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Summary —Following a major assumption that enthalpy and velocity are dependent only on local conditions,
an enthalpy-velocity relation

i :7{2 _0.1/3<Z:_"_j_9>ﬁ_0y_1 Mq2 (ﬁ)z

41 (5 11 11/ % 2 %1
is obtained for the laminar boundary layer on a flat plate where subscripts p refer to the plate, 1 to the free stream
and e to the equilibrium temperature condition at the plate. When compared with general results, this relation

(exact for Prandtl number ¢ = 1) gives a close approximation to Crocco’s numerical results? for o= 0-725 and 1 - 25,
up to ufu; = 0-8.

Using the above relation in conjunction with the approximate viscosity-temperature relation
L _o T

Ui o T

suggested by Chapman and Rubesin®, and with Young’s® suggested first approximation for shearing stress

(- (2"

it is shown that close approximations to displacement thickness and velocity distribution are given by

1 6% 172 C D\=
25w =g (4= P~ (5 + 1))

and
Ly e C N Dz 21'2
~2—x(Rex) == 4 — 5 }sin=tz 4 —2——{—B 1 —2z B
where 2 = ufu
A =TT,
T T
= B(Z? 2
B=rr(-7)
— 1
D=qlg—my
T — 1
Ty pnt L
and Fo = ¢f (Rex)'® = 0-664 4/C

which serves to define C.

These have the advantage of being algebraic in form whereas previous results have involved complex numerical
integrations for individual cases.

* R.A.E. Tech. Note Aero. 2025, received 24th February, 1950.
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1. Imtroduction.—The solution of the differential equations for the laminar boundary layer
in a compressible fluid is made extremely difficult by the fact that the density (p), viscosity (u)
and thermal conductivity (k) all vary with temperature, so that the equations of motion and
energy become inter-dependent. Even to obtain numerical solutions it has generally been
necessary to make restrictive assumptions and lengthy calculations.

The simplest results to date have been given by Howarth! who assumed both that the Prandtl
o =2
temperature. Even after these simplifications, the complete evaluation of the layer still
involves graphical or numerical integrations, and is only possible with any accuracy for the
simple case of the flat plate in the absence of pressure gradients.

number ( ) was equal to unity and that there was a linear variation of viscosity with

The flat plate problem has received the attention of many workers, but as yet all solutions
have been purely numerical for particular cases. The object of the present note is to present -
an approximate, analytical solution which is more genéral, has the merits of simplicity and
shows clearly the effects of changes in working conditions.

Having presented the fundamental equations of the boundary layer in section 2, approximate
formulae are derived for the enthalpy-velocity relation in section 3 and for the variation of
shearing stress across the layer in section 4. The absolute values of the latter depend on a
constant which is derived in section 5 in conjunction with the skin friction coefficient. These
formulae are sufficient to determine the remaining characteristics of the layer, as is shown n
sections 6 to 8.

2. Fundamental Equations for the Laminayr Boundary Layer on a Flat Plate in Compressible
Flow.—In this case, and if it is assumed that the pressure does not vary along the plate, then
the boundary layer differential equations of momentum and energy can be expressed in the

form,
ou ou 0 ou
P%“a‘}“{—pv‘g&-:—a&(”—a—&) .. « .. .. .. .. . (1)
dig By a{ka . 2}
p%-ﬁ +pv-—a-§——ay Zpa—'y-('?/—l'—%o‘%) . .. . . s (2)

where x is measured along the plate
y is measured normal to the plate
# and v are the components of velocity in the directions of x and y
p is the density
u is the dyﬁamie viscosity
% is the thermal conductivity

¢, is the specific heat at constant pressure

o is the Prandtl number <: C%‘u-)
i is the enthalpy (= J¢,T where T is the ‘static’ temperature) and 15 =1 + Ju* (= J6,Tx
where Ty is the total temperature)

u, £ and ¢, all vary with temperature, but it is assumed in the above that the Prandtl number

Cy
k

g —=

is constant.




p is linked with the pressure and temperature by the equation of state
p = pRT

and since p is everywhere constant then

1 o .
Thus, even in this simple case, equations 1 and 2 are inter-dependent and this fact makes their
solution much more difficult than in the isothermal case of classical hydrodynamics (when
p, #, k and ¢, are constant). ‘

Numerical results for particular cases have only been obtained after lengthy calculations
and by making restrictive assumptions. An approximate analytical solution is investigated
in the following sections.

