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Sumsmary.—A rigorous theory has been developed for determining the stresses and displacements in a sheet reinforced
by stringers and ribs which are not at right-angles to the stringers. The solution of many problems of practical import-
ance has been facilitated by the introduction of a stress function.

The theory has been applied to a cylinder of rectangular section stiffened with such skew ribs (a simplified representation
of a swept wing). It is shown that there are axes about which applied moments produce pure twist or pure curvature
of the cylinder. There are simple formulae for determining these axes and the relationships between twist and curvature
and the applied moments.

L. Introduction.—The analysis of the elastic behaviour of an unswept wing is comparatively
simple in so far as the ribs are at right-angles to the stringers. But the use of swept wings in
aircraft has introduced a variety of structural problems. If there are ribs parallel to the direction
of flight they will not be at right-angles to the stringers and so there will be a measure of skewness
in the structural geometry of the wing. For instance, in calculating the deformation of wings
due to ‘ simple bending’ loads (s.e., loads which would cause ordinary bending deflections if the
ribs were normal to the spars) the resistance of the ribs to flexure of the wing must be considered.
Because of the skewness, or asymmetry, of the wing this resistance of the ribs to simple flexure
of the wing will introduce shearing forces in the top and bottom surfaces of the wing, and these in
turn will cause the wing to twist. Similarly when a torque is applied to the wing the presence of
ribs not at right-angles to the stringers (hereafter called skew ribs) introduces a component of
flexure in the resultant deformation.

Wittrick® produced a theory for the behaviour of swept wings. A thin-walled cylinder of
arbitrary section was considered and the assumption was made that the ribs were closely spaced
and completely rigid in their own plane. Wittrick pointed out that the validity of this assumption
1s open to doubt, as the high flexural rigidity required from aero-elastic considerations and the
smooth surface requ1red for aerodynamic reasons tends to influence the design in the direction of
a very thick skin with consequently few ribs.

“The present report considers the stiffness as well as the skewness of the ribs but due to the added
degree of complexity attention has been concentrated on elementary types of structure and
loading.

It is shown that for a cylinder of rectangular section stiffened with skew ribs there are axes
about which applied moments produce pure twist or pure curvature. There are simple formulae
for determining these axes (which are not in general at right-angles) and the torsional and flexural
stiffnesses.

* R.AE. Report Structures 52, received 7th March, 1950.
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2. Method of Solution.—In a panel stiffened with stringers and ribs at right-angles to the
stringers it has been customary to simplify stress analysis by assuming

(a) the stiffening effect of the discrete stringers will not be seriously altered by spreading
them out, 7.c., the stringers can be adequately represented ‘by an elastic sheet with
equivalent, average, uni-directional properties, and

(b) all out-of-balance forces necessary to prevent any strains in a direction parallel to the ribs
may be neglected.

Of these two assumptions (b) would appear to be less justifiable than (a). Butin fact it works
quite well because the loads applied to the panel are either simple shearing loads, in which case
there are no strains parallel to the ribs and, therefore, no out-of-balance forces, or the loads are

applied parallel to the stringers, in which case the normal out-of-balance forces are of secondary
importance* (R. & M. 2648%).

However, for a swept panel assumption (b) is untenable for both the main types of loading
mentioned above would produce appreciable strains in the direction of the skew ribs if these ribs
were removed—another way of saying that the presence of skew ribs will modify the stress
distribution in the panel to a much greater extent than ribs at right angles to the stringers.

Accordingly the only assumption made here regarding the ribs is that they may be treated in

the same way as stringers are treated and represented by an elastic sheet with equivalent
unidirectional properties. '

It should be pointed out that the type of distortion of the ribs considered here is that of bending
in their own plane, so that, for example, if a rib in a cylinder of rectangular section consisted of
a rectangular sheet of thickness #" and height 2/ then the I of the rib would be 2/3(A%’) and hence
the effective section area of the rib will be 4'/3. And if the rib pitch were p, say, the thickness
of the equivalent sheet would be ht'/3p.

2.1. Assumptions—Apart from the representation of stringers and ribs as equivalent elastic
sheets the following assumptions are also made:

(a) Stress-strain relations are linear.

(b) Buckling does not take place.

(c) The actual sheet (as opposed to the sﬁperposed equivalent sheets) is homogeneous and
isotropic. '

(d) The ribs are unable to offer any resistance to warping out of their plane.

