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Summary.--Recent American experimental work has suggested that the resistance to buckling of wing skin panels 
under compression or shear loads is improved by aerodynamic suction. A complete theoretical analysis of this problem 
is very difficult, because compression load necessarily involves the consideration of post-buckling behaviour. An 
approach is made in this report by considering the restricted problem of the initial buckling of a long, thin and 
slightly bowed panel under combined shear and normal pressure. 

The theoretical values of the initial shear buckling stress, which agree well with American experimental values 
increase with both pressure and curvature; the wavelength of the buckles also increases with pressure, but decreases 
with curvature. The difference between the buckling stresses for simply supported and clamped edges is considerable 
for a flat panel under shear alone but decreases rapidly with curvature and pressure, thus making the indeterminacy 
of practical edge conditions of less importance. 

1. Introduction.--Recent American work T M  ~ has shown that  aerodynamic suction may be 
expected to improve the resistance of wing Skin panels to buckling under compression or shear 
loads. A complete theoretical analysis of the general combined loading problem is very difficult, 
because compression buckling is only satisfactorily discussed in terms of the post-buckling 
behaviour of the skin. Moreover the pre-buckling stress distribution ill the practical case is 
complicated by  ballooning between the wing ribs, giving a surface with variable double curvature. 

As an approach to the general problem, the present report gives an analytical account of the 
stabil i ty under combined normal pressure and shear of a long and slightly bowed panel. This 
could be considered as part of a circular cylinder of great radius, so that  the present problem 
would appear to be covered by R. & M. 24235, but unfortunately Donnelt's analysis 6, upon which 
R. & M. 24235 is based, is not easily extended to take account of normal pressure for low degrees 
of curvature, and only the extension for fuselage or engine nacelle curvatures was attempted. 
On the other hand the present analysis is not readily applicable to high degrees of curvature, for 
the computation involved becomes excessive. R. & M. 24235 and this report together cover the 
complete range. 

2. Statement of Problem and Method of Solutio~.--The panel is assufned to be sufficiently long 
for the conditions over the short edges to be neglected as far as buckling is concerned, so tha t  
the wavelength may be considered a continuous variable; i.e., the length of the panel is not less 
than three times the wavelength, t The long edges have a constant curvature, of the same 
order as tha t  of an inter-spar wing panel; the short edges are straight. 

The shear stress is uniformly applied along the edges and the normal pressure is uniformly 
distributed over one face. I t  is assumed that  the stresses do not exceed the limit of 
proportionality of the material. 

* R.A.E. Report Structures 42, received 3rd October, 1949. ~- 
t Note that the wave length increases with the pressure (see section 5.3). 
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Until  the incidence of buckling, normal displacements of tile curved edges as well as relative 
axial and circumferential movements are permitted, so that  the pressure is resisted by a uniform 
hoop stress with reactions at the short edges. During buckling all translational displacements 
of the curved edges are prevented and they are taken to be either simply-supported or clamped. 
This is not strictly the case o5 an aircraft wing panel, where before buckling normal displacements 
of the curved edges are resiste'd by ribs, giving inter-rib ballooning, and relative axial movements 
are resisted by the wing spars. To ignore these restrictions on the displacements is equivalent 
to freeing the panel from certain con.straints, so that  the resulting critical stress will be an 
under-estimate of the practical case. To take the restrictions into account is to complicate 
the problem with a variable double curvature due to the ballooning and a non-uniform 
pre-buckling stress distribution, and the consequent non-linear equations present formidable 
analytical difficulties. The seriousness of this under-estimate of the practical buckling stress 
can only be gauged, in the absence of a completely rigorous solution, by comparison with 
experiments; a comparison with such experimental results as exist is given in section 6. 

The theoretical analysis (which is given in full .in the Appendix) is an extension o5 the work 
o5 Leggett (R. & M. 19727) on the initial buckling of a slightly bowed panel under shear alone, 
and it consists of an exact soluti0n of the basic stability equations. 

3. Notation.-- 

6~ 

b 

2h 

f 

E 

Width of panel, measured along the short straight edges (in.) 

Length o5 panel, measured along the long curved edges (in.) 

Thickness of panel (in.) 

Radius of curvature o5 panel, assumed uniform (in.) 

Young's modulus (lb/in?), 

Poisson's ratio, assumed to be 0-3, 

q 

qo 

T 

TO 

1 

o 

Oo 

k =  

q =  

Normal pressure (or aerodynamic suction) (lb/in. ") 

Critical normal pressure when there is no shear stress (negative because the normal 
pressure is assumed to be positive when it acts outwards) (lb/in?) 

Critical shear stress (lb/in. ") 

Critical shear stress when there is no normal pressure (lb/in. 2) 

Wavelength (in.) 

Angle between the curved edges of the panel and the direction of a wave-crest (or 
-trough), measured at a point midway between the curved edges of the panel and 
remote from the s t ra ight  edges, 

Value of 0 when q = 0 

Angle between the curved edges of the panel and the direction of the principal tensile 
stress at a point remote from the straight edges, 

Value of ~ when q = 0 

{3(1 - -  ,p2)/2.f,'t}1/2(g2/]/h) 

{3(1 - -  v ~ ) / 2 ~ } ( a 2 r / h  3) (q/E) 
{6(1 -- v2)/=2}(a=/h=)(7:/E) 
a/a 

curvature parameter, 

pressure parameter, 

shear stress parameter, 

wavelength parameter. 