3. Relation Between Enthalpy and Velocity—If ¢ = 1, then inspection shows that equations
1 and 2 for the variables % and 74 are identical in form and the well known result

ig = au + b
follows, where a and b are constants.

In the case ¢ % 1, assume as an approximation that enthalpy and velocity are dependent
only on local conditions* in which case we may assume that », du/dx and 94/ 3x can be neglected
in comparison with the absolute values of % and ¢. If so, then approximately

v =0
u = u(y)
i=i(y)

and equations 1 and 2 reduce to -

£ (ot
dy \"dy) =

a (k d ,.
v [c—,, &y (¢ + —%auz)} = 0
hence
M %f == Constant == T, (IOCal skin friCtiOn)
k d ,. \
and ¢ dy (¢t + $ou®) = constant = — Jg,
P

(where g, is the local heat transfer rate).

d,. . 1

Then _ﬁ,_l@(t_}"?a%)
7y o du
dy

1 4 . .

== = (1 + fou’)

* This is equivalent to an assumption of parallel flow made with success in the treatment of the incompressible
turbulent boundary layer.
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and by integration

I ou =1 -+ Jou® 4+ 4. .. . . .. (4)

To

The inner portion of the boundary layer is of more importance than the outer in any calculations,
so choose A to fit the wall condition, :

w=20, 1=1,.
Then equation 4 becomes

i:@,—o%"u_%—mz U -

Now, Crocco® has shown that in high-speed flow

]qo ~ b — Y _as

7, “710' ! . .. .. . .. . .. «. (6)

where 3, is an equilibrium value of ¢ at the wall, given approximately by
Z'ezil_i_o_l/Z_%_%l? . . .. « . ' e « .. .. (7)

and subscript ‘ 1’ refers to conditions at the outer edge of the boundary layer (free-stream
conditions in the present case).

Substitution of equation 6 in equation 5 gives

or . ) ; 3 B R .
izz_al/s(..e_i)ﬁ_av’__lw(ﬁ)_ N
2, b 2 1,/ Uy 2 Uy

Equation 8 has been derived on the assumption that enthalpy and velocity are dependent only
on local conditions. Its worth as an approximation* in the usual case when v % 0 will now be
estimated by comparison with Crocco’s numerical results®. The latter were obtained for u oc T,
but in general Ref. 2 shows that the variation of enthalpy with velocity is almost independent
of the viscosity law chosen. Crocco’s enthalpy-velocity relation can be written as

Lt (e AT Sl SV ( ﬁ) |
el ( . >f1 <o, %1> 0 — M2 f o, m .. .. (9)

where, in the notation of Ref. 2,

o) =22 (2)

and values of the latter functions are given in Tables 3 and 4 of that report®.

* Tt may be noted that equation 8 is exact when o = 1.
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Comparison of f; and f; with the corresponding quantities { ol/? (g) and (g) } of equation
1 L

8 is made in Table 1 and Fig. 1 for ¢ = 0:725 and 1-25. These show that equation 8 forms
a good approximation to the enthalpy-velocity distribution at least up to u/u; = 0-8, where f;
is within 3 per cent and f, is within 4 per cent of the corresponding exact values.

For air at temperatures less than 400 deg K it is sufficiently accurate to take ¢, = constant
in which case equation 8 becomes the temperature-velocity relation

T __Tp 1/3<Tp — Te)’l/t, ’)/—1 2<ﬂ>2
where from equation 6
T

—1
Le y2 ¥ — 4 2
T, 14+ 0 5 M2,

This will be assumed to be the case in the remainder of this note.

4. Variation of Shearing Stress across the Boundary Layer.—The local shearing stress (¢) in
the boundary layer is given by
u '
For the purposes of section 3 it was assumed that this was constant across the layer and

equal to the wall value 7,. In general this is not the case and to find the variation of 7 it is
necessary to solve equation 1 (the equation of motion).