(¢) The equivalent elastic sheets have constant properties in so far as the stringer area and
pitch and the effective rib area and pitch do not vary.

2.2. Derivation of the Basic Equations—The distribution of strain in the sheet and in the
X-and Y-members is completely determined by the displacements % and v. :

The strain in the stringers and the strain in the sheet in the x-direction is ou/dx ; the strain

in the y-direction is 99/9y ; the shear strain is (9u/2y + 8v/9x) and the strain in the Y-members
is given by .

oV ou v o1 0y
v =S mt o nte(sn ) (1)

. * We should expect this since such forces can only be due to the small Poisson ratio effect, or to the rate of change
of shear stress in the sheet.
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where s and ¢ have been introduced as abbreviations for sin# and cos#. The stress-strain
relations for the sheet are

ou
Eﬁ:ax——voy,

oy
dy

— Q
-—Gy——’l)ax, .. . . .« \H

E
and

E ou  ov
o) oy T am) = 7

and for the X- and Y-members

E ou - (it is unaffected by strains in the
ox ¥ y-direction)
and similarly . o L 3 )
oV
E _a'—Y —_ GY

u and v can be eliminated from equation (2) to give the ‘ equation of compatibility ’ expressed in
terms of stresses,

0? 0? 9%

B (0, — vo,) + Py (0, — vo,) = 2(1 + ») 52 .. .. .. (4)

ox oy °

We now consider the equilibrium of a small element of the stiffened sheet. We introduce 5,, &

xs Py

and 7,, the “ mean applied stresses * which are defined so that #5,, 5, and ¢7,, are the forces in the
. stiffened sheet per unit length.

Resolving along the v- and x-axes we find that for equilibrium of an element of stiffened sheet

07y , 05,
0x oy

=0

b o (5)
Ty Oy o
oy - E2 0

These equations of equilibrium will be satisfied if we introduce?® a stress-function ¢ such that

62
= K g}—jé
0%
5= Ko ©
. 8%
=Kty

The constant K has been chosen for convenience to be

CK=14+X4Y+EXY (14 9)(1 48 — ). N
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The sheet stresses are found in terms of the stress function by expressing them first in terms

of 5,, 6,and 7,, ,

¢, = o, + Xoy + s*Yo,
63, — O'y —I— CZYGY
Ty = T+ SCY oy

The stresses in the sheet can now be expressed as follows

02 G]
o aThp T T
az</’> s 0%
%= x? ax oy T F 5y oy?
0% 0%

- G FE% + Haxay +] oy?
where

A =9X — Y 4 (1 4 »)s?Y(s* + 2vc’X)

B.= 2scY (1 + »)(s* + »c’X)

C =14 cY{l 4 s*(1 4 »)} |
D =14 X 4+ 8¥Y{s* — »c? + 2¢3(1 + »)(1 + X)}
E = 2sc*Y (1 + »)(1 + X) s
F = Y (ve® — s%) |

G = — scY{c* — »s* + 2 X(1 — »)}
H=—1—-—X-—-Y +2%*Y(l + ») — c*"XY(1 — »%
J= ch(z;c2 — 5%

and the stresses in the X- and Y-members are

0* 0® 0®
ox = (A — vD) Th+ (B — +E) s + (C — vF) 5

oy = {C* — »s* +C2X1——v)}a¢

02 0
— 2sc(l + »)(1 + X) 5 (éy — (vc? — &%) 7

(8)

(10)

(11)

The equation of compatibility (equation 4) is expressed in terms of ¢ by substituting in it the

values of o,, 0,, 7,, given by equation (9). This compatibility equation reduces to

1 ' o' % oo
4+ 45 axaay_l_—'?’ Dx* 8y2+ 46 axays_*‘ & AT
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where
g=1+4 (1 + ) [X(1 — ») + V{1 — ») — 20%X + 2¢%(1 + X)}]
B =scY(1 4 ) {1 + X) — (s + veX))
=14 1+ ) {X + Y + SXY(1 — ) — 3V (1 + »)} . (13)
5 = sc¥ (1 + »)(s* — »c¥ |
e=1+4 V(1 + »)(1 + s* — »c?)

