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Summary —These notes aim at providing a framework to display what is known of the backward movement of the
aerodynamic centre of wing shapes likely to be used for transonic operation, as the flow progresses from incompressible
through subsonic to supersonic, the shock-wave régime being ignored. A new geometrical parameter 4 (see Figs. 1, 2)
is taken as the main variable because (a) it gives a neat classification of the various wing shapes, (b) it expresses the
results of supersonic theory in a simple form, (c) it simplifies the subsonic analysis by making direct use of the similarity
law for three-dimensional compressible flow, and so (d) it is possible to display on one diagram most of the theoretical
and experimental data at present available.

On the supersonic side, where very little experimental data is known in this country, the analysis is based on the
conical solution by Puckett and Stewart*  for pointed tips; this has been extended on a simple but questionable
assumption to cover blunt tips. On the subsonic side the laborious approximate theoretical methods have not yet
yielded much data that is both systematic and reliable, and though model data is accumulating it inevitably lacks
cohesion except in the case of delta wings. The work of R. T. Jones® on the aerodynamic centre of shapes so slender
that it is independent of Mach number is linked up, so far as it goes, with the supersonic data, and should be extended.

When the existing fragments of the subject are assembled within this framework as in Table 1 and Fig. 13, the
problem begins to get into focus and certain general trends are broadly discernible, but no very definite conclusions can
be drawn except for pointed tips in general and delta wings in particular. These summaries do however show what will
be the most profitable lines of research to illuminate quickly the whole subject, and recommendations are made to this

end (see conclusions, section 9).

)

1. Introduction.—In passing from subsonic to supersonic flow the most important wing
phenomenon after the drag rise is the rearward movement of the aerodynamic centre. At some
stage in the transonic passage there will usually be a mixed flow at the surface where shock waves
separate regions of supersonic and subsonic flow. This hard core of the transonic problem is
mentioned here only to pass it by. Leaving it out, there is now an accumulation of linearised
potential theory and experimental data covering the shockless subsonic and supersonic régimes.
But the wing shapes that are being considered for several types of operation are extremely varied,
the model data are not at all systematic, and the relevant supersonic theory is still not generally
well known. Consequently the problem of the aerodynamic centre needs to be assembled from
the existing fragments. These notes aim at supplying a framework which will display in an

* Footnote, 1952. This survey was made in 1948. Apart from a few footnotes to indicate roughly the advances
since made in the subject, no attempt has been made to bring the paper up to date.

+ R.A.E. Report Aero. 2325, received 25th June, 1949.
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orderly fashion what is known of the subject. They refer exclusively to shapes which are likely

to come into common use, viz., those of which the half-plan is a trapezium or in the limit a triangle
(Fig. 1).

2. The Scope of Theory and Experimental Checks.—The linearised potential theory is available
for this problem in three sections :

(@) Incompressible flow—As is well known, the solution can only be obtained by a laborious
approximation in which the flat surface at incidence, and the wake behind it, are
replaced by a continuous or discontinuous distribution of vorticity. There is in fact
a continuing debate about the quickest and the mathematically soundest way out of
this impasse. The labour involved in these lifting-surface theories has hitherto precluded
any serious attempt to map systematic solutions over the variety of shapes involved.
It is essential that this should ultimately be done, and a method recently devised by

Schlichting' promises' when fully developed to provide a relatively rapid and reliable
tool for this job*.

() Compressible subsonic flow.—The Goéthert development of the Prandtl-Glauert law?
yields a simple rule for deriving the aerodynamic centres of any npumber of shapes at
various Mach numbers, once the incompressible solutions are known. The in-
compressible aerodynamic centre of a given plan-form applies at Mach number M,
to a plan form obtained by multiplying the lateral dimensions of the original shape
by the factor (1 — M?*~*"* The limits of application of this rule still need to be
established experimentally, but it is clearly very useful as a rough guide in mapping
the compressible field before the onset of shock waves.

(c) Supersonic flow—Puckett and Stewart, in two important papers** have given the
pressure distribution for conical flow over a delta wing of infinite extension. At
about the same time Robinson™ obtained the same results by a different method.
Puckett and Stewart show how to derive from this the aerodynamic centres of all the

shapes of Fig. 1 with pointed tipst, provided that the Mach angle is such that the
flow over the finite wing remains conical.

In the trapezoidal wing, the Mach cone springing from the tip leading edge makes
the flow non-conical and considerably complicates the theory. I have not yet had an
opportunity of examining the American work in progress on this by Cohen, Langerstrom
and others. A crude approximation, based on the pointed tip solution in what is likely
to be the most practical case, is suggested below to cover smallish taper ratios.

In this summary of what is known in theory, it will be noticed that the vital shock-wave gap
occurs between (b) and (c).

Puckett’s and Stewart’s work can be used to provide a very compact framework for a supersonic
survey (Fig. 6). But as mentioned above there is no correspondingly explicit subsonic solution,
and as yet very little in the way of systematic approximate solutions. Hence in using this
diagram for the subsonic theory, all that can be done is to put in a few guiding lines and suggest
what should be the general trend of the curves if we knew them.

.~ When we come to fill in such a diagram with test data (Fig. 13), the situation is exactly
reversed. There is a rather scattered collection of subsonic results which tend to cluster about
those shapes, for instance the delta, the straight wing, and a few arrow-heads, on which model .
work has most concentrated. On the other hand, experimental support for the supersonic theory

has hardly begun to appear. The only model check on pointed wings known to me gives excellent
agreement.

* Footmote, 1952. Schlichting’s method has run into unexpected mathematical difficulties, but in the interval

Multhopp® has approached the matter differently and his method is now coming into use. Garner’® has recently given
some critical discussion of the methods now being used.

T Their calculation covers shapes (1) to (3) of Fig. 1, but it seems extensible in principle all the way to the reversed
arrow-head.
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3. The Choice of Parameters—The aim of these notes being in effect to produce data sheets,
the first step is to choose parameters which give the most compact and physically significant
display.

The shape of a trapezium is defined by three non-dimensional quantities. These might be,
_for instance, the angles w, and o, of the leading and trailing edges and 2 the taper ratio (Fig. 2).
The three in commonest use in aerodynamic work are:

b angle of sweep of the locus of points dividing the local chord in the ratio.
% : 1 —n. In what follows, such a point will be called the n-chord poini;
the quarter-chord point (# = ) is a familiar appellation :

A aspect ratio

A taper ratio.

In the following analysis we use a new variable ¢ defined as follows, see Fig. 2. The leading
and trailing edges AP, BQ of the trapezium are produced to meet at C. Then 4 is the ratio of
BD, the projection of BC on the central line, to AB the root chord. 4 is positive or negative
according as C is downstream or upstream of B. The whole 4 o range of  separates the shapes:
in reference to flight into six classes—the arrow-head, the delta, the two lozenges, the reversed
delta, and the reversed arrow-head*—as shown in Fig. 1.

Puckett and Stewart use the less convenient parameter a, which is the ratio of the projections
of BC, AC on the central line. It easily follows that
v . d  tan w,
C=1{1% tan o, . .. . . (1)
The proofs of this and other formulae are given in Appendix I.

For the second parameter we retain the taper ratio 4, and for the third we can use either
aspect ratio 4 or sweep angle ¢,. The variables under discussion are connected by the formula :

1—4
1+ 2
Hence if we fix 6 and 4 we get a family of shapes—as sketched for example in Fig. 3—for which
the variation of 4 with tan ¢, is hyperbolic, large sweepback occurring with small aspect ratio
and vice versa.

The family for which 8 = # — 1 is distinguished by the fact that its sweepback Is zero,
independent of A. Thus for example if # = I we have at § = — £ a family with no sweep of
the quarter-chord line, the familiar ‘ straight wing ’ series.

It may help to grasp the connection between ¢ and sweepback to notice from (2) that for
family of shapes for which aspect ratio and taper ratio are fixed, 6 and tan ¢, increase together
in a linear relation. :

The choice of what may seem at first the rather outlandish quantity é as the main variable is
made for two reasons :

(@) The supersonic solution for pointed tips, in what is probably the most important
operational case, namely when the Mach cone lies-outside the surface, shows that the
aerodynamic centre depends only on ¢ ; and the variation is moreover approximately
linear. '

(b) If, as in Fig. 3, one considers a family of shapes at constant 6 and 4, it is clear that one
member of the family can be derived from any other member by multiplying its lateral
dimensions by a constant factor. The compressible law of similarity (section 2 (b))

* In this nomenclature only the delta is fully descriptive. Arrow-head and lozenge are used because they are roughly
descriptive of the & classes to which they refer when the aspect ratio is small, it being necessary to have some such
shorthand in the course of the analysis. '

Atang, =4 (1 —n -4 d). .. .. .. .. (2)

3
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can therefore be directly applied to such a family. ‘It will appear in fact that in the
Prandtl-Glauert régime the speed factor can be combined with the variables already
discussed, and it follows that the aerodynamic centre is a function of §, 1 and BA or
tan ¢,/8, where g = /(1 — M?2).