2 



4. Summary of Previous Experimental and Theoretical Work.--The effect of normal pressure 
on the stabili ty of thin-walled circular cylinders under torsion has been investigated experi- 
mental ly and theoretically by  Crate, Batdorf and Baab 1 who found that  the critical shear stress 
was appreciably raised by the pressure. These authors, who appear to be the first to consider 
the problem theoretically, derive the following interaction formula, 

2 +  /q0 = 1, 

and this agrees well with their experimental results. Their analysis is somewhat empirical and 
provides no information on the length or angle of waves. For this reason the present writers 
investigated the problem in a more fundamental way (R. & M. 24235) which is based on the work 
of Donnell 6 on the stabili ty of thin-walled circular tubes under torsion. The values of the 
critical stress so obtained are in good agreement with the experimental and theoretical results 
of Ref. 1. In addition the analysis provides information on the variation of the length and 
angle of waves with normal pressure. 

The effect of normal pressure on the buckling of thin and slightly curved sheet under shear 
has been investigated experimentally by  Rafel and Sandlin 3' ~ who also found that  normal pressure 
markedly improves the resistance to buckling. Their experiments were made on specimens 
which were clearly designed to simulate a section of the inter-spar region of a stressed-skin 
wing and were essentially torsion-box structures of 24 S-T aluminium alloy. The skin was 
stabilised only by chordwise ribs, there being no spanwise stringers. A diagrammatic sketch, 
adapted from Fig. 3 of Ref. 4, of a typical test specimen and the method of applying end load is 
shown in Fig. 6. Some, but  not all, of the specimens had a degree of curvature within the 
range considered here, and in addition had a large enough length to width ratio. Where this 
is the case it is possible to make a comparison between experimental values of critical stresses 
and those predicted by the present theory. The experimental shear buckling loads correspond 
to the first signs of buckling and were determined by instrumental  means; the post-buckling 
behaviour of the sheet was not considered. Unfortunately, Refs. 3 and 4 give no data on the 
variation of length or angle of waves wKh normal pressure, nor on the increased distortion due 
to increased shear and pressure beyond tile critical values. 

Future experimental work should consider tile influence of normal pressure on the post- 
buckling behaviour of thin curved sheet under combined compression and shear loads. This 
would be of great assistance in theoretical work on the combined loading case, which has most 
application in practice. 

5. Discussion of Results.--5.1. Presentation.--The results are expressed in terms of certain 
non-dimensional parameters, k, ~7, ~, and g, referred to as the curvature, pressure, critical shear 
stress and wavelength parameters respectively. The critical shear stress and wavelength 
parameters are functions of the curvature and pressure parameters and the type of edge support. 
The range of parameters considered adequately covers application to wing design, and is 

0 k 5, o < q < 5 0 .  

5.2. Critical Shear Stress.--The variation of the critical shear stress parameter with the curvature 
and pressure parameters is given in Tables 1 and 2 for simply supported and clamped edges 
respectively. 

The results show clearly that  the critical shear stress is greatly increased by normal pressure, 
and the curves in. Figs. 2 and 3 also show that  there is an approximately linear variation of 

with k for a given value of ~, this being more marked for simply supported than for clamped 
edges. Further, the difference between the critical shear stresses for the two types of edge 
support, considerable when the panel is flat and there is no normal pressure, diminishes rapidly 
with increasing curvature and normal pressure. This observation is of considerable importance, 
because although the practical edge conditions usually approximate to simple support their 
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indeterminacy is not now of great account. In any event the assumption of simple support 
will lead to an underestimate of the critical stress. As an illustration it is found that  for a long 
flat panel under shear alone (k = ~ = 0) the critical shear stress for clamped edges is 70 per cent 
in excess of tha t  for simply supported edges, but  tha t  when k = 5 and ~ = 50 the excess is only 
12 per cent. 

5.3. Wavelength.--The variation of the wavelength parameter with the curvature and pressure 
parameters is shown in Figs. 4 and 5, and numerical values are given in Table 3. 

For a given pressure and curvature the wavelength for simply supported edges always 
exceeds tha t  for clamped edges, and, for both types of edge support, the wavelength increases 
with pressure and decreases with curvature. In tile case of a flat panel under shear alone, 
the wavelength for clamped edges is 67 per cent of tha t  for simply supported edges, but when 
k = 5, ~7 = 0 and k = 5, ~ "= 50 the corresponding figures are 92 per cent and 91 per cent 
respectively; hence the difference in the wavelengths for the types of edge support falls 
considerably with increased curvature but  is little affected by pressure. 

These results differ from those of R. & M. 24235. The wavelength then was found to increase 
with the pressure, while the difference between the wavelengths for the two types of edge support 
decreased. 

5.4. Angle of Waves.--The angle of waves is defined as the angle between the curved edges 
and the direction of a wave-crest (or -trough) measured at a point midway between the curved 
edges and remote from the straight edges. The method of analysis does not readily give the 
angle of waves, but  it is possible to get an approximate prediction from simple physical 
considerations. 

The direction of waves is approximately parallel to the direction of the principal tensile stress 
which makes an angle ~ with the curved edges. It  is known that  for the special case of a long 
flat panel under shear alone the angle of waves, 00, is 43 deg and 39 deg for simply supported 
and clamped edges respectively 8, while ~-0 = 45 deg. An approximate expression for the angle 
of waves is therefore 

0 : --4~ 0o. 

The normal pressure induces a tensile stress of qr/2h lb / in)  in the panel parallel to the curved 
edges and consequently 

t an  2~ = 4~h/qr, 
which gives 

0 = (200/~) tan -1 (4~h/qr). 