2.3. Method of Solution.—The solution of any problem reduces to finding a solution of equation
(12) subject to the appropriate boundary conditions. If the boundary conditions are expressed
in terms of applied loads (as opposed to displacements) and the boundaries are parallel to the Ox
and Oy axes these conditions will be expressible simply in terms of ¢ by virtue of equation (6).

The general solution of equation (12) is given in Appendix IIL.

If the boundaries are parallel to the ribs and stringers it might be thought advisable to refer
the stresses and the associated stress function to skew axes. This possibility is considered in
Appendix IV. ‘

3. Particular Loading Conditions.—If we search for solutions of equation (12) in the form of
polynomials of various degrees a number of important practical problems can be solved. Consider
first the case of uniform applied tension.

3.1. Uniform Applied Tension.—This case is of great practical importance and will be discussed
in detail. To fix ideas we consider a rectangular strip, such as that represented in Fig. 1, which
is subjected to a tension of #f per unit width.

e — |/ S 7T 7T 77 e e
UNIT WIDTH / /// / /////////// UNIT WIDTH
T TA T

Fic. 1. Rectangular strip under tension loads.

The boundary conditions are completely satisfied if we take

d=fF2K .. (1)

which also satisfies equation (12) and is therefore the correct solution.
5



The stresses in the sheet may now be obtained from equation (9) and we find

o, = fC/K
o, = JF[K O ¢ )
Tm'::.f]/lz | |

For positive f both o, and 7,, are positive as 5 varies from 0 deg to tan~* 4/» and negative from
n = tan™"4/» t0 90 deg. When» = tan™' 4/, 6, and v,, are zero and the stresses in the sheet are
the same as if no Y-members were present. '

T Fbj(l)r 1most materials tan~* 4/» will be about 80 deg; the actual variation with » is shown in
able 1.

TABLE 1

Variation of tan=" +/» with v

v ‘ 0-250 0-300 { 0-333 0-400 ) 0-500

tan=! 4/

26-6° 28-7° ‘ 30° 32-4° [ 35-3°

The presence of the ‘ induced’ shear stress f//K means that the rectangular strip will deform as
in Fig. 11. There is no induced shear stress when % = 0 deg, tan=* 4/» and 90 deg. Between
0 deg and tan~" 4/v the panel shears slightly to the right reaching a maximum at about 15 deg.
For angles of sweepback between tan=' 4/» and 90 deg the panel shears to the left and reaches at
about 60 deg a maximum, which is greater than that at about 15 deg. The physical significance
of this lies in the fact that for small angles of sweepback the ribs are in compression because of the
Poisson effect in the sheet.

Taking X = 0 and » = } it can be shown that the first peak occurs when n = 141 deg and is
given by

+ 0-042Y
il =TTy
The second peak occurs when n = 624 deg and is given by
— 0-30Y
wif =Ty -

In a practical structure, in which Y will probably be less than 1-0 and X greater than zero, the
induced shear stress will therefore be less than 15 per cent of the direct stress. The variation of
this induced shear stress with # for various values of X and Y is shown in Fig. 12. Theories based
on infinite Y over-estimate this effect considerably.

3.1.1. Stringer stresses.—These have been plotted in Fig. 13 for various values of Y and 4 with
X = 1. Up to a sweepback angle of 45 deg the contribution of the ribs in relieving the load in
the stringers is negligible. :

6



3.1.2. Tensile stiffness—The  relative tensile stiffness * may be represented by the factor

strain in x-direction without Y-members

strain in x-direction with Y-members

and this is simply

K
(1+X)e
The relatlve tensﬂe stiffness due to the Y-members is shown in Fig. 14 for the particular cases
- in which » =} and X = 0. Except for high degrees of sweepback the variation in stiffness is
negligible.

3.2. Uniform Applied Shear.—A system of applied loading such as that represented in Fig. 2

below is considered.
Y

7777 777 77

////////// ‘
[ LSS S S S S g eea
////////// UNIT LENGTH
(S S S S S S SSS

S S S S S SSS
[/ L L LSS

Fic. 2. Rectangular strip under shear loads.

In this case the stress function is _
¢ = — quy/K.