Now Crocco® has shown that in the case of the flat plate, when 9p/dx = 0, it is possible to
reduce equation 1 to an ordinary differential equation in terms of the variable #, provided
d¢/3x = 0, 1.e., provided 7 is a function of » alone. The non-dimensional form of this equation is

FF+2fL. 2. %—0o . . .. .4
e M A ‘

where Fis a function of #/u, and a prime denotes differentiation with respect to ufu,. The
function F is given by : ' .

F=C, (Re)* .. .. .. . .. .. .. .. (13)
where C. = 1—T—2 and Re, = Pt
gp1U1 M1

(Thus, .at the wall
F=F,=¢(Re)” ... .. .. .. .. .. .. .. (13

T . . . . .
where cr = 1——‘;2—2 is the local skin friction coefficient.)
2P

The boundary conditions to be satisfied by solutions of equation 12 are derived in Ref, 2 as

U

1/7:0, F,:O

' (14)
Yy F =0

Uy




/

Finally, when F has been obtained as a function of #/u,, the velocity field can be obtained
by integration of equation 11, which in the present case can be transformed to read

( (Re, )1/2}

G

Equation 12 shows that F as a function of #/u, is influenced by the cho1ce of viscosity law.
If 4 oc T, then equation 12 becomes (by virtue of equation 3)

2 pu : B ’ | =
- — . .. .o - .. e Y ’ . 1
~2.s L o (15)

FF"4+2% =0 .. .. .. .. .. .. .. (2
U ,

and a numerical solution for this case has been obtained by Crocco®.

Before going further, it is best to consider how u varies with 7 (and hence with u/u,).

4.1. Variation of Viscosity with Temperature.—The best representation to date of the variation
of viscosity with temperature is given by Sutherland’s formula

N (i)”z 1+ T7,/273
A=1t\273) T+ T,T
where y, is the viscosity at zero centigrade and 7, is a characterlstlc temperature for the ‘gas.
For air, T, can be taken as 116 deg K.
From this we obtain
“ Y1+ T T, | e
“ (:r) ToFE e e e (18)

and this formula is usually approximated to by a power law variation

where the index »# depends on the free-stream temperature and is chosen so that the power
law variation (equation 17) is tangential to Sutherland’s variation (equation 16) at that
temperature. This approximation is only valid for temperatures in the neighbourhood of the
free-stream temperature, as has been illustrated by Crocco®.

Neither equation 16 nor equation 17 is particularly amenable for use in analytical evaluation
of the boundary layer.

Recently, Chapman and Rubesin® have proposed the form

T

Z_CT; L)

where C is a constant chosen to suit the range of temperatures under consideration. TIn their
work* they take C to be given by

o= (X8

where p,/p, is given by Sutherland’s formula (equation 16).
6



In the present note we shall use this form (equation 18) but shall make use of Crocco’s results’
to define C (section 5, below).

4.2, Variation of Shearing Stress.—Taking

# T ' .

— =C = . . .. .. .. . .. . 18

1 T, : (18)

and since LAY .. .. .. .. .. . .. . (3)
. 21 T ‘ - .

we obtain, from equation 12,
n M
FF" 4+ 2C — =0
Ty
or, since C is a constant

j_c(%yﬁ-z%:.o L (w)

subject to the boundary conditions
F /
w=0(7) =0
% F
w b <W?> =0
By comparison of equations 12a and 12b, and the boundary conditions of equations 14 and 14a

we see that Crocco’s solution® for F of equation 12a, when C = 1, should also be valid in the
general case if

(14a)

T/l% is substituted for F.

In particular, this means that

Fy = ¢ (Re,)* = 0-6644/C L (19)

and also that FE <= ;), as a function of #/u#, should not be affected by changeé in C.
0. 0 -

Now Young® has pointed out that a suitable first approximation to Crocco’s values® of

£l is given by
0

%:{1-(%)2}1/2.'., @

(It can be shown that this is equivalent to Lamb’s approximation® for velocity distribution in
incompressible flow, see section 6.1.1 below.)
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A comparison between equation 20 and Crocco’s solution is given in the following table and
in Fig. 2.

s 0-1 0-3 0-5 0.7 0-8 0-9 0-95 1-0

Uy

F
Fo 0-9992 0-9795 0-9036 0-7252 0-5751 0-3596 0-2123 0

(Crocco)

w\2)1/2
{1 - <;1) ] 09950 0-9539 0-8660 0-7141 0-6000 04359 0-3123 0

These show that the approximation given by equation 29 is within 5 per cent up to #/u;, = 0-8.

