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Summary.—The object of this report is two-fold. On the mathematical side it secks to illustrate the use of
oblique co-ordinates in applications to Elasticity and Structure Theory. On the practical side it seeks to provide
methods by which designers can solve problems of stress distribution and deflection for the case of swept-back wing
structures, whose ribs lie parallel to the direction of flight.

The report is divided into three parts. In Part I the mathematical basis is developed. Formulae are derived
which express the fundamental concepts and relations of Geometry, Kinematics, Statics and Plane Elasticity in
terms of vector components in oblique co-ordinates. In Part:II, the results obtained in Part I are applied to a
uniform, symmetrical, rectangular section, swept-back box. A complete theory of stress distribution and deflections
.is obtained for the case of loading by ‘normal’ forces and couplest applied to the ends of the box. Some consideration
is also given to problems of constraint against warping. In Part III the main results of Part II are generalised
to cover the case of a more representative wing structure. This represents an extension of the usual Engineer’s
Theory of Bending and Torsion to.cover the case of swept-back wings with ribs parallel to the flight direction.
Practical procedures based upon this extension are laid down for stress distribution and deflection calculations.
These will have the same validity for swept-back wings, as the usual design approximations -have for the unswept
case.

An appendix reproduces tables and graphs of certain functions useful in the application of the theory, from a paper
by S. R. Lewis.

. *College of Aeronautics Reporf No. 31, received 2nd March, 1950 with College of Aeronautics Report No. 44,
received 25th May, 1951, as an Appendix.

t Forces whose directions and couples whose planes are normal to the plane of sweep-back.
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DEFINITION OF THE SYMBOLS EMPLOYED

|

|

Geometry. Dimensions

Main system of oblique Cartesian co-ordinates (see Fig. 1)
Auxiliary system of oblique co-ordinates (see I'ig. 1)
Angle between the axes Ox, Oy

Co-ordinates of a point referred to axes O(x,y,?)

Unit vectors in the directions Ox, Oy, Oz, OX, OY respectively
Position vector

Length of vector 47

Angle between d7 and ¢

Length of the material element d7 after strain

Length of a plate or box measured x-wise

Half-width of a plate or box measured y-wise

~ Half-depth of a box measured z-wise or, in particular, the half-depth

of the spary = ¢

Half-depth of the spary = —¢

Ordinate of the skin line

Mean value of ¢ over width —¢ <<y < ¢

Thickness of the skins

Thickness of the spar webs or in particular, thickness of the weby = ¢

Thickness of the web y = —¢

Thickness of a diaphragm rib

Section area of spar flange or in particular, section area of flanges
aty =¢

Section area of flanges at y = — ¢

Section area of stringer

Section area of rib flange

Stringer pitch measured parallel to the ribs

Rib pitch measured parallel to the stringers

tr/ag

Parameter defining the point of action of a certain shear stress
distribution in a box (see equation 143)

Parameter defining a torque axis for use in the calculation of twist
(see equation 159) -

Kinematics

Displacement vector

Oblique components of 7%

% + U COS &

% Cos o + v

Rotation vector

Oblique components of $ or in particular, components of rib rotation
Constants defining a rigid body movement in a plane (see equation 17)
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Components of rib displacement in the plane of the rib in y and
z-directions respectively

(wR)y=0

Arbitrary constants occurring in expression for wg, (equation 65)

Components of web displacement in directions ¥ and z respectively.
Undashed: y = ¢, dashed: y = —¢

Rigid body translatlon of a rib in z-direction. Defined as W = wpg,
in Part IT and W = (w, + w,)/2 in Part III

Additional deflection due to shearing (see section 3.3(5))

Warping displacement function (equation 118) or warping displace-
ment itself (equation 131)

Functions of ¥ occurring in expression for o (equation 132)

Section distortion function (equation 118) or section distortion
displacement itself (equation 131)

Functions of y occurring in expression for 4 (equation 132)
Constants in expression for p (equation 132)
Constants in expression for ¢ (equation 132)

‘Shear Deflection’ constant occurring in expression for W (equation
132)

Strain in arbitrary direction

Strain components in oblique co-ordinate system O(x, )
Strain components in rectangular co-ordinate system O(x,Y)
Rotation of an element dr

Statics

Force vector

Oblique components of /7. Also in Parts I, IT1I, Z is used as resultant
z-wise force across a section of a box

Oblique components of a couple—axes O(x, y,2)

Oblique components of a couple—axes O(X,Y). Used also as
resultant couple acting across a section of a box

Stress resultants in a plate referred to oblique axes O(x,y) (see
Fig. 3)

Stress function (see equation 22)

Stress resultants in a plate referred to axes O(x,Y) (see Fig. 4)

Functions of ¥ occurring in expressions for T, T,,S in equation (37)

Shear per unit length in the ribs, estimated per unit span (x-wise)
Shear per unit length in the webs ¥ = ¢, y = — ¢ respectively

Couple component (oblique) about an X-wise axis through a point
y = nec, z = 0 on a cross-section of a box (equation 145)

Ditto about axis through y = 5*c, z = 0 (equation 159)

Elasticity. Influence Coefficients

Young’s Modulus
Poisson’s Ratio



A, (1=101,234)
)2

Mg

A; G=1,234)
B, =101234)
’ BM (6, = 0,1,2,3,4)

Biw)
C,
P;,0, =123

D
Rl)RZ)ﬂ

Matrix relating stress resultants and strains (equation 24)
Part of a;; arising from the plate (equation 27)

Part of a,; arising from the reinforcing members (equation 28)
Matrix inverse to a,; (equation 31)

dy , a3 Special combinations of a,; (equation 120)

Matrix relating rates of rotation of the ribs with the couple trans-
mitted in a box (see equations 99, 100, 157, 158, 160 and 161)

Constant in formula for P, (equation 157)
‘Second Moment of Area’ for a swept box (equation 142)

Miscellaneous Parameters and Constants

Constants in expressions for linearly varying stresses in a plate
" (see equation 40 and section 2.4)

Constant defining the rate of die-away of a special stress system
(see equations 44, 47)

Sequence of values of uc defined by equation (114)
Values of 1 satisfying equation (46)
Arbitrary constants in equations 43, 47

Coefficients of the linear equations for B, (see equations 108, 109,
110, 111, 112, 113)

Co-factors of B,; in the determinant |5,
Sequence of arbitrary constants (equations 116, 117)

Constants relating rates of rib rotation to couple transmitted and
section warping (equations 125, 126)

Denominator in expressions for P;,(); (equation 126)
Constants in the warping equation 127 (see equation 128)




PART I. GENERALITIES AND APPLICATIONS TO PROBLEMS OF
TWO-DIMENSIONAL ELASTICITY

1.1. Geometry.—The frame of reference used in this report is a system of oblique Cartesian
co-ordinates. This system is shown in Fig. 1. The basic axes are O(x,y,z). The angle xOy
has magnitude «. The axis Oz is at right-angles to the plane xOy, and is such that a rotation
which brings Ox into the position Oy is right-handed about Oz. Use is also made of auxiliary
axes O(X,Y) lying in the plane ¥Oy and such that O(X,y,?) and O(x,Y,z) form systems of right-
handed rectangular cartesian axes. '

It is convenient to introduce unit vectors ,7,%, 4,7, lying in the directions Ox, Oy, Oz, 0X,0Y
respectively. These quantities satisfy, as is easily shown, the following relations:—

1, = 1 cosec o« — j cot o ) (1)

j1 = —icota + jcoseca J
P=p=k/FR=1 idj=cosa, jEh=ki=0 .. .. .. (2)

iXi=fXj=kXk=0 )
ixXj=rFhksina, jxk=14, kxi=j |

The position vector 7 of a point with co-ordinates (x,y,z) may be written:—
f=x1 + yj + zk. .. .. .. . et . (4)
If the length of the differential vector d7 be denoted by ds, we find from (4) and (2):—
A = d7* = (dxi + dyj + de k) — da® + dy* + d2® + 2dxdy coso. .. ..  (5)

The vector d7/ds is a unit vector. For the special case in which this vector lies in the plane
Oxy (i.e., when dz/ds = 0) and is inclined at an angle 6 to the axis Ox, we find for the components
dx/ds, dy/ds the formulae:—

dx _sin(e—0) dy _ sinf - )
ds sine ~ ds sine o o o o o

The relations (6) may be established using (2) and the formulae 7. % = cos 6 and j. Zm = cos (e« — 0),

or by a simple trigonometrical calculation.

1.2. Kinematics.—Any vector may be expressed, as in (4), as a linear combination of 7,7,k.
* The displacement of a point % and the rotation about an axis p may be written:—

i =ui + vj + wh )
b =pi+qi +rk B

The combinations (%,v,w) and (p,q,7) may be termed the ‘components’ of the vectors in the
axes O(x,v,2), but care must be exercised to avoid applying formulae applicable only to rectangular
axes to these quantities. The lengths of vectors are given by formulae like (5). The component
u is not the projection of % in the direction Ox ; this last is given by # + v cos «.