The actual sheet stresses may be obtained from equation (9) which gives

o, = — gqB|K
o, = — qE/K
Ty = — qgH[K

The induced stresses o, and ¢, are both compressive for positive g and #.
3.2.1. Stringer stresses.—The induced stress in the stringers is given by

ox = g(vE — B)/K

(17)

which varies with X, Y and 4 in exactly the same manner, apart {rom a factor of 2(1 + »), as did
the induced shear stress in the case of uniform applied tension. Fig. 15 shows the variation of

ox for various values of X and ¥ with » = .
7



It will be noticed that the greatest possible value of oy that can occur is when 5 = 624 deg
and Y = o and X is very small, in which case

ox = — 0-6(1+»)g.
This is an extreme case, of course, which will not occur in practice.

3.2.2. Stresses in the Y-members—From equation (11) we find

oy  2sc(l + »)(1 + X)
7 K '

An extreme case arises when 5 = 45 deg and Y is very small, in which case

GY — (1 + ‘V)q-
3.2.3. Shear stiffness.—The  relative shear stiffness * may be represented by the factor
shear stress without Y-members ¢ K
shear stress with ¥Y-members ~— ¢, =~ H °

A few cases have been plotted in Fig. 16.

3.3. Other Loading Conditions.—The following loading conditions are now considered ;—
(a) uniform applied bending,
(b) uniform applied bending with shear,

(c) linear tension build-up due to shear.

In each case only the appropriate stress function is given, from which the stresses can be predicted
from equations (9) and (11). :

3.3.1. Uniform applied bending—A system of applied loading such as that represented in Fig. 3
below is considered. , ‘ '

- VARV AR SR SR AR SR AR AR A i
i i
/T 7T 7T 77777
T ZTT77777] |
/777777777

/7777777777
N\ V7777777774 | L

Fic. 8. Rectangular strip under bendingloads.

The applied bending moment is such that. Ex = - faty=45.
The appropriate stress function is

G=pEBK. .. .. oas)
8 |



By comparing this with equation (14) it will be seen that the stresses along a strip such as aa
are identical with those which would exist if the stiffened sheet were subjected to a uniform
loading of an amount appropriate to the actual loading at aa.

332, Umfoym applied bending with shear.—The system of applied loading is represented in’
Fig. 4 below. ' |

Y

77777777777
ln»//////////A ()
lO/ﬁ 77777777 T

F'///////// //////// ///j

[ S S S S A
[/ LS

F1c. 4. Rectangular strip actiﬁg as a cantilever.

The strip is acting as a cantilever and the precise distribution of forces acting at the end is not
known. Their resultant is a purely vertical load .

The appropriate stress function is
b — 4‘])“_37%{352@ oyt (3)8) (3 — zbeZ)} (19

If the applied load distribution at the end is not the same as that given by ¢ the stress distri-
bution in the stiffened sheet a small distance from the end will rapidly approach that given by ¢.

3.3.3. Lincar tension build-up due to shear.—The system of applied loading is represented in
Fig. 5 below. The condition at the end, ¥ = 24, is that of uniform applied direct loading consistent
with overall equilibrium. A uniform applied shear of #g per unit length is applied to the edges
y=+0b.

. . qt

[

T 777777777

77777777771 —
T T T 777 e
LSS
7777777

F1c. 5. Rectangular stiip under tension and shear loads.

The compatibility condition and all the boundary conditions, except that of a free edge along
x = 0 are satisfied by ’
v . ¢ = qwy?/20K . .. .. .. .. . .. (20)

The stresses in the sheet a short distance from x = 0 will rapidly approach those given by the
stress function.
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4. Application to a Rectangular Box.—We shall now investigate the distortions of, and the
stresses in, a 4-boom cylindrical box of singly symmetrical rectangular section subjected to
bending and torsion moments. The results of this investigation will form the basis for the
“ stressing ’ of a swept airplane wing in regions away from structural and loading discontinuities.
(The word  stressing * here includes the determination of stiffnesses.)

4.1. Direction of Zero-curvature Axis.—The type of structure considered and the directions of
the applied moments are represented in Fig. 6 below. We search for an axis (called here the axis
of zero curvature) about which applied moments will produce pure twisting about Ox.

Il\)[ T AN L2
w3 S e

l |
I 2b

F1G. 6 a. Cross-section of the box.

My

N rd
' 07y a z ""e_- | | | \-VM"
¢ 7

F1c. 6 b. The rectangular box under general ioading.

