight line AB, with n = 0.45, is a fair approximation between ~ = -- 0.5 and 1.5. The 
straight line CD, with n = 0.61, is a rougher approximation between $ = 1.5 and 4. This 
means tha t  wings between d = -- 0.5 and 1.5 behave on the whole as if they were elliptically 
loaded at the 0-45-chord point, and between d = 1.5 and 4 as if they were elliptically loaded 
at the 0.61-chord point. 

To give a preliminary idea of the position of the subsonic aerodynamic centre for pointed tips, 
plots of the mean geometric and elliptic quarter-chord points are shown on this diagram. 

5.6. Spanwise and Chordwise Lift Distribution for the External Solution.---Equation (6) gives 
the lift distribution on lines radiating from the apex, but  for practical purposes the spanwise and 
chordwise distributions are required; this moreover will throw some further light on the analysis 
of section 5.5. Using equation (6)we can express the spanwise loadingf  and the local aerodynamic 
centre nz (see section 4) as functions of the dimensionless spanwise co-ordinate ~. Details of these 
integrations are given in the Appendix II. The results are: 

f = - + - • . . . . . . . . . . .  ( 1 3 )  

~"----½-÷ 2(1---;~};~/[1 ÷20~--(1-[-23)~j  " l °g  , ~ . . . . . . . . .  [ 1 ~  J 2(1--~) " (14) 

7 



These formulae, which are p lo t ted  in Figs. 8 and 9, show tha t  

(a) The delta is elliptically loaded but  its local aerodynamic centre is on the  whole further  
forward than  half-chord. 

(b) As ~ increases from zero the  spanwise loading becomes super-elliptic (very marked ly  
so for the  narrow arrow-heads);  while the  local aerodynamic centre moves on the  
whole strongly forward. These contrary tendencies produce a mean  aerodynamic  
centre, over the whole range of ~, which is not  far removed  from the  mean  elliptic 
half-chord point  (Fig. 7). For a fuller discussion see Appendix  II.  

5.7. Experimental Check on Supersonic Theory.--Unfortunately no supersonic model  tests on 
pointed  arrow-heads seem to have  been published. The only relevant  data  known to me  is in 
Ref. 5 where Squire summarises some G6tt ingen tests on the  lozenge COo = 33 deg, ~ 1 

- -  4 J  

a = --  !3 at M = 1.20, 1.45, 1.99. This is case B of the  report', case A gives non-conical  flow. 
Theoret ical  and exper imental  values of aerodynamic  centre H and lift slope dCt/dc~ are given 
below" 

Lozenge o)o - 33 deg, ~ = --  ~,1 a --  a.1 

M 

1.20 
1.45 
1.99 

k 

0"44 
0"70 
1.15 

Type of 
solution 

external 
external 
internal 

theory 

1.12 
1.12 

slightly less 
than 1.12 

H 
experiment 

1 "10 
1 "10 
1 "10 

theory 

3"31 
2" 89 
2 '20 

dC~ 'dc~ 
experiment 

3.05 
2.81 
2.11 

This shows very  good agreement  on aerodynamic centre and 5 per cent to 10 per cent  
discrepancy on lift slope. 

6. Supersonic Aerodynamic Centre for Blunt T/ps . - -When  pointed tips are cut off parallel to 
the  centre-line tile theory  becomes much more difficult because it must  take  account of the  
Mach cone springing from the  tip leading edge, which now cuts the  wing. Work  has apparent ly  
been done on these tip corrections by  Cohen, Langers t rom and others in America, but  their  
theories have not  yet  reached me. We may  perhaps make  a very rough shot at  a general t rend 
by  assuming tha t  the  linear approximat ion of section 5.5 to the  external  solution for pointed tips 
(4 = 0), applies also to finite values of 4. This amounts  to suggesting tha t  when pointed tips 
are cut off, the  aerodynamic centre remains approximate ly  at the  elliptic 0 .45-point  in the  range 

1 2 < 8 < 1.5, and in the neighbourhood of the  elliptic 0"61-point  in the  range 1-5 < ~ < 4. 
Pu t t ing  n = 0.45 and 0-61 in equat ion (5), this gives : - -  

1"37 --  0.474 1 --  4 
1 H =  1 + 4  + 0 - 8 5 ~  ~, 2 < 3 < 1 . 5  

1.55--0.334 1 - - 4  
= + 0-85 r ~ - ~  ~,  1 . 5 < ~ < 4  1 + 4  l - ~ - z  

(is) 

The speed limits would be the  same as for pointed tips. 

The straight  lines (15) are p lo t ted  in Fig. 10 up to 4 = 3 ?2" 

7. Subsonic Shockless Compressible Flow (Theory).--7.1. GSthert's Similarity Law.--G6thert's 
three-dimensional  ext.ensiQ_n of the  Prandt l -Glauer t  l~w (see for instance Ref. 6) shows tha t  tile 
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non-compressible aerodynamic centre for any wing applies also to flow at Mach number M if the 
lateral dimensions are multiplied by 1/B, where /~ = V'(1 -- M2). Thus if A, A0 are the aspect 
ratios of the compressible and incompressible wing we have 

and similarly, as regards sweepback 

A0 
A - -  

B '  
. . . . . . . .  (16) 

t a n ¢ =  Btan¢0  

Now it has already been pointed out (see Fig. 3) that  if ~. and ~ are constant, the family of 
shapes are derived by  this law of lateral dimensions. I t  follows from (16) tha t  at given d and ,1 
the aerodynamic centre is a function of BA only, or alternatively of tan ¢/B. Thus within the 
limits of this theory, we can suppress the speed an an independent variable and say tha t  tile 
aerodynamic centre is a function only of d, ,1 and BA (or tan S/B). 

Hence if ,1 is fixed we can theoretically show the whole variation of aerodynamic centre in this 
r6gime by  plotting curves of constant BA on the H, d diagram, and these curves can be constructed 
entirely from incompressible solutions. There is here a wide field for theoretical work which 
urgently needs working on. To show the lack of systematic work of this nature, there is nothing 
to put  on the pointed-tip diagram of Fig. 7 except some calculations by  De Young 7 using 
Weissinger's method, which itself is suspect because it ignores the downwash singularity at tile 
centre of a kinked vortex line. Tile result shown is a mean of curves for ¢?A = 2-5 and 4.5, 
which are almost indistinguishable on the H scale used. I t  should be noted tha t  the calculated 
curve, for what it is worth, lies between the elliptic and geometric quarter-chord lines. 

7.2. Variation with A@ect Ratio.--Although the subsonic region of tile aerodynamic-centre 
diagram plotted on a d base cannot yet  be filled in from theory, we can get some idea of the 
trend of the variations with A at constant d, ,~ by  considering the limits of large and small aspect 
ratio. 

(a) Large as2bect ratio.---Consider the shape reached in a ~, ,1 family such as tha t  of Fig. 3 when 
the span is extended towards infinity. I t  is important  to notice tha t  in proceeding to A --+ oo 
in this way we are working at constant taper ratio ~, and not as is more usual at constant chord. 
When tile span gets very large it can be divided spanwise into a series of elements, of large span, 
each of which is effectively a piece of a two-dimensional wing, of small sweepback, whose chord 
is the mean chord df tile large spanwise section considered. Tile local aerodynamic centre of 
this large element must therefore be at tile quarter-chord point, and summing for all such elements 
it follows tha t  the aerodynamic centre of the whole wing tends to the mean geometric quarter- 
chord point as A - +  oo. 