We now have approximate expressions for the enthalpy-velocity and the shearing stress-
velocity relations, given by equations 10 and 20 respectively, and in conjunction with equation
15 these are sufficient for the complete solution of the laminar boundary layer provided the
constant C in the viscosity-temperature relation (equation 18) is known. The constant C is
determined in the next section. -

Meanwhile a check on the errors introduced by using the approximate expression for the
stress distribution is given by calculating ¢; from the momentum integral equation

_ T _ o
G = %P1%12 - ax (21) .
fwhen ‘% = ().
where
[
§ — f i (1 — f’ﬁ) d
o P1 U, Y
2x h p%( u)l @ (u)
= 1— 22« B ¥
(Re,)'/? fo Pty /) F % B1 N\
when the variable of integration is changed from y to u/u,, using equation 15.
Y g eq
T .
Al £~z ce e 3
o 22D . ®
T
d *_c4 18
o M1 I ( )
so that we obtain
ocx [ - (1 B Z)
0 — x Uy iy d<ﬁ>
(Re,)'* F Uy
0 :
2 \1/2
and F=F,|1—(% e e (20)
U ‘



so that finally

2Cx 4 — 5
HZF.,(Rex)”Z 7} .. .. .. .. .. .. .. .. (22)

and substitution of equation 22 in equation 21 gives
Iy = ¢;(Re,)'/*
= (-6554/C
which is within 1} per cent of the more exact value
Fo = 0-6644/C Ce e (19)
obtained as a generalisation of Crocco’s result® in equation 19.

The latter will be used in all the subsequent calculations.

5. Skwn Friction. Deteymination of the Constant C.—By taking

a_ck o

K1 T,

section 4 has shown that
Fy = c/(Re,)'?
= 0-6644/C . .. .. .. .. .. .. .. .. (19)

Comparison of Crocco’s final results® (based on Sutherland’s formula) with equation 19 shows
that ' ' '

C=qn§1m
1

Now, if equation 18 is to be a suitable approximation to Sutherland’s formula, then it is
reasonable to suppose that C is chosen so that the two formulae are in agreement for some value
of T between T, and T,, ¢.e.,

L TNE L TYT,
<:_(7Q I rr - e e (2

and the problem is then to determine 77/T; as a function of 7,, 7,/ and M,.

3.1. Value of C when o = 0-725.—By analysis of Crocco’s results (which are for ¢ = 0-725),
Johnson and Rubesin of the University of California have obtained the approximate formula
for skin friction

CHREY = 0664 .. .. .. ... ®




where primes denote that density and viscosity are to be evaluated at an ‘intermediate’

temperature
T = 0-427,(1 4 0-076M,*) 4 0-587,

and viscosity is to be evaluated by Sutherland’s formula.
Now

’ Pl
Cr= —
f P Cr
= b, by equation 3,
T,
and
Re, = L. 'u—t Re,
pPr M
1 T\ ;
=z (T}> by equations 3 and 18,

so that equation 24 can be altered to read

¢/ Re, = 0-6644/C

(25)

which is of the form of equation 19, and C is to be evaluated from equation 23 at a temperature

T’ given by equation 25.

Thus equations 23 and 25 could be used to determine the constant C , when ¢ = 0-725.

On the other hand, from a semi-empirical analysis and generalisation of the same results?,

Young® has advanced the approximate formula

qu@=06m[0%44y$%é+009@—1mwaﬂ
1

where it is assumed that

£=(z)
J231 o T -

Now if equations 18 and 17 are to agree at a temperature 77, then

T/ n—1
¢ =(z)
and substitution of équation 27 in equation .19 gives

T/\(—1)/2
QVRQZOﬁm<i> .