The results in Ref. 6 suggest tha t  0o falls approximately linearly with an increase in curvature, 
giving a reduction of 40 per cent and 25 per cent for simply supported and clamped edges 
respectively when k = 5. 

5.5. Accuracy.--The analysis given in the Appendix is an exact solution of the basic stabil i ty 
equations, which are valid provided that  the ratios hg/a ~ and a~/r ~ are small in comparison with 
unity.  Both of these conditions are satisfied for a wing surface panel. 

I t  is emphasised tha t  no account has been taken  of the post-buckling behaviour of the panel. 
Leggett and Jones (R. & M. 21909) who have investigated the post-buckling behaviour of a thin 
circular cylinder under axial compression, show that  the cylinder can be maintained in a 
well-buckled form by a compressive end-load of approximately one third of the classical initial 
buckling load. They conclude that ,  due to the inevitable initial imperfections in specimens, 
the buckling load achieved under test conditions will lie between the classical initial buckling 
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load and the least  load tha t  can maintain the structure in a buckled form. Their theoretical 
results are in very fair agreement with experiment. This difference which so often exists between 
the classical buckling load and tha t  achieved in test is much smaller for the case of torsion loading 
than for compression. I t  is therefore probable that  a theoretical t reatment  analogous to that  
of Leggett and Jones would indicate a similar (though much smaller) effect of inital imperfections 
upon the critical shear stress. 

In general, practical edge conditions will be intermediate to the two cases considered, 
approximating to simple support. As the difference between the theoretical critical stresses 
for the two types of support diminishes with increasing curvature and pressure (see section 5.2) 
it follows that  the assumption of simply supported edges, leading to a slight underestimate of 
the stress, will be quite satisfactory in practical applications. The panel is assumed to be long, 
so tha t  the support along the short edges may be neglected and the wavelength be considered 
a continuous variable. This assumption is generally valid when the length of the panel exceeds 
three times the wavelength. Once again deviation from the ideal condition leads to an 
underestimate of the critical stress. 

I t  finally remains to consider the accuracy of the computation. The critical shear stress is 
given in terms of the roots of an infinite determinantal  equation which is intractable as it stands. 
Attention is therefore confined to a finite determinantal  equation corresponding to the most 
important  part  of the distortion that  takes place during buckling, and the least critical stress and 
the associated wavelength can be found to any degree of accuracy by  consideration of a 
determinant of a sufficiently high order. The computation, however, increases rapidly with 
the determinant order and it is not practicable, or indeed necessary, to deal with determinants 
above the fourth order. For the most part  third-order determinants have been considered, but 
in certain selected cases the computation is carried to the fourth order, although the work 
involved makes even this generally impracticable. The accuracy of the results must be gauged 
from the rapidity of convergence with increase in the order of the determinantal  equation. I t  
is estimated that,  for the range considered, the error in the critical stress obtained from the third- 
order determinantal  equation never exceeds 4 per cent for simply supported edges or 7 per cent 
for clamped edges. 

6. Comparison between Theoretical and American Experimental Values of the Critical Shear 
Stress.--Details of the construction of the test specimens used by Rafel and Sandlin ~, ~ are given 
in Ref. 4, but it is important  to notice here tha t  the skin was stabilised by  ribs alone and was 
at tached to the spar and rib flanges by  single rows of rivets. Ref. 3 only describes work on two 
specimens, the major difference between these being in the rib pitch which was 10 in. for one 
and 30 in. for the other; Ref. 4 covers a much more extensive field and in all twenty  specimens 
were tested under combined shear and normal pressure. The rib pitches and skin radii of 
curvature were various, giving b/a ratios from 3 to 0.75 and r/2h ratios from ~ to 400. In 
all cases the maximum normal pressure was 6 lb/in. ~. Of the twenty-two specimens altogether 
tested under combined shear and normal pressure only three have dimensions such that  an 
immediate comparison may be made with the present report, and in order to obtain a wider 
comparison special computations have been made for a further three specimens for which 
k > 5. The skin panels of five of these six specimens have a b/a ratio of 3, and the remaining 
one a ratio of 1.5. The relevant dimensions and particulars of the six specimens are given in 
Table 4. 

The detailed comparison between experiment and theory is shown in Fig. 7. The agreement 
is good for panels Nos. 2, 3 and 4; the agreement for panels Nos. 1 and 5 is good for pressures 
up to 2 lb/in. ~, but  above this pressure the experimental value remains sensibly constant and 
eventually fails below that  predicted theoretically. The probable explanation of this discrepancy 
is tha t  any small initial irregularities become increasingly pronounced with the repeated 
application of load, and accordingly the resistance of the panel to buckling progressively 
deteriorates. The comparison for panel No. 6 is interesting; here the b/a ratio of the panel 
is 1.5 as against 3 for the other panels. I t  is therefore to be expected that  the theoretical value 
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of the critical stress will underestimate the experimental value. This is precisely what the 
comparison shows, but  the underestimate is small at low pressures and appears to increase 
slightly with the pressure. The two theoretical curves for this specimen lie close together 
because of the relatively high value of the curvature parameter. 

The agreement between these experiments and the theory is therefore quite satisfactory, 
and it is seen that  the theoretical value of the critical shear stress for simply supported edges 
is a slight underestimate of the experimental value. 

Refs. 3 and 4 give no details of the length or angle of waves and it is not therefore possible 
to make any comparison with theory. 

