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Summary—A method for the calculation of the aerodynamic forces on an oscillating aerofoil which allows for the
effect of thickness is developed. The steady flow regime for zero or mean incidence is first determined for isentropic,
irrotational and inviscid flow conditions. A small disturbance is then assumed and the non-linear equation defining
the subsequent motion is reduced to a linear equation for the velocity potential of the disturbance. Thisis expressed
in difference form and solved numerically by a step-by-step process. The results obtained show good agreement with
the known solutions for a thick aerofoil at incidence in steady flow, and for the case of an oscillating flat plate.
Consequently, it is believed that the results derived for an oscillating biconvex aerofoil are reasonably accurate.

Aerodynamic lift and pitching moment derivatives for a 5 per cent thick, symmetrical, circular-arc aerofoil at Mach
numbers M — 1-4, 1-5 and 20 are given for a range of frequencies and compared with values obtained on the basis
of the flat plate theory. The effect of thickness appears to be important at the lower values of M, and the results
indicate that the flat plate theory is not sufficiently accurate.

1. Introduction—Measurements of the aerodynamic forces on an oscillating aerofoil’ indicate
that the linearised flat plate theory for the calculation of such forces is inadequate. This is not
surprising as it is known that even in steady motion the simple Ackeret theory, which neglects
the effect of thickness, is unreliable when chordwise lift distributions are required. Busemann’s
second-order theory?, however, gives better agreement with experiment, and the object of this
paper is to develop a method which will give the same degree of accuracy for solutions of
oscillatory problems.

The method suggested is tried out for a biconvex aerofoil describing pitching and translational
oscillations. A thickness/chord ratio of 0-05 is assumed, and derivatives are calculated for a

range of Mach numbers and frequencies for comparison with results based on the flat plate theory.
As shown in Figs. 5 and 86, the chordwise lift distributions differ considerably, and it appears

that in the calculation of flutter derivatives allowance should be made for effects due to the shape

of the aerofoil.

Wind tunnel tests to check the accuracy of the present theory are to be made shortly at the
National Physical Laboratory. The experimental information obtained should provide much
useful data for possible further theoretical development. However, if the effects due to the
boundary layer and the leading-edge shock wave are negligible, the present theory should give
agreement with experiment.

Attempts to investigate the effect of viscosity could be made by assuming the aerofoil section
to be thickened so as to include the boundary layer. This approach presupposes that the
boundary-layer thickness is independent of time, and any results obtained on this basis would
presumably be valid only for slow oscillations of infinitesimal amplitude.

* Published with the permission of the Director, National Physical Laboratory.
A.R.C. Report No. 13,162. May, 1950.
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If the effect of the shock wave at the nose is to be included the flow can no longer be regarded
as irrotational and isentropic. In principle, however, if the local values of s, 05, us could be
determined everywhere, and if the correct boundary conditions could be established, the numerical
technique used in this report could be applied.

For the particular aerofoil considered the assumption that the flowis isentropic and irrotational
should be approximately valid in view of the low value of the thickness/chord ratio, namely
S per cent, which corresponds to a wedge angle of about 12 deg. Experiment has shown that
for aerofoils of this order of thickness Busemann’s second-order theory gives good accuracy in
the steady case®. In view of this evidence it is considered that the results given by the present
method for the unsteady case are reasonably accurate. They should certainly be an improve- -
ment on those given by flat plate theory. : —

Further calculations for biconvex circular-are, symmetrical aerofoils of various thickness/
chord ratios are proposed for suitable ranges of Mach number and frequency parameter to provide
complete sets of derivative coefficients corresponding to translational and pitching oscillations
of the aerofoils. The method can also be used to determine control surface derivatives when
the angular displacements are small.

2. Equations of Motion.—For isentropic, irrotational and inviscid flow in two-dimensions, the
equations of motion are

dii 1ep dv  10p

%:—r—)ax)dt———gay, .. .. .. > e .. ..7 (].)

0 ~ O ~ .
where 7 = 5 + % T 0 5y and #%, ¥ denote the velocity components parallel to the x and y axes

respectively. Since the flow is assumed to be isentropic, the pressure $ and the density 7 satisfy
the usual relation -

~

2 )

where & and y are constants.

The equation of continuity yields

aP /o 07
7 T @ \5, + >=0,

Ty (3)

? db
where P = 2 and @ (= yp/p) denotes the local velocity of sound. For irrotational flow, the
Po P

following relation is also valid, namely,

o _ o7
5y = %% .. .. .. . .. R .. .- (4)
From the above equations it follows that
W ___ 0@ .. _. 9897 9% og°
(az—%2)§~2uv@+(az—vz)a—j-/za—tz—l—%, .. . . .. (5)
and that
- 2 26 7 ,
y_l_l—a_t—i_f:COHSt" . .. .. .. (6)
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where 7 = #* - % and ¢ is the velocity potential. In polar co-ordinates 7, ¥, equation (5) yields

00 (@ — 2 o (aa 185) @5 0% 8g°
~2 72y —— _=zm = I R —Z
=yt et ) T Tty - D)
here #, 7 : t- d~a—§ tivel
WhHeEre %, v now represen 7 oW an oy respecuvely.