5
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If the axis of $ passes through O, then the displacement % induced at a point with position
vector 7 is given by:—

=2 X7. .. .. . .. .. . . (8)
Substituting from (4), (7) into (8) and making use of (3), (1) we find:—

U=mu+ vcosa = (g2 — ry) sina
V=w#ucosa +v=(rx —pz)sina .. .. . .. .. 9)
w = (py — gx) sina

where U,V are the ‘projections’ of 4 in the directions Ox, Oy respectively.

In the remaining portions of this section we shall restrict our attention to positions and displace-
ments in the plane xOy. Use will be made of our previous notation, with the understanding
that z components, such as w, z, etc., are taken equal to zero.

If the plane xOy is subjec’ted to a displacement 4(x,y), a point at 7 will move to 7 + #. The
length of an element d7 will change to dS where,

ds® = di*, dS® = (d7 + di)®. N ¢ 10)

Neglecting terms of second order in the displacement we find for the strain ¢ in the element 47
the formulae:—

dS? —ds®  didi :
- — = o . . e . o . .. .. Y 11
¢ 2ds? ds ds : (11)

Substituting from (4), (7) (with 2 = w = 0) and using (2) we find:—

ax\? ay\? dx dy ]
— fid Y+ or Ay
¢ O ds> i ew<ds> e\ ds ds
where |
oU oV v, U | R € 29
b = =5 by T o = = T
ox oy : ox oy
and U=wu+vcosa, V =wucosa + v.

The quantities e¢,,, ¢,, and ¢, may be termed ‘components of strain’, since the complete deforma-
tion is defined in terms of them. The formulae in the second line of (12) are familiar, but it
must be noticed that U, V are not the true displacement components.

The direct strain eyy, in the direction OY may be obtained from (12), by making use of (6)
with 0 = =/2. We find:—

eyy = e, cot®a + ¢, cosec® o — e, cot o cosec « . .. .. (13)
The rotation <% of an element d7 is given (see Fig. 2) by the formula:—

w:%sm(a—e) j—?sme .. .. .. (14)
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Using (14), (12) and (6) we can show that the shear strain e,y associated with the directions Oz,
0Y is given by:—

by = (W)oo — (W)g—mp = — 2e,cOta + ¢, coseca . .. .. .. (15)
When the strain components satisfy a compatibility relation:—

Pey _ 0ew) 4 (o)
e Al LA P ()

the second line of (12) may be solved for the displacements U, V. The ‘complementary function’
for this integration is a ‘rigid body motion’*:—

U=Cy+C, V=—Cx+Cy .. .. .. .. (17

where C, C;, C, are arbitrary constants. The results (16), (17) are identical with those for
rectangular co-ordinates and the usual proofs apply. *

1.3. Statics.—A force F may be written,
F=Xi+ Yj+ Zk. .. .. . .. .. (18)

If this force acts at the point 7, its moment about the origin O is 7 x F. Using (4), (18), (3) and
(1) we find, '

7x F=1L4 + Mg, + Nt =Li + Mj + Nk

where

Li=yZ —2Y, M,=zX —xZ, N=@xY —yX)sina .. (19)
and ;

L —=1IL,coseca. — M;cote, M = —L,cota + M, coseca .
The conditions for equilibrium of a system of forces are ¥ F = 0, 7 x F=0. Reference to
(18), (19) shows that these may be written:— :

2X=2Y=27Z=0 l

' .. .. .. {20)

Z(yZ—zY):E(ZX—;xZ):Z(xY—yX):0.)

These equations have the same form as for rectangular axes.

Turning now to two-dimensional questions, we define the stress resultants 75, S;, 7, and S,
for a plate. These are the oblique components of forces per unit length, acting across normal
sections parallel to axes Ox and Oy, situated in the middle surface of the plate. The sign conven-
tion for these forces is shown in Fig. 3. Consider an element of the plate (dx, dy). The forces
acting upon it are shown in Fig. 3. The forces on the edges are determined by the stress
resultants ; the body force is given by (X7 + Y7) dx dy. Application of the rules of (20) gives
us the following differential equations of equilibrium:—

* A translation % = cosec? & {(¢; — ¢z cos &) 4 + (cz — ¢1 cos o) j} and a rotation about 0, p = — Ck cosec «.
(See equation 9.) ' .
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o7, | 25,

+ 24+X =0
ox oy
85, ., v _ @)
0x oy
S, =S5, =S (say) .

The similarity with the equatlons in rectangular co- ordinates will be not1ced HX=VY=0
we can satisfy (21) by introducing a stress function ¢ such that, ‘

o 3% % -
E_W,R*%%S oy (29

It is convenient also to introduce stress resultants 7', T, S referred to axes O(x,Y). The
specification of these is shown in Fig. 4. The relations between the un-barred and barred stress
resultants may easily be shown to be:—

T,= T,sina + T cosacota — 2S5 cos «

T, = T, cosec o (23)

o e
.

Szg%f‘zcota.

1.4. Stress-Strain Relations.—In section 1.2 we studied a system of plane strain referred to
oblique axes O(x,y). We now interpret these results as referring to the mean strain across the
thickness of a uniform plate. Such a state of strain in a plate will give rise to stresses and stress
resultants and in section 1.3 we studied the properties of these forces when referred to our
oblique axes. If the material of our plate is elastic and obeys the Generalised Hooke’s Law,
then the stress resultants 7', , T, and S will be related to the strain components e,., e,, and e,, by
homogenous linear equations of the form:—

T1 =y 6y T g6y, T Az e, ,
Ty =ay e, + ane, + axe, .. .. A o (29)
S = Oy €, T A€, T dsz e,
where as we shall show later, ‘,
@y = a; . . . . . ce .. (25)

For the special case in which the plate is isotropic with thickness ¢, Young’s Modulus £ and
Poisson’s Ratio ¢, known theory applied to the rectangular axes O(x,Y) gives:—

(»exx + GEYY>, Tz - Et (eYY + Gexx)

T, = &
| (1o

(=)

(26)

Substitution from (26) in (23) expresses T, 1%, S in terms of e,,, ¢yy and ¢,y . Use of (13), (15)



throws our relations into the form (24) and so determines the a; for the isotropic plate. Denoting
these results by (a;), we find:— .

: _ Iy 1, cos?o + o sina, — COS a
(a;), = T — cosec® a| cos?a + o sin®a, 1, — COoS o - (27)
(1 — 0% . — COS &, . ~—~ COS o, 1 + cos®a — o sin®a
2

In the case where the plate is reinforced by closely spaced stringers of section area A4, at a
* pitch a, running parallel to Ox, and by closely spaced ribs of section area 4 at a pitch ag running
parallel to Oy*, then, if the material of the reinforcements has modulus Z; loads of magnitudes
respectively EA4e,, and E A réyy Will appear in the stringers and ribs. Dlstrlbutmg the stringers
and ribs continously we generate stress resultants 7, = EAe,/a, and T, = E Aze,lar and
so for a reinforced plate we must add to (27) the matrix (a;)z given by:—

EA,/a, 0 0 o
(ay)r = ( 0 EAgjag O> . .. .. .. .. (28)
| 000 |
The complete matrix for a plate reinforced in the directions Ox, Oy is thus:—
“ij = (dﬁ)p -+ (aij)R . . . .. . ‘ . . .’ (29)
The equations (24) may be solved for ¢,,, ¢,,, and e,, yielding:—

b = AnTy + ATy + A4S
ey = AuT, + ApTo + AxS L .. .. .. .. .. (30) -

6,,y s 4.4.3]T1 + AngQ + A33S
where,
2
1 Aoolzy — Aog™,  (ogllygy — Aalgy, (Aoyldze — Axdap
_ 2
Az‘j = —*i Aq3l3p — Aalsz, Audsy — dig°, Aolgy — A | - .. . - (31)
y )
Y Aiolag — Aoz, A13lor ~— A1fes, A1 las — dig

1.5. Compatibility Relation for the Stress Resultants.—The strain ‘components must satisfy
(16). It follows from (30) that the stress resultants must satisfy:—

62
(Au o Aa s An gl )T

+(A12 + Ans s — Auy o a)

02 22 2 Ve

In the case where a stress function ¢ exists we can substitute from (22) into (32) obtaining:—

P _ ¢ o o a
A22”é‘9;; 2A93a 3 ay + (2A10 ‘JT‘ A33) a AS AL ay_ 2A ax ay3 + Au y - O .. (33)

* a and a, are measured parallel to Oy and Ox respectively.
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1.6. Application to Certain Plate Problems.—The theories of displacement, strain and stress
developed in the previous sections are particularly applicable to plates whose boundaries consist
of parallelograms. Let us therefore turn our attention to a plate whose edges lie along the
linesx = 0,x =1/, vy = + ¢ (Fig. 5). ; :

We shall not seek here to solve problems with given boundary conditions, but following
the ‘inverse’ method of St. Venant, shall impose certain restrictions on the stress distribution
and examine the consequences. However, with an eye on applications to wings, we shall restrict
our discussion to solutions which satisfy:—

T, =0,wheny = +¢. .. .. .. .. .. (34)

Let us begin with the simplest of all cases in which the stress resultants are constant*.
Equation (34) then implies that 7, = 0 everywhere. The edges ¥ = 0,/ are loaded by uniform
T, and S, while the edges v = -+ ¢ are loaded by a uniform S. Writing 7, = 0 in (30) we
find the following formulae for the constant strain components:—

b = AuTy + Ay5S
eyy - A21T1 + AzgS iv . .. . .. .. (35)
exy - A31T1 + AggS .