The geometrical quarter-chord line for given ,1 is therefore very useful on the &diagram in giving 
at each point the limiting position of the aerodynamic centre of the d, ,1 family as A --+ oo. The 
formula is 

1 { ( 1 -  ,1)(1 + 2Jl) ! 
HA > ~ - - 2 ( 1 + i ) , 1 +  (1 + , l )  (1 + .~d) ,  . . . . . . .  (17) 

(b) Small a@ect ratio.--R. T. Jones' theory of the slender pointed aerofoiY gives at once the 
position of the aerodynamic centre for all the shapes we are considering, except the arrow-heads, 
as A - + 0 .  

His solution for the pressure distribution of a slender delta (see Fig. l la )  may be written 

A__~ : 4 tan 2 COo 
~q 1/(  tan2 ~ ' o -  tan '  co) . . . . . . . . . . .  (18) 

~0 being small. 
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This agrees with the external supersonic solution (6) if o~0 is small and/~ is finite, for then 
k--+0 and E[~/(1 -- k2)l -+  1. 

The speed range for which (18) is valid is i nd i ca t edby  Jones' general argument. He shows 
that  if $ is the velocity potential of a slender delta moving in the x-direction, then O2$/Ox~ is 
small compared with O~$/Oy~ and O~$/~z ~. Thus, considering the general linearised equation 

(1 

Jones' theory amounts to neglecting (1 --M2)O~$/~x ~ in comparison with the other terms, 
and hence is valid for all speeds until  M becomes so large tha t  the term above ceases to be 
negligible. 

Jones thus shows that  the aerodynamic centre of a slender delta is at its centre of area for 
all speeds, subsonic and supersonic, and thus confirms the supersonic theory in the limit A --+ 0. 

We may sum up by  saying of deltas that  if the aspect ratio is large the aerodynamic centre 
starts in the neighbourhood of half the root chord at slow speeds, moves back in the subsonic 
region until  shock waves occur, and settles down at the centre of area at supersonic speeds. But if 
the aspect ratio is small enough the aerodynamic centre starts at the centre of area and remains 
there:  the slender delta goes through unchanged. 

Jones extends his theory from the delta to the pointed lozenge (Fig. 1 lb) and the blunted 
lozenge (Fig. 1 lc) by  arguing tha t  the surface to the rear of the forward triangle contributes no 
lift. His reasoning is not perhaps completely convincing, but  if it is accepted the aerodynamic 
centre of Figs. l l a ,  l l b  and l l c  remains at P. I t  is simple geometry to show from this tha t  
H for the blunted lozenge O, 2, A tends to the limit 

4 1 - - ~  
HA )o = ,~ 1 @ ~(1 -t- ~) . . . . . . . . . . . . . .  (19) 

a s A - - + 0 .  This is valid for -- 1 < ~ ~<0. 

For the pointed lozenge (,~ = 0) we have simply 

HA > 0 =  + . . . . . . . . . . . . . . .  (2O) 

This straight line for the pointed lozenge, which of course cuts the external supersonic solution 
at ~ = 0, is plotted in Fig. 7. So far as it goes, it gives the aerodynamic centre of pointed lozenges 
which are so slender that  they go through the speed of sound without aerodynamic-centre move- 
ment. I t  is not difficult to show why this ' no-change ' line differs, except at ~ = 0, from the 
external supersonic solution. This arises because of the speed range carried by each point of the 
external supersonic solution. As already pointed out, the Mach angle for an arrow-head must 
lie between o~0 and COl, and there is a similar condition for lozenges. Thus for all these shapes 
M must tend to oo as A ~ 0. The delta is the only shape for which the speed range of the external 
supersonic solution remains finite as A - ~  0. 

(c) Comparison of the two l imits . - -In Fig. 12, HA--9 o and HA ~ ~ are plotted together from 
equations (17), (19) in the negative ~ range for which they are both known, with )t -- 0, ~ 1 3 ?2, g ,  ?2" 

This diagram shows tha t  the direction of the total  movement of aerodynamic centre as A goes 
from oz to 0 depends on the taper ratio. In the case of deltas, for example, it is rearward for 
pointed tips, zero at a value of 2 slightly exceeding 1, and forward for more blunted tips. For 
straight wings the change is always forward. 

I t  is unfortunate tha t  this diagram cannot be extended to the arrowheads (~ > 0) because 
Jones' theory does not at present cover the slender arrow-head (Fig. 1 ld). The calculation is a 
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difficult one, but is of such intrinsic interest t h a t  it is being attempted*. I t  can be predicted 
however that  the no-change line for pointed arrow-heads--the unknown continuation of PQ of 
Fig. 7 at positive S--will lie wholly above the external solution, since it can only cut the latter at Q. 

8. Subsonic Experimental Data.--The model results available for examination within the 
framework developed here are drawn from the British, American and German sources of Refs. 
E1 to El7.  They are tabulated in Tables 1 and  2 and plotted in Figs. 13 and 14. Table 1 and 
Fig. 13 for tapered wings cover a range of ~ from -- ~ (zero quarter-chord sweepback) to about 2, 
corresponding to fairly narrow arrow-heads. Table 2 and Fig. 14 display the special case of un- 
tapered wings which do not conveniently fit in to the general framework (~--> oo). 

8.1. Tapered Wings, Table 1.--The tests comprise sporadic studies, from various angles and 
with various objects, of novel plan-forms as they were suggested by the developing problem of 
high-speed flight. Thus no general systematisation can be expected. The work was done mainly 
at low speed and smallish Reynolds number ; the aerodynamic centre is derived from the pitching- 
moment slope between CL ---- 0 and 0! 2. When high-speed tests are used, the results quoted are 
for values of M well below any sharp change in drag or pitching moment slope. Table 1 gives 
the experimental parameters in the form suggested by this analysis, and ends by comparing 
the measured aerodynamic centre Hsubsonio with three other points • 

(a) The mean geometric quarter-chord point. This is the commonly used aerodynamic 
datum in subsonic analysis. I t  is usual to work with ho the distance of the aerodynamic 
'centre behind the nose of the mean chord, h0 is obtained by adding 0-25 to the 
difference between Hsubso~o and the quarter-chord point. 

(b) The mean elliptic quarter-chord point, which is another common landmark in subsonic 
surveys of this nature. 

(c) The mean elliptic 0.45-point. This can be called the supersonic aerodynamic centre 
(H~,p ..... io) if the reservations discussed in section 6 are again emphasised. I t  is a good 
approximation to the external supersonic solution for pointed tips (4 = 0) if ~ lies 
between - -½ and 1½. There is some experimental support for identifying it with 
the aerodynamic centre at 1----½, but its general application to blunt tips is only 
suggest:ed as a rough guide. 

The last column of the tables gives with these reservations the difference between the theoretical 
H~npo~_~o~ as defined above and the measured H~ub~o,jo. This transonic movement of the aerodynamic 
centre has been starred where, for t ---- 0, it is firmly grounded" for other values of ~ it is subject 
to the reservations of section 6. 

8.2. Tapered Wings, Fig. 13.--The material of Table 1, which assembles the experimental 
values of H~b,o~io ---- F(~, 4, /~A) should properly be analysed by isolating each variable in turn. 
For example it is important  to know the nature of the variation of H~ub~o~io with SA at constant 
~, 4. The bag is so mixed however, that  it seems best in this preliminary survey to plot all the 
results on one ~ diagram, adding a framework which will help to elucidate the general trends 
of what can be deduced. This has been done in Fig. 13, where the values of $A and t for each 
experimental point are tabulated. 

8.2.1. Framework of the diagram.--As a frame of reference the straight-line plots of the three 
points discussed in section 8.1 are drawn for four values of i :--0, }, ½, ~. Before studying the 
picture in detail these four triads of reference lines should be clearly distinguished and their 
significance noted. 