7. Comlusions.--The theoretical values of the initial shear buckling stress agree well with 
American experimental values, despite the theory's neglect of the considerable inter-rib ballooning 
which must have occurred in the experiments. The critical shear stress increases slowly with 
curvature and sharply with normal pressure over the range considered. The wave-length 
of the buckles decreases with curvature but increases with pressure; no experimental results 
are yet available for this. The difference between the buckling stresses for simply supported 
and clamped edges is considerable for a flat panel under shear alone but  decreases rapidly with 
curvature and pressure, t hus  making the indeterminacy of practical edge conditions of less 
importance. 

Future experimental work should consider the influence of normal pressure on the post-buckling 
behaviour of thin curved sheet under combined compression and shear loads. This would be 
of great assistance in theoretical work on the combined loading case. 

A ch•owledgement.--The authors are indebted to Miss G. M. Chitty for undertaking the major 
part  of the computation, 

No. Author. 

1 H. Crate, S. B. Batdorf, and 
G. W. Baab 

2 N. Rafel . . . . . .  

3 N. Rafel . . . . . .  

4 N. Rafel and C. W. Sandlin 

5 H.G.  Hopkins and E. H. Brown 

6 L. H. Donnell . . . .  

7 D . M . A .  Leggett . . . .  

8 R.V. Southwell and S. W. Skan 

9 D. M. A. Leggett and R. P. N. 
Jones 

10 Dean, W. R . . . . .  

REFERENCES 

Title, etc. 

The Effect of Internal Pressure on the Buckling Stress of Thin-Walled 
Circular Cylinders under Torsion. N.A.C.A. Report No. L4E27. 
May, 1944. 

Effect of Normal Pressure on the Critical Compression Stress of Curved 
Sheet. N.A.C.A. Bulletin. November, 1942. 

Effect of Normal Pressure on the Critical Shear Stress of Curved Sheet. 
N.A.C.A. Bulletin. January, 1943.. 

Effect of Normal Pressure on the Critical Compressive and Shear Stress 
of Curved Sheet. N.A.C.A. Report No. LSB10. March, 1945. 

The Effect of Internal Pressure on the Initial Buckling of Thin-Walled 
Circular Cylinders under Torsion. R. & 3/[. 2423. January, 1946. 

Stability of Thin-Walled Tubes under Torsion. N.A.C.A. Report No. 479. 
1933. 

The Initial Buckling of Slightly Curved Panels under Combined Shear 
and Compression. R. & M. 1972. December, 1943. 

On the Stability under Shearing Forces of a Flat Elastic Strip. •roe. 
Roy. Soc., Series A, Vol. 105, pp. 582-607. 1924. 

The Behaviour of a Cylindrical Shell under Axial Compression when 
the Buckling Load has been Exceeded. R. & M. 2190. August, 1942. 

On the Theory of Elastic Stability. Proc. Roy. Soc., Series A, Vol. 107, 
pp. 734-760. 1925. 

6 



APPENDIX I 

Theoretical Ana ly s i s  

1. I n t r o d u c t i o ~ . - - T h e  analysis is a development of that  given by Leggett (R. 8i M. 19727) 
for the associated problem with shear loading alone. Inevitably parts of the present analysis 
duplicate parts of Leggett's paper, but  various changes in the notation have been made both 
for convenience and in order to present the analysis as concisely as possible. 

2. N o t a t i o n . - - N o t a t i o n ,  in addition to that  already given, i s : - -  

X, y ,  Z 

- -  ~ X / a  

v = ~y/a  

~o,  Vo, Wo 

t t 7.g]t 
qg,  V , .  

• fix, Gy. 72xy 

Axial, circumferential and radial orthogonal curvilinear co-ordinates 

Non-dimensional axial co-ordinate 

Non-dimensional circumferential co-ordinate 

Axial, circumferential and radial displacements of points in the middle surface 
immediately before buckling, 

Axial, circumferential and radial displacements of points in the middle surface 
during buckling, 

Stresses in the middle surface 

Stress function 

3. Co-ordinate Sys tem and Di sp lacemen t s . - -The  system of orthogonal curvilinear co-ordinates 
and the corresponding displacements are shown in Fig. 1. Attention is confined throughout to 
the middle surface. One of the curved edges and the generator through its mid-point are taken 
as y - a n d  x-axes respectively, so that  the edges are given by 

x = 0 ,  a a n d y  = q- b/2 
o r  

= 0, ~ and ~ = ~: ~b/2a. 

The third co-ordinate axis z, which is directed along the inward-drawn normal at any point, 
is chosen so that  x, y ,  z form a right-handed system. The faces of the panel are then given by 

z = 4 - h .  

The displacements corresponding to the co-ordinates x, y, z are u, v, w respectively. 

4. Derivatio~ o f  Basic  Stabil i ty  E q u a t i o n s . - - U n d e r  the conditions set out in section 2 of the 
main report, the state of stress immediately before buckling is given by 

~ x = O ,  % =  qr/2h, ,xy = ~ ,  . . . . . . . . . . . .  (1) 

and the corresponding displacements are 

Uo = - -  vqrx/2Eh, v0 = 2(1 + v)~x/E, Wo = - -  qr~/2Eh . . . .  (2) 

which may be shown to satisfy Dean's shell equations of equilibrium 1°. 

If the panel is about to buckle the shell equations are a~lso satisfied by the displacements 

U o + U ' ,  V o + V ' ,  z o 0 + w '  . . . . . . . . . . . .  (a) 

t r W r  where u ,  v ,  are arbitrarily small but  not all zero. 
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The basic stabil i ty equations are obtained by the subtraction of the two sets of shell equations 
which correspond to the displacements u0, Vo, w0 and Uo + u', Vo + v', wo + w', all product terms 
of the displacements u', v', w' being omitted so that  the final equations are linear in these 
displacements. The equations are not set down here because in their present form they are 
unnecessarily complicated and may legitimately be simplified on the basis of certain assumptions. 
First, it is assumed that  the middle-surface strains due to the displacements u', v', w' are of the 
same order of magnitude, and this implies that  

o(~') = o(~') = (a/r)o(~'). 