The displacements follow from (12). The complementary function for this integration is given
by (17). We thus find:—

U=e,x+ (e, + C)y + } (36)

V=e,y —Cx+ C,.

As a second example let us consider another case in which X = Y = 0 and assume that the
stress resultants vary linearly with x. We write

T,=xT, + T, To—aTy + Ty, S=x5+5S" .. .. (3]

where T, T,"”, T,', T,'', S’ and S’ are functions of y. Substituting in (21) with X = ¥ =0
and using (34) we easily show that,

Tl’:—% T, =T =S =0. 88
Substftuting from (37) and using (38) we find that:—
T = — v g4y 44,
Ay O 2 12))

S" =14,y + Ay + 4,

where A;(71 = 0,1,2,34) are arbitrary constants. Substituting from (38), (39) into (37) we
obtain, /

le—A2xy+i?1—3y2)—A1x+A3y+A4

11

T, — 0 (40)

S =14, + Ay + A,

10



Substituting in (30) and using (12) we find the following expressions for (U, V).
U= Ay(dpx + Ayy) + AAnx + 45y)
+ A {— 3Aux® + Apxy + H(Aa + As) ¥
+ Ag(Apxy + $A459%

+ Az“l" $Aux%y — $4,1* + %( Ao — AE + 1A33>y} (Cy +C) .. (41)
1

V = AyAyuy + A Ayy + Ai(— Apx® — Apxy + $Ay°)
+ %A3(_ Anxz + Azlyz)

+ Al (340 — $any® + (3)(hAs — A21A13) YA (—CrtC) . @)

As a third and last example, let us consider a case where the stresses decrease exponentially
from the root ¥ = 0 (z.e., vary as e, where the real part of x is positive). For the sake of
possible applications to the box structures of Part I1, we introduce a body force:—

X=0 Y= —Bye ™ .. .. .. .. oo (43)

where B, is a constant, which may be a complex number.

A particular solution of equations (21) and (32) is easily shown to be

As ple-w, s— _Bog-w

T—O T, =
1 2 — MA22 P

The displacements corresponding to (44) follow from (30) and (12). We find:—

v,y —_ M Bog-w g

B
U — 13 o
: Ag Iaijl IS

A22W¢]| u?

where use has been made of the algebraic theorem that the co-factors of |A4;| are given by
a;fla;|. To obtain a complementary function we make use of (33). Assuming that ¢ varies
as exp {u(ly — x)}, we find that

Alll4 + 2A1313 + (2A12 + A33)12 + 2A33& + A22 — O . .. . .. (46)
Denoting the roots of (46) by 4,(« = 1,2,3,4) we find a solution of (33) in the form:—

4
¢ =e " > Bel .. .. .. .. .. 47
i=1

where B; are arbitrary constants (complex numbers). The stress resultants follow from (22):—

T1 - [u2 e~ 2 Btlzz e’diy 5 TZ e ,uz e " E Bi e'“'iiy )
(48)
S = ‘u2 emME lez eu%y .

11



The corresponding deflections are found to be:—

U— —ue 3B, e 124y + 1A, + Ap) + Cy + G

' B (49)
V — U e""” 2 AXJ— u%y( 2A21 + /1 A23 + Azg) — Cx + CZ .
Imposing the condition (34) upon our complete solution we find:—
Ac — ke A23 ‘
EBie*” :ZB,Le ”1:"—“*4B0 P o . o .. (50)
u® Ao

which gives two equations for the constants B,. - The imposition of further boundary conditions
at y = 4 ¢ would enable the solution to be Completed This development is reserved until the '
theory of Part II is formulated.

1.7. Note on the Tensorial Character of some of the Quantities Introduced in Part I*.—Many of
the vectors and other quantities introduced in preceding sections, usually because their use
simplified the formulae and maintained formal identity with the equations valid for orthogonal
systems, show a more fundamental inter-relation when considered from the point of view of the
Theory of Tensors.

The position vector of equation (4) may be written:—
= (%.3.%)
where the index ¢ takes the values 7 = 1,2,3. As is customary we regard x* as a contravariant
tensor of order one. Equation (5) for the line element may now be written, using the summation

convention, as:—
ds® = g; dx’ dx’

: 1 cosa O
where g = | cosa 1 0
0 0 1

The matrix g; is then a second-order covariant tensor—the metric tensor.

If we introduce the first-order contravariant tensor #', where #' = (u,v,w) we find for the
corresponding covariant tensor #; the following expression:—

wy = gy = (u + veosa, ucosoa+ v,w) = (U, V,w).

In other words the quantities U,V mtroduced in (12) are elements of the covarlant tensor corre-
sponding to the contravariant tensor (u,v,w).

Now in the expression of the Theory of Elasﬁmty in tensor formt the strain components
appear as a covariant tensor e; given by:—

e; = %{ (:); + WJ)‘}

where (u,); is the covariant derivative of #,. The fundamental reason why the introduction of
U,V simplifies the strain-displacement relations is now apparent.

* The writer is indebted to Professor G. Temple for the suggestion to include a note on this matter.
t See Methodes de Calcul Differential Absolu et leurs Applications, by Ricci and Levi-Civita. Chap V1., para. 3.
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PART II. APPLICATIONS TO SIMPLE SWEPT-BACK BOX STRUCTURES

2.1. Description of a Simplified Structure. Notation.—In Part IT we shall apply the results
developed in Part 1 to the study of stress distribution and deflection problems for a uniform
swept box. Such a simplified structure, while not reproducing all the characteristics of an
actual wing structure, will reveal those properties peculiar to sweep back.

The structure to be considered is a uniform rectangular section box swept back through an
angle #/2 — o (see Fig. 6). Reference axes O(x,y,z), of the kind defined in section 1.1, are so
disposed that the faces of the box are given by y = ¢, 2 = 4 b and theends by x = 0,x = L.
The faces # = -+ b are termed ‘skins’. They have thickness ¢ and are reinforced by x-wise
closely spaced stringers of section area A4, and y-wise pitch a,, and by y-wise closely spaced
rib booms of section area A4z and x-wise pltch ag. The faces y = -+ ¢ are termed ‘spar webs’.
They have thickness #, and are assumed to carry only shear stresses. Such direct load carrying
capacity as they may possess will be assumed integrated with the ‘spar flanges’, which run
along the four edges of the box and have a cross-sectional area 4. The corresponding rib booms
on the skins z = + b are joined by ‘rib webs’ thickness ¢, which are assumed to carry only
shear stresses. These rib webs are of course rigidly attached to the spar webs. The materials
of all the components are assumed to have Young’s Modulus £ and Poisson’s Ratio o.

2.2. Theory of the Simplified Structure—We shall limit ourselves in what follows to cases in
which the displacements occurring in the skins z = 4 b are equal and opposite to one another.
The notation applied to plates in Part I will here be applied to the ‘skin’ z = b. Corresponding
values of displacement and stresses for 2 = — b, can then be obtained by reversal of sign.

Let us begin by considering the rib webs. These are to be treated as continuously distributed
in the x-direction. The ‘thickness’ of ribs within an element dx will thus be v dx where,

TR = lg/dr . .. .. .. .. .. .. (81)

The shear per unit length carried by the rib web, within dx will be written Sk dx where Sris a

function of ¥ only. The vy and 2z components of d1sp1acement in the plane of the rib webs will be

denoted by v; and wj respectively. These definitions are illustrated in Fig. 7. The relation
between S; and the displacements is clearly:—

Ezg Vg | Owg §

= R (ZZE 4+ 2

* 2(1+0)(82 3y (52)

The kinematics of a ‘pure shear carrying plate’ are not well defined. We shall therefore in the
interests of simplicity, assume that wy is independent of z, thus attributing a limited rigidity
to the ribs. Experience with the theory of unswept boxes suggests that this restriction is not
of any real significance. Differentiation of (52) with respect to z then shows that vz is a linear
function of z and so, remembering that rib displacements must conform with those in the skins
at z = 4+ b, we find:—

Equations (52) and (53) then yield:—

2(1 + o) S,
( o) Ky

R = —
ETR

53/ L/ dy JY‘ ZWRO .. .. .. (54)
0

QR

where wgo, = (wg), - o 1s a function of x.
13



We turn now to the spar webs considering first of all the surface ¥ = ¢. The x and z-wise
displacement components in the plane of the spar will be written #, and Wy respectively.
Conformity with the rib displacements implies:—

Wy = (Wr)y =0 - e .. .. .. .. (55)

The component w, is thus independent of z and so, just as in the case of the rib webs, we deduce
that u, is linear in z and thus is given by:—

uw:(U)M.% . . . . .. (56)

since spar web displacements must agree with those in the skins at z = 4+ 5. The shear per
unit length in the spar web will be written S, and is related to %, and w, by:—

Lt on, ow
= T (e T . . . .o (57
Se 2(1 + o) \ 0z + 8x> (57)

The notation for the spar web is illustrated in Fig. 8. S, is a function of ¥ only and its variation
is brought about by the shear Sy applied by the ribs. Equilibrium of an element dz dx yields
the equation:— ’

aSe 5. 0. R ()
ax

Substituting from (54) into (55) and from (55), (56) into (57) and thence into (58) we find:—

d SR TR ETR g dszO .
g —EZ”S 5 [( > a2dy+»~d—x2— =0. .. (59)
We shall denote corresponding quantities for the surface y = — ¢, by the same symbols as for

y = ¢, but with a dash added (s.e., »,’, w,” and S,’). The equations corresponding to (55)—(59)
are:— ‘

W, = (Wr)y--c - .. .. .. . . .. (60)
' = (U)y— _. . % (61)
Et du, | ow,’

= w w O (%

Se 2(1 + o) \ oz * ox ) (62)
d;w'+sk_o R ()

dZSR TR ETR 1 (= an dszO

—ae Ta,0r Tt ) y:_fz YT g |70 84

Transforming (59) and (64) we obtain the following equations for wg, and Sy in terms of the

displacements in the skin z = b:—
1 o 1 |
0y — %G Vdy + j Vay) - o Sot(U),,:C (U)o jdxe t K + Ky (85)
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where K, , K, are arbitrary constants.