Consider for instance the framework for 2. ---- 0, where the interpretation is most firmly grounded. 
The uppermost chain-dotted line (elliptic 0.45 point) is seen to be a fair approximation to the 
external supersonic solution, H, upo .... ~. The lower full line (geometric quarter-point) is the limit 
of H~b~onio for large aspect ratio. Let us note what happens when a given wing, designed to 

* Footnote, 1952. The solution has since been obtained by Mangler 14. 

11 



operate at an ' ex terna l '  supersonic speed, goes through to its operational speed. At low speed 
the aerodynamic centre will be somewhat aft of the geometric quarter-point and will move back 
until  at some value of/3, determined by the combination of sweepback and section characteristics, 
shock waves appear and the/3A law breaks down. This r6gime will be followed*, when M > 1, 
by  a supersonic non-conical r6gime of which the solution is not known to me (~ > ~i). And 
finally, when # < ~1 we arrive at the external supersonic r6gime represented roughly, for a 
considerable range of speeds, by  the elliptic 0.45-point. 

I t  is possible of course tha t  the aerodynamic centre may temporarily recede beyond the elliptic 
0.45-point in the shock-wave r6gime or the following non-conical r6gime. Remembering this 
reservation, it may be said that  for 2 ---- 0 the boundaries of the reference triad define a transonic 
band which gives the maximum difference between the positions of the aerodynamic centre at 
operational speed and at landing. The transonic band diverges markedly with increasing ~, 
and so a penalty in the use of pronounced pointed arrow-heads is indicated. 

If the same argument is used for blunt types (i = }, ½, etc.) it is noted that  the two subsonic 
reference lines tend to coincide, and so the transonic band narrows qualitatively to the parallel 
one of depth 0.9. between the elliptic 0.45 and quarter-points. This would mean tha t  for taper 
ratios greater than about } we have at most a transonic band of about 0.2 to face, independent 
of ~. This conclusion would however be  very rash without further confirmation than is given 
in section 6 tha t  the supersonic aerodynamic centre remains in the neighbourhood of the elliptic 
0.45-point for moderate values of taper ratio. 

8.2.2. Trends of the model resu l t s . - -A  glance at the disposition of points on the diagram shows 
where experimental interest has concentrated. Deltas and blunted deltas (~ = 0) are heavily 
represented ; work on blunt arrow-heads gives points strung out mainly on the subsonic reference 
lines for 2 ---- } and ½; and there is some scattered work on the straight wing (zero quarter-chord 
sweepback, ~ ---- -- }). 

(a) Deltas and blunted deltas (poi~#s 20 [o 34).--Points 20 to 26, for 1 = 0, are the only 
systematic group on the diagram, though they are not all from the same experiment. They 
show a fairly consistent backward movement as /3A decreases from 4 to 1, and indicate the 
large reduction in transonic shift which follows the use of small aspect ratio. 

Points 27 to 34, for blunted deltas, have ~ varying from 0.12 to 0"50 and /3A from 1"33 to 
6-0 .  Subdivisions are points 27 to 29 with i about 0.13, and points 30 to 32 with 1 about 0.25. 
The t, /3A grouping is too scattered to sort out the variation. 

(b) Blunted arrow-heads (poi~#s 35 to 52).--These cover a range of ~ from about 0.3 to 2.4. 

Points 35, 39, 42, 43, 47 are with one exception at 2 ---- 0.25;  A varies from 3 to 5. 

Points 36 to 38, 40, 44, 45, 48 to 52 are at 2 ---- 0.5 with SA varyi.ng from 2" 25 to 6. There 
are three pairs of points (36, 37), (44, 45), (48, 49] for which /3A vanes at constant values of 
and t. 

Most of these results show the aerodynamic centre to be well behind the mean geometric 
quarter-chord point. 

(c) ' S traight '  wi~cgs ($m ~ O. ~ -~ - -  -~). Points 3 to 15.--In this scattered group, ~ ranges 
from 0 to 0.625 and [3A from 3 to 12. 

Two subdivisions can be noticed: 

(i) Points 4 to 8, at 2 = 0.2, with /3A between 10 and 12. 

(if) Points 10 to 13, at ~ ---- 0.5, with ~A between 3 and 6. 

In  neither sub-group are the values numerous or consistent enough to sort out the variation of 
H with/3A. 

* Except for deltas, where the external supersonic r6gime starts at M = 1. 

12  



8.2.3. Blanks on the rnap.--It is clear enough tha t  blanks predominate on the map of Fig. 13, 
and tha t  further exploration concentrated on establishing the variation of Hsuu~oD~o with /?A at a 
few significant values of a, ~ will be of more value than any amount of sporadic work dotted 
about the diagram. 

I t  is proposed tha t  a minimum programme should aim at reinforcing the delta work, and should 
investigate arrow-heads at two values of a, ~ and 1½. In each case two taper families should be 
explored, ~ = 0 and ½, over at least 3 values of ~A, in the range 1 to 6. 

These ranges summarise as" 

0, La½ 
z 0,½ 

/3A three values in range 1 to 6, 

a total  of 18 wings which should be studied both theoretically and experimentally at low speed 
(~ ~- 1). There are obvious advantages in having the experimental work done if possible in one 
tunnel, and the theoretical work by one method. 

8.3. Untapered Wings.--In analysing the untapered wing results (a = 1) we use, instead of a, 
the ratio to the chord of the central projection of the semi-trailing-edge; this is called ~, (see 
inset Fig. 14). This gives the simple relation" 

A tan $ = 2~ . . . . . . . . . . .  (21) 

Thus Hs~b~o~c may be regarded as a function of ~ and fiA or tan 6//~. 

The results are shown in Table 2 and Fig. 14, which are analogous to Table 1 and Fig. 13 
except as follows : 

(a) All the experimental results are for low speed (/~ -'- 1). 

(b) No suggestion is made as to the supersonic aerodynamic centre, since any argument from 
pointed tips is certainly inapplicable here. 

(c) Two series of calculations have been included: 

(i) Wieghardt 's  analysis 9 of rectangular wings of small aspect ratio. 

(ii) Falkner 's  calculations (El4) in the ranges ~ = 0 to 3, A = 1 to 6. 

8.3.1. Discussion of Fig. 14.--(a) The numerous results for rectangular wings (~ = 0) are not 
shown on the main diagram, but are plotted against A in the figure inset, where Wieghardt 's 
theoretical curve is exhibited with the experimental results and Falkner 's calculations. The 
tendency for the aerodynamic centre to move forward from the quarter-chord point towards the 
leading edge as the aspect ratio decreases is very well established, although its physical 
significance is obscure. These and allied questions will be more fully discussed in a forthcoming 
paper by  Thomas 1°. 

(b) A first glance at the disposition of points on the main diagram would suggest a general 
trend to cross first the elliptic quarter-chord line and then the geometric quarter-chord line as 

increases. This however is of doubtful significance as it ignores the large variation (1 to 6) in 
aspect ratio. When the points are considered in more detail, there are few clues to the variation 
with aspect ratio at any value of ~, other than zero. We conclude, as in the discussion of Fig. 13, 
tha t  what  is wanted is a cross-section of results from theory and experiment, over the range 
A --= 1 to 6, for at least two values of ),, say 1 and 2. 
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(ii)* Extension of R. T. 
A small). 

9. Conclusions.--(a) The choice of 0 as the main parameter in sorting out what is known of 
the transonic shockless shift of aerodynamic centre appears to justify itself on the following 
grounds • 

(i) It  gives a t idy classification of the various trapezoidal and triangular half plan-forms 
which are candidates for transonic operation. 

(ii) On the supersonic side it simplifies the theoretical results for conical flow. 

(iii) On the subsonic side it permits direct application of the compressible similarity law, 
and so eliminates the speed as an independent variable. 

(iv) I t  leads to a display of the fragmentary data of the subject (see Fig. 13) which, while 
as yet very incomplete, gives a coherent view of what is known and in what direction 
research should proceed. 