The limitations of the framework of analysis indicated in equation (2) or Fig. 3 should be
pointed out. It rests on the pointed-tip sha

pe as prototype, and we may therefore expect that
it would fail in practical application to shapes with very blunt tips. It'is clear by considering

equation (2) or the implications of Fig. 3 how the constant-chord swept wing slips through this
net of classification. If 2 = 1 and 6 is finite, then either A or ¢, must be zero. Alternatively
if 2 =1 and both 4 and ¢, are finite (the general case of the constant-chord wing), then 8 must
tend to «o. Wings of finite aspect ratio and sweepback which approximate to constant chord

therefore retreat towards infinity on a o diagram. A separate analysis for the constant
chord wing is used in section 8.3 below.

4. Aevodynamic Centre on Si

mple Loading Assumptions—The main scheme is then to plot
aerodynamic centre position as a function of é, using additional parameters where necessary.

It will be useful, as part of the framework of such a diagram, to indicate where the aerodynamic
centre would be in simple cases of lift distribution.

At the spanwise section 5 = y/s let the local aerodynamic centre be at the n-chord point and
let the spanwise loading* be f(n). The aerodynami

¢ centre can then be found if # and f are
known as functions of . Let us first suppose that # is constant.

With this assumption it is shown in A

ppendix I that the distance of the aerodynamic centre
behind the apex of the surface, in terms

of the mean chord, is given by
1
| nf () dn|

fln)

0

h:%—_l n+ (1 — (1 —n -+ 95) (3)

It is to be noted that this is a linear function of é.

‘Two simple assumptions as to spanwise loading will be particularly useful.

(@) If the spanwise loading is proportional to the chord, so that Jfn)

= 1—5(1 — 1), we
have from (3)

for the position of the ‘ mean geometric #-chord point ~
2 (1 — 2)(1 + 22 :
h’geometric = 1 _]l_ 2 {% "I“‘ 3(1 + }') ) (1 — N "'— 6) . .« .. (4)
(b) If the spanwise loading is elliptic, so that fn) =
of the ‘ mean elliptic #-chord point ’

V(1 — %*), we have for the position

2 4
h‘elliptic:m{n’_]—f;_n(l_2')(1_71'—}—6)1 .. .. .. (5)

J
A good deal of use will be made of the reference points defined by (4) and (5) in what follows.
For the present it may be noted that

(i) The mean geometric quarter-chord point (n = }) is the familiar * quarter-chord point ’
which is commonly used as a datum for aerody

namic centre in subsonic flow, and the
corresponding elliptic point is equally useful a

s a reference.
(ii) It might be expected that the geometric and elliptic half-chord points would have an

analogous use in sorting out supersonic results ; some refinements of this idea will be

put to practical use below. The geometric hali-chord point is of course the centre
of area.

* The spanwise loading is defined as the ratio of the load per unit span at section # to the load per unit span at
n=0.
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S. Supersonic Cowical Solution for Pointed Tips.—5.1. Delta Lift Distribution.—This section is
based entirely on Puckett’s and Stewart’s analysis**.  There are two régimes for conical flow over
a delta wing. In the first the Mach cone is outside the wing surface; in the second the Mach
cone intersects it. These will be called respectively the external and the internal solution.
If w, is the semi-vertical angle of the delta, and u is the Mach angle, the speed parameter is

k= tan o, tan u
and so for the external solution we have 2 < 1 and for the internral solution &2 > 1.

In conical flow the lift distribution depends only on the angular co-ordinate » measured from
the apex of the delta.

The external solution is

. 4t s
ag  E[4/(1 — £%]4/(tan® v, — tan® o)
The internal solution is .
2 2
%ﬁ - Tj% : R[l _y%sm_ /\/<t;g (ffo —ttaiﬁww)} o )
where A9 pressure below wing minus pressure above wing
o incidence
q dynamic pressure
E the complete elliptic integral of the second kind
and R signifies the real part of the function.

When %2 —— 1 the internal and external solutions coincide:

ﬂb_§ tan® w, ‘ 3
o(g—n\/(tanzwo—tanzw)' « . . Ty .. « & ()

5.2. Speed Limits for Conical Solutions over Finite Wings.—These solutions can be applied to
all the finite shapes of Fig. 1 so long as the presence of the trailing edge does not affect the flow
over the wing. Geometrically this means that the Mach cones springing from the tip and the
rear end of the root chord must not cut the wing. This imposes speed limits for which each

solution is valid for any given shape. These may be summarised, in terms of Mach angle p, in
the following table, which refers to Fig. 4 :—

Arrow-head ® > o Wy > B> w, Wy >u >0
w; <72

rear cone ; external internal

cuts wing solution solution
Lozenge 1 U >a— w, T — 0 > p > 0, wo>pu >0
w; > n/2 )

tip cone , external internal

cuts wing solution solution
T — Wy > Wy
Lozenge 2 > — o 7 —w;>p >0
w; > w2

tip cone no external internal

cuts wing ~ solution solution



It will be found that the limits for the external solution where it exists are given by

(9)

Lé
1<k<|a|l or ‘1—-1:_6
since the upper limit for ¢ is o, or # — ,, whichever is less than =/2.

It follows that if M., M, are the limits of Mach number for the external solution at a given é,

then
\/(Mmm — 1> _‘ )
Mrnnx — 1 - 1 + 0
This relation is plotted in Fig. 5. The external solution ceases to exist when the shape becomes
a rhombus, § = — 3.

. . . . .. (10)

5.8. Aevodynamic Centre—H, the distance of the aerodynamic centre behind the apex, divided
by the mean chord, is obtained by integrating the pressures from (6) and (7) over the surface,
the general formula being

”Apr Cos w . 7 dr dw
H= -
| [ apr dr do
where 7, w are polar co-ordinates from the apex and ¢ is the mean chord.

The internal solution obtained by Puckett and Stewart from equation (7) is a function of a

and %: ) )
(-GG (-9 as-wo(5)
I R T Vi @

cos™! <— %) a cos™* (;%)

(1 — az/k‘z)l/z + (1 __ 1/k2)1/2

H:

rojes

This is valid for & = 1.

For the external solution we note from (6) that as the speed term occurs as a factor of 4p, the
aerodynamic centre must be independent of % and a function of # only. But the external and
internal solutions coincide at 2 = 1. Hence the external solution is obtained from (11) by
letting £— 1. This gives for the external solution:

. o COS™H (— a)
AT e+ T ”
. 1— ) [oz n cos™ (— a)J
V(1 — a?)

for which the range of validity is
1<k <lal.

5.4. Numerical Results for Aevodynamic Centre—The computation of Ref. 3 covers the range
4+ 0-8in @, or 4 to — 0-45 in §; that is, from the narrow arrow-head almost to the rhombus.
The external and internal solutions are plotted together on a 4 base with % as parameter in
Fig. 6. The single curve for the external solution is taken from Table 1 of Ref. 3 and is fairly
accurate ; the family of curves for the internal solution are taken from a small diagram (Fig. 16
of Ref. 3) and are much less accurate.

The following points should be noted :
(@) The external curve has small curvature. This will be elaborated below.
6



(b) For arrow-heads the aerodynamic centre is furthest back for external flow and moves
forward as the speed increases through the internal flow régime. The situation is
reversed for lozenges.

(¢) For arrow-heads the forward movement of aerodynamic centre is greatest when the
Mach cone enters the surface. It slows down as speed increases, and the variation
has apparently ceased when 2 = 2-5.

(d) The curves all intersect at 6 = 0. This emphasises the central position of the delta in
the development of the theory. The aerodynamic centre of a delta wing is at its centre
of area for all supersonic speeds.

In order to relate this diagram more clearly to the shapes involved and the actual position of
the aerodynamic centre in plan, sketches have been added of typical shapes at 6 =4, 2, 0-5
(arrow-head); 6 = 0 (delta); and 6 = — 0-25 (lozenge). At each value of ¢, two sketches are
shown, giving the flow conditions for the external and internal régimes. On these are marked
P the (constant) aerodynamic centre for external flow, and P, the aerodynamic centre at 2 = 2
for internal flow. The difference between P and P, at any ¢ gives a clear idea of the total shift
in aerodynamic centre at supersonic speeds in relation to the general shape of the wing.

It will be realised of course that the shape sketched at any value of ¢ is only one of a family
of shapes thereby defined (see Fig. 3).

5.5. Approximations to the External Solution.—Current opinion seems to be settling in favour
of designing a supersonic wing with so much sweepback that it operates with conical flow inside
the Mach cone. The argument that this minimises the wave drag while retaining a high value
of the lift slope probably outweighs the penalty noted above that the aerodynamic centre is in
general furthest back in this régime. We may therefore concentrate on-the simple external
solution.