The equations governing the behaviour of the skin z = b have already been developed in
Part I. The external force (X,Y) arises in this case from shear flows S, applied by the ribs.
We have in fact:—

X=0, Y=—S,. O (-7

The boundary conditions at the edges ¥ = 4 ¢ can be obtained by considering the equilibrium
of elements dx of the spar flanges. The balance of y-components gives:—

(To)yeso=0. N (- <)

The x-wise balance of forces is shown in Fig. 9. We thus find:—

smw%ﬂ:EA“ﬂ N )
’ aex}c
S —(S),._.=EA M>%Mu 0

Formulae for S, S,” in terms of U,V, Sy and wg, were obtained implicitly during the derivation
of (59), (64). These may be expressed as

, _ EtK,
Se+SS/=Fe 0

.. Et, [1 B 41 +o)cdSy 1(° oV
&*%_(Fﬁixwm“<W“Q+”Emvﬁhﬂ_ M..wm

where use has been made of (65). Our boundary conditions (69) and (70) can then be written:—

);. EtwK!

. 73)

Et, (U)y-.— (U),__. el
b Etg dx b)_

B 401 + o)cdS,  1{° oV
201 + o)

;a@] (74)

The mathematical problem presented by our swept box is thus reduced to a plate problem of the
type studied in Part I where the ‘body force’ Y = — S; is given by equation (66) and the
boundary conditions at the edges y = -+ ¢ are given by (68), (73) and (74).

15



Finally let us write formulae for the static resultant of the forces acting across a section with
co-ordinate x. These reduce to a force Zk at the centre of the section (x,0,0) and a couple
L, + M,j, where:—

L e 2EBLK,
7= + 8 = N V)
and,
L, = 2be(Se — Su)) — 2b J S dy l
(76)

M, = 2bEA{(en)y—c T (€n)y— o} + % r Ty dy . S
It is to be remarked that we have found it convenient to use the oblique axes OX, OY for defining

the couple. If it is desired to write the couple L: + M7 using the axes Ox, Oy, then the necessary
transformation is given in (19).

2.8. Simple loading Conditions:—(1) Constant Couple.—We now apply the results of the first
example in plate theory of section 1.6 to a problem of swept boxes. The constant stresses
T, and S of this example will be assumed to be acting in the skin z = 5. The corresponding
strains and deflections are given in equations (35) and (36). The body force ¥ = — Sy 1is zero
in this case. Substituting S; = 0 and the values of U,V given in (36) into (66), we find this
equation identically satisfied. Since S and e,, are constant equation (73) shows that K; = 0
and so by (75) that Z = 0. Equation (74) shows that,

C=—4, - tds L m)

Equations (69) and (70) show that,
Se=—3S, S,/ =S. . e . .. (78)

Assuming for simplicity that U = V = 0 when x = y = 0 and that wg, = 0’, when ¥ = 0 we
find from (65) that,

Weo = — = 2 L. .. ... (19

Using (53), (54), (55), (56), (60) and (61) we find,

Vg = (& . v — Cx)z/b l
80)
- Cux 2 C 63'3' 2 (
wR—mzib—«.erfb,.xy——Q—b.y J
“”j} — {en . x4 (e + C)c)zfb 8
U ) ,
Wol ey 5,  Coc ey -
w’f—_ibx i”"gx 2% (82)
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The magnitudes of the stress resultants 7, and S follow from (76). We find:—

M, + E‘;ABL 1
T, =
EAA
4bc<1 + *c——ﬂ> (83)
_ L
S = e |

The formulae developed in this section together with (85), (86) solve the stress distribution and
deflection problems for the case where our simplified swept box is loaded by constant couples.

2.4. Simple Loading Conditions:—(2) Bending by a z-wise Force.—We now apply the results
of our second example of section 1.6 to our swept box. The stress resultants for the face z = 5
are assumed given by equation (40). The deflections for this face are then given by (41) and
(42). Since Y = 0 for this solution we have Sz = 0 as in section 2.3. Substltutmg from (41)
and (42) into (66) we find that S, = 0 implies:—

384
A, = 18 .. .. . .. ..
2 0 H] A3 2 An Al (84)
Substituting from (30), (40) into (73) and recalling (75) we find:—
VA
R A— (85)
ape(1 + 244
¢
Substituting from (30), (40), (41) (42) into (74) and recalling (84) we find:—
b ASS ASI A 86 .
( Em )A .. .. (88
Equations (69), (70) and (75) give:—
Sa A
Sw,}:E$A0. o« o .o .. PR o . . o e <87)

If we assume that our force Z is located along the line x = /, y = 0, i.e., applied centrally at the
tip rib, we find by (19) that:—

Li=0, My=—Z(l—x). .. .. .. .. .. (88

Substituting in (76) and using (88), (85) we find that:—
\A():O, A4:All. . o e . . .- . (89)

Substituting from (84), (85), (86), (89) in (40), (41), (42) and (87) we find:—

_ . 34
. Z<Z Yy Any> M, 34,
o 3 Ay
4o (1 EAAH 4be (1 Eﬁé&) 24y o)
?
S 2y
ke (1+ FAdn J
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zZ [ 345N, 2] ]
= — Aplx + $Aly — 1 2 1 + H Ay + Ay — =58 )2
v abe((1 + EAA;) o by — A = by 4 (A AJ” |
c
| o1)
V=—— ZEAA [%Amlx T Anly — FA* — Ayxy + %(Azs . gAiAu y{l
abe(1 + F4A) ‘ u
c

Se=S,=2Z/4b. .. .. .92

Where in (91) we have assumed U = V = 0 when ¥ = y = 0. The equations (90) show that
the conditions at the tip ¥ = [ are not exactly those corresponding to ‘freedom’, even from direct
stress. For our solution to be valid equal and opposing couples must be applied to the faces
z = -+ b by loads normal to the rib x = /, not to mention linearly varying shear loads applied
parallel to this rib. However, the effects of this self-equilibrating system will die away as one
proceeds along the span and so our solution may be considered practically valid at (say) a distance
2¢ from the end.

Substituting in (65) we find assuming wg, = 0 whenx = 0,

c(1 + o)1 - EAA,,
Wro = ZEAA [%‘;; (- gx) + i < )
4be (1 u

The remaining deflections can be written down using (53), (54), (55), (56), (60) and (61), but
since the formulae are lengthy we shall not give them here.

2.5. Analysis of the Deflections for the Simple Loading Condilions.—The deflections at any
plane section (co-ordinate x) of our box may be analysed into the sum of a translation, a rotation,
a warping from the plane and a distortion in the plane of section. Let us consider a translation
. Wk and a rotation pi + gj, where W, $ and ¢ are functions of x. These will produce displace-
ments at our section given by:—

U=gzsina, V= —pzsina, w=W + pysina. . .. (94)

Where use has been made of (9) and the rotation has been located at (x,0,0). For this one
“equation U,V have a ‘general’ significance as in (9) and are not confined to z = 4. Comparison
of the first of (94) with (56) and (61) suggests the identification

e A+ W)y (95)

2b sin «

Comparison of the second of (94) with (83) suggests:—

(Terms of V 1ndependent of y) 96
o N (<)
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Comparison of the third of (94) with (54) gives:—

W:wR() o . .. o s . .. . .. .. .. (97)
and (96) again. The term in (54) containing Sy does not occur in (§3) and gives a shear strain not
a rotation. We shall adopt the definitions (95), (96) and (97) for p, ¢ and W. Other definitions

are possible, but the differences are bound up with questions of ‘shear deflection’ and ‘root
conditions’, with which we are not particularly concerned here.

Let us now apply our formulae to the case of loading by a couple analysed in section 2.3.
Substituting from (86) with C; = C, = 0 and (79) we find,

b= Cx cosec a __ €% COSEC o W _ G g2 B . (98)

b ' b ’ 20

Substituting from (77), (35) and finally (83) we find the following relations:—-

d
d% = C11L1 + C12M1
(99)
d* .
dg cosec o — dq — (/21141 'WL (/)zM]
where,
e thadiodl BN e F N
8bc Et.c 2b Zbc(l + ’EAA11 :
c
Coo = Cor — A5 cosec a
p = Cy = — I R iidn
8b20<1 + EAA]:[) b e .. .. (100)
c
o Ay cosec o
gy = .
ape(1 + EA4n)
c

The relations (99) generalise the usual curvature—bending moment and twist-torque relations
valid for an unswept box (beam).