The similarity of equations 26 and 19a is evident and indicates that

r_ 0-45 + 0-55 %’ + 0-09(y — 1)M,*6**
1

1

10

1

(26)

(17)

(27)

(19a)



by Young’s analysis. As already mentioned,- Crocco’s results® are for ¢ = 0-725, and with
this value equation 28 becomes

Ly ald

i T
S — 0. . 2 . _?
T1"045{1+0068M1}+055T1

which should be comparable with the estimate of Johnson and Rubesin given bj equation 25.
Comparison is made in Fig. 3, and shows reasonable agreement.

(28a)

It should be noted that Young’s formula (equation 26) gives
F, = ¢4/ Re, = constant '
when # = 1, 7.e., when -

u T

_ =

wmo I

which is assumed to be the case when 7 is of the order of 116 deg K, whereas Crocco’s results
show that ¢s/Re, is variable and such a variation appears if Sutherland’s formula is used for
evaluating C, as in Johnson and Rubesin’s approach. What Young’s formula does is to give
close agreement with Crocco’s results if the ratio

F,

F(o) n=1
is considered.

To obtain the absolute value of F,, the variation of 4/C with T[T, according to Sutherland’s
formula should be used. This is shown in Fig. 4 for two values of 7y, and the error in using a
power law approximation is evident. The appropriate value of 77/T, should therefore be
obtained from equation 25 and should be used in conjunction with equation 23.

5.2. Extension to Other Values of o.—Equation 10 gives

T T, s (Tp_ T, u y — 1 2(%)2 B
i—i [+2 7—“; f)%l—aTMl ?z . - . . (10)
T, 1

where =1+ o2 y——;— M2

T,
Equations 25 and 28a give values of 7"/T; at ¢ = 0-725 and it is easily shown that they can
be derived from equation 10 by putting ¢ = 0-725 and

) ,

2
g — 0-468, <—> — 0-273

1 U
in the case of equation 25, and
v V .
2 = 0-502, (-”f) = 0-317
U, o,

in the case of equation 28a, 7.e., an approximation to 7’/T; would be the value of T/T, at some
ufu, either between 0-468 and 0-522 (=4/0-273) in the case of equation 25 or between 0502
and 0-563 (=+/0-317) in the case of equation 28a. Either set of values is within the fully
valid range of equation 10.

This suggests that equation 10 with appropriate values for #/u, and (#/u,)* might give a better
estimate than Young’s generalisation® (equation 28) for the variation of 77/T, with ¢. Johnson

11




and Rubensin’s analysis was based on Sutherland’s formula so for that reason we shall take
Y= 0-468,(f5>:=»0-273.
Uy oy ‘

This gives the general formula

r T, 1/3(T _Te> Y y
T =T, 0-4680 T T, 0:273 ¢

— 1
2
and C is to be obtained from equatlon 23, or the Sutherland curves in Fig. 4.

If air is the working fluid, with o = 0-72, it will be sufficiently accurate to obtain 7"/T, from
the broken curves of Fig. 3.

M2 (29

We are now in a position to evaluate the velocity distribution and displacement ‘thickness of
the boundary layer.

6. Velocity Distribution.—From equation 15

Y
E&Qﬁ%}zﬁ.ﬁ‘ s
a Fom
Yl
14,/
we obtain
— 1 —_—
i}VR@_lL L d@)i N
_ Ly _
Put n=z ’\/Rex;Z—El
Equation 10 gives
T _ 2
Tl_—A—Bz—Dz . . . . . . . (10)
where 4 = Zf’
7,
T T
__ _1/3 %P e
B T - (31)
D= ¢l 1 M?
2 ! J
T, 2y — 1 . . | . .
T. = =140 T M ? from equation 6 with ¢, constant. Then, by using equation 18

for u //,L1 and equation 20 for F|F,, we obtain from equation 30

A—Bz Dz s
F f _2)1/2

':%iKA-%%mﬁz+<%5+By1~zwﬂ—B} .  . (32

as an approximation to the velocity distribution across the boundary layer.
12



6.1. Comparison of Approximate Velocity Distribution with Particular Exact Distributions.—
6.1.1. M, = 0. T, = T,—In this case, equation 31 gives

A=1,B=0,D=0.