In Fig. 7 the external solution is plotted with the straight lines (obtained from equations
(4), (5)), representing the mean geometric half-chord point and the mean elliptic half-chord point.
The geometric half-chord line intersects the exact solution at 6 = 0, as it must do since the
delta’s aerodynamic centre is its centre of area; but for arrow-heads the aerodynamic centre is
always to the rear of the geometric half-chord point. On the other hand the elliptic half-chord
line is a rough first approximation to the internal solution : its slope 8/3= is in fact the slope of the
external solution at ¢ = 0.

We can get a closer linear approximation to the external solution by assuming an elliptic
spanwise lift distribution and choosing the best value » of the chordwise loading point. The

straight line AB, with # = 0-45, is a fair approximation between 6 = — 0-5 and 1-5. The
straight line CD, with » = 0-61, is a rougher approximation between 6 = 1-5 and 4. This
means that wings between 6 = — 0-5 and 15 behave on the whole as if they were elliptically

loaded at the 0-45-chord point, and between 6 = 1-5 and 4 as if they were elliptically loaded
at the 0-61-chord point.

To give a preliminary idea of the positioh of the subsonic aerodynamic centre for pointed tips,
plots of the mean geometric and elliptic quarter-chord points are shown on this diagram.

5.68. Spanwise and Chordwise Lift Distribution for the External Solution.—Equation (6) gives
the lift distribution on lines radiating from the apex, but for practical purposes the spanwise and
chordwise distributions are required ; this moreover will throw some further light on the analysis
of section 5.5. Using equation (6) we can express the spanwise loading f and the local aerodynamic
centre 7, (see section 4) as functions of the dimensionless spanwise co-ordinate n. Details of these
integrations are given in the Appendix II. The results are:

Fe= Al — o) 2800 — o], o e (13)
e R ot /[4 2= (120 (k)
=3 ()T 2oy — (1 4-28)y7 " 108 | A10) |y - (4
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These formulae, which are plotted in Figs. 8 and 9, show that

(a) The delta is elliptically loaded but its local aerodynamic centre is on the whole further
forward than half-chord.

(b) As 6 increases from zero the spanwise loading becomes super-elliptic (very markedly
so for the narrow arrow-heads); while the local aerodynamic centre moves on the
whole strongly forward. These contrary tendencies produce a mean aerodynamic
centre, over the whole range of 6, which is not far removed from the mean elliptic
half-chord point (Fig. 7). For a fuller discussion see Appendix II.

5.7. Experimental Check on Supersonic Theory.—Unfortunately no supersonic model tests on
pointed arrow-heads seem to have been published. The only relevant data known to me is in
Ref. 5 Where Squire summarises some Gottingen tests on the lozenge w, = 83 deg, 6 = — 1,
a=—3%at M =1-20, 1-45, 1-99. This is case B of the report; case A gives non-conical flow.
Theoretical and experimental values of aerodynamic centre H and lift slope dC,/do are given
below:

Lozenge wy, =33 deg, 6 = — 1, a= — }.
Type of H aC,/do
M k solution theory experiment theory experiment
1-20 0-44 external 1-12 1-10 3:31 3-05
1-45 0-70 external 1-12 1-10 2-89 2-81
1-99 1-15 internal slightly less 1-10 2-20 2-11
than 1-12

This shows very good agreement on aerodynamic centre and 5 per cent to 10 per cent
discrepancy on lift slope.

6. Supersonic Aevodynamic Centre for Blunt Tips—When pointed tips are cut off parallel to
the centre-line the theory becomes much more difficult because it must take account of the
Mach cone springing from the tip leading edge, which now cuts the wing. Work has apparently
been done on these tip corrections by Cohen, Langerstrom and others in America, but their
theories have not yet reached me. We may perhaps make a very rough shot at a general trend
by assuming that the linear approximation of section 5.5 to the external solution for pointed tips
(A = 0), applies also to finite values of 2, This amounts to suggesting that when pointed tips
are cut off, the aerodynamic centre remains approximately at the elliptic 0-45-point in the range
— % << 8 < 1-5, and in the neighbourhood of the elliptic 0-61-point in the range 1-5 << 6 < 4.
Putting #» = 0-45 and 0-61 in equation (5), this gives :—

1-37 — 0-474 1 —2A
Hz‘“ﬁl——l—O'SSl—_l_Zﬁ, — <6< 15 15
1-55 — 0-332 1— A
—1——[—1——1_0851—]—26 1-5<dé<4

The speed limits would be the same as for pointed tips.
The straight lines (15) are plotted in Fig. 10 up to 1 = 3.

7. Subsonic Shockless Compressible Flow (Theory).—1.1. Githert’s Similarity Law.—Gothert’s
three- dlmensmnal extension of the Prandtl-Glauert law (see for instance Ref. 6) shows that the

8



non-compressible aerodynamic centre for any wing applies also to flow at Mach number M if the
lateral dimensions are multiplied by 1/8, where § = 4/(1 — M?). Thusif A, 4, are the aspect
ratios of the compressible and incompressible wing we have

Ao

p— F y
and similarly, as regards sweepback (16)
tan ¢ = g tan ¢,

Now it has already been pointed out (see Fig. 8) that if 4 and & are constant, the family of
shapes are derived by this law of lateral dimensions. It follows from (16) that at given 6 and 2
the aerodynamic centre is a function of g4 only, or alternatively of tan ¢/8. Thus within the
limits of this theory, we can suppress the speed an an independent variable and say that the
aerodynamic centre is a function only of 6, 41 and A (or tan ¢/ B).

Hence if 1 is fixed we can theoretically show the whole variation of aerodynamic centre in this
régime by plotting curves of constant 84 on the H, § diagram, and these curves can be constructed
entirely from incompressible solutions. There is here a wide field for theoretical work which
urgently needs working on. To show the lack of systematic work of this nature, there is nothing
to put on the pointed-tip diagram of Fig. 7 except some calculations by De Young® using
Weissinger’s method, which itself is suspect because it ignores the downwash singularity at the
centre of a kinked vortex line. The result shown is a mean of curves for BA = 2-5 and 4-5,
which are almost indistinguishable on the H scale used. It should be noted that the calculated
curve, for what it is worth, lies between the elliptic and geometric quarter-chord lines.

72. Variation with Aspect Ratio.—Although the subsonic region of the aerodynamic-centre
diagram plotted on a ¢ base cannot yet be filled in from theory, we can get some idea of the
trend of the variations with 4 at constant 6, 4 by considering the limits of large and small aspect
ratio.

(@) Large aspect ratio.—Consider the shape reached in a 8, 4 family such as that of Fig. 3 when
the span 1s extended towards infinity. It is important to notice that in proceeding to A — oo
in this way we are working at constant taper ratio 4, and not as is more usual at constant chord.
When the span gets very large it can be divided spanwise into a series of elements, of large span,
each of which is effectively a piece of a two-dimensional wing, of small sweepback, whose chord
is the mean chord of the large spanwise section considered. The local aerodynamic centre of
this large element must therefore be at the quarter-chord point, and summing for all such elements
it follows that the aerodynamic centre of the whole wing tends to the mean geometric quarter-
chord point as 4 — . T

The geometrical quarter-chord line for given 2 is therefore very useful on the é-diagram in giving
at each point the limiting position of the aerodynamic centre of the &, 1 family as 4 —> . The
formula is

1 (I — 2)(1 4+ 22)
HA%w:m{l—’— (1+}.) (1+%6)}. .. « . .. (17)

(0) Small aspect ratio—R. T. Jones’ theory of the slender pointed aerofoil® gives at once the
position of the aerodynamic centre for all the shapes we are considering, except the arrow-heads,
as A—0.

His solution for the pressure distribution of a slender delta (see Fig. 11a) may be written

Ap 4 tan® o,
ag ~ v/{tan® @y — tant @) * . .. . . .. (18)

-»wo being small.



This agrees with the external supersonic solution (6) if o, is small and x is finite, for then
k— 0 and E[4/(1 — &%]— 1.

The speed range for which (18) is valid is indicated by Jones’ general argument. He shows
that if ¢ is the velocity potential of a slender delta moving in the x-direction, then 0%$/9x® is
small compared with 9*$/0y* and 08%$/3z%. Thus, considering the general linearised equation

82 62¢ a2¢
(1= M) st 5 T 5= 0,

Jones’ theory amounts to neglecting (1 — M?*)2%/ex* in comparison with the other terms,
and hence is valid for all speeds until M becomes so large that the term above ceases to be
negligible.

Jones thus shows that the aerodynamic centre of a slender delta is at its centre of area for
all speeds, subsonic and supersonic, and thus confirms the supersonic theory in the limit 4 — 0.