Second, it is assumed tha t  the ratios h~/a ~, a~/r ~ may b e  neglected in comparison with unity. 
The first assumption is correct  from a physical standpoint and is clearly valid for the special 

t V t case of a flat panel, for then u ,  are zero to the first order of small quantities. The second 
assumption is correct for a thin and slightly bowed panel. The basic stabil i ty equations are now 

o ~  +~  oy ~" + 2 ~y t ~ +  - ~  = o  . . . . .  (4) 

2 Ox t - ~  - +  ~ + ~ 0y 
a~tl I 

V~w ' - 2(2 - ~) Z ~x~y 2 E h  ay ~ r ay + ~ - ~  = 0 ,  (6) 

where 
v~ ~ ~ a2l ax ~. + a~l aye, , 

and these equations may be re-written in the form 

( ol  v' 
= 0 ,  

O, 

(7) " 

(s) 

h ~ 2 ( 1 - - v  ~) , a  ~ a~w ' 

where now 

( 1 - ~ )  qa2~ ~ 2 w '  ~ t { a v '  
2~ ~ E h  ay ~ ~Sr ( \  a~ =r / + v --~-j = O, (9) 

v~ ~ ~ a~/ a~ ~ + a~/ an ~. 

Only one term in the above equations involves the normal pressure, and it constitutes the sole 
difference between the basic stabil i ty equ~/tions for the present problem and those of R. & M. 
29727 . 

5. Solution o f  the Basic  Stabil i ty .  E q u a t i o n s . - - T h e  problem is to determine the solution of 
equations (7) to (9) for which the displacements u', v', w' are not all zero, are compatible, are 
periodic in the co-ordinate ~ and satisfy stipulated boundary conditions. 

Equations (7) and (8) are satisfied identically by  the introduction of a stress function ¢ such 
tha t  

0u' (av '  aw'.~ = 0~¢ . . . .  0 0) 
a~ P ~' \-~n =r / ~ an ~' " . . . . . . .  
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~¢ (11) 

ou' °~* . . . . .  (12) (ov' . . . . .  

' 7)' The displacements u ,  are next eliminated between equations (10) to (12) and between equations 
(9) and (12), to give the compatibili ty equation 

~2Zc)t 

1 7 1 ' ¢ + S ~  = 0 ,  

and 

Vl~W ' - -  T ~4~ O~ 2 

respectively, where 

s - ( 1 - ¢ )  a 

3 ~  3 
T - -  

7~2~,h 2 

(13) 

O~W' a~W ' - 

- - - - ~  o~o~ q ~ - - - - 0 ,  . . . . . . . . . .  (14) 

° ° . . o 

J 

. . . . . . . . . .  ( i s )  

Both w' and ~ must be periodic in ~, and without restriction it is therefore legitimate to 
assume that  

w' = wlcos m~ + w2sin m~7 = (R)* {(wl + iw~) exp (-- imp)} 

= (R) {W exp (-- imp)}, [ ..  (16) 

J = (R) {0 exp (-- ira*l)}, 

where wl, w2, q,1, ~2 are real functions of ~ only and 2c~/m is the wavelength. Related analytical 
expressions for W and # must now be found which are perfectly general, satisfy appropriate 
boundary conditions and may be differentiated term by term when their substitution into 
differential equations is necessary. From physical considerations it may  be asserted tha t  any 
differential coefficient of the radial displacement is a continuous function of $ (0 ~ ~ ~< =) and 

(-- oo < ~ < oo). #W/d~ ~ may therefore be expanded as a half-range Fourier sine series 
which will be valid in the range 0 < ~ < =, tha t  is 

# W _  E A , # s i n t ~ ,  (0 < $  < ~ ) ,  . .  . .  . .  . .  . .  (17) 
d~ ~ ,=1 

where A~ is complex. The coefficient t ~ is introduced merely for convenience, and then from the 
convergence of Fourier series it  is known that  

IA,] < MI¢ (t = 1, 2, . . .), . . . . . . . . . . . .  (18) 

where M is some constant independent of t. A Fourier series may legitimately be integrated 
term by  term any finite number of times, and equation (17) may therefore be integrated to give 
the following expression for W, 

W =  E A ,  sint~ + E  + F$ + G~ ~ + H $  3, (0~<$ ~<~), ..  . .  (19) 
t = l  

where E, F, G, H are arbitrary complex constants of integration. 