(b) The aim of these notes has been to establish a framework within which theoretical and 
experimental data can be clearly assessed. For various reasons the blanks on the map are at 
present such that  broad practical conclusions must be tentative. The supersonic limit of aero- 
dynamic centre is well established theoretically for pointed tips. American theoretical work 
on the effect of blunting the tips has not yet been examined, but a rough rule is suggested here. 
On the subsonic side there is very little systematic theoretical data, and the model results, though 
fairly numerous, lack fruitful correlation except in two corners of the field, the deltas and the 
rectangular wings. 

(c) Tentative conclusions as to transonic movement are as follows • 

(i) If a wing with pointed tips is designed to operate supersonically in the external conical 
rfgime, its supersonic aerodynamic centre is approximately at the elliptic 0.45-point ; 
whereas its aerodynamic centre at slow speed will not be further forward than the 
geometric 0.25-point. The difference between these points therefore gives the upper 
limit of transonic movement, ignoring what happens between the appearance of shock 
waves and the establishment of the conical flow. On the 0-diagram this gives a 
transonic band which diverges as 0 increases. Its depth is about 0.23 for straight 
wings, 0 .36 for deltas, and 0.56 for the arrow-head family 0 = 1 (Fig. 13). 

(ii) If it is assumed that  the effect of bluntiug the tips is to leave the supersonic aerodynamic 
centre in the neighbourhood of the elliptic 0.45-point the transonic band, as defined 
above, becomes roughly of depth 0.2, independent of 0, for taper ratios exceeding 0.25. 
The optimistic conclusion tha t  we can by blunting tile tips confine the transonic 
movement to about 0.2 for any wing cannot however be accepted without further 
experimental support. Study of theoretical American work in progress will no doubt 
elucidate the matter. 

(d) Emphasis must be laid on the need for filling up the picture in the following directions" 

(i)* Systematic subsonic theoretical and model data to establish the variation of H with /3A 
for a few typical values of 0 and ,t. A short programme which would throw much 
light on the whole matter  would comprise the following ranges (see section 8.2.2) : - -  

0 

0, 1 

3 values in range 1 to 6 

Jones' theory to calculate H for slender arrowheads (0 positive, 

A cknowledgements.--I am much indebted to H. H. B. M. Thomas for helpful discussions in the 
course of this work, particularly as to the details of Appendix II  ; and to Mrs. Collingbourne and 
Miss Ward for assembling and displaying the experimental data. 

* Footnote, 1952. Surveys similar to that  suggested in (i) are n o w  in progress. The solution of (ii) is now known.  

14  



LIST OF SYMBOLS 

The notation is mainly defined in the diagrams, as follows" 

Figs. 1 and 2. cr, ~, a, n, ~, co0, col, 4, 

Fig. 14. 

Fig. 15. x , y , s , s '  

Fig. 16. Xo, x l ,  o~ 

In addition the following may be noted : - -  

H 

= y / s  

n-chord point 

Mean geometric In-chord point elliptic / 

hgeometric hellip:ie } 
# 

k 

Distance of aerodynamic centre behind the apex, divided 
by the mean chord 

Non-dimensional lateral co-ordinate 

Spanwise loading; lift per unit  span at ~ divided by lift 
per unit span at ~ = 0 

Point dividing chord in ratio n : 1 -- n 

Aerodynamic centre when the local aerodynamic centre is 
constant at n and the spanwise loading is geometric / 

elliptic 

Distance of mean geometric 1 n-chord point behind apex, 
elliptic J divided by mean chord 

Mach angle 

tan mo 
tan 

~ X t a l l  co o 

~o Angular co-ordinate from apex 

= - M 

A Aspect ratio 

Taper ratio ( tip chord '~ 
\ root  chord/ 
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APPENDIX I 

Geometrical Relations (see Fig. 15) 

1. Relations between a, 8, COo, ~ l . - - I t  fol lows f r o m  the  def in i t ions  of a, ~ t h a t  

a - - l +  ~ 

a n d  f r o m  t h e  g e o m e t r y  of Fig.  15 t h a t  

s '  = A D  t a n  ~o ---- a .  A D  t a n  % 
H e n c e  

t a n  ~o0 
a - 1  + ~ - - t a n  o>1 . . . . . . . . .  " . .  (1) 

2. Aspect Ratio and Sweepback.--I f  ~ is t h e  m e a n  chord ,  we  h a v e  A = 2s/g a n d  ~/c, = (1 + ~)/2. 

H e n c e  
4 s 4 s s '  

A --  1 q- ,1 c-; = 1--~-~ 3" c-7" 
_But 

s B R  A B  - -  Q R  

s'--BC-- AB -- 1--2 
f r o m  s imi la r  t r iangles .  

Also f r o m  t r i ang le  COD, 

s '  = OD cot  4 .  = (1 - -  n + ~)c, co t  ¢.  
o r  

s '  
c, - (1 - n + 8) cot  4 , .  

S u b s t i t u t i n g  for  s/s' a n d  s'/c, in t h e  exp re s s ion  for  A we h a v e  

A t a n  6 , = 4 ~ ( 1 - - n + ~ ) ,  . . . . . . . .  . .  (2) 

¢ ,  be ing  m e a s u r e d  f r o m  t h e  n - c h o r d  po in t .  

I t  fol lows f r o m  (2) t h a t  ¢ ,  van i shes  w h e n  8 = n - -  1. F o r  e x a m p l e ,  wings  w i t h  no s w e e p b a c k  
of t h e  q u a r t e r - c h o r d  l ine c o r r e s p o n d  to  8 = 3 

3. Formulae for  Mean n-chord Po in t s . - -Assume  

(a) t h e  local  a e r o d y n a m i c  cen t r e  is a t  t h e  ~ - c h o r d  p o i n t  a t  eve ry  sec t ion  

(b) t h e  spanwi se  l oad  L is Lof(~),  w h e r e  Lo is t h e  lift  p e r  u n i t  s p a n  a t  t h e  cen t r e  a n d  
,~ = y/s.  

T h e  lift  p e r  u n i t  s p a n  a t  sec t ion  H K  is t h e r e f o r e  Lof(r~) a n d  acts  a t  P. 

T h e n  if 2 is t h e  d i s t a n c e  of t h e  a e r o d y n a m i c  cen t r e  b e h i n d  0 we h a v e  

.(; xf(~) dy /i y t a n  ¢.f(~)d.y 

- =  s t a n  ¢ , ,  ff(v) d~ - A - - - - - -  - - -  • 
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]gut from the geometry of section 2 

1 - - 4  
s t a n ¢ .  = 2 1 ~  (1 -- n + 0)e. 