We may sum up by saying of deltas that if the aspect ratio is large the aerodynamic centre
starts in the neighbourhood of half the root chord at slow speeds, moves back in the subsonic
region until shock waves occur, and settles down at the centre of area at supersonic speeds. But if
the aspect ratio is small enough the aerodynamic centre starts at the centre of area and remains
there: the slender delta goes through unchanged.

Jones extends his theory from the delta to the pointed lozenge (Fig. 11b) and the blunted
lozenge (Fig. 11c) by arguing that the surface to the rear of the forward triangle contributes no
lift. His reasoning is not perhaps completely convincing, but if it is accepted the aerodynamic
centre of Figs. 11a, 11b and 1lc remains at P. It is simple geometry to show from this that
H for the blunted lozenge 6, 1, A tends to the limit

41—
Hi so—gyo3 (140 . . . . (19

as 4—0. Thisis valid for — 1 < § < 0.
For the pointed lozenge (A = 0) we have simply
HA—}(]:%(I_]_(S)' .. .. .. . .. « . .. (20)

This straight line for the pointed lozenge, which of course cuts the external supersonic solution
at 6 = 0, is plotted in Fig. 7. So far as it goes, it gives the aerodynamic centre of pointed lozenges
which are so slender that they go through the speed of sound without aerodynamic-centre move-
ment. It is not difficult to show why this ‘ no-change ’ line differs, except at 6 = 0, from the
external supersonic solution. This arises because of the speed range carried by each point of the
external supersonic solution. As already pointed out, the Mach angle for an arrow-head must
lie between w, and o,, and there is a similar condition for lozenges. Thus for all these shapes
M must tend to o as A — 0. The delta is the only shape for which the speed range of the external
supersonic solution remains finite as 4 — 0.

(c) Comparison of the two limits—In Fig. 12, H, ,,and H, . , are plotted together from

equations (17), (19) in the negative ¢ range for which they are both known, with 4 = 0, {, 3, 3.

This diagram shows that the direction of the total movement of aerodynamic centre as 4 goes
from o to 0 depends on the taper ratio. In the case of deltas, for example, it is rearward for
pointed tips, zero at a value of 2 slightly exceeding %, and forward for more blunted tips. For
straight wings the change is always forward.

It is unfortunate that this diagram cannot be extended to the arrowheads (6 > 0) because
Jones’ theory does not at present cover the slender arrow-head (Fig. 11d). The calculation is a

10



difficult one, but is of such intrinsic interest that it is being attempted*. It can be predicted
however that the no-change line for pointed arrow-heads—the unknown continuation of PO of
Fig.7 at positive —will lie wholly above the external solution, since it can only cut the latterat Q.

8. Subsonic Experimental Data.—The model results available for examination within the
framework developed here are drawn from the British, American and German sources of Refs,
El to E17. They are tabulated in Tables 1 and 2 and plotted in Figs. 18 and 14. Table 1 and
Fig. 13 for tapered wings cover a range of § from — 2 (zero quarter-chord sweepback) to about 2,
corresponding to fairly narrow arrow-heads. Table 2 and Fig. 14 display the special case of un-
tapered wings which do not conveniently fit in to the general framework (6 — o0).

8.1. Tapered Wings, Table 1.—The tests comprise sporadic studies, from various angles and
with various objects, of novel plan-forms as they were suggested by the developing problem of
high-speed flight. Thus no general systematisation can be expected. The work was done mainly
at low speed and smallish Reynolds number ; the aerodynamic centre is derived from the pitching-
moment slope between C; = 0 and 0-2. When high-speed tests are used, the results quoted are
for values of M well below any sharp change in drag or pitching moment slope. Table 1 gives
the experimental parameters in the form suggested by this analysis, and ends by comparing
the measured aerodynamic centre H.,,. .. with three other points :

(@) The mean geometric quarter-chord point. This is the commonly used aerodynamic
datum in subsonic analysis. It is usual to work with %, the distance of the aerodynamic
centre behind the nose of the mean chord. 7, is obtained by adding 0-25 to the
difference between H, ;... and the quarter-chord point.

(6) The mean elliptic quarter-chord point, which is another common landmark in subsonic
surveys of this nature.

(c) The mean elliptic 0-45-point. This can be called the supersonic aerodynamic centre
(H supersonic) 1f the reservations discussed in section 8 are again emphasised. It is a good
approximation to the external supersonic solution for pointed tips (1 = 0) if & lies
between — % and 14. There is some experimental support for identifying it with
the aerodynamic centre at A = , but its general application to blunt tips is only
suggested as a rough guide.

The last column of the tables gives with these reservations the difference between the theoretical
Hpersonic @5 defined above and the measured H. sbsonic- L N1S transonic movement of the aerodynamic
centre has been starred where, for 1 = 0, it is firmly grounded ; for other values of 1 it is subject
to the reservations of section 6.

8.2. Tapered Wings, Fig. 13—The material of Table 1, which assembles the experimental
values of H, m. = F(8, 2, pA) should properly be analysed by isolating each variable in turn.
For example it is important to know the nature of the variation of H hoomie With A at constant
d, 4. The bag is so mixed however, that it seems best in this preliminary survey to plot all the
results on one & diagram, adding a framework which will help to elucidate the general trends
of what can be deduced. This has been done in Fig. 13, where the values of 4 and 4 for each

experimental point are tabulated.

8.2.1. Framework of the diagram.—As a frame of reference the straight-line plots of the three
points discussed in section 8.1 are drawn for four values of A :—0, 1, 3, §. Before studying the
picture in detail these four triads of reference lines should be clearly distinguished and their
significance noted.

Consider for instance the framework for 1 = 0, where the interpretation is most firmly grounded.
The uppermost chain-dotted line (elliptic 0-45 point) is seen to be a fair approximation to the
external supersonic solution, H,personic- The lower full line (geometric quarter-point) is the limit
Of Hpeome for large aspect ratio. Let us note what happens when a given wing, designed to

* Footnote, 1952. The solution has since been obtained by Mangler®,
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operate at an ‘ external ’ supersonic speed, goes through to its operational speed. At low speed
the aerodynamic centre will be somewhat aft of the geometric quarter-point and will move back
until at some value of g, determined by the combination of sweepback and section characteristics,
shock waves appear and the fA law breaks down. This régime will be followed*, when M > 1,
by a supersonic non-conical régime of which the solution is not known to me (u > w,). And
finally, when u < w, we arrive at the external supersonic régime represented roughly, for a
considerable range of speeds, by the elliptic 0-45-point.

It is possible of course that the aerodynamic centre may temporarily recede beyond the elliptic
0-45-point in the shock-wave régime or the following non-conical régime. Remembering this
reservation, it may be said that for 4 = 0 the boundaries of the reference triad define a transonic
band which gives the maximum difference between the positions of the aerodynamic centre at
operational speed and at landing. The transonic band diverges markedly with increasing é,
and so a penalty in the use of pronounced pointed arrow-heads is indicated.

If the same argument is used for blunt types (A = £, 4, etc.) it is noted that the two subsonic
reference lines tend to coincide, and so the transonic band narrows qualitatively to the parallel
one of depth 0-2 between the elliptic 0-45 and quarter-points. This would mean that for taper
ratios greater than about 1 we have at most a transonic band of about 0-2 to face, independent
of 8. This conclusion would however be very rash without further confirmation than is given
in section 6 that the supersonic aerodynamic centre remains in the neighbourhood of the elliptic
0-45-point for moderate values of taper ratio.

8.2.2. Trends of the model yesults.—A glance at the disposition of points on the diagram shows
where experimental interest has concentrated. Deltas and blunted deltas (6 = 0) are heavily
represented ; work on blunt arrow-heads gives points strung out mainly on the subsonic reference
lines for 4 = X and % ; and there is some scattered work on the straight wing (zero quarter-chord
sweepback, § = — 2).

(a) Deltas and blunted deltas (points 20 lo 34)—Points 20 to 26, for 2 =0, are the only
systematic group on the diagram, though they are not all from the same experiment. They
show a fairly consistent backward movement as g4 decreases from 4 to 1, and indicate the
large reduction in transonic shift which follows the use of small aspect ratio.

Points 27 to 34, for blunted deltas, have 1 varying from 0-12 to 0-50 and g4 from 1-33 to
6-0. Subdivisions are points 27 to 29 with 1 about 0-13, and points 30 to 32 with 4 about 0-235.
The 4, BA grouping is too scattered to sort out the variation.

(b) Blunted arrow-heads (points 35 to 52).—These cover a range of 6 from about 0-3 to 2-4.
Points 35, 39, 42, 43, 47 are with one exception at 2 = 0-25; 4 varies from 3 to 5.