For there to be no curvature the boom stress must be zero and therefore the applied loading on
the top and bottom panels must be as in Appendix II,

i.e.,
f=1(28/¢)q. .. .. .. .. oo (21

If we regard the signs for f and ¢ to be positive for the top and bottom panel when acting in the
sense of Fig. 6, we can express M, and M, (the components of the moment M ;) in terms of fand ¢,

M, = 4bhtf
(22)
and M, = — 8bhtg

Combining equations (21) and (22) we find that the condition for zero curvature is that the
moment is applied about an axis which makes an angle

£, = — tan™" (¢/¢) .. .. .. .. .. (28)

with Ox. Tt will be noticed that the front and rear spars take no bending load so that this part
- of the analysis can be applied to a structure with asymmetric or varying booms.

10



’ ' ZERO-CURVATURE
e AXIS

0 . x o x

Fic. 7. Direction of zero-curvature axis.

Referring to Fig. 17 where &,, has been plotted for various values of Y, » and 7 (it is, of course,
independent of X) it will be noticed that £,, is positive over the range 0 deg < < tan= 4/» and
negative over the range tan™ 4/» <17 < 90 deg.

The particular case when Y is infinite reduces to the form

¢ _ s(rct—7)
an &, = c(l -+ s* — »c?)

which is in agreement with the result found in Ref. 3 (equation 137a).
For comparison this is shown on Fig. 17b where a marked difference between ¥ = co and
Y = 1, say, can be noticed.

4.1.1. Torsional stiffness—If a moment M,, is applied about the zero-curvature axis the twist
per unit length ¢ will be such that

Gb&  cos &, {
M, — 320%h% h(

1 1Y\, 26(28] — ¢H
W:L_*_Wz)—i—"T}. . . S (24)

4.2. Direction of Zero-twist Axis.—The type of structure considered and the directions of the
applied moments are as shown in Fig. 6. We search for an axis (called here the axis of zero twist)
about which applied moments will produce pure flexure about Oy.

For there to be no twisting about the axis Ox the shear stresses in the webs and in the panels
must be such as to produce only warping of a section, from which it can be deduced that

J
hK

H—g(%ﬁWL) R 7))

= /i, say .

I

With such an applied loading the stress in the booms will be
ox = fle — 28Z,)|K

= Z,f, say,
11



and the condition for zero twist is such that the moment is applied about an axis that makes with
Oy an angle 4

27,
£, = — tan™? —————) ]
#t 14+ 47,
where ’ (27)
A = (I, 4 I,)/4bth?

SN ZERO-TWIST AXIS

#V

@) > o

Frc. 8. Direction of zero-twist axis.

¢, has been plotted n Fig. 18 for a variety of structural parameters.

It will be noticed that &, is positive over the range 0 deg < n < tan™! 4/» and negative over the
range tan™' 4/» < # < 90 deg, from which it follows that the direction of &,, and ¢, are at right-
angles only when n = 0 deg, tan™" 4/» or 90 deg in which cases ,, and &, are both zero.*

4.2.1. Flexural stiffness.—If a moment M,, is applied about the zero-twist axis the radius of
curvature R of the box will be such that : :

RM,, _ (1 AZ)(I, + I, | | o8
B S Az s e e e e e (29

4.3. Relationship Between the Torsional and Flexural Stiﬁ%esses.—USing the results of equations
(24) and (28) it may be shown that

torsional stiffness  sin &, (29)
flexural stiffness — sin &, .. .. .. ..

This fundamental relationship may also be deduced from Maxwell’s Reciprocal Theorem.

4.4, Resolution of General Loading.—To determine the distortion of a box under a general
system of moments it will be necessary first to resolve these moments in terms of M,, and M,,.

If arbitrary moments M, and M, are applied to the box they may be resolved as follows

M08 (& + £ = My cos &, — M,sing., |
and : . .. .. (30
M, cos (&, + &,.) = M, cos Ey — M, sin &, [

* This result is a particular case of Maxwell's Reciprocal Theorem.

12



&,. and &, are both comparatively small and in an aircraft wing M, is greater than M, so as an
approximation we might take :

M, =M,
and M, =~=M,— M,siné&, .
An example of a swept rectangular box is discussed in Appendix I.