Hence 

2 1 - 4 " f l~f( ' )  
~- -  f - @ ~ ( 1 - - n  q - O ) ~  f(~) dv 

Finally if h is the distance of the aerodynamic centre behind the apex A, in terms of the mean 
chord, we have : 

2 / 
h - - - - l + 4  n + ( 1 - - 4 ) ( 1 - - n - l - ~ )  f (3) 

4. App l i ca t ions .  (a) M e a n  
be the datum in aerodynamic 

geometric n-chord~point~-r-In this case, which is usually taken to 
centre analysis, the span load is proportional to the chord, i.e., 

f (~)  - -  Cr -- 1 - -  V(1-- 4). 
This gives .. :' -:-2 , 

J':vf(rl) dr/ f: {rj- rl'(l- 4)l d,,- l + 2 a  

f:f(~, d~ f : l l - - ~ - ( 1  4)-} d*/ 

Hence for the mean geometric n-chord point we have 

2 ~/ ( 1 -  4)(1 + 24) 
~ hg¢o~o,~o- 1 + ~tn + 3(1 + 4) 

and for tile mean geometric quarter-chord point (n = ~-) 

1- {1-~ 
hg~o=ot~;- 2(1 ~2 4) 

= 1 + § ~  

= 1  

3(1 + 4)" 

(1 - - n  + ~)} .. -: . . . .  (4) 

( 1 -  2)(1 + 24)(1 + ,~0)} 1 1 + 4 in general 

pointed tips (4 = 0) I "  "" 
delta (4 = ~= 0) 

(b) M e a n  elliptic n-chord l bo in t . - - I n  this case f(v) ---- ~/(1 -- ~), and putting V = sin O, 

[ °"s in  0 c o :  0 dO 
o d o  4 

f l  ' " f('7) d~l [~/~ 3:z cos ~ 0 dO 
o d o  

Hence for the mean elliptic n-chord point we have 

ho~:o  = 1 + i n + ~ (1 - 4)(1 - ~ + ~) . . . . . . . .  

and for the mean elliptic quarter-chord point 

1 
ho~:,o -- 2(1 + 4) 

= 1-136 -t- 

1 q (4 + ~- 0) / in general 
1 2 1 

2~ 

O. 8500 pointed tips (4 = O) 

delta (4 = ~ = O) ---- 1.136 

(s) 

(6) 

(7) 
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5. Relative Positions of Geometric and Elliptic Points.--Comparison of equat ions (2), (4) and 
(6) shows of course tha t  the geometric and elliptic points coincide at zero sweepback, Where 

= n --  1. Moreover the  d slope of the  geometric locus (equation (4)) is greater  or less than  
tha t  of the elliptic locus (equation (6)) according as 

1 + 2 ~ > 4  
1 + 2  < ~ '  

the  dividing value being 

2, = 0 . 3 8 .  

Hence for posit ive sweepback the  mean  geometric n-chord point  will be in front of or behind  the  
mean  elliptic n-chord point  according as the  taper  ratio is less or greater  than  0.38. This is 
i l lustrated in Fig. 1,3. 

A P P E N D I X  11 

Supersonic Spanwise and Chordwise Lift Distribution for Pointed Tips. 
External Solution (see Fig. 16) 

1. The conical lift dis tr ibut ion is given by  

t a l l  ~ ~o o 
= c 

~ / ( t a n  ~ ~o  - t a n  ~ ~ )  

where the  constant  C is given by 

4~q 
C = E[~/(1 - -  k~)] • 

I t  is required to find the  spanwise and chordwise lift distr ibution over the  half-plan ABC shown 
in Fig. 16. 

2. Spanwise Loading.--Referring to Fig. 16 let (x0,) be any point  P of the  section y whose 
end points are (Xo,y) and (xl,y). 

In t roducing the  variable u = x tan  co0, and not ing tha t  y = x tan  co, we have u0 = y at H 
and u~ = x~ tan  ~o0 at K. 

With this substitution 

Cx tan ~ ~o 

Hence if L be the  lift per uni t  span at the  section y, then  

f-1 L = Ap dx 
x 0 

= cV( ? - . . . . . . . . .  
Now 

~/~i = Xl  t a n  ~Oo 

= tan  co0 (c~ + y cot coi) 
and 

c~ = s(cot COo -- cot ~1) • 
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Hence  u~ ---- s t an  coo (cot COo - -  cot ~ )  + y t an  O~o cot ~ol 

----- s{(1 --  t a n  coo cot co~) + ~ tan  COo cot ~o~} 

where  n = y / s  . 

But  t an  ~Oo cot ~o~ --  1 + 6 ' 

and  so qAi 1 --  ~ $ 1 + 0~ 
s -  1 + ~ + 1 + 6  ~ -  1 + ~  

Subs t i tu t ing  in (1) we have  

L = c~/F(!_ ± '++~'*- l L\ 1 + ~ / n~j  • 

Also if L = L0 at  ~ - -  0, t hen  

Cs 
L o - - l +  a • 

Thus  for the  span loadingf(~l) --  L/Lo we have  

f---- 1/[(1 -]- a~) 2 -  ~(1  + a) *~] 
= , / [ ( 1  - < )  + 2~(~  - ~)]  . . . . . . . . .  (2) 

This shows t ha t  the  spanwise loading o5 the  del ta  is elliptic, bu t  t ha t  ar row-heads  are loaded 
super-ell iptically and  lozenges sub-elliptically, the  depar tu re  being represented  by  the  addi t ional  
t e rm  2a(~ - -  ~) .  

The  span loading is p lo t ted  in Fig. 8 for a range of a from --  0" 5 to 4. 

3. Chordwise Loading--Local  ~Aerodynamic Ce~ztre.--Let the  local ae rodynamic  centre  at  the  
section y be at  the  n~-chord point.  

Then  tak ing  moment s  about  H 

[ ~  (x - Xo) 4#  dx 
d XO 

n l 

S ~ 
(x~ - xo) ~ p  dx 

~o 

f,, u(u -- u+) du ,,o v ' (  ~ - y~) 
\ l  

Ii -- ~AoIo 

(ul - -  Uo)Io  . . . .  
. . . . . . . . . .  (3) 

where  
'~i ~ d ~  

I o =  [ - V ( u ? _ y  ~) 
+,,o V(~  ~ -  y~) 

and  r ++i #~ d #  

. , o  V ( u  ~ -  y~) 
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Now 

¢z y= 
= ~ ~ / ( u  ~ - -  y=) + ~ l o g  (u  + S / ( u  = - -  y=)) 

~A: 37 ~ 
and  so L = g V ( u :  ' - -  Y=) + -~ log (u: + ~/(+t:' - -  9 ) )  • 

Subst i tu t ing for I0, I :  in (3) and reducing we have 

Uo y~ ~: + ~/(u? - y2) 
n,  --  1 _  (4) --  2 2(ul --  ~to) 4- 2 ( u : -  #0)~¢/(¢z~ 2 - -y2 ) log  u0 . . . .  

In  order to express this in terms of 8 and v we note from section 2 tha t  

s --  ~ and s 1 4 -~  " 

Subst i tu t ing in (4) and reducing we have  finally : - -  

1 (1 4. ~)'] , , /  , , ~  (1 4 .8)~  ' log[1 4. 8~ 4. ~,/[1 4 .28~--  (1 4.28)~']] 
2(1--V) ~ 2kl--v),V [14.2@ -- ~14.28jV'j (1 4- 8)V 

(s) ~z~-  ~--- m 

I t  is easily seen tha t  nz --~ 1 as ~ ~ 0. 

The l imit  as ~ --~ 1 is more difficult to find. Pu t t ing  ~ = 1 --  8 where 8 is small, the  log te rm 
reduces to 

The mult ipl ier  of the  log te rm reduces to 

1 ( 1 - -  8) ~(1 + 8 ) ( 1 - 1 - 8  1 + 2 8 ~  

The whole expression for nz m a y  then  be wri t ten  

1 - 8 (1 - 8) ~ 
n z = ± ~ - - - - - 2 8  (1 4 .8 )  4. 28 

and  this reduces to 

~, = ~ + o(~). 

Hence nz --> ½ as ~ - +  1. 

1 4. 28~I1 4. 8(68 + 

In  Fig. 9 n~ is p lo t ted  against ~ for values of d between --  ½ and 4. Comparing this wi th  the  
spanwise loading of Fig. 8, it  appears t ha t  

(a) While the  spanwise loading of a del ta  is elliptic, its local aerodynamic centre is forward 
of the  half-chord point,  and so its aerodynamic  centre will be forward of the  mean  
elleptic half-chord point  (see Fig. 7). The appropriate  value of n is in fact 0-42. 