Points 36 to 38, 40, 44, 45, 48 to 52 are at 4 = 0-5 with g4 varying from 2-25 to 6. There
are three pairs of points (36, 37), (44, 45), (48, 49) for which A varies at constant values of 8
and 2.

Most of these results show the aerodynamic centre to be well behind the mean geometric
quarter-chord point. Rk

(c) < Straight” wings ($,, = 0. 6 = — ). Points 3 to 15.—In this scattered group, 4 ranges
from 0 to 0-625 and A from 3 to 12.

Two subdivisions can be noticed :
(i) Points 4 to 8, at 4 = 0-2, with pA between 10 and 12.
(ii) Points 10 to 13, at 2 = 0-5, with A between 3 and 6.

In neither sub-group are the values numerous or consistent enough to sort out the variation of
H with pA.

# Except for deltas, where the external supersonic régime starts at M =1
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8.2.3. Blanks on the map—It is clear enough that blanks predominate on the map of Fig. 13,
and that further exploration concentrated on establishing the variation of H ... with g4 at a
few significant values of §, 1 will be of more value than any amount of sporadic work dotted
about the diagram.

It is proposed that a minimum programme should aim at reinforcing the delta work, and should
investigate arrow-heads at two values of 6, 2 and 14. In each case two taper families should be
explored, 2 = 0 and {, over at least 3 values of p’A in the range 1 to 6.

These ranges summarise as:
) s 0,3 1%
20,3
BA three values in range 1 to 6,

a total of 18 wings which should be studied both theoretically and experimentally at low speed
(f = 1). There are obvious advantages in having the experimental work done if possible in one
tunnel, and the theoretical work by one method.

8.3. Untapered Wings—In analysing the untapered wing results (2 = 1) we use, instead of 4,
the ratio to the chord of the central projection of the semi-trailing-edge; this is called y (see
inset Fig. 14). This gives the simple relation :

Atan¢ = 2y . . .. .. .. .o (21

Thus H, . may be regarded as a function of y and g4 or tan ¢/8.

The results are shown in Table 2 and Fig. 14, which are analogous to Table 1 and Fig. 13
except as follows :

(@) All the experimental results are for low speed (f = 1).

(6) No suggestion is made as to the supersonic aerodynamic centre since any argument from
pointed tips is certainly inapplicable here.

(¢) Two series of calculations have been included :
(i) Wieghardt’s analysis® of rectangular wings of small aspect ratio.

(ii) Falkner’s calculations (E14) in the rangesy = 01t03, 4 = 1 to 6.

8.3.1. Discusston of Fig. 14.—(a) The numerous results for rectangular wings (y = 0) are not
shown on the main diagram, but are plotted against 4 in the figure inset, where Wieghardt’s
theoretical curve is exhibited with the experimental results and Falkner’s calculations. The
tendency for the aerodynamic centre to move forward from the quarter-chord point towards the
leading edge as the aspect ratio decreases is very well established, although its physical
significance is obscure. - These and allied questions will be more fully discussed in a forthcoming
paper by Thomas™. :

(6) A first glance at the disposition of points on the main diagram would suggest a general
trend to cross first the elliptic quarter-chord line and then the geometric quarter-chord line as
y increases. This however is of doubtful significance as it ignores the large variation (1 to 6) in
aspect ratio. When the points are considered in more detail, there are few clues to the variation
with aspect ratio at any value of y other than zero. We conclude, as in the discussion of Fig. 13,
that what is wanted is a cross-section of results from theory and experiment, over the range
A =1 to 6, for at least two values of y, say 1 and 2.
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9. Conclusions.—(a) The choice of § as the main parameter in sorting out what is known of

the transonic shockless shift of aerodynamic centre appears to justify itself on the following
grounds : :

() It gives a tidy classification of the various trapezoidal and triangular half plan-forms
which are candidates for transonic operation.

(if) On the supersonic side it simplifies the theoretical results for conical flow.

(iii) On the subsonic side it permits direct application of the compressible similarity law,
and so eliminates the speed as an independent variable.

(iv) It leads to a display of the fragmentary data of the subject (see Fig. 13) which, while

as yet very incomplete, gives a coherent view of what is known and in what direction
research should proceed.

(b) The aim of these notes has been to establish a framework within which theoretical and
experimental data can be clearly assessed. For various reasons the blanks on the map are at
present such that broad practical conclusions must be tentative. The supersonic limit of aero-
dynamic centre is well established theoretically for pointed tips. American theoretical work
on the effect of blunting the tips has not yet been examined, but a rough rule is suggested here.
On the subsonic side there is very little systematic theoretical data, and the model results, though

fairly numerous, lack fruitful correlation except in two corners of the field, the deltas and the
rectangular wings.

(c) Tentative conclusions as to transonic movement are as follows :

(i) It a wing with poinfed tips is designed to operate supersonically in the external conical
régime, its supersonic aerodynamic centre is approximately at the elliptic 0-45-point ;
whereas its aerodynamic centre at slow speed will not be further forward than the
geometric 0-25-point. The difference between these points therefore gives the upper
limit of transonic movement, ignoring what happens between the appearance of shock
waves and the establishment of the conical flow. On the é-diagram this gives a
transonic band which diverges as 6 increases. Its depth is about 0-23 for straight
wings, 0-36 for deltas, and 0-56 for the arrow-head family 6 = 1 (Fig. 13).

(ii) If it is assumed that the effect of blunting the tips is to leave the supersonic aerodynamic
centre in the neighbourhood of the elliptic 0-45-point the transonic band, as defined
above, becomes roughly of depth 0-2, independent of 8, for taper ratios exceeding 0-25.
The optimistic conclusion that we can by blunting the tips confine the transonic
movement to about 0-2 for any wing cannot however be accepted without further

experimental support. Study of theoretical American work in progress will no doubt
elucidate the matter.

(4) Emphasis must be laid on the need for filling up the picture in the following directions:

(i)* Systematic subsonic theoretical and model data to establish the variation of H with g4
for a few typical values of 6 and 4. A short programme which would throw much
light on the whole matter would comprise the following ranges (see section 8.2.2) :—

& 0,2 13
A 0,3
A 3 values in range 1 to 8
(ii)* Extension of R. T. Jones’ theory to calculate H for slender arrowheads (6 positive,

A small).

Acknowledgements.—I am much indebted to H. H. B. M. Thomas for helpful discussions in the

course of this work, particularly as to the details of Appendix II; and to Mrs. Collingbourne and
Miss Ward for assembling and displaying the experimental data.

* Footnote, 1952.  Surveys similar to that suggested in (i) are now in progress. The solution of (ii) is now known.
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LIST OF SYMBOLS

The notation is mainly defined in the diagrams, as follows :
Figs. 1and 2. ¢, 8, a, #, 4, w,, wy, ¢,
Fig. 14.
Fig. 15. x,y,s, s’
Fig. 16. «,, Xy, @

In addition the following may be noted :—

H Distance of aerodynamic centre behind the apex, 'divided
~ by the mean chord ¢

n=1y/s Non-dimensional lateral co-ordinate
f(n) Spanwise loading ; lift per unit span at # divided by lift
per unit span at n =0
n-chord point Point dividing chord in ratio# : 1 — #
Mean geometric n-chord point Aerodynamic centre when the local aerodynamic centre is
elliptic P constant at # and the spanwise loading is geometric
elliptic
Pesometric Distance of mean geometric] #-chord point behind apex,
llip:ic elliptic divided by mean chord
b Mach angle
[ tan w,
tan u
# = xtan o,
w Angular co-ordinate from apex
§ = /(1— I
A4 Aspect ratio

tip chord

A Taper ratio{ ——£ =%
per ratio root chord
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APPENDIX I
Geometrical Relations (see Fig. 15)
1. Relations between a, 8, w,, w,—It follows from the definitions of a, § that
ol
C=T3
and from the geometry of Fig. 15 that

s" = AD tan w, = a . AD tan o,
Hence :
0  tan w,
“:l—k(ﬁ_—tanwl‘ .. .. .. .. .. (1)

2. Aspect Ratio and Sweepback.—If ¢ is the mean chord, we have 4 = 2s/¢ and ¢/c, = (1 + 2)/2.

Hence

4 s 4 s s’
A=1T75 TFas o
But
s BR AB—QR
y = BC- AB —1—74

from similar triangles.
Also from triangle COD,

s"=0Dcot ¢, = (1 —n + d)c, cot ¢,
or :
SI
o= (1 —n -4 8)cot g, .
Substituting for s/s” and s’/c, in the expression for 4 we have

Atangbn———ll%l—i(l—n—l—é), . . .. .. (2)

¢, being measured from the n-chord point.

It follows from (2) that ¢, vanishes when 6 = » — 1. For example, wings with no sweepback
of the quarter-chord line correspond to 6 = — 2.