5. Conclusions.—A method for determining the stresses in a sheet reinforced by stringers and
skew ribs has been developed. The assumption has been made that the discrete stringers and
ribs are represented by equivalent elastic sheets. This simplification has made possible the intro-
duction of a stress-function which, in turn, has greatly facilitated the solution of a number of
practical problems.

‘The theory has been applied to a swept wing, in which the ribs are parallel to the direction of
flight, and the following conclusions are drawn:

(a) the flexural behaviour of a wing with less than about 40 deg sweepback may be adequately
predicted by neglecting the effect of rib skewness. For very high degrees of sweepback,
or particularly stiff ribs, the exact behaviour may be obtained with little extra work,

(b) if the sweepback angle is tan=* 4/» (about 30 deg for most materials) the contribution of
the ribs to the flexural stiffness of the wing is nil, :

(c) due to sweepback, increases of the order of 5 to 20 per cent may be expected in the
torsional stiffness of a wing,

(d) there is an appreciable twisting component due to ordinary bending loads (unless the
sweepback angle is around tan=' 4/») which in a high aspect ratio wing may even be
greater than the twisting component due to ordinary torsion loads,

(e) there are two axes, called here the axes of zero curvature and zero twist, about which

applied moments produce pure twist or pure flexure of the wing. Simple formulae are
given for determining these axes, which are not in general at right-angles.

NOTATION

Ox, Oy  Cartesian co-ordinate such that Ox is parallel to one set of stiffening members
(X-members or stringers) and Oy is cut at an angle n by OY

OY  Direction of the other set of stiffening members (Y-members or. ribs)

7 Angle between a line pafallel to the Y-members and a line normal to the
X-members :

Sweepback angle of a wing in which the Y-members (or ribs) are parallel to
the direction of flight

I

E  Young’s modulus for the sheet, X- and Y-members
G Shear modulus for the sheet

v Poisson’s ratio for the sheet

¢  Thickness of sheet
X Relative thickness of equivalent sheet of X-members

section area of a stringer (or X-member)
¢ X pitch of stringers

13
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Relative thickness of equivalent sheet of ¥Y-members

effective section area of a rib (or Y-member)
¢ X pitch of ribs

Displacements of a point in the sheét parallel to Ox and Oy
Displacement of a point in the sheet parallel to OY

Direct stresses in the sheet with reference axes Ox, Oy
Shear stress in sheet with reference axes Ox, Oy

Direct stress in X- and Y-members respectively

Mean applied stresses (with reference axes Ox, Oy) such that loads in stiffened
sheet/unit length = #5,, #3,, fv,,

Particular value for &,

Particular value for 7,,

Stress function

Stress function coefficients for the sheet stresses

Stress function coefficient for the mean applied stresses
Coefficients in the stress function equation

Applied load

Breadth of strip bounded by y = 4 b

Length ot strip

The following additional symbols are used in the discussion on swept boxes

2k
Il) IZ
Wl: W2

Height of box of rectangular section

Moments of inertia of front and rear spars

Thicknesses of front and rear spar webs (or equivalent thicknesses capable of
resisting shear) = ¢

Moment applied to box about axis Ox

Moment applied to box about axis Oy

Angle which zero-twist axis makes with Oy

Angle which zero-curvature axis makes with Ox

Defined in equations (25), (26)

Defined in equation (27)

Moments applied about zero-twist and zero-curvature axes

Radius of curvature

Twist per unit length of structure

Introduced in Appendix I

Introduced in Appendix IIL

Introduced in Appendix IV

The following abbreviations are used throughout
s = sin g
C = cosy

14
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(b) MEAN APPLIED STRESSES ACTING ON AN ELEMENT OF STIFFENED SHEET

F16. 9a and 9b. Figures showing general notation.
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APPENDIX I
Example of Swept Box

We shall examine the behaviour of the swept box of doubly symmetrical rectangular section
shown in Fig. 19 due to a uniformly distributed upload whose centre of pressure lies 35 per cent
between the front and rear spars. The triangular portion bounded by section b6 and the fuselage
side (assuming that the box represents the load-carrying structure of a swept wing) is, let us
suppose, stiff enough to be regarded as rigid. (The purpose of this example is to demonstrate
the importance and use of the axes of zero curvature and zero twist; secondary problems such as
shear lag will not be considered.)