3. Linearisation.—It can be assumed that the flow around an infinitely thin flat plate at zero
incidence is constant everywhere. If this flow is disturbed slightly the subsequent components
of the velocity and the local speed of sound may be expressed as

w=U,+u, T =v, a=a,+ a,

where U, is the constant velocity of the undisturbed stream*. Substitution in (5) and omission
of second-order terms then yields the standard equation

0% , 0% 07 0%
(“SZ_USE)W"'%W:@—#+2USBTM’ .. .. .. .. .. (8)

where ¢ is the velocity potential of the disturbance. The solution of this equation is readily
derived and will not be discussed in detail in this report (R. & M. 2140° and 2655%).

In the more general case of a thick aerofoil, linearisation leads to a more complicated equation
than (8). For a biconvex circular-arc profile, which is the particular case considered in this note,
the appropriate equation can be expressed most conveniently in terms of polar co-ordinates.

e

(o5 Po)

g, cos (8 + )
gs sin (@ +¢)

Mach line
i

sin™! 5
cR sin ¢ + 0:5¢

cR cos i ~0-5¢ cokt w
cR

S T | I

[

* The suffix s denotes steady flow at zero incidence.
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If the flow regime at zero incidence is specified by U,, V| as shown above with corresponding
fields of pressure and density, then by writing % = U, + %, 7 =V, + v, and @ = a, + «, and
substituting in (7), the following linear equation can be derived for the disturbed flow, namely,

v al—U2ou v
(@ =V 5, +—— gg+ 7@ —rg’ +T“)—2UV38¢
)] 0 o v.?
2 (78’P+ o7 g — (V“I)Usz(”a—y_?_av) U> i o ©)
92¢ — 104 (U, 8
7+ 2U, at+2Vsat+ 2af ot \7 ayﬂLvsay)‘J

In the above equation, ¢ represents the velocity potential of the disturbance ; U, V, are the

: . 19 0
known velocity components for steady flow at zero incidence; and #, v denote " %SU , 5%5
respectively. For thin aerofoils 6 is small, and for points in the neighbourhood of the aerofoil

¥ is also small (see Fig. 1). At the surface of the aerofoil 6 + ¥ = 0 and V| is zero. It may
therefore be assumed that

U =g, Vi=q@+% .. .. .. .. .. .. ..oQ00

to a reasonable degree of accuracy. Since V, = 0 at the surface, and since it is small elsewhere,

it is assumed further that terms involving V, as a factor can be neglected Equation (9) then
- reduces to

ov S—qtou v
0‘5267+ y a8 =g —

V+1 0
(MIP V) 9

0. d
=1 g2 (ug — L) (0 + )

0% — 193¢ rq.\' 24,
8t2+238t+ , —525) Ty .. . o .. .. oo (1
29 o¢
Since u = S g V=5, the above equation then leads directly to the following linear equation
. for ¢, namely,
2¢ s Qs a2¢ s - g.f% <’)} + 1) l:]‘ aqﬁ agﬁ 8982 aqul
4 7 ATy a2 Aaw v T or or

=) 00084 090 8¢
yr 1 \3y0@ 2% or

a2¢ ZQS 82(# V—la(]s QSZEQS

When the motion is steady the right-hand side of (12) vanishes, and the solution of the resulting
equation with the boundary conditions appropriate to the case ‘of an aerofoil at incidence should
agree with the known exact solution for isentropic conditions. Equation (12) also reduces to (8)
when the thickness of the aerofoil tends to zero. In general, however, the coefficients in (12)
are variable and an analytical solution cannot readily be determined. The coefficients could be
represented approximately as simple functions of » and ¥ and an attempt at such a solution

could be made, but for the particular aerofoil considered in this report a numerical method of
solution is developed.
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The aerofoil is assumed to be describing simple harmonic oscillations of small amplitude with
frequency p/2x in the pitching and vertical translation degrees of freedom. For convenience in
the subsequent analysis ¢ is replaced by ®e?, where @ represents the amplitude of the velocity
potential of the disturbance. Substitution in (12) and omission of the exponential factor then
leads to an equation of the form '

0%d A, 0% 00 4,00 . 1A By 0@ A
405@+'R—§8—W+A2é—g+ﬁﬁ=®(lozBo+MoBl)+