(b) When  8 is positive the  span loading becomes super-elliptic but  the  local aerodynamic 
centre moves forward, and conversely when d is negative.  These effects t end  to 
cancel in such a way as to leave the  mean  elliptic 0 .45-point  (n ---- 0.45) a fair 
approximat ion to the  aerodynamic centre be tween 8 = --  ½ and 1½ (Fig. 7). 

(c) For 8 > 1.5 the  super-elliptic loading predominates  and moves the  aerodynamic  centre 
more and  more aft of the  mean  elliptic half-chord point  as 8 increases. A rough 
approximat ion is n = 0.61 between 8 = 1.5 and 4 (Fig. 7). 
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POIN7 REF~REEHI~ E B 
I I -- 0.02 

Z I -- 0,02 

3 6 - 0"73 

4 2 - 0-75 

5 2 - 0'73 

0 5 - 0 ,73  

7 2 - 0.75 . 

8 2 --0.75 

9 2 -0 "75  

I 0 5 -0"73 

I I 3 -0 .73  

12 3 - 0 " 7 5  

I 3 5 --0-75 

I 4 4 - 0 . 7 5  

I 'i 2 -0.75 

I 0 7 --0.74 

I 7 7 -0.74 

I 8 8 -0-30 1"2 

I 9 2 -0"08 6 "5 

20 12 0 2'0 

21 12 0 2.0 

22 12 0 2'0 

2 3 0 0 8-0 

24 I 2 0 2.0 

25 8 0 8'0 

28 41 0 2.7 

27 8 0 8,0 

28 12 0 2.0 

29 I I  0 2.4 

30 8 0 8-0 

31 12 0 2"0 
3 2  I I  0 2'1 

3~ 8 0 1-2 

34 I 2 0 2.0 

3 3 ~1 0.28 8'O 

3 0  3 0-41 4"0 

3 7 3 0"4/ 11'9 

3 8  $ 0,46 3-10 

30 I0  0.50 1.3 

4 0 6 0 . 9 3  1.2 

4 I 8 I "07 1"2 
42 9 I "125 ' - -  

43 10 1 ' /23  1"3 

44 3 1,315 5"0 

45 3 I "315 i3"l 

46  4 i -36 I.R 

4 ? 4 1.67 1'2 

4 8  3 1"72 6'1 

4 9 ~ 1.72 IS.8 

5 0 S 1.85 ~-09 

5 I 5 1'85 8.'16 

-3 2 3 2"40 2 "0 

53 3 3-19 11'72 
54 4 3.311 1"2 

3 3  4. 3-05 1"2 

TA BLE I. 
TAPERED WINGS. 

SECTION 

x A @ %  R/Io 6 ROOT J TIP ,:3 ~'A 
Modified PJ¢~y-lq5 ~/.~mbcr 6'0.~c 

0 .24  0"47 - 2 - 0  I . I  12.Sell/~@0.35:k3°lQV~6~0.35c , .~- 1'0 ~ k 
ModI~¢dPicm -1'75~, mbcr@0.3[¢ 

0"24 6"47 - 2 - 0  I ' l  ~2.S%%~O~Sc IO°/~c e o-35 c 0"69 4 . 4 6 4  

0 3"0 0 1"2 FLAT PLATE FLAT PLATE ~ l ,O ~ A 

0"2 I0 '0  0 6"5 NACA 23016 ~ACA 23009 ~1-0 ~ A 

0"2 I 0-0 0 6-5 !NACA 23018 ~/ACA 23009 ~l-O ~ A 

0"2 10-6 0 2"56 ~ACA 634oro0 tACk 655"018 ~l-O ~ A 

0"2 12"0 0 6-5 NACA 23016 '/ACA 23009 ~ 1.0 ~ A 

0"2 12"0 0 6"5 HACk 23020 '~ACA 23009 ~bO ~ k 

0"333 I 0"0 O 6"7 NACA 23018 HACk 23009 *~1-0 ~ A 
RHODE ~G~ESE IHOI~ ~ (.~.NE~ 

0"5 3 '0  0 0"31 35 35 ~1.0 ~ k 
0.3 0-0 0 4.6 ~ACA652-215 tACA632-215 ~1-0 ~ A 

0"5 0'0 0 11"7 ~ACA 052-215 ~ACA 652-215 0,71 4.20 

0"3 6.0 0 3'09 NACAZ4SERJES ~ACA243£R[ES ~1 '0  ~ A 

0'6 5,8 0 1,2 ~ HAX.~/c =O'H iMAX.~c =0 '~4 0-80 4.64 

0.623 0.0 0 8"18 NACA23013 lACk43010 ~1"0 ~, A 

0"417 5 ' I  1.9 4 '7  O.14,~MAX ~30~ ¢ >II~I~A X.~O,4 ¢ 0-91 4'64 

0-417 5 '1 I "9 4"7 o~4~k~eo4~ ~=~X.0O'4 = 0'68 3.468 

0'2 6"0 6"34 HACk 23012 ~ACA 23012 ~1"0 ~ A 

0.2' ;  8.0 1.3.0 HACA0015 !ACA o00g ~1"0 ~ A 

0 I "0 I 8"4 NACAO012 '/ACA 0012 ~l -O ~ A  

O 1-33 23 '9  NACA 0012 ~ACA 0012 ~1"0 ~ A  

O 2'0 33.7 NACA 0012 ~ACA 0012 ~1"0 ~ A  

0 . 2.31 37.6 SQUIREH.S.~C '. SOUIREJ~S.'C'. ~1.0 ~ A  

0 3 '0 4 5 .0  HACk 0012 HACk 0012 ~ 1"0 ~ A 

0 3'87 52-2 S~JIRE H.S.'C'. SQUIRE H.S.'O'. =1-0 ~ A  

0 4.0 53. I ~OIREH.R'C~ SOUIOEH.S.'C'. ~l-O ~ A  

0-12 3.04 3 S. 3 5QUIRE H.S.'C'. SQUIRE H.S,'O'. ~1- O ~ A 

0-123 f '33 l T ' l  ,HACk 00~2 qACA 0012 =l ,O -~A 

0'136 3.0 39'g 5QUIR£H.S.'(~ SOUIREH.~.'C" =bO ~X 

0,23 2.30 23'4 $QUIREH.S;C~ SQUIREH,S.'C~ =L'O ~ A  

0.25 1.33 14-9 NAEA 00i2 NACA O01Z ~1-0 ~A  

0.268 2.31 24-0 SOUIREH.S.'C~ SQUIREH.S~C~ -~l.O ~A 

0"333 8.0 14"04 NACA25"O12 HACk 23012 ~1-0 ~ A  

0,5 1.33 8"4 RACk OOIZ HAOA 0012 ~'1-0 ~A 

0'25 3'07 45'0 5QUIRE H.S.'C~ SQUIRE H.S,'C~ =.;,0 ~A  

0.3 5-75 13"0 RACk65~-215 ~ACAN$2-215 ~1.0 ~A  

0'3 5 "76 I 5"0 NACA 652-21~ N'ACA 65z-213 0"71 4 "00 

0-5 ~.0 15-0 8ACA243E01ES 8ACA243ER]~ ~1"0 ~ k  

O.ZE 3-0 45.0 SOUIRE H.S:8. SQUIRE H.R~B~ =1'0 ~ A  

0"49 3,0 37-5 ~ACA 23012 ~ACA 23012 -~1.0 ~ A  
.=E.: 