The remaining terms in the deflection formulae can be analysed into firstly a ‘linear warping’:—

U={(e, + 0Oy, V:O]

w 101
%} = + (¢ + C)cz/b { (101)
o) ,
and a ‘cross-sectional distortion”:——
U=0, V=e
yy y l . (102)
vR:eyy’.yz/b: Wgp = "‘6”.}/2/25. ‘
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The warping, which consists of spanwise displacement, depends upon both L, and M,. The
cross-sectional distortion consists of an ‘anticlastic’ bending of the ribs.

We turn now to the analysis of the deflecticns for the case of z-wise loading at the tip, dealt
with in section 2.4. Substituting from (91) into (95), (96) recalling (93), (97) and (100) we find,

d , W d
£:~%m#@, —eoseca= = - Cuz(l-x). L (103)

Recalling (88) we see that the relations (99) are valid for this case as well. The remaining
displacement terms can be analysed into firstly a ‘linear warping’:—

U— ‘%gﬁA,,V:o o
8bc<1 + 2228

secondly, a ‘parabolic warping’:—

@_+A%—S?ﬂwmy>
11

e <1 “”“‘"> .. .. (105)

V=20

and finally a cross-sectional distortion:

3 Ay Ay,
U=0, v Aadliy (4 QAH>2 . (108)

:4m<1+Ei4ﬂ 85(1 EAA@

The formula (101) when expressed in terms of M, (with L, = 0) agrees with (104). Similarly
(102) agrees with the first term of (106). The warping of (105) is analogous to that occurring in
unswept boxes and will give rise to a theory of ‘shear lag’, just as the linear warping will give
rise to a theory of ‘end constraint’ similar to that arising in the case of the torsion of unswept
boxes.

2.6. Internal Systems of Stress.—The third example of section 1.6 may be used to construct
systems of stress for which the static resultant on a cross-section is zero. We take as displace-
ments in the surface z = b the sum of the expressions given in equations (45) and (49), where
the constants B;, which occur in these, are limited by the relations (50). Equations (43) and
(67) show that

SR:BOe-‘,ux. .. o e . . . . .. (107)
Our assumed solution must satisfy (66), (73) (with K, = 0 by (75)) and (74). Making the neces-
sary substitutions, we find, incidentally, that the constant C of (49) is zero. The three remaining

equations together with (50) form a homogeneous set of linear equations in the five constants
B;(j = 0,1,2,3,4). These equations may be written

S BB, — 0 08
i=0
2



where the equations for 7 = 0,1, are obtained from (50) by addition and subtraction, the equation
for 7 = 2 is from (66), that for 7 = 3 from (73) and that for ¢ = 4 from (74). The constants

B;; are given by:—

Boo = 0 y BOj = Sinh //Lljc (ﬂ = 1:2v3:4) P .. .. .. .. (109)
Ay , : |
By = 52, Byy=coshulc (i=1234 .. .. .. .. .. (110)
p° Ao
2bc(1 + o) (7
Bo — - anc TR __ 2
% A?ZIdﬁi ETR th # > 1
(111)
By, = u¥ =2 + An Aph, — A /1-2> sinh uiic (i=1234 l
23 /1j2 }«j 13%4j 1174 J ]
B.. — 3
30 A22[aijl1“
(112)
By, = Fﬂﬁ A;sinh pde + w324y + A, + Ap) coshplie (G =1234
tee |1 Etca
B, = Hbal + - w11
e w2010+ o)bdup|aglu
B,; = — u*2; cosh pic
.. (113)
Etwlu l: 2 . . l s _1 A [
+ Qm Aj Ay + A’]Al3 7 Ass Zj‘é 22
2
_ ?&:‘Lb_ﬁliﬁ(zfAn + Ay + Aw)] sinh e (= 1254 |
Equations (108) are satisfied by non-zero B; if:—
(Bijlzo. .. o . . o e .. .. (114)

Equation (114) is a transcendental equation for z. It is very complex as inspection of (109) to
(113) shows. The mathematical examination of its roots is therefore out of the question, but
physical intuition, based upon experience with unswept boxes, suggests the existence of an
infinite sequence of roots with positive real parts, which may be written:—

l(u],uz,ug, ........ Y. .. .. .. .. (115)

Y=
C

They can of course be calculated numerically in a special case. The solution of the first four
equations of (108) gives the ratio between the B;.
We may write
By=Chiln) o o oo . (116)
V\;h(elra)C,, is an arbitrary complex constant and g;(x) are the cofactors of By, in the determinant
0 :
21



A ‘general’ internal system may be obtained by summation of our results with respect to
w over the sequence (115). The resulting displacements U,V for the surface z-= 0 may be
written:—

\

4
U = Zcﬂe—w[—%% —szlﬁj(u) & (A2Ay + Ay + Am)] + ¢
“ i =

(117)
V= zcﬂeﬁw[“nﬁo(u) o i ﬁ]&ﬁ) e (Af Ay .AjAzs + Azz)] e j
u

Aplaglp®  “i-1 A
It must be understood in (117) that the real parts of the expressions given are to be taken.

The solution (117) could be used to remove the ‘warping’ and ‘section distortion’, from the
simple solutions analysed in section 2.5 at one particular section (say) x = 0. However another
difficulty arises here, because the constants C, cannot be obtained by the usual harmonic analysis.

Multiplication of (117) by e ~*4* and operating J ’ () dy yields an infinite set of equations for

the C,. An alternative process might begin by li;niting the expansions (117) to a finite number
of terms and then proceed by choosing the C, to remove the warping at a finite number of
points on the section.

The processes sketched above are very complex and hardly practicable. Recourse must
doubtless be made to approximate methods of calculation to handle problems of constraint
against warping for swept-back wings.

2.7. Approximate Calculation of Root Constraint for the Case of Loading by a Constant Couple.—
The general methods of section 2.6 are hardly feasible for design calculations. However, an
approximate calculation is possible if certain restrictions are made as to the deformation possi-
bilities. We assume that the section of the box can only warp and distort in its plane according
to the pattern defined in equations (101) and (102), that is, in the same way as occurs when a
constant couple is transmitted, with no restraint at the ends. Other modes of deformation
of the section cannot occur, in particular the rib webs are rigid in shear (fz—> ). The
deformation of the skins and spar webs is then given by:—

U =gbsin a + wy/c

V = —pbsina + Ay
%f} = gz sin o + wz/b (118)
Uy )
W) . )

/| = W 4 pesin o — Ac*/2b

Wy

where, p,q, W, o, 4 are functions of . Making the supposition that 7, = 0 the stress resultants
follow from (118). We find

T, = {(- amfé + (z,]%y sin o + Q0] 4 Budo dm%;y |

T, =0 b (119)

(- dp . odg\, o a%w} @y do . dA)
S = (< o + dy, El?)b sin o + e + B+ o 7

22



where

5 2
Gy — ay — M2 G — Gy = ay, — 22 g g, P .. (120)
Ao Ao Aoz
and
Sw} ' E dW w ad CQ
Sw’)fzf(»iﬁj;%”‘ <i —r—csmoc+qsmoc+ Tx iz_%ffb . (121)'

Equations (12), (24), (57), (62) and (118) have been used in the derivation of (119), (120) and
(121).  Writing Z = 0 in (75) we find from (121):—

. dLL dA C2
g sin o T T T = . . .. .. .. 22
e dx  dx 2b 0 (122)

Substituting in (76) we find:—

_ . Et,.c - N\Ndp e - o dg
L, = 4bc sin « . (2(1 i) + bds, P 4b%cds, sin OLLZ?c

Et.c =\ \
| 4(2(77_ Ny ba_%)m L (128)

M, — 4sin « . (cd@y + EA) % — iy sin o P P + dbd0 .

Substituting in (69) and (70) we find:—

- d A ?
g ;i-j; + aggc%— = FEAbsin ochg
(124)
Etc ap a. dw
wl + 33 — )
<2w(1 o) ba%) sin o ba, sin oc + <2b It o) + > = FA Fr
Solution of (123) for dp/dx, dg/dx yields:—
D — PL + PM, + Py
(125)

d
dq O.L, + Q.M,; + Qg
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where,

p, = 4 sinafeay + EA)

D

P, — 4b (o sm o _ — 0,

D
2
p,— - 16 SlM[ A+ (2 Etuc bdgg)(odu + EA)}
_ 4bc sin « Lt,c -
Qs = — 5 ‘2(1*/‘;»{;) + bfl%)

16 Et,b%?d,5 sin o

Qp = — 188k € S o

D — 16b sin® « [(2 Elue e by Vot + EA) — bcoz;] .