3. Formulae for Mean n-chord Poinis.—Assume
(a) the local aerodynamic centre is at the z-chord point at every section

(b) the spanwise load L is L,f(yn), where L, is the lift per unit span at the centre and
n = yfs.
The lift per unit span at section HK is therefore L,f(5) and acts at P.

Then if # is the distance of the aerodynamic centre behind O we have
| o dy [ ytan g, o) dy
| sy ay [ fon) dy

0 0

f: nf(n) dn

= s tan ¢, —3

fﬂf(n) dn
18
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But from the geometry of section 2

1—2 }
stanqS,,——Q.l_'_A( ——nA—]—é)c.
Hence
i 11— | f ftn)
=20
, | J S dn
Finally if % is the distance of the aerodynamic centre behind the apex A, in terms of the mean
chord, we have - ' : , _ :
2 JWU -
h=117 n+ (1 —2)(1 —n - 9) (3)
J fln) dn

4. Applications.——(a) Mean geometric n-chovd-point.—In this case, which is usually taken to
be the datum in aerodynamic centre analysis, the span load is proportional to the chord, 7.e.,

foy =5 =1—n1—2.

This gives . . ,
I R L. T
[fman [ \t—wa—nfa STERT

Hence for the mean geometric #-chord point we have
2 (1 — A)(1 + 22) }
kgeometric = 1+ l[% + 3(1 + ﬂ.) (1 - '}/I, -+ 6) e 7 (4)

and for“ the mean georhetric quarter-chord point (# = 1)
Y N
1 ( M1 + 27) (1 4+ %6)} in general

h’geometnc - 2( + }.) {1 _I_ 1 _|__ }.
_ 142 pointed tips (1 = 0) )
=1 delta (4 = 6= 0)
(b) Mean elliptic n-chord point.—In this case f(n) = /(1 — %), and putting v = sin 0,
fl nf(n) dn fm sin 0 cos® 6 d6 4 '
0 _Je . x
1 T w2 . — .
[(fman  [7 cosoar 5
L1} 0
Hence for the mean elliptic #-chord point we have 4
2 4
heﬂiptic:m{%+3—%(1—l)(1—%+ 6)} (8)
and for the mean elliptic quarter-chord point
1 } .
Pegiptic = 20+ 4) {1 + — ( + 18 8); in general o

= 1-136 + 0-8500 pomted tips (4 = 0)
= 1-136 delta (A = 6 = 0)
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5. Relative Positions of Geometric and Elliptic Points.—Comparison of equations (2), (4) and
(6) shows of course that the geometric and elliptic points coincide at zero sweepback, where

6 =n — 1. Moreover the ¢ slope of the geometric locus (equation (4)) is greater or less than
that of the elliptic locus (equation (6)) according as

the dividing value being
2=10-38.

Hence for positive sweepback the mean geometric #-chord point will be in front of or behind the

mean elliptic #-chord point according as the taper ratio is less or greater than 0-38. This is
illustrated in Fig. 13.

APPENDIX II

Supersonic Spanwise and Chordwise Lift Distribution for Pointed Tips.
External Solution (see Fig. 16)

1. The conical lift distribution is given by

2
ap=C \/(tan;ff: —c—uo’ca,n2 w)
where the constant C is given by
Ce 4og
ElV(1 — &))"

It is required to find the spanwise and chordwise lift distribution over the half-plan ABC shown
in Fig. 16.

2. Spanwise Loading.—Referring to Fig. 16 let (x,y) be any point P of the section y whose
end points are (%,,y) and (x,y).

Introducing the variable # = x tan o,, and noting that y = x tan o, we have u, = y at H
and %, = x, tan o, at K.

With this substitution

Cx tan® w,

P V=
Hence if L be the lift per unit span at the section v, then

L :fl Ap dx

- o[ = [vie ]’

¥y
= C/(u® — 9% . . .. .. . . .. (1)
Now
%, = %, tan w,
= tan o, (¢, + vy cot w;)
and
¢, = s(cot w, — cot w,) .
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Hence u, = s tan o, (cot w, — cot w;) + vy tan o, cot w;

= §{(1 — tan w, cot ;) 4 1 tan o, cot wy}

where 7 =ys.
)
But tan o, cot wlzi—_l:—é,
U, 1+ 8y
and so s=1— 1+5+1+a”—1+5-

Substituting in (1) we have

e[ -]

Also if L = L, at 4 = 0, then

Cs
LOZm.

Thus for the span loading f() = L/L, we have
f=VI1+ )" — (1 + 8)’]
= /[(1 — %) + 26(n — 77)]. R )

This shows that the spanwise loading of the delta is elliptic, but that arrow-heads are loaded
super-elliptically and lozenges sub-elliptically, the departure being represented by the additional
term 26(n — 5%).

The span loading is plotted in Fig. 8 for a range of ¢ from — 0-5to 4.

3. Chordwise Loading—Local Aewody%amzc Centre.—Let the local aerodynamic centre at the
section ¥ be at the #,-chord point.

Then taking moments about H
Jxl (x — %) 4P dx
0

", = -
) [ apax
g
u (U — 14,)
1,0\/(%2—- clu
%d%
-7
O)J.'llo'\/
- I, — uyd, )
_(MI_MD)IO .« * . « o . . Ty « 8 a . (3)
u du
where I, = u: — yE
= [ V= = V' =)
w* du
and I, =
==
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u* du
Now f,m = ur/ (1" — y*) — J\/(%2 — 3% du
U 2 2 y2 2 2
=54/ (0" — ") +5 1og (1 + /(&® — 5%)
| Y 2 2 y2 2 2
and so Iy =5 v/(* — 3°) +7g log (s + /(i® — 7)) .
Substituting for 7o, [, in (3) and reducing we have
— Yo ¥ uy + A/ (u® — 57
ST, — ) T 2 — /(e — ) %8 o R
In order to express this in terms of é and » we note from section 2 that
Uy d u, 14 6y
PR S R R
Substituting in (4) and reducing we have finally :—
py WD) (148)%* tog[ LTV ILZ— (1 20)0T]
=R (1) T2 g)y/T1+ 200 — (1 4-28)77) (1 F oy |

It is easily seen that #,— 4 as n— 0.

The limit as  — 1 is more difficult to find. Putting # = 1 — & where ¢ is small, the log term

reduces to
28 e (66 _l_ 5)} 3/2
\/(——-1_*_5 '[1+1+6 W up to &%,

The multiplier of the log term reduces to

(1 — &)® 8.1—|—2(3).

JGEL' LIRS B v
T35

The whole expression for »#, may then be written

1 — &)? g
e

and this reduces to
%l — % + 0(6) .

Hence n,— 4 as n— 1.

In Fig. 9 n, is plotted against % for values of 6 between — 4 and 4. Comparing this with the
spanwise loading of Fig. 8, it appears that

(@) While the spanwise loading of a delta is elliptic, its local aerodynamic centre is forward
of the half-chord point, and so its aerodynamic centre will be forward of the mean
elleptic half-chord point (see Fig. 7). The appropriate value of # is in fact 0-42.

(b) When 6 is positive the span loading becomes super-elliptic but the local aerodynamic
centre moves forward, and conversely when ¢ is negative. These effects tend to
cancel in such a way as to leave the mean elliptic 0-45-point (» = 0-45) a fair
approximation to the aerodynamic centre between 6 = — § and 1§ (Fig. 7).

(c) For 6 > 15 the super-elliptic loading predominates and moves the aerodynamic centre
more and more aft of the mean elliptic half-chord point as é increases. A rough
approximation is # = 0-61 between 6 = 1-5 and 4 (Fig. 7).
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TABLE L.

TAPERED WINGS.