* (R) = ' real part of' 
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The radial  displacement  is accordingly 

w' = (R) ~{~=lAtsint~ + E + F~ + G~2-}- He3} exp (-- im~)~, .. (20) 

( 0 ~ < ~ ,  - o o  < ~  <oo), 

this  expression being perfect ly  general  and legi t imate ly  differentiable term by  te rm up to four 
t imes wi th  respect to e. Subs t i tu t ion  for ¢ and w' from equat ions (16) and (20) in equat ion 
(13) yields 

d--f4 2m2 ~--~.~2 -]- m4 q~ = S ,=1 ~ t2At sin te -- 2G --  6He . . . . .  (21) 

which on in tegra t ion  gives, 

--= S I,~=Zlt2At sin te/(t ~ + m2) ~ -- (2G -}- 6He)/m4 t, 

+ (A cosh me + B sinh me) + e(C cosh me -[- D sinh m~), .. (22) 

where A, B, C, D are a rb i t r a ry  complex constants.  Hence 

/ [ (  } ¢ (R) S E=V At sin te / ( t  ~ -Jr- m~) ~ - -  (2G + 6 H Q / m "  

-~- (A cosh me + B  sinh mQ + ~(C cosh m~ + D sinh mQ e x p  (-- imp) . (23) 

Along each curved edge there are four bounda ry  condit ions to be satisfied, one for each of the 
axial  and circumferent ial  displacements  and two for the radial  displacement.  Altogether  there 
are therefore eight bounda ry  conditions, and the eight a rb i t r a ry  constants  A, B, C, D, E, F .  
G, H are in general  just  sufficient to sat isfy them. 

5.1. Simply Supported Edge Conditions.--The boundary  condit ions here are 

u ' = v ' = w ' =  O2w'/Oe 2 = 0  f o r ~ = 0 , ~ ( - - o o  < ~  <oo)  . . . . .  (24) 

The condit ions for the  radial  displacement  are satisfied if 

E = F =  G = H = 0  . . . . . . . . . . . . . . .  (25) 

I t  is necessary next  to express the remaining bounctary condit ions in terms of ~ and W. This 
is achieved by  using equat ions (10) to (12) and (16), and the condit ions are now 

d~q) t 

de~ ,-1- vm 2q~ = 0 . . . . . . . .  (26) 

d~ (i - -  ~ )  a d W  fore = 0 , ~  (--o~ <~  <oo), 
d ~  (2 + v) m ~ + --  0 . . . . .  (27) 
de ~ ~ -  ~ r de . . . .  

These, together  wi th  equat ions  (19) and (22), determine the a rb i t ra ry  constants ,  A, B, C, D 
as fo l lows:- -  

AQ = 22{(3 --  v) s inh mn cosh m~ + (1 4- v)m~} --  2Y{(3 -- ~,) sinh m~ 

+ (1 + ~)m~ cosh m~}, 

BQ = X{(1. n L ~)~m~ ~ --  2(3 -- ~) sinh 2 m~} --  Y(1 --~,2)m~ sinh m~, 
(28) 

CQ = X(1 + v)(3 --  v)m sinh 2 mz --  Y(1 + ~,)2m2~ sinh m~, 

DQ -- X(1 + v)m{(3 --  v) s inh m~ cosh m~ + (1 + ~,)m~} 

+ Y(1 - /v)m{(3  --7 v). s inh m~ + (1 + v)m~ cosh m~}, 
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where 

0 -  (1 + ,)m " S { ( 3 -  v)~ sinh 2 m~ -- (1 + v)~m2~,}, 

X =  E atA,, 
t = l  

= t( ,t - -¢ 

. (2s) 
continued 

The expressions for w' and ¢ given by equations (20), (23), (25) and (28) satisfy all the boundary 
conditions and all the basic equations except equation (14). I t  therefore only remains to 
substitute the known expressions for w' and ¢ into this equation, which gives, after equating 
to zero the coefficient of exp (-- imp), the equation 

{(t 2 + m~) 2 - /  m~q -/  k~#/(t ~ + m2)2}At sint~ + im~ E tAt cos t~ 
t ~ l  t = l  

--  Tm={A cosh m~ + B sinh m~ + ~(C cosh m~ -4- D sinh m~)} 

--  2Tm{C sinh m~ + D cosh m#} = 0, (0 ~< ~ <~ ~) . . . . .  (29) 

Equation (29) is now multiplied by  s{n s~ (s = 1, 2 , . . . )  and integrated with respect to # between 
0 and a and it is found that  the A,'s satisfy the following infinite and homogeneous system of 
linear equations, 

{(s ~ + m~) ~ + m ~  + h~s~/(s ~ -¢- m~) ~} A, 

4- E Eimb,,~ 4- {1 + (--)'+'} k~a,c,] A , =  0, (s = 1, 2, . . .), . .  (30) 
t = l  

where 

C 4st/=(s ~ --  t 2) if (s + t) is an odd integer; ] 
b,, 

L 0 if (s + t) is an even integer, 

4ma, cosh m~ -- (--)~ I 
c, = (1 + ~ )~  ( 3 - - v )  s inhm~ + ( - - ) ' ( l + v ) m ~  3 

(31) 

In general the only solution of these equations is that  in which the A / s  are all zero, but  this 
implies that  there are no displacements and there is then no question of buckling. A solution 
for  which the A;'s are not all zero is only possible if the infinite determinant whose elements 
are formed from the coefficients of the At's in equation (30) is zero. This is therefore the required 
criterion for buckling, and the critical stresses are given in terms of the roots of the following 
infinite determinantal equation, 

zl, imb~ ~, 2k~a3c~, imbibe, 

imb~l ~, z~, imb2a~, 2k2a~c2, 

2k~alcs, imb327, z3, imb3~ ~, 

imb,~ ~, 2k~a2c4, imb~3~, z4, 

• o o . • . o , • o • ° 
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where 

z, = (s s + ms) s + m~q + k~s~/(s s + m~)s + 2kSa, c . . . . . . . .  (33) 

5.2. Clamped Edge Cond i t i ons . - -The  boundary  conditions here are 

u ' = v '  = w' = ~w' /O~ = 0 ,  Ior~ = 0 , ~  ( - -co  < ~  <co ) .  . .  (34) 

The conditions for the radial  displacement are satisfied if 

E = O ,  l 
F = - -  E t A ,  

t = I  

G = (l/a) ,=,E {2 + (--)'}tA,, ] . . . . . . . . . .  (35) 

H =  -- (1/u ~) E (1 + (--) '}tA,. 
t = l  

The analysis now is similar to that  already given in section 5.1, and it is sufficient to indicate 
where changes occur in the equations. 