F.urthermore, T = Ty, hence C = 1 and F, = 0-664 from equation 19. Then equation 32
gives

z = sin (0-664 7). . . . o . .. . .. (32a)

This is compared with the Blasius (numerical) distribution for incompressible flow in Table 2
and Fig. 5, and shows good agreement over the whole range, the maximum discrepancy being
of the order of 2 per cent.

Note that if the velocity distribution is of the form of equation 32, z.c.,

z = sin Fyy

then substituting for z and » we obtain

and hence

which is Lamb’s approximation® for the velocity distribution in 'incompressible flow.

Thus there is correspondence between Young’s approximation

%:[1;(5)2}”2 e (20)

for the distribution of shearing stress in compressible flow and Lamb’s approximation® for
velocity distribution in incompressible flow.

612. M, =25 1T,=1T,C =1, 06 = 1—The case C = 1, ¢ = 1 has been analysed by
Howarth' under zero heat-transfer conditions and a velocity distribution can be obtained from
his results by numerical integration. '

For C = 1, ¢ = 1 and zero heat transfer, we have

T, y—1., oy —=1.-,
A—Tl—l"“—Q—Ml,B—O,C—l,D——TMI
and equatioﬁ 32 gives
7 1 2) qim—-1, 1 7 1 2 211/2
n = 1-508{(1 4+ 7} M) sin 'tz + ) M*2(1 — 2%) . .. (32b)

13




~ Values computed from equation 32b are compared in Table 2 and Fig. 5 with values computed
from Howarth’s analysis. The case M, = 2-5 has been chosen, and the agreement is sufficient
for all practical purposes, the maximum discrepancy in #/u, being of the order of 2 per cent.

6.1.3. M, =50, T, = 371,,C = 1, 0 = 0-7.—This is a case of compressible flow with heat
transfer for which Hantzsche and Wendt® give a velocity distribution in graphical form.

Using the approximate formula (equation 32) we have under the above conditions

A=1

T, _ .‘1/v27.— 1 : _ =,
—T—l—l—l—a 5 M® =518
B= —4-38

D=3-5

and since C=1,F, =0-664.

Hence l :
n = 1-506(4-38 — 1-5sin"z — (4-38 — 1-752)(1 — £33 - .. ... (32)
from which ‘ '
i= | 01 03 05 07 08 | 09 | 095 1-0
n— | 00875 | 036 | 0843 | 1451 | 1818 | 2-227 | 2485 | 3-033

These values are plotted in Fig. 6, where they are compared with the curve taken from
Hantzsche and Wendt’s report®’. The agreement is within 1 per cent.

6.2. General Remarks.—Equation 32 has been shown to give a sufficiently good approximation
to the velocity distribution across the boundary layer in three representative cases. It also
possesses the advantage of being algebraic in form and is relatively simple to evaluate, by
comparison with earlier estimates which have involved graphical or numerical integration.

7. Displacement Thickness.—The displacement thickness 6* is given by
: s A ‘ o
5*:J'< __P”>d,
o Pty Y

| o _CfA—(B+1)z—Dz
g 7 V&= Ef A= @

1.6.,

where z = u/u, and substitutions have been made from equations 3, 10, 15, 18, 20 and 31. By
integration ' * ‘

%%*VRex=%{<A—£2)>'g—(B+1)} e @

14



where, as before A Il’
T,
Beognle = To L . . . . . (31)
1
D=o? =V
o 3 s ‘

and % =14 o' V—_-é——l M,* from equation 6.

1

7.1. Comparison with Particular Exact Values.—7.1.1. M, = 0, T, = T;—In this case
A=1B=0,D=0and F, = 0-664, C = 1.

Hence Lo% Roym — 1-506 (- _ 1)
2 x
.
ie.,  (Re) = 1.7193

as compared with the Blasius value
B |
- (Re,)'/* = 1-7208
which shows agreement within 0-1 per cent.

' *
(Note that if Fy = 0-655, as determined in section 4.2, then 6_ (Re,)'/? = 1-7429).