0"408 2"08 33"8 NACA 230]2 HACk 2~012 ~1'0 "~A 
0.2 3'0 45.0 =1.0 ~ A  

0.25 4.5 4 5, 0 SQUIRE H.S.'B~ SQUIRE H.S.'B~ ~--~-0 ..~ A 
1- 

0-499 4.78 30.0 ~'kCk 65?-21. ~ HACk 0~-215 =1.0 ~A  

0 .490  4'79 30 '0  NACA 65~ -21~ N-ACA 652-213 0"71 3 "314 
t 

0.23 5-8 45-0 §HAX.t~=O'14 9HAXmt/:'O'I 4 0.80 4.64 

0,497 3[32 43.0 NACA 652"21 '~ NACA 632-215 ~l.O ~A  
4.. 1" 

0.497 3.32 45-0 NACA 657-215 NACA ~2-215 0-71 2'357 

0.5 6,0 30-0 NACA 24SERIEE NACA 8400 ~l.O ~ A  
WING TIP T~IST 8V2 I~ 

0.3 6"0 30.0 HACk 2445 HACk 24~19 ~1'0 ,,~A 
HA CA 00012-1150 

O'S S'84 42'11 RHODE 35~3~ EN E $ EJ RHODE ~-~3 G ENE~IE' =J'O =A 

0,6 3'8 33'0 ~HAX.~r¢ =0 "14 1~4AX. Yc =0"14 0"80 4"64 
) t ~ '  ¢ 

0.6 5.8 4 5,0 HAX.~/~C = 0.14 I M~x. ~=O.14 0-80 4 -64 

H~SORED a.c 

TAH ~ / B  HSUB~NI¢ 

-0 -033  0.367 

-0"051 0-297 

0 0'433 

0 0'4 08 

0 0 . 4 0 4  

0 0'449 

0 0"401 

0 0-407 

O 0-302 

0 0 '309 

0 0'343 

0 0,34 I 

O 0"315 

O 0,287 

0 0,287 

0'037 0,336 

0,049 0.326 

0.110 0-582 

0,268 0.734 

0,333 1"220 

0-443 1 " 1 9 0  

0.667 1-168 

0'770 1.160 

I ' 0  I ,12 o 

1 -289  1.100 

1'352 l . / ~ 5  

0,708 0,935 
O .308 0,990 

0 '836 0 . 9 4 3  

0-433 0"785 

0-268 0'8I 0 

0-445 0,780 

0"240 0.077 

0-148 0.357 

I .  0 0 ' 9 7 0  

0"288 0"079 

0,378 0.692 

0"208 0.677 

I ' 0  1.090 
0-767 0'866 

1-472 1-097 
I ' 0  1'380 

I "0 I "390 

0"377 0'970 

0'813 0'082 

0"4SS 0.788 

] "25 1"678 

l-O 1'133 

1 '406  1-133 

0"577 I'111 

0'577 1"112 

O.TO0 1,284 

0,900 1.557 
0" 875 1"26 I 

1.23 1.660 

-'~ HSOPERSON[C IS URCOHFIRHED 8Y THEORY EXCEPT FOR X=0~ 

AT WHICH THE RESULTS ARE STARRED. 

.~. SECTION PERPENDICULAR TO TRAILING EDGE, 

"~ SECTI8N PERPENDICULAR TO I,/4 CHORD. 
t 

§ SCALEO LIp S08iHE H.S.'8" SECTION (HAX.~/c=O.10~. 

~UH8£R . REFERENCE 
E I RAE REPORT N o - AENO 2000. 

2 HACk TECH. REP05T R 0 - 627. 
3 HACk TECH.NOTE N2 1709, 
4 RA E REPORT N~ AERO 2895. 
5 HACk TECH. NOTE NO- 1093. 
6 HACk RH NACA/TIB/1352. 
7 EAR REPORT N~kERO 2061. 
8 ARCREPORT NR IIr334. 
9 GERHAN TESTS. 

10 R kE REPORT NO- AERO 2210. 

I f  RAE TECH, NOTE 89- AERO 1869. 
[2 RkE TECI~NOTE NO- AERO 1767. 
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TRANSONIC 
~850NIC REFERENCE PTS. THEOREI1CAL¢c asc.H~EHDIT 
GEOH.I/~ ELLIPTIC I/4 HSUPEaSONtC HSOlaEASOr~EC ELLrFr13c O'4 S ~$UNSONIC 

0'369 0,373 0'586 O. ZZ 

0"360 0"373 0"586 0-2~ 

0-50 0"5 0.7 3OK" 0"30-)(" 

0"417 0 '4 ]7  0.033 0"23 

0"417 0.417 0-635 0"23 

0'417 0'417 0"635 0"10 

0.417 0"417 0"633 0'23 

0"417 0"417 0,635 0"23 

0-373 0-373 0"588 0"23 

0-333 0-333 0-600 0-20 

0-333 0-333 0 - 6 0 0  0"2 6 

0'333 0'333 0"600 0.2 0 

0'333 0.333 0"600 0"29 

0.313 0-313 0'530 0"24 

0.300 0,308 0"576 0-20 

0'356 0"356  0.590 0-25 

0.356 0.336 0"590 0,26 

0 , 3 4 6  0"568 0 '780 0"22 

0;722 0.742 0.960 0.23 
I-O 1.136 1-366")(- 0.15;(- 

1.0 / . 1 3 6  1.366 K- 0,18 

1.0 1-136 1 '386~ 0,20 K 

1.0 1"I36 1-386 K- 0,2/  "X- 

I '0  1"136 I '366 K- 0.24 

1-0 1'138 1 '366 "X" 0-27 K- 

1.0 1,136 1,366 K- 0.23 * 

0-877 0"947 / '227 0-29 
0.877 0.938 I '163 0.17 

0"872 0.922 1,148 0.21 

0-780 0.805 1-028 0.24 

0"758 0"733 I'O 0'19 

0-745 0.761 0"981 0-20 

0.888 0'683 0"908 0.23 

0"356 0"543 0 .737  0.20 

0"802 0"923 1,143 0-06 

0-677 0"662 0"873 0"19 

0,677 0'062 0"873 0,18 

0.691 0.675 0-585 0-21 

I-0 1.037 1.233 0-16 

0'846 0"824 1"038 0"17 

1"012 I'Q05 1,158 0.04 
1"30 1-423 1"695 0'32 

1-30 1-355 I-$73 0"18 

0"043 D'917 1"129 0'16 

0"943 0"917 ~'129 0"15 

0.798 I)-761 @967 0-18  

I '560 I "63 I 1'830 0" 17 

1'072 I+039 1"247 0 " I I  

1"072 1-039 1"247 O-It  

I "103 1"060 l '277 0"17 

1-103 1"069 1"277 0'17 

1.263 1-223 J'438 0-15 

1.507 1-449 1-660 O'lO 
1"243 1"172 1"390 0"13 

1'842 I "$43 l "74 8 0-09 



F"  
POINT.! RP¢I:. ~' A 

l | ' /  o o°  5 
2 14 o t , 0  
3 16 O I "O 
4 t"t O i ' o  
5 6 o 1.27 
g 15 o 1 '34  
? 14 O ~'lO 
8 17 o ~.O 

~o 6 o 3"0 
I, , l ~ @ O ~ 'O 

I~ I ~ O 3"0 
,~ . ~ o ~.o 

¢3 14 I 4 O 4 ' 0  
15 I ~ O 5"0 
16 1 5 O 5.18 
17 ~ O B'O 
~ 14  o 6"o 

IB I ~ O 8" O I 
~o ~ o 6 '0  
~! I ~ 0 ' 2 8 9  I 'O 

¢? ~2 I ~  o . ~ o o  I 'O 

~4 ! 3 0.6"/ 5.o 
C ~ P,5 14 ~ ' O ~.o 

~6 5" i.o~ 2.5 

q ~7 14 E.IG 4 ' o  

~9 ~ B-P-95 1,48 
i 

,~o ~ ~'9 1.5 
$1 ~ 1.3 4 '5  
3~ I ~ 1,445 5.o 
B~ G I- 5 5,~ 
~ 5 ~.875 4.0 
~5 I 4 I.-'25 @0 

0 ~7 1 4 ~.O 4-0 
~8 5 '2"05 4.1 
39 ~ 2.~7 2oe~ 
40 i $ ~.5 5.o 
41 ~ '~'g .t.o 
4Z ~ 2"7~ 3.14 

7ABLE 2, 

UNTAPERED WONGS. 