Equat ion  (29) becomes 

{(P + mS) s + mS~ + k2P/(P + m~)~}A, sin t~ + im~ E t A ,  cos t~ 
t = J  t = l  

+ m2(m s + ~)(F~ -~- G~ s + H~ ~) - -  4m2(G + 3H~) + i m ~ ( F  + 2G~ + 3H~ s) 

- -  TmS{A cosh m~ + B sinh m~ + $(C cosh mS + D sinh m~)} 

- -  2 T m { C  sinh m~ + D cosh m~} -- 0, 

and equations (30) are then 

where 

(o ~ ~ ~ ~) . . . . . . .  (36) 

{(~" + .~")" + ~"~ + k"~'/(s ~ + ~s):}A, + ~ [,~"(m s + ~) at, 
t = l  

- -  4m~e,, + ira(b,, + f,,)~ + {1 + (--)'+'}k~(c,(a, + h,) 

- -  ig,}]A,  -= O, (s =- 1, 2, . . .) . . . . . . .  . .  .. (37) 

d~t = -  (4t/zSsS){2 + (--) '  + (_) t  + 2(_),+,}, 

e~, = (2t/~2s){2 + (--)~ + (_) t  -t- 2(--) '+~} . . . . . . . . .  

fs,--- - -  (2t/~s)(1 - -  (--)'+'} + (12 t/u~s~){1 - -  (--)'} {1 + (--)'}, . .  .. 

g , - =  (2vt/~m3)( 2 + (--)'} . . . . . . . . . . . .  i 

h, = t /m s + 6(2 + v)(t/~2m'){1 + (--)~} . . . . . . . . .  

i, = 2ms[((3 + v)s s -¢- (1 -- v)m s} sinh m~ + (--)'(1 + ~,)m~(s s + m s ) ] / . .  

[(1 + v)u(s s + mS)~((3 -- v) sinh m~ + (--)'(1 + v)m~}]. 

12 
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The infinite determinantal  equation corresponding to equation (31) is 

N~,  im(b~. + f~) ~, N~,, im(b~ + f~) ~, . . . 

im(b,~ + A ) L  N~,, im(b~, + f ~)~, N~o, . . .  

N3~, im(b3~ + f3~)~, N33, ira(b3, + f3,) ~, • • • 

im(b~ + f4~) ~, N4~, im(b~, + f~)  ~, N~4, • • • 

= 0 ,  (39) 

where 

Ns, = {(s ~ + m2) 2 + m2~ + k~s'/(s ~ + m~)~}a,, + m~(m ~ + ~)d,, ] 

- -  4m~e,, + {1 ~2 (_),+,}k~{e,(a, + h,) -- i,g,}, 

t,t = ~ f l i f s  = t ,  

L 0 i f s  :fi t. 

(40) 

6. Determination of Critical Shear Stresses.--Equations (32) and (40) do not yet  determine the 
critical shear stress as they still involve the wavelength as an arbitrary parameter. T h i s  must 
be chosen so tha t  the stress assumes its minimum value, which is then the required critical 
shear stress. As the order of tile determinantal  equation is infinite there are an infinite number 
of critical shear stresses and associated wavelengths', but  only the least critical stress is of 
practical in~cerest. 

I t  is not possible to deal with the infinite determinantal  equation as it stands, and at tention 
is perforce confined to a finite determinantal  equation derived from a finite number of the A,'s. 
This means tha t  only the more important  of the terms in the expressions for the displacements 
are considered, and the accuracy of the final results may be estimated from the rate of 
convergence with increase in the number of terms considered. Approximation to the accurate 
form of the displacements implies tha t  the panel is subject to additiona] constraints, and this 
in turn implies that  the critical stress so obtained is in excess of the exact value. The critical 
stresses obtained from successive order determinantal  equations therefore form a monotonic 
decreasing sequence whose lower bound is the true critical stress. I t  is found in practice tha t  
for the range considered here the convergence is rapid, and it is sufficient at most to consider 
the fourth-order determinantal  equation. This is fortunate, because the computation increases 
rapidly with the determinant order and is considerable even for the third. 
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TABLE 1 
Variation of ~ with ~ and k for Simply Supported Edges 