\

SECTION MEASURED . |SUBSONIC REFERENCE PTS: [THEORETICAL ok BB AT
POINT | peremence 3 A [ %14 | R/05| meor [ Tip 8 84 AN/ | Mosomc | GEOM.Vy [ ewpric V4 [ERERERNS HEURERRC
] 1 — 082 0-24 647 | -2-0 | s e e (210 | = A —0-035 | 0-367 | 0369 | 0-373 0586 | 012
2 1 —0-82 0-24 §-47 | —2-0 11| BT 2% | 0-69] 4-464 | -0-081 | 0-297 | 0369 | 0373 | 0-586 | 0-29
3 6 - 075 0 3-0 0 1.2 | Fiar ptate [ear pLATE =10 [ = 0 0:433 0-50 0-5 0-730% | 030%
4 2 - 075 0-2 10:0 0 -5 | HACA 23016 |NACA 23009 [x1-0 | = & 0 0406 0-417 | 0417 0-635 0-23
5 2 - 075 0-2 10-0 [} 6-5 | NACA 230(8 [NACA 23009 |[~1-0 [ =~ A 0 0-404 0417 | 0417 | 0-635 0-25
s s - 075 0+2 10-6 [) 2-56 | NACA 634-020 PACA 655018 |~1-0 | = A ) 0449 0417 | 0417 0-635 0-19
7 2 -0.75. | 0.2 120 0 6-5 | NACA 23016 [NACA 23009 |z 10 | ~ A 0 0-40] 0417 | 0417 0635 023
B 2 —-0:75 0-2 i2:0 0 6-5 | NACA 23020 [NACA 23009 |~1.0 | ~ A [} 0-407 0417 | 0417 | 0635 023
9 2 —0-75 0-333 10-0 0 6-7_ | NACA 23018 [NACA 23008 [=i1-0 | ~ A 0 0-362 0-375 | 0-375 | o088 023
10 5 —0-75 0-5 30 0 o-31 | MHOOE JGER e 0 | = a 0 0:309 0-333 | 0-333 0-500 0-29
T 3 ~0-75 05 5-0 0 46 | HACA 65,-215 NacA 65215 |=1-0 | =~ A [} 0-345 9-335 | 0-333 | 0-600 026
12 3 —-0+75 05 60 0 11-7 | MACA6a, =215 [RACAGS,215 | 071 | 426 0 0-341 0-353 | o0-355 | 0-s00 026
13 5 —~075 05 5.0 [ 300 | NACA 24 SERIES NACA 24 SERIES |10 | ~ A 0 0315 0333 | 0333 | 0-600 029
14 4 —0-75 06 5.8 0 12 | MaxYosot4 PHax =01 | g-80| 464 0 0287 | 0313 | 0-313 | 0-530 0-24
15 2 ~0-75 0-625 50 [ 8-18 | NACA 23013 NACA 43010 |=1-0 | = A ) 0287 0308 | 0308 | 0576 0-29
16 7 -0-74 0417 541 1.9 4.7 | onwpmxeouclonimxaose | o[ 4-64 0-037 | 0336 0:356 | 0-356 | 0590 0-25
17 7 —0-74 0-417 501 1-9 4.7 | ouimaxgosclow/mxtoac | .68 3-468 | 0.049 | 0-326 | 0356 | 0356 | 0590 026
18 5 -0-50 Q-2 50 6-34 1°2 | WACA 23012 [MAcA 23012 [x10 | 0110 | 0-562 | 0546 | 0-558 | 0-780 022
19 2 -0-08 0-25 60 5.0 6°s | HACAOODIS NACA 0005 |10 | ~ A 0-268 | 0-754 | 0:722 | 0742 | 0-960 023
20 12 0 0 i -0 18-4 2.0 | Nacaoolz [NacAgoIz  |m1-0 | =4 0-333 | 1-220 -0 1136 1-366% | 0-15%
21 12 0 0 133 259 | 2.0 | Hacao0iz acaooiz [z | xa 0-443 | 1-190 | 10 1136 1-366% | 0:18 %
22 12 [ 0 2:0 337 2.0 | Nacaoolz [NaCA o012 [m10 | m 0-667 | 1-168 10 1-136 1366% | 0:20 %
23 8 0 0 23l 37-6 8-0 | saumems.cl jsouirensc. |[x10 | x4 0770 | 1-160 110 11156 1-366% | 0.21 %
24 12 [ 0 30 45-0 2-0 | NACAODOIZ |NACA 0012 |~1-0 | ~a ) 14120 1-0 1-136 | 1366% | 0-24 %
25 B 0 0 387 52-2 80 SQUIRE H.S.C. |SQURE HSC. [=1-0 | ~4A |-289 1400 1-0 14136 1-366% | 0-27 %
26 it [ 0 40 531 2.7 SQUIRE H.5.C. |SQUIREHS.C. (=10 | =A 17532 | 1415 10 1136 1366 % | 025 %
27 3 ] 0-12 3-04 353 80 SQUIRE HS.C. |SQUIRE S\ [=1-0 | A 0:708 | 0+935 0-877 | 0-947 1227 0-29
28 12 0 04125 135 171 2.0 |-MACADOIZ |NACA 00IZ =10 | = 0:308 | 0990 0877 | 0938 65 017
29 1 0 0136 340 399 24 SQUIRE HS.'C. [SQURE KS.C. [=10 | = 0856 | 0-943 0-872 0-922 10148 0-21
30 8 0 0-23 2-38 234 80 SQUIRE HS.C. | SQUIRE HSE [~t0 | = 0-455_| 0785 0-780 | 0-805 1-025 0-24
31 12 0 0-25 1-33 14-9 2:0 NACA 00i2 [Nacaodiz [=10 | = 0-266 | 0810 0758 | 0733 i-p 019
32 1 0 0-268 231 24-0 21 SQUIRE HS.C, | SQUIRE HS'C, =10 | ~a 0-445 | 0-780 0-745 0761 0-981 0-20
33 ] .0 0-333 60 14:04 i-2 HACA 25012 [NaCA 23012 [=1-0 | =& 0-249 | 0-677 0-688 | 0683 | 0-908 0.23
34 i1z 0 05 133 84 2.0 HACA 0012 [wacapor2  [xi-0 [ ma 0-148 | 0:557 0-556 0-545 | 0757 0-20
35 8 0:28 025 3.07 450 8:0 SQUIRE H.5.C. | SQUIRE HS.C, |=1-0 | x4 1.0 0970 0-892 0-925 14143 0-06
15 3 0-41 05 5-76 15:0 4-6__ | NACAS5:-2is|NACABS,-215 |=1-0 | =~ 0268 | 0-679 0-677 0-662 0-873 019
37 3 041 0's 5-76 150 19 ACA 65,215 NACA 65,215 | 0-71| 4-09 0-378 | 0692 0677 0662 | 0-873 018
58 L] 0-45 0-5 6-0 15-0 3-10 | HACA 24SERIES {NACA 24SERIES (=10 | = 0-268 | 0-677 0691 0:675 0-885 0-21
39 10 0:50 0-25 3-0 45-0 15 SQUIRE H.S.B. | SQUIRE H5:8, |=r1-0 | = 10 1090 1-0 1-037 1-253 0-16
40 [ 093 0-49 3-0 37-5 -2 fiaca 23012 ;J?CA 23012 |=10 [ =A 0-767 0-BS6 0845 0-824 1-038 017
4t s i-07 0-408 2-08 55-8 i-2 RACA 23012 | Haca 23012 | %10 | ~a 1-472 1-097 1-012 1-003 1138 0-04
42 9 1-125 | 02 5.0 45-0 — =10 | = -0 1380 1-39 1423 | 1-695 032
43 o 1125 [ 025 4.5 450 1°5 SQUIRE .5, 'B.| SQUIRE 5B, |~1-0 | ~ 1-0 1-390 1-30 1355 1573 0-18
44 3 1-315 | 0-499 4-78 30-0 -0 fm 85, 215 EACA 655205 (=10 | = 0577 | 0970 0-943 0917 1129 016
45 3 1315 | 0-499 478 30-0 1341 NACA 655 =215 NACA 652=215 | 071 | 3-314 0:813 | 0-962 0-943 0917 1129 015
46 4 i-36 0.6 5.8 20:0 1-2 Max Y=o.1a] WaxYezo4 | 080|464 0-455_| 0-788 0-796 0-761 0967 0-18
47 s 1-67 0-25 58 45-0 12 f_MAX.%=U‘I4 imx.‘/c-o-m 080 | 4-64 1-25 1-678 1:560 1-631 1850 0-17
48 3 1-72 0-497 3-32 450 61 NACA 65;-215| NACA 65,7215 | 1.0 | =4 -0 10133 1:072 11039 1-247 0-1t
49 3 172 0497 3-32 45-0 15:8 NACA 65,215 HACA 65,7215 | 0-71 | 2.357 1406 | 1-133 1072 1-039 1247 0-11
50 s 1.85 -5 60 30-0 3-00 | NACA 24SERIES| NACA 2409 (=10 | = 0-577 1111 1-103 1-069 1277 0-17
st 5 185 | 05 60 3040 a6 | A WIS B ae =m0 | =a 0577 | 1oz | i-to3 | ross | rerr | our
52 5 240 -5 60 35-0 2.0 NACAOIZ T ooi) | =10 | ~ 0-700 1.284 1265 12238 1458 0-15
53 5 5-19 0-§ 5-84 42:0 0-22 RHODE SENESE| RHODE SIGENSSE] 1.0 | ~4a 09 1557 1:502 |:448 1-660 0-19
54 4 5300 | 0.6 58 35:0 2 ] MaYez014 MaxYe=o14 | 080] 4-64 0- 875 1-261 1-243 1172 1-390 0-13
55 4 5-05 0-6 5-8 450 i-2 §HAX.%=0-H MAX.!/c=D-I4 0-80) 4-64 1-25 14660 14642 1545 1-748 0-09
% Ngyorasonie 'S UNCOMFIRMED BY THEORY EXCEPT FOR A=0, —
AT WHICH THE RESULTS ARE STARRED. MBER REFERENCE
£ (| RAE REPORT N2 AERD 2000,
# SECTION PERPENDICULAR TO TRAILING EDGE. 2 NACA TECH.REPORT No 627.
+ SECTION PERPENDICULAR TO V4 CHORD. : :ii"éﬁ"g%’::&g%oi
§ SCALED UP SQUIRE H.5.'8 SECTION (MAX./.=0-10). 5 | NACA TECH, NOTE N2 1095,
6 HACA RM NACA/TIB/I3S52.
7 | RAE REPORT NZ AERD 2061
8 | ARCREPORT N2 I1,354.
9 | GERMAN TESTS,
10| RAE REPORT N2 AERO 2210.
11 | RAE TECH.NOTE N2 AERO 1869.
12 | RAE TECHNOTE NZ AERO 1767.