SECTION. ~ H 
(~ ROO'T I TIP. ~/IO ~ (~ BP~ SUBSON,C 
O NACAOOI~ JNACAOOO~ 1"18 ~" |'O ~ A O 0"|4 
0 FLAT PLATE. = : ~  I'O = A O O,148 
O CLARKY CL/~,RKh " 0"8{; = ~,0 : A O 0.~0~ 
O NACAOOI2 NACAOOO5 0"83 ~ A*O ~ A O i0'18 
O FLATPLATE FL~,T P~,ATE ~1-~ ~ I'O = A  O 0"185 
O NACAOOIP.. NE&OO11 1"58 = ~.O = & O O*184 
0 FEAT PLATE - ~ I 'O = A, 0 O'21! 
O I~,CAOOV~ N~CAO009 0"59 ~ I-O : A  O 0.~0 

O N~C&OOI~ NAC~.OOI~ I ' IO  ~ I'O ~ A O 0'19~ 

O FLAT PLI~TE ~'L~TPL~TE ~1"~ ~" I'O ~-- A. 0 0,~3~J 
O NACAOOI~ I~IACAOOI~ =~.2 ~ ~'=O ~ A O O.~9  

O CI=,AI~I~ Y ,3LARK y 0 '8{ ;  ~--- |oO ~ ~ O 0.230 
O NACAOOI5 ~IACAOOI5 ,~.I.~ ~ I 'O ~ A O O.~7 
O FLAT pLATE. = ~ I 'O ~ A O O.:2~O 
O NACRZ$OI2 NACA~}OI~ O'4~ ~" l 'O ~ A o 0'?.5 
0 NACAO01~ NACAoOI~ 0'78 ~ I 'O ~ A 0 0 '200 
O NRCAOOI5 NACAOOi5 ~1"2 ~ I 'O ~ A O O-~¢5 
O FLAT PLATE, ~ -~ I.'O ~ A O O=.2~ 

O CL~RY~Y CL~KY 0.86 ~ I,O ~ A O O'2~:I 
O NACAOOI~ NACAOOIB =~|'2 ~ I" O ~ A O O,2L~3~ 

30 F'LAT P&.AT~, -- ~ |'O ~ A 0'5774 O.'~{}7 

~-5 FLAT PLATE - ~ PO ~ A I.O 0"405 
~O' FL~T PLATE - ~ I.O = A 0"5774 0.469 
t 5 ~IACA;~OIZI~IACAZ]OIP O'4r2 ~-,~.I'O ~ A O'?.6~,O 0"565 
4,.5 FLAT F>LATE - ~B'O ~ A "O 6-67{; 

NACAOOI~ ~AC&OOt~ O'8B ~= |.O ~ A O'8391 0.'/7~ 

30 FLAT PLATE , = I=O ~" A 0"5774 0"762 
30 NACP, Z~Ot| NAJC~,?~O~ I - I  -" I.O ~ A 0.5774. 0"835 

~O ~ACAOOIZ ~,~CRO01e ~ | ' ~  ~ I*O = A "79~ I 0"855 

~O ~ACAOOI5 I~IAC~0015 ~1"2 ~ I'O --~ A 0.5774 0.830 
30 ~ACAZ~OI2 ~P~C~Z~OI ~ O'4'~ -~ 1'O ~ A O'5174 O'9,~O 
~O ~AC.R00|~ ~&~AOO|5 '~ | ' 2  ~ I ' o  ~ A 0"5774 O-931 
4-0 NAOAOOI?.. ~IAC~OOtP.. O'6-3 ~ I 'O ~ A O.g~91 1.115 
=JO FLAT PLATE. - -~ I-O =~ A O.577~ I.O5~ 
45 NAC~Ot~INACA~O=Z i -57 ~ I,O ~ A I,O I.O~% 
#r~ FLAT PLAI'E - ~ I-O == A |'0 I,1~2 
45 NACA~jOIZ NACA2301~ I -37 ~ I 'O ~ A I ' 0  1,215 

~O ~ACAOO{Z ~ 0 0 | ~  ~1'2 == I '0  ~ A 1.73~J t-~45 
~.5 ~Ac~ZSo~ ~/¢,AP, tO=~ 0.42 ~ 1.0 = A ! l .O 1,46o 
60 ~&e,.ROOt5 ~ACAOOI5 ~ | ' 2  ~ J'o =: A !1.7~1 1-494. 
~O ~AEAOOtZ ~AC~,oo|~ ~l .2 ~ I.O ~ A II'73~I 1.680 
4-5 FLAT PLATE. - = I'O = A I'O 1-¢~J7 

I 
REFERENe{~8 

~J NACA TECH. NOTE. IO~B. 

6 NACA RER ~J~i. L7 OZ~. 

I~1 NACA 7ECH. HEMO. i l 6 4  

f4 ~Rc ~,,54~ (C~LCU~AT~O) 
15 NAC~ TECH NOTE. J669. 

MEAN ~ MEAN 
GEOH ~ ELLIPTI~ 
0'~5 0o~5 
O'Z5 0-?5 
0.~5 0"25 
0"25 0.25 
0.25 o~ 
O-~S 0"~5 
0.25 0.25 
0'25 0.95 
0.25 O,~5 
0.25 0.25 

0.25 O.~5 

o.25 0.25 
O'~5 0.25 
0"25 O'25 
0"25 O.25 
0'~5 0,25 
O'25 0'25 
O'25 O,~5 
O-25 0"25 
0"25 0"25 
o ' ~ 5  0.25 
0.5 0 . 4 6 2  
0"559 0 .49f i  
0"585 o . 5 9 4  
0"75 0°674 
0'774 O'6~5 

0"83 0.74~ 
O'979 0'784 

o'895 0"788 
0.899 O,8OL 
0"900  O.8Ot 
O'97P O.965 
I-OOL 0"897 
I-OB3 o e 6 z  
I , I I 5  0.994 
I - I~O I . o o 5  

1"25 l . I O  
1"275 1.1~0 
I .~85 I "?,.ICJ 
t '5  t.SD~ 
1.549 1.353 

t.75 0.663 

16 NACA REP NO ~ 1  

I ' f  R.A.E. LIBRA~Y TRANS. 278 

+ ¢JECTION NORMAL, TO L, EAOINq EOE~F=. 
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FIG. 1. Plan-form classification according to & FIG. 2. Geometrical definitions for the 6 analysis° 
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FIG. 4. Mach angle ranges for external and internal 
supersonic solution. 
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FIG. 5. Relation between limiting Mach numbers, Mm~,, 
Mm~ for external solution. 
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FIG. 6. Aerodynamic centre for conical flow with pointed tips. 
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Supersonic spanwise loading of poin{ed wings, 
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FIG. 9. Supersonic chordwise lift distribution for pointed 
wings, external solution, n, is distance of local aerodynamic 
centre behind the nose of the local chord, in terms of the 

local chord. 
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FIG. 10. Rough approximation to supersonic aerodynamic centre for finite taper ratio Z. External solution. 
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NO LIFT~ 
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FIGS. 11 a, 1 lb, 11 c and 1 ld. Aerodynamic centre P of slender pointed 
wings. (R. T. Jones's theory.) 
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FIG. 14. Subsonic experimental and theoretical results for aerodynamic centre of untapered wL~gs. 
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