712. T, = Te, 6 = 1,C = 1.—From Howarth’s analy51s using the 1ntegra1 formula for
6* and by numerical 1ntegrat10n we can obtain the formula

;(Rex)m 1-7208(1 + 1-885 L5 e - 70

under the above conditions.
Under the same conditions, from equation 31

T. — 1
B=20
D=1 ; 1 M2
and Fy = 0-664 from equation 19.

Then equation 33 becomes

o _ a. y— 1, @ ]
Y VRe = 3 012[(1 + T Myt 1

=1.7208[0-9992+1-375”—12‘—1M12]. ... (3%
15




At M, = 5-0, equation 34 gives
‘ 5
- v/ Re, = 13-64
while equation 33a gives
%k
‘% +/Re, — 13-56,

i.e., the agreement is within 0-75 per cent. This is sufficiently close, because equation 34,
derived by numerical integration must also be regarded as an approximation.

Thus equation 33 may be expected to give a sufficiently accurate estimate of displacement
thickness under all conditions.

8. Ratio of Displacement to Momentum Thickness.— Equation 33 gives

X

168% C D , o
Q—VRex=E{<A—§)%—(B+1)}. S .
Section 4.2, equation 22, gives 7

16 C 4—n=
o x VEE=F, T

D\ =
&% (A_§>Q“(B+1) \
Hence - H= — = - . .. . . (35)
7} 7
I_Z -

should give a sufficiently accurate estimate of the ratio of displacement to momentum thickness
and we may note that it is independent of the choice of viscosity law.

9. Summary of Aj)jbroximate Formulae—All the formulae are dependent on 3p/dx = 0 and
difdx = 0.

1. Enthalpy-velocity relation is

Lob aua(ép _ L)ﬁ _ (,Y;1M12<%>2

T 1y i 1/ Uy 2 Uy
which, if ¢, is constant becomes the

2. Temperature-velocity relation

L—a-B2 _p(y
U

T1 1 %y
— TP
where A= T
T T
VLY e BT
B=o <T1 :r1>
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T,

— 14 oty

and

3. Variation of shearing stress across the boundary layer is

F 2 \2 /2
7, - (;) )
where F = C, v/Re,

T P].%lx
— T Re, = P

11713 1Yy My

C
and F,= ¢ v/Re,.

4, Local skin friction coefficient

Fo=c¢; v/Re, = 0-664 4/C

(TN 14 1T,
where C = (T) T, F TJT,
and % =A —0-468B —0-273 D

1

5. Momentum thickness is given by
16 C 4 —=
2xVEe=F 1
6. Displacement thickness is

1 e = (B3 me)

7. Velocity distribution is

1y _C{< D)._l (Dz ) e }
Q}'\/Rex—E A'—7 S Z+ 7—’—3(1—2) B
where g= 2
Uq

10. Conclusions.—1. By assuming that enthalpy and velocity are dependent only on local
conditions and by accepting certain relations obtained by Crocco, an approximate enthalpy-
velocity relation is obtained for the laminar boundary layer on a flat plate with 8p/dx = 0 and
d1/3x = 0. This relation gives a close approximation to Crocco’s numerical results for ¢ = 0-725
and 1-25 at least up to ufu, = 0-8.

2. By taking a viscosity-temperature relation of the form

as proposed by Chapman and Rubesin, where C is a constant, the variation of shearing stress
across the layer when 9p/8x = 0 and 97/dx = 0 is shown to be independent of C and an
approximation suggested by Young is adopted.

—
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3. The local skin friction coefficient (c;) can serve to determine C. Approximate formulae
for ¢; are already available for ¢ = 0-725 and a new generalisation for other values of ¢ is
suggested. :

4. Approximate formulae for displacement thickness and velocity distribution are then
derived, which are in very close agreement, at least up to M, = 5-0, with some representative
cases obtained by numerical integration of more exact formulae.