TABLE 2,
UNTAPERED WINGS.

. TAN @ |H AN
POINT R%F. ¥ A $ Rgeoc.r‘nof\_lr ~ Rhot| B AA 5 | SuBsonis GMeEomz E’:LE'::C%
1 ~7 [+] 05 O  |NacAOOI2 [NACA QOO 1418 =0 | = O |04 025 025
£ 2 4 5] 10 o) FLAT PLATE. - =10 | =A O o148 | 025 |OR5
3 16 ) -0 O lctargylcLrre 0B [=10 [ = O 0203 {025 |0Q25
4 17 ] 1°0 O  [NACAODIZ |NAACOD9] 083 =10 |=aA O |08 025 | 025
S 8 [®] 127 QO [FLAT PLATE JFLAT PLATE| l-2 ~ 10 | =A o 0185 025 025
[~ 15 o) 1°34 O Nacaoore [NacAODIR] 1058 (=290 | = O |o484 | o025 | 028
) 7 |4 [s) 20 0 FLAT PLATE - =10 |=A o Jo2n 025 025
8 17 (o} 0 O  [NacADOIZ |NACAOOOS| ©-59 210 | = O [020 Q25 Q25
9 I3 (8] 26! O |NaCAOOIR [NACAOOIRZ | 110 |= O |= O 0193 025 Q25
) ) o] 30 O [FLAT PLATE|[FLAT PLATE [ 4-2 =0 [2A O  [0°239 | 025 025
H 5] [s) 30 Q  INacaco2 Jnacacoi (=2 =0 [=A Q jo239 | 025 | 025
12 i *] 30 O JcuARK Y jotark Y |08 | = 10 = © jo2z0 | 025 | 025
13 . & Q 30 O  |NACAOOIS INACADOIS]| 12 =10 |=A O |o«e? 025 025
g 14 | 4 [S) 40 o) FLAT PLATE, < =10 [=A o0 |o23o | o2s 025
15 13 o 5-0 O |NACR230I2|NACA23012(0-42 [= 1O [ A o loe5 025 | o®5
18 K [s] 5418 QO  INacrQoiZ NACAQOIZ| 078 |10 [= A O _lo2o0o | 025 025
17 B o 80 O |8aca0015 [WAcAo0I5 [y 2 =10 |=A O ]|0-245 | 025 0?25
o 18 | 4 [ 6'0 [+] FLAT PLATE. - =10 I A O  |os24 025 025
19 18 o &0 O |CLARRYICLARKY |08 Iz 10 |2 A © |o223 | €25 025
20 8 ) 60 o) NACAOOI2|NACAOOIE [ |.p =0 |>A O |o-220 | ©0-25 025
4 21 14 |o'289 | 10 30 FLAT PLATE - 2 [0 Is=sA 05774 |0:287 | ©°395] ©25
£ 22 14 |©0300 | i*0 45 FLAT PLATE - 200 |aA -0 0405 | 05 |0-462
p| e3 14 Jos785] 200 30 FLAT PLATE - 210 |=A 05774 |0469 | 0539 [0:495
24 18__[067 | 50 15__MAcaesorfiacazaorz[0-42 | =10 |= A  |02680 |0-565 | 0585 | 0534
$] 23 14 1:0 2:0 45 FLAT PLATE - =j0 |2 A o) 0876 | 075 | 0-674
26 g 1:08 | 25 40 |Nrcaoorfuacacoie [o-63 | =10 |= A 08391 |0.773 | 0774 | 0°635
ol 27 14 116 | 40 30 FLAT PLATE - =40 |= A Jos77 |0'762 | 083 | o742
28 1 1:28 | 436 30  |NACA23012INACAR30M2| |- | =)0 |2 A 05774 |0°833 | ©+879] 0784
29 & 1-295 | 149 | 60 [Rachoor2 [acnooie 212 =0 |= A [1-732! |o-855 | 0'895| 0798
3¢ ) -3 -5 60 ﬁact\oms) Hacaoois [21-2 2z [0 |= A 1:7321 |0-945 | O-899| ©-80!
3 8 3 45 30 [fiacaoois [Aacaoois (212 [ =10 [= A |05774 [0.830 | ©-900] o-801
32 13 1r445 | 50 30 [fiacnesoe|acaziop|o-42 | =10 [= A |o5174 [0-940 | 0972 0-863
33 8 -5 5o 30 [iiachoois [fiaeaoors [xi-2 [ =10 [= A |05774 0931 | 1001 | 0887
36 5 875 [ 40 40  |NACAODIZ NACROOI2 [0-63 [ x |0 [= A |o838 .15 | {-089] o®e?
& 35 14 1273 | 60 30 FLAT PLATE. - = [+0 = A ©577411-053 | 1'i5 [ 0984
| 36 & | 178 | 356 | 45 [NACA30i2|NACAR30R| 1-37 [= 10 |= A |10 -089 | 1-140[ 1008
& | 37 1 4 2:0 40 45 FLAT PLATE - = (-0 |= A I-o 1182 1*25 | 1410
368 5 2:05 | a4 45  |NACAIOR[NACAZI0IR|§-37 |= IO = A (o) {215 §:275) 1-120
39 & [ 227 |262 | 60 |kacaoore|Nrchoor (212 [= 110 |= A [1-732)] v-3aa5 | 1.385] 1-213
40 13 125 [s0 a5 [Racaezon|NAcRezon| o-¢2 [2 10 [ A 4O 1:460 | (-5 1:31)
4l 6 |28 30 80 __|iacaoors [Racnoois| 212 [= 10 [= A [i7321 [i-a94 | 1-549] (353
42 & | 272 | 3414 g0 |wacaoor [Rachoor |22 [= 1.0 [=aA i7321 [ 1680 | 1-610] 1 -a04
% 43 {4 30 80 45 FLAT PLATE. - = |0 |= A K} 1697 | 178 | (-683
l
REFERENGES
S MNACA TECH. NOTE. 1093. 16 NACA REP NO 43
® NACA RER RM. L7 D23. 17 RAE. LIBRARY TRANS. 276
13 NACA TECH MEMO. 1184
w14 arc 1,542 (CALCULATED) 4 GECTION NORMAL TO LEADING EDGE.

18 macA TECH NOTE. 1669.
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F16. 1. Plan-form classification according to 6.
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Fic. 2. Geometrical definitions for the ¢ analysis,
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F16. 6. Aerodynamic centre for conical flow with pointed tips.

27

A5
We> >0
}LRANGE //
s
P A EXTERNAC 5OLUTION
Wy > 1> W, .
AP (2858 opTAN W
X 1+6 7 TAN @,

T INTERNAL SOLUTION

We> >0
LY



50

40

HSUPEESONDC‘

AB IS MEAN ELLIPTIC ©°45 POINT

CO 1§ MEAN ELLIPTIC O-81 POINT

FG 1S YOUNGS SUBSONIC CALCULATION
PG RT TONES SOLUTION FOR SMALL
ASPECT RATIO.

(<] 1:0 S 20 ' 30

F1c. 7. Approximations to the external supersonic solution for aerodynamic centre with pointed tips.
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Fic. 8. Supersonic spanwise loading of pointed wings,
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Fic. 9. Supersonic chordwise lift distribution for pointed
wings, external solution. #,is distance of local aerodynamic
centre behind the nose of the local chord, in terms of the
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F16. 10. Rough approximation to supersonic aerodynamic centre for finite taper ratio 4. External solution.
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Figs. 11a, 11b, 11cand 11d. Aerodynamic centre P of slender pointed STRAIGHT WING DELTA

wings.  (R.T. Jones’s theory.) , +F16. 12. Limiting positions of aerodynamic centre for large
and small aspect ratio, & negative.
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Fic. 13. Subsonic experimental results for aerodynamic centre of tapered wings.
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F1G. 14. Subsonic experimental and theoretical results for aerodynamic centre of untapered wings.
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Fic. 15. Geometry to illustrate Appendix L
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Fic. 16. Geometry to illustrate Appendix II.
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