~t* 

2 
0 3 

4 

2 
1 3 

4 

2 
2 3 

4 

2 
3 3 

4 

2 
4 3 

4 

2 
5 3 

4 

~ = 0  

11 "2 
10"7 

12"1 
11 "5 

14.0 
12.9 

16"0 
14-6 

18 "2 
16 -3 

20 "4 
17 "9 
17 "9 

¢4/t 2 

0"58 
0"64 

0.75 
0 .80 

1.1 
1.1 

1.4 
1.45  

1.7 
1.8 

2-0  
2-1 
2-1 

23"3 
19"* 

26 "6 
21 

30 "3 
23 

33"9 
25 

37 "8 
28 

~ =  10 

~ 2  

0"35 
0"5** 

0 .6  
0"7 

0 .8  
1.0 

1"1 
1 . 3  

1.4 
1.5 

= 25 

//~b 2 

34.2 0-19 
30.2 0.28 

39.7 0.35 
33-1 0.45 

45-6 0 .5  
36-2 0-65 

51 -5 0-7 
39.4 0 .9  

57.2 0 .9  
42-7 1 • 1 
41.7 1.2 

= 40 

42"4 
37** 

49.9 
40 

5 7 . 8  
44 

65 "8 
48 

73 "5 
53 

,/~,t 2 

0"13 
0"2** 

0-20 
0-3 

0"35 
0"5 

0 .5  
0 .7  

0"7 
0"9 

= 50 

47 "2 
41 "2 

55-6 
45-3 

64 "9 
49.8 

74-2 
54"5 

83-1 
59-1 
56.7 

~yt 2 

0"11 
0"17 

0 . 1 9  
0 .28 

0-3  
0-42 

0"45 
0.57 

0 .6  
0.75 
0.85 

* n = de te rminan t  order. 
** The 3rd-order results for ~ = 10 and q- = 40 were obtained by  in te rpo la t ion .  

TABLE 2 
Variation of ~ with q and k for Clamped Edges 

3 0 
4 

3 1 
4 

2 3 
4 

3 3 
4 

3 4 
4 

3 5 
4 

~ = 0  

17"8 

18"1 

18"6 

19 "7 

20 "8 

22" 1 
22" 1 

~ t  2 

1.5 

1.6 

1.7 

1.9 

2 .2  

2-5 
2-5 

~ =  10 
I 

27** 

28 

29 

31 

33 

1 " 0 " *  

1"1 

1"3 

1"5 

1"8 

~- = 25 

39 "9 

41 "4 

43"5 

45 "9 

48"2 

~ 2  

0"61 

0"75 

0"92 

1 "10 

1 "35 

~" = 40 

48** 

50 

53 

56 

59 

= 50 

~ 2  

0-5 e* 53 "8 
51 "8 

0"6 56" 1 

0 .7  59- 1 

0 .8  62-6 

1 "0 66-2  
62-0 

0 .38 
0.44 

0 .47 

0-59 

0"70 

0..90 
0 .92 

* n = de te rminant  order. 
** The 3rd-order results for ~ = 10 and ~ = 40 were obta ined by  interpolation.  
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TABLE 3 

Variation of ~ with ~ and k (7~ = 2/m) 

0 

1 

2 

3 

4 

5 

q-=O 

2-500 

2-236 

1-907 

1.661 

1.491 

1.380 

S imply  Suppor t ed  Edges  

~7 = 10 

2-86* 

2"37 

2-04 

1"78 

1"6S 

£ = 25 ~- = 40 

3.779 

2~982 

2.481 

2.108 

1.907 

4"48* 

3"54 

2"83 

2"43 

2"14 

= 50 

4.851 

3.779 

3.086 

2.649 

2.309 

~ = o  

1"672 

1"581 

1 '534 

1"451 

1"349 

1"265 

Clamped E d g e s  

= 1 0  = 25 

2.561 

2.309 

2.086 

1.907 

1.721 

2.05* 

1.91 

1"76 

1.62 

1.49 

= 40 

2.98* 

• 2 .70  

2"39 

2 .18 

1.91 

q- = 50 

3"247 

2"915 

2"604 

2-389 

2"107 

* The  results  for ~ = 10 and ~ = 40 were ob ta ined  b y  in terpola t ion.  
Note:  These results  are ob ta ined  from 3rd-order  de te rminants .  

TABLE 4 

Dimensions of _Panels in American Test Specimens 

Panel  
No. (in.) 

6 

6 

10 

6 

6 

12 

b 
tin.) 

18 

1 8  

30 

18 

18 

18 

2h 
(in.) 

0"064 

0"064 

0.081 

0.064 

0.064 

0.064 

(in.) 

25-6 

44 .8  

65"0 

64 "0 

76 "9 

76 "9 

b/a 

3 

3 

3 

3 

3 

1.5 

r / 2 h  

400 

700 

800 

1000 

1200 

1200 

k 

7-33 

4 .20  

6-34 

2 .94 

2 .45 

9"77 

~/q 
(in.~/lb) 

0 .388 

0-680 

1.350 

0.970 

1-167 

4-66 

~/~ 
(lb/in. 2) 

514 

514 

297 

514 

514 

128 

Remarks  

Specimen No. 2 of Ref. 4. 

. . . . .  10 . . . .  

Specimen with  10 in. rib p i tch  of Ref. 3 

Specimen No. 18 of Ref. 4. 

. . . .  26 . . . .  

. . . .  28 . . . .  
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FIO. 1. Sys tem of co-ordinate axes and associated displacements.  
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FIG. 2. Variation of ~ with ~ and k for simply supported edges. 
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195o. Is. (IS. x½d.) 
2050. is. (IS. x,~d.) 
215o. Is. 3d. (IS. 4½d.) 

January x, 1947--June 3o, 1947. P,~. & M. No. 225o. lS. 3d. (lS. 4½d.) 
July, 1951. - - - 1L. & M. No. 2350. lS. 9d. (IS. Io½d.) 

Prices in brackets include postage. 

Obtainable from 

HER MAJESTY'S STATIONERY OFFICE 
York House, ICingsway, London, W.C.z; 4z3 Oxford Street, London, W.I (Post 
Orders: P.O. Box 569, London, S.E.I); I3a Castle Street, Edinburgh ~.; 39 King Street, 
Manchester ~.; 2 Edmund Street, Birmingham 3; I St. Andre~v's Crescent, Cardiff; 
Tower Lane, Bristol I; 80 Chichester Street, Belfast or through any bookseller. 

S.O. Code No. 23-2766 