The main structural parameters may now be determined and we find :

Y — (0-12 +§ % 0-04) = (0-1 x rib pitch)

= 0-25

since # = 6 in. and rib pitch = 8 1in.,

. n = 50 deg
and
» = 1, say.
W1=W2=8_f=2,
A_I1+I2_1-6><h2+4><0-2><h2
= 4wkt 8-8 x #*
=0-27.
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From equations (7), (10) and (13) we now have

K =1-607 F = —0-0499
A =0-0473 G = — 0-0471
B = 0-1901 H=—1-410
C=1-179 ‘ J = —0-0595
D =1-568 § = 0-0744
E = 0-1653 e = 1-192
&,, and £,, may be found from equations (23) and (27):
£, = — tan' (&/e)
= — 3-57 deg
Z, = 0-0366
Z,=0-738
whence
to=—tn (77,
. = —3-50deg.

The torsional and flexural stiffnesses can be obtained from equations (24) and (28) which give:

Go 1 (_}3_*_6(26]—81-[)
M, 1609% \W K

= 7-94 x 1074, (inch radian units)

} cos €,,

which compares with 8-94 x 10-* if the ribs are ignored.

RM,,  4bth*(1 - AZy)
E = Z,cosé,

= 516 in.*

which compares with 497 in.* if the ribs are ignored.

It is worth noting that while the torsional stiffness increases by 13 per cent due to rib skewness
the flexural stiffness increases by only 4 per cent.

The box is doubly symmetrical and so the shear centre will be at the geometrical centre of the
box. ' ,

The applied moments 3, and M, are therefore of the form

kM, = 0-6(x/b)
RM, = (x/b)?

where k = b® (pressure/unit area).

M., and M, are found from equation (30) ,
kM., = 1-006(x/b)? + 0-0377(x/b)
EM,, = 0-0614(x/b)? 4 0-604(x/b) .

17
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It will be noticed that at the root section of the box (x/b = 9-55) M, and M, contribute about
the same amount to M,,. Thus although the torsional stiffness has increased slightly due to rib
skewness the torsional moment M, has increased considerably more so. Conversely, if the
moment M, were of the other sign (nose-down instead of nose-up) the resultant twisting of the
box might be very small.

The deformation of the box due to M, and M, has been plotted in Fig. 20. The scale has been
chosen so that with the ribs ignored the value of the vertical deflection and the rotation at the
tip would be 100 units. The deformation predicted by stiff-rib theory (Y = ) is also shown.

APPENDIX II

Applied Loading to Produce Elementary Types of Distortion

(a) Extension without shear deformation.—By combining the results of sections 8.1 and 3.2 it
can be shown that if 7, is zero :

g = {J/H)f

in which case the stringer stress (which determines the extension) is

{CH — J]B—»(JE — FH)} f/KH . .. .. .. .. (31
(b) Shear deformation without extension.—In this case the applied loading is determined by
f= (B — vE)g
(C—vF)
= (26]e)q
and the shear stress in the sheet, which determines the distortion of the stiffened sheet is given by
Tlq = (28] — eH)/eK . .. .. S .. .. .. (82

It will be noticed that we have not considered the effect of an applied tensile loading f, say,
in the Oy direction, nor have we considered the extension in the Oy direction. These have been
ignored because in an aircraft wing—part of one surface of which we have represented by such
rectangular strips—the presence of forces &, is usually practically impossible. :

However, if we include the possibility of a uniform applied loading &, = ' the condition of zero
shear distortion and zero extension in the Oy direction is

fif'1q ={(HD — GE) + »(BG — AH)}:
{JE — HF) +v(HC — B])}:{(JD — FG) + »(GC — A])} .
Similarly for shear distortion alone we should have

fif':q=(AE — BD):(BF — CE): (AF — CD) .

18



APPENDIX III

The General Solution of the Stress-function Equation

The equation to be solved is.

o' ot 0% L 0% R _ .

We search for a solution in the form
¢ = Flx+ 4y),
where F is any function and 1 is a constant. This satisfies equation (12) provided
- ABA | AR L ABAE 4 el = 0. .. . .. (33)
Equation (33) will have four toots 4, 4, 45, 4. Thus we can take as the complete solution of
the stress function equation
¢ = Fi(x + 4,y) + Fy(w -+ 49) + Fa(x + 233) + Fa(x + 4y)

where the F’s are four arbitrary functions.