Substitution from (125) into the second of (124) yields:—

where,

R1:

RZ:

B =

d*w

W —_ BQCU —= RI‘LI + R2M1

sina [/ Etc
T4 <2(1 T SR b“S‘Q’}

sin « _< Etc
2(

sin 1 o bd33> P, + bc'zm()z]

2(1 + o)
sinoff Ele
£4 Li2d + o)

Q33

A <*“~zzp(1 i

_ b@g}Pg + bdngg} +

A solution of (127) which vanishes at x = 0 and remains finite as x — o isi—

(R.L, + R.M,)

o = — 2 - 62 2 (1 - e—«ﬂx) .

The first of (124) gives assuming 4 = 0 for x = 0:—

f = (EADQssino — dy) -

AasC

).

(126)

(127)

(128)

(129)

(130)

The remaining unknowns are easily found. ¢,q follow from (125), W from (122) and the stress

resultants from (119) and (121).
for a ‘long’ swept box loaded by any couple at the tip.

The solution found solves the problem of ‘root constraint’
It may be applied with the usual approxi-

mation to other cases of loading. The method used here may be extended to deal with the
parabolic warping of (105) and so yield an approximate solution of the shear lag problem for the

swept box.
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PART TII. APPLICATIONS TO SWEPT-BACK WING STRUCTURES

3.1. Generalisation of the Engineeving Theory of Bending and Torsion to Include the Case of
Swept-back Wing Structures.—The intention of the present section is to generalise the solutions
obtained in Part II for the simple cases of loading (sections 2.3, 2.4 and 2.5), to cover the case
of a uniform swept box, whose section bears a closer resemblance to an actual wing structure,
than that considered previously. The box to which we shall now devote attention is shown in
Fig. 10. The section has unequal spars, that at y = ¢ has thickness #, and depth 2b, while
that at y = — ¢ has corresponding dimensions #,” and 25’. The skins are identical in both
geometry and elasticity and so the section is symmetrical about the y-axis. The skins may be
curved, but the development below is restricted to the case where d¢/dy is small*, where {(y) is
the ordinate. This will ensure that the angle « between the stringers and the rib-skin inter-
sections may be treated as constant over the skin surfaces. The flanges of the sparsy = 4 ¢
will have section areas 4 and A4’ respectively.

The notation for displacements, strains, stress resultants, etc., will be the same as in Part II.
However, in the case of the curved skins, displacements, etc., will be treated as occurring ‘in the
surface’. For example J/ will represent a displacement parallel to the tangent of the curve
of cross section.

We make the following assumptions with regard to displacements:—

1. Each section ¥ = x moves as a rigid body with displacement W% and rotation pi + gj.
W, p,q are functions of x, the last two being quadratic and the first cubic.

2. The section is warped from the plane by a displacement which is linear in x. In the
skins we have U = () .x + wy(y) and the warping in the spar webs is linear in z. By a
suitable definition of ¢ we may assume the rotation of linear elements of the two spar webs to
be equal and opposite.

3. The section is distorted in the plane in such a way that Sz =0 and that
Vi=di(y)x + 45(y).

Reference to section 2.5, in particular to equations (104), (105) and (106) shows that our
assumptions are sufficiently general to deal with the loading cases and the simple box treated
there. Putting our assumptions into mathematical form, we can write:—

U:qCSiI’IOCHFw

Y 2 N 1 Lo dc
V = p(; k% dy'> sino + W iy

+ A

%w - gz Sin & + (0))ﬂ’ﬂ@ * Z/b (131)
Wy == W + pCSinOﬁ

’

u,” = qzsin o + (w), . . .2/b

w, = W — pcsin a

* This implies that [b — &"|/2¢ is small.
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where,

P =Py + Fpua*

7= gx + g
W = yx — $x%(q, + }g.%) sin « .. .. .. .. (132)
m = o X + m,

T =4x + 4,

The quantities p,, ., g1, ¢, y are constants, while o, , w,, 4,, 4, are functions of ¥. The terms
in (131) involving p,q are obtained by an application of (9). Those involving d{/dy in the formula
for V represent the tangential component of those parts of wx which express rigid body motions
(see Fig. 11). The component of the remaining portions of wg is included in 4. The definition
of Win (131) is (w, + w,')/2, which will differ from that used in section 2.5, equation (97), by a
term which depends upon the cross-sectional distortion and so will be linear in». This difference
will therefore not affect the relation between W and ¢ given in (99) and (103). This relation has
been adopted here and used to derive the formula for W in (182). From equations (12) and
(131) we find for the strains in the skins:—

Cpy == (Q] ~+ qu): Sin o -+ [OF

as

. asc
4 P n o + + x4+ = ..
(P4 pux)(g y> si oy ay 1, (133)

It follows that the stress resultants 7', and S are linear in ¥ and so assuming in accordance with
the findings of Part 11 that 7, = O and Sz = 0 we find from (21) writing X = Y = 7, = 0 that:—

Tl - X;Z;S; -+ (T‘l)x—ﬂ }E 7
0 SRR (134)
S = S(y) . j
Equation (30) then gives:—
e = Ay xgs + (Tt)»'~(>> boARS )
a4 ‘
e ; (135)
e = Ag 7xdy + (Tl)xw()> + AgS . ;
Comparing (133) and (135) we deduce ﬁsing (134):—
@S (o) Angg i g
| 4, A, An( b g, )
A, sin o
r2 e j
(b + A,
S = (S),. . - ?%?Eiﬁ j s dy .. (136)
‘ An e

, 45 - - - - /
w, = (), ., + <2pz + 1 q2> sin “5 Sdy — pysin oy + cb’)
11

¢

dc odc
dy sin o y@

26

Ay + 22 = A1), _o + AgS + p}(‘: —



Substituting from (133) and (136) in (69) and (70) (with 4" written for 4) we find:—

S, = — (S)yz e TG sin a(%g + EAb) WL
! | (137)
Se = (S),- .t EA'b'¢g,sin a j
where,
- 1 ¢°
= 5 S ay . .. .. .. .. . 3
Leg iy (138)

Substituting from (131), (132) in (57) and (62) (with #,” written for ¢#,) we find expressions for
Sw, S, which may be compared with (137) yielding:—

(WI)y:C,A (wl)y: - __ . 3
y , b paC SIN
o : g I (Lt o)gsina(EAb | EAY | 2l
r E < w > S‘ - E o tw ”ﬂtwr ' Allt
L. (139)
(@2)y—c _ (®2)y——o i _ +" '
S 7 = — picsin« < L4 > ¢
(1 +0) EAb CEAY | 2l
b 5 S f ;
E q~ S e tw, ‘4]]tw>

where in the last equation we have made use of the anti-symmetric nature of the warping in
the spar webs (¢f. assumption (2) given above). Substituting now from the third of (136) into
the first of (139) we find:—

b= ot C e (140

The formulae for 7, S, S,, S, ((136), (137)) obtained above contain the unknown constants
g1, G2, P2 (@1)y~ _, and (S),_ _,. Equations (139), (140) show that two of them are expressible
in terms of the remaining three. These last three and hence the stresses can be determined by
use of equations of overall equilibrium like (75) and (76). However, these require modification
for the present structure. We find easily that:—

7o ’ ro ¢ d:
Z = 2bS, + 2'S,’ Z.Ldedy
L= 20cS, - 26'cS,” + 2| S Z; by 2| Say | - oo 14D

M, = 2EA(e,),_. + 2'EA’(e.),_ . + 2J T, dy

—C

where allowance has been made for the z-wise components of skin shear S d¢/dy.
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Substituting from (136) and (137) into (141) and making use of (139) and (140) we find after
some transformation:—

7= ET sin « J
where [ (142)
P=oap+ ane+ L[ ea) |
| EA, )"
L A A o
Sy =L e 2 ld
Sh-—e= =g "s¢ " pra, |t
where
143
QE(AV: — A7) + 2 J Y2 dy + iJ [ (y).c(p) dyndy | o
po—=_ ‘ CAuryjc 7 _,,,,,(EAH —~cto 1 -
EI
A
ZL 4+ 23 L
q:_iﬁﬁﬁg, (144)
! E] sin «

It is to be remarked that Z and L, are constant in our solution, whereas M, is linear in x. It is
assumed in (144) that Z is applied at x = [ and hence that M, is given by the expression in (88).

Formulae for the stress resultants can now be obtained. Substituting from (142), (143),
(144), (139) and (140) in the formulae of (136) we find:—

L, Z .
o gl L l |
where ’ (145)
L =1, nel j
and
A
T, — % Aig
! All A]I
where p { (146)
31 -
Qg L)
o El
Substituting in (137) we find:—
L, Z e AbZ
b L gy 4 AL
=gt pran L Yt |
(147)
., - I, zZ 0 A'b'Z
S, = — 7L+ Cdy + LT
2 o L |

The point y = 5¢, z = 0 on a section ¥ = x may be termed the ‘shear centre’ at the section.
It may be remarked that » = 0 when there is symmetry about the z-axis. The torque L; about
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an axis through the shear centre may be termed the ‘Batho Torque’ and is seen to be reacted
by a uniform shear flow given by the usual Batho formula.