LIST OF SYMBOLS

x Distance measured along surface of plate
y Distance measured normal to surface of plate
%, v Components of velocity in the directions x, y
z = u|u, where u, is free-stream value of »
p Density
@ Dynamic viscosity
k Thermal conductivity
Cp Specific heat at constant pressure
o Prandtl number <= f%”)
T ‘ Static ’ temperature
7 Enthalpy (= Jc, T, where ] is the mechanical equivalent of heat)
i = i et (i = (y — )M3 |
Ze Equilibrium value of enthalpy (= 7, + o> }u,* where subscript 1 denotes free- -
stream conditions) ~
T local shearing s£ress in the boundary layer
Ty local skin friction
o = _%;:715 C. = %j;]%:z
Re, Reynolds number (= p,u,%/u,)
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LIST OF SYMBOLS—continued.

_ Ly
1= gy VR
F = C.,/Re,
'F, = c¢n/Re,
C Defined by‘uﬁ =C % , Sutherland’s formula and equation 25 or 28
. 1 ' 1 .
4,B and D Constants in enthalpy-velocity relation. Defined by equations 31
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TABLE 1

Comparison of the approximate enthalpy-velocity relation

. . . . \
z:@_fqz:@z_gy~up@>
A A U, 2 Y\,

with the exact numerical relation

b (b ﬁ__7—12< Q
i1 (z >f1<"’ u> 7 g Mo,

obtained by Crocco in Ref. 2 for 4 oc T.

. - = 0725 ;=125
U1 u u©w\2 % u \2
1z ¥ u 1 ¥ “
N B I ) N PR VT O () | 7

0-1 0-0898 0-0892 0-0100 0-0100 | 0:1077 0-1081 0-0100 0-0100
0-3 0-2694 0-2680 0-0900 0-0902 0-3232 0-3238 0-0900 0-0898
0-5 0-4490 0-4491 0-2500 0-2520 0-5386 0-5371 0-2500 0-2480
0-7 0-6286 0-6373 0-4900 0-5024 0-7540 0-7431 0-4900 0-4792
0-8 0-7184 0-7378 0-6400 0-6674 0-8618 0-8405 0-6400 0-6172
0-9 0-8082 0-8474 0-8100 0-8686 0-9695 0-9301 0-8100 0-7634
0-96 0-8621 0-9244 0-9216 1-0206 1-0341 0-9768 0-9216 0-8490
1-00 0-8980 1-0000 1-0000 1-1742 1-0772 1-0000 1-0000 0-8946

Exact agreement is obtained for ¢ = 1-0.

20




TABLE 2
Comparison of approximate (equation 32) and exact velocity distributions

Q) My=0 T,=T,

,,ZEZVR&C 02 |04 |06 [08 |10 |12 |14 |16 |18 |20 |2:385]3-0

20 0-1324) 0-2625| 0-3885| 0-507 | 0-616 | 0-716 | 0-801 | 0-874 | 0-931 | 0-972 | 1-000 —
Equation 32

u
2=

Uy 0-1328) 0-2647| 0-3938| 0-517 | 0-630 | 0-729 | 0-811 | 0-876 | 0-923 | (-955 | 0-986 0-999

Blasius
Equation 32 ‘ '
Blasius 0-998 [ 0-993 | 0-988 | 0-982 | 0-978 | 0-982 | 0-988 | 0-998 | 1-007 | 1-017 | 1-014

(i) Mi =25 6=1, poc T, T,=T,

H 0-1 0-3 0-5 0-7 0-8 0-9 0-99 0-999 1-0
U1
1y +/Re
x ¥ 0-338 1-015 1-688 2-370 2715 .| 3-105 3-623 — 3:84
Equation 32 : ’
ly v/ Rex
2 x 0-338 1-004 1-654 2-311 2-678 3-099 3-944 4-49 —
from Howarth?!
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F1c. 1. Variation of terms in enthalpy-velocity distribution.
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0
0 02 0-4 06 Yy 08 ]

F1c. 2. Variation of shearing stress across the boundary layer.
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TG, 3. Tempel:ature ratio for evaluating 4/C in Fig. 4.
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Fie. 4. Variation of 4/C with T/T; according to various viscosity laws.
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¥1c. 5. Comparison of approximate and exact velocity distributions (zero heat transfer).
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F1c. 8. Comparison of approximate and exact velocity distributions
(with heat transfer).
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