In this form the solution may not be particularly inanageable, but it may be transformed as
follows :—

The four values of 4 are all complex and can therefore be written as u; < 40, and u, -~ 70,
and F, + F, may be written as

Fy(x 4 pay + 10:y) + Folv + iy — 201Y)

or as
G1 {en(k + oy +iely)} + G, {én(x + oy ‘—iely)}
or as N N
B H, {&"*+ " sin no,y} + H, {€*¢ 49 cos ng,v}
or as : -

2 (4, sinng,y + B, cos ng,y)er + ) .. .. .. (34)

where G and H are arbitrary functions, # is a parameter and A4,, B, are constants. A similar
expression exists for Iy + F,, namely

% (G, sin me,y + D,, cos mp,y)e i) .. .. .. (35)

It may be convenient to have the trigonometric terms in equations (34) and (35) with the same
period, s.e., we could write ng, = mg, = % say. The complete solution could then be written in
the form

¢ = 2 {(A5 sin 7y + B; cos 7ay) ' +mile

k22

+ (Cs sin7zy + D; cosy) e+ ey | . .. .. . (36)
Example
Suppose we have a structure in which
X =1 Y =4
v =z n = 45 deg
19
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From equation (13) we find that

and the roots of

are

and

so that

o= 2-66 B = 0-264
8 = 0-117 e =1-43
y = 2-44

266 + 1-0564 + 4-882% 1+ 0-4681° 1 1-432¢ — 0
— 0-127 -+ §0-820
— 0-0365 4 7165
= —0-127 02 = 0-820
py = — 0-0365 79222'1'65.

APPENDIX IV

Boundary Conditions Parallel to the Ribs Period and Space Oblique Co-ovdinates

When boundary conditions parallel to the ribs are to be satisfied it may seem advantageous to
employ oblique co-ordinates. This possibility is considered here in detail. The oblique axes
0X, 0Y and the axis OZ (normal to OY) are shown in Fig. 10a. OZ has been introduced merely
for convenience in designating the stresses acting on the sides of the elemental parallelogram

shown in Fig. 10 b.

(@)

Y ‘ Ey
. ’ S ny
_ _ vz
—— === (xY)
/ (b)7/ : /&
// Ty
/ .
Vi - % X 4——1—_ ’

Fr1c. 10. Notation with oblique axes.
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With the same stress function as that introduced in equation (6), but expressed in oblique
co-ordinates, we have
0%
0X*
0%

5Z:Ka—y'2

G, =K

Ty = — K{sec ¢ t —az—g—b} &
= MPX oy — R MHxE

2 82

Tyz = — {sec 7 a_X_(g_Y — tan g a—y(i]’
The compatibility equation (see equation (12)) has now a symmetrical form in X and Y :
4 4 4 4 4
P 24 o i 9 o0 . .. (39

oxet A8 sxaay T ¥ sxmorm T4 sxave T ¢ o

where

’

’

14+ X (1 4+ »)(1 4 s* — »c?)
— s{l 4+ X(1 + »)}
1+ 28+ (1 -+ »){X + Y + ' XY(1 — »}

(39)

o
f)’/:
4

8 = —s{l +cY(1l+ »)}

g’ =14 Y1 4 »)(1 + s* — »c?)

The stresses in the sheet may be found from equation (9) by using the operational identities :

ot o2
s 0XE
02 0% , 0%
Wzsecnm—tanné—)?z . .. .. . (40)

82 2 2 82

o 2, 2., .
% =sec’ 1 337 2secy tany 8X8Y+ tan®y 3X¢

The boundary strains may be determined from o, and o,, which reduce simply to

— spc? 2 or 09 0% : 5295}
oy = Sec n{(s vc)a_X2—1—25 w{—a?+anz
: ot 0 - (41)

oy = sec’y {Oﬁ' axr T 28 sy + (8 — 00 WZ—}

Tt will be noticed from a consideration of Appendix III that there is little or nothing to be
gained by employing oblique axes.

This is due, mathematically, to the non-orthogonality of functions of the type given in equation
(36) caused by the presence of theu’s. (There will, of course, be u’s in the solution of equation (38).)

‘The following relations are given here for completeness:

. 0% 0® bk

7= (3 Ch+ B+ 0

- 22 ks 02
fre = = K (e Sl (0 o gy — o ).
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