We turn now to the calculation of the deflections. Combination of (137) with the second of
(139) gives:—

y:i}(’—)<§;+§-> L (48)

The quantity y can then be obtained using (147). It is equal to the mean shear strain in the two
spar webs and so the term in W (eqn. (132)) ‘y«’ is the ‘shear deflection’. The calculation of the
rotations requires a knowledge of p,, which we have not found as yet. To determine p, we must
consider the deformations of the ribs. The rib displacements are calculated upon the supposition
that S, = 0 and that w; is a function of ¥ only (¢f. section 2.2). We find by (52) that

vp = — 2 YUK () L (149)

dy
The displacement V' at the skin is given by:—

e 1 as 2 d (wy
e T <c> L (150)
Recalling (60) we find:—-
SE o Se | Ldy=0. N )

Substituting from (131) in (151) we find:—

wy = pysino + W — Cf »-éjédy . . . .. (152)
and

G © oA, ,

J%—C«édy ::Jmu-»{:;dy:(), .. L (153

Now the strain ¢,, in the curved skin can be calculated in two ways. Firstly from the displace-
ments ¥ and w,* by a well-known formula and secondly from equation (30). We thus find:—

OV T AT ALS N £7)

Ty T ey

vy

Substituting from (131), (152), (145) and (146) and equating coefficients of x in the resulting
formulae we find:—

gy AnZE L (155)

*In all strictness w, — v, ;ZC , but the inclusion of the second term only introduces terms of the order neglected
Y

here.
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The remaining terms of our identity give an equation for 4,, which we do not write here. The
solution of (155) which satisfies (153) is,

— Ale 1 o 1( A2 2 di:’
/JIW’AE‘I‘C}} Hy* — o)

e (156)

The quantity p;, can now be calculated. Operating on (136) with J‘ﬁ () dy and using (156),
(145) and (146) we find an expression for {(w,), _, — (w.), - _. + y(b — &')}. This quantity can
also be obtained from (139) using (142) and (145). Equating the two results we find for p, :—

pl — CllL] i CIZZZ + C13Z N Where

__cosec a ((1 + a)(b/t, + b'JL))

. (Ay — A/ A,)
711

\/bw + “of gt

ettt g ' ) 2A312;€’ ‘
8fc | 2L Tc ;

‘ Z I:A"] 1‘2 J
Co A, cosec a
oy = — .

24 ,EI

. 7 { 1 ‘i" b b/ 9 }
Cig = 7 cosec o e 9) <Ifw + fw/) + (Ayy Arf/Au)j‘

s (157)

cosec o [(1 + o) (b ., ot L Ab* ATD™N
*z‘mnm[ Be oS |, o )

0 bo @ e le t, /)

LAy — A5°440) - ]
R — J . ye ay| .

Using (140), (142) and (157) we then find:—

%:CHLL*JrCl;;M! R O 1

where

(159)

L* “—: L, — y*cZ
and }

n* = — CyfcCyy .
Using (144), (142) and (132) we find:—

2

o dd}vz cosec o = % = CZILI -+ C22M1 .. . .. (160)
where,

Coy = Cyy

and (161)

Cyy = cosec a/ L1 .

The formulae (158) and (160) have the same form as (99) and it can be shown that the constants
C,; of (157) and (161) reduce to the forms given in (100) when the proper specialisation is intro-
duced. The difference in the new formulae lies in the introduction of L* in (158). L.* is the
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moment about a line y = y*c. The intersection of this line with a rib wise section (co-ordinate x)
may be termed the ‘centre for twist’ at that section.

The aim set at the beginning of this section has now been accomplished. Formulae for
stresses and deflections have been obtained for the case of a uniform swept wing structure loaded
by ‘normal’ forces and couples at the ends. This represents a generalisation of the usual
Bending-cum-Batho formulae which are used by aircraft engineers to obtain a first approximation
to the behaviour of unswept wings.

3.2. Procedure for Practical Stress Analysis.—Consider now an actual swept-back wing structure
having two straight spars, skins reinforced by stringers and ribs parallel to the ‘direction of
flight’. (see Fig. 12). The wing possesses a small amount of taper and the dimensions of the
structure vary in a gradual manner along the span. The existence of a plane of symmetry
intersecting the spar webs will be assumed. If no such plane exists in reality, then the actual
top and bottom surfaces should be replaced by fictitious surfaces having ordinates and geometry
which are mean values of the real quantities for the two surfaces. This plane of symmetry will
be taken as the x,y-plane of a co-ordinate system. The y-axis will be taken parallel to the ribs
the x-axis will intersect the traces of the ribs on the x,y-plane at their mid-points and the z-axis
will be normal to the x,y-plane. Attention will be directed in what follows to a single rib-wise
section with co-ordinate x. The geometry of this section and of the various structural elements
at this section, will be described by the symbols used in section 3.1 and illustrated in Fig. 10.
It will be assumed that the wing is loaded by forces acting in a z-wise direction and by couples
whose axes lie in the x,y-plane.

The procedure for estimation of the stresses at section x may be outlined as follows:- -

I. Tabulation of the values of the following quantities at this section:—
O(-) 07 b, b,y C(y); t: twr tw/) tR; A; A,; AS) AR: as» “R! Ex‘ o .

[f any of these, apart from ¢, vary across the section, then mean values should be taken. Allow-
ance for the bending stiffness of the spar and rib webs should be made by augmenting the areas
A, A" and Ay.

2. Calculation of sundry constants for the section:—
Aya,, Aglag, (a;), (equation (27)), (a;)r (equation (28)), a,, (equation (29)), the determinant

_ . ¢ N € s x4 4 . .

la;;], A, (equation (31)), { (equation (138)), ] o dy, J - Yt dy, I jo ). S(yv)dy, dy,
I (equation (142)), # (equation (143)).

3. Calculation of the resultant static action acrvoss the section:—

Z sum of z-wise forces acting at points outboard of section. This acts at the centre
of the section (y = 0).

L,, M, Oblique components, referred to axes O(X,Y) (see Iig. 1) of the sum of the moments,
about the centre of the section, of all forces and couples acting at places out board
of the section. These may be calculated using the formulae of equation (19). If the
external forces are denoted by Z, and act at (x,, y,) we may write:—

[
L= >yl My~ - > (% x)Z,

!
where the summation = is with respect to ¢ over all the points x; such that

x < x; < [ (where x = [ is the tip). Any ‘couples’ must be replaced by forces before
inclusion in these formulae.
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L, X-wise component of moment about y = 5c (see equation (145)).

4. Calculation of the Stress Resultants:—
S Shear per unit length (oblique component) in skins (see equation (145)).

T, Tension per unit length (oblique component) in skins (see equation (146)).
The remaining component 7, is zero.

S.,S., Shear per unit length in spar webs (see equation (147)).

The shear per unit length in the rib webs S, is zero, except of course for effects due
to local loads applied to the ribs.

5. Calculation of the stresses in the various components:—

E e, Stressin the stringers. e, has already been found in the calculation of 7 (equation
(146)).

E(e,),-+. Stresses in the spar flanges.

The loads in the spar flanges and the tensions in the stringer-skin combination (77,
per unit length) will have normal shear components if the wing structure is tapered.
Corrections of the type, usually introduced in the stress analysis of unswept wings,
can be introduced here to allow for the ‘shear carried by end load’, if it is felt to be
worthwhile.

E e, Stress in the rib flanges. This is given by (30). We find, ¢,, = 4,7, + AS.

¥y
€ue, €y, €, Strain components in the skin (oblique axes). e, ¢, have already been found.
¢,y follows from equation (30):— ¢, = Ay 77 + A3S.

€, Eyy, &y Strain components in the skin (rectaﬁgular axes O(x,Y). ¢, has been calculated.
eyy, ¢,y follow using equations (13) and (15).

T.jt, T,/t, S/t Stress components in the skin (rectangular axes O(x,Y).
These follow from equation (26).

Se/t, \Sw’/tw’ Shear stresses in the spar webs.

This completes the analysis of the stresses at a section of the wing. For a complete stress
analysis these calculations must, of course, be repeated at a number of sections. The solution
given will be in error near the tip, near large concentrated loads and at the root, but these errors
are present in the customary application of the beam theory to unswept wings. A sufficiently
accurate estimate of these errors may be obtained by idealising the wing structure and treating
it as a uniform doubly symmetric rectangular-section box applying the methods developed in
section 2.7. The warping equation (127) found there is so similar to that for an unswept box
that the outline given in section 2.7 should be an adequate basis for application.

3.8. Procedure for Deflec ion Calculations.—The procedure given here for the calculation of
deflections will be based upon the same assumptions with regard to the wing structure as the
procedure for stress analysis of section 3.2. The calculations described must be carried out at a
reasonable number of sections of the wing so that numerical integrations to obtain actual deflec-
tions and rotations can be carried out.
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1. Calculation of Section Constants supplementary to those of section 3.2 (2).
c 0 4
d .
J‘)Cdy; J—CC y’ J—cyCdy
Cu, Cp=Cy, Cy, Cy. Formulae for these constants are given in equations (157), (161).

n* (see equation (159)).

2. Caleulation of a Special Couple Component supplementary to section 3.2 (3).

L*  X-wise component of moment about y = 5*c (see equation (159)).

3. Calculation of Rates of Section Rotation.

gé , g% = — fl%z cosec . These quantities follow by equations (158) and (160).

4. Calculation of the Deflections and the Rotations.

$,q These follow by integration of the expressions found in (8). This rotation is about
an axis passing through the centre of the section (y = z = 0).

psin o Decrease in ‘incidence’ of a rib section.

W This follows by integration of an expression found in (3). If the root is ‘fixed’ we
may write W = dW/dx = 0 at the root.

However see (5) below in this connection.

5. Calceulation of the ‘Deflection due to Shear’.

y This is the ‘rate of shear deflection” and is given by equation (148). In section 3.1

it was a constant and equal to (%) (see (132)). In general it will be variable.
0

W, The ‘additional deflection due to shearing’. This is obtained by integrating:—
AW jdx = y.

W, must be added to IV to obtain the ‘total’ mean spar deflection. This procedure
will give the correct root conditions for the total deflection W + W,.

This completes our analysis of deflections. No account has been given of the calculation of
section warping and distortion, since this is of little practical importance. Rough estimates
of these effects can however be made using the simplified structure of Part II (see equations
(101), (102), (104), (105) and (106)).
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APPENDIX
Numerical Tabulation of A,; and Allied Functions™®

Tables 1, 2 and 3 give values of the matrix elements A4,; defined in equation (31) for a series
of values of a, 4 /at and Ag/agt. These results are plotted in Figs. 13 to 21.

Tables 4 and 5 give values of the determinant |a,;| and the matrix (a,;), respectively, which
are defined by equations (27), (28) and (29). These results are plotted in Figs. 22 to 24.

All the numerical results giVen assume a value of 0-3 for Poisson’s Ratio.

* Taken from the report:— The Eval%atioﬁ of Matrix Elements for the Analysis of Swept-back Wing Structures
by the Method of Oblique Co-ordinates by S. R. Lewis, B.Sc. (College of Aeronautics Report No. 44, A.R.C. Report
14025. Strut 1450).

TABLE 1
o ‘ ‘ ~
adeg 30 35 45 55 60 ‘ 75 90
As AnEt 0-930 0-887 0-815 0-757 0-732 0-679 0-660
i 0-5 AEl 0-516 0-411 0-229 0-0779 0-0149 | —0-121 | —0-168
s AsEl 1-50 1-35 1-09 0-849 0-729 0-367 0
4. Ao Et 1-18 1-14 1-06 0-976 0-938 0-847 0-812
SR 0.2 AxsEt 1-75 1-61 1-35 1-07 0-930 0-477 - 0
art A Et 350 | 3-31 3-03 2.84 277 2.64 974
As A Et 0-858 0-841 0-801 0-755 0-732 0-674 0-652
vl 0-5 A Et 0-350 0-283 0-189 0-0560 0-0108 | —0-0901 | —0-126
s ‘| AEt 1-25 S 1-17 1-01 0-825 0-725 0-384 0
4 AnEt | 0-802 0-783 0-743 0-702 0-682 0-632 0-613
AR 0.6 AssEt 1-19 1-11 0-947 0-771 0-6768 0-357 0
art l AssEt 1 2-66 2-60 2-52 2.51 2:52 2.57 2.71
< ; Ay Et 0-821 0-817 I 0-793 0-754 0-732 0-672 0-646
i 0-5 A Et 0-265 0-215 0-124 0-0437 0-0085 | —0-072 | —0-102
s AEt 1-12 1-08 0-960 0-811 0-722 0-394 0
4 AsEt 0-607 0-596 ’ 0-573 0-548 0-536 0-505 0-492
SR 1.0 AssEt 0-902 0-846 0-730 0-602 0-531 0-285 0
art AssEt 2-923 2-29 f 295 2.33 2-38 2-53 2-69
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TABLE 2

o deg 30 35 45 55 60 75 90
As A Et 1-48 1-38 1-21 1-08 1-04 0-932 0-897
it =0-1 Aq2Et 0-822 0-638 0-339 0-112 0-0210 | —0-166 | —0-228
s AqsEt 2-38 2:10 1-62 1-22 1-03 0-504 0
4 AsEt 1-35 1-25 1-09 0-980 0-938 0-855 1-10
LR 0.2 AssEt 2-25 1-96 1-50 1-11 0-936 0-453 0
agt AssEt 4-92 445 3.74 3-26 3-07 2-71 2-80
As Ay, Et 1-31 1-27 1-18 1-08 1-03 0-923 0-881
v =0-1 A12Ft 0-534 0-426 0-236 0-0803 0-0153 | —0-128 | —0-171
s Aq3Et 1-90 1-76 1-48 1-18 1-02 0-526 0
A Ao Et 0-876 0-831 0-759 0:704 0-682 0-637 0-829
<R —0-6 AosEt 1-46 1-31 1-04 0-798 0-680 0-338 0
agt AgsFt 3-61 3.42 3:12 2-90 2.82 2-65 2-75
As A Et 1-22 1-21 1-16 1-08 1-03 0-919 0-872
wit =0-1 Aq2Et 0-395 0-320 0-181 0-0626 0-012 | —0-0984 | —0-137
S AsEt 1-67 1-60 1-41 1-16 1-02 0-539 0
4 AsEt 0-649 0-624 0-582 0-549 0-538 0-508 0-664
AR 1.0 AssEt 1-08 0-983 0-800 0-622 0-535 0269 0
art AssEt 2-98 2-91 2-79 2-70 2-67 2.62 2.72
TABLE 3
o deg 30 35 45 55 60 75 90
As A Et 1-60 1-48 1-29 1-15 1-09 0-977 0-939
2ot =0-05 ApEt 0-887 0-685 0-361 0-118 0-0222 | —0-174 | —0-238
as AqsEt 2.57 2-25 1-73 1-29 1-09 0-528 0
4 AsoFt 1-39 1-27 1-10 0-981 0-938 0-856 1-16
SR 0.2 A Et 2-35 2-03 1-53 1-12 0-937 0-449 0
art AssEt 5-23 4-69 3-88 3-33 3-13 2-73 2-80
As Ay Et 1-40 1-35 1-95 1-14 1-09 0-968 0-922
i 0:05 | 4,,Et 0-571 0-455 0-251 0-0849 0-0161 | —0-129 | —0-179
as A3Et 204 1-88 1-57 1-25 1-08 0-552 0
4 A Et 0-892 0-841 0-762 0-704 0-682 0-638 0-867
2R~ 0.6 AssEt 1-512 1-35 1-06 0-803 0-681 0-334 0
art AssFt 3-80 3-59 3-24 2-97 2-87 2-67 2:75
As AnEt 1-30 1-29 123 1-14 1-09 0-963 0-911
i 0-05 | 4,,E¢ 0-421 0-340 0-192 G- 0662 00127 | —0-103 | —0-148
S AsEt 1-78 1-70 1-49 1-23 1-08 0-565 0
4 AgEt 0-657 0-629 0-584 0-549 0-536 0-508 0-694
2E 1.0 AssEt 1-11 1-01 0-813 0-626 0-535 0-266 0
agt AssEt 3-13 3-04 2-89 2-77 2-73 2-63 272
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TABLE 4

Values o ‘a’i\;
o
adeg 30 35 ‘ 45 55 60 75 90
|
As _o.5, 4% _ .9 8-85 5-43 1 9.59 1-54 1-26 0-86 0-76
ast art
As _o.5 A= _g.6 | 13.03 7-91 ‘ 3-68 214 1-74 1-15 1-00
ast agt
|

As _o.5 Ax _q1.0 | 17-20 10-39 478 2.74 2.9 1-44 1-25
ast aRt )
As _ .1 A _ .o 5-56 3-50 1-74 1-07 0-89 0-62 0-56
ast agrl
As Ar
As _g.q Ar _ .6 8-56 5-95 92.50 1-49 1-22 0-84 0-74
ast art
As Ar
As _ 9.1, 48 _ 1.0 11-55 6-99 3.96 1-91 1-56 1-05 0-93
(lst agrt
As .05, A& _ (.9 5.14 396 1-64 1-01 0-847 0-60 0-53
ast art
As _g.05, 4% _0.¢ 8-00 4.92 2.36 1-41 1-17 0-80 0-71
ast agt ’
As _0.05 42 _1.0 | 10-85 6-57 3-08 1-81 1-48 1-00 0-89
ast agrt
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TABLE 5
Values of (a;;),

o deg 30 32 35 43 45 ;0 55 | 60 } 75 | 90 -
% 879 | 7-38 | 5-82 | 346 | 3-1 244 | 2:0 1-69 ‘ 1-22 | 110
‘Et% 7-25 5-93 448 | 2-3¢ | 202 | 1-44 | 1-06 | 0-80 | 042 @ 0-33
%3 —7-61 |—6-26 |—4-77 |—2-53 |—2-2 |—1-57 |—1-15 |—0-85 |—0-316 | 0

‘%fi 879 | 7-38 | 582 | 3-46 | 3-1 244 | 2.0 | 169 | 1-22 | 1-10
%”' 761 |-6.26 477 |—2.53 |—2.2 |-1-57 —1-15 |-0-85 |—0-316| 0

%?:; 7-36 | 6-04 | 4-58 | 2:42 | 2-10 | 1-51 | 1-13 | 0-87 | 0-48 | 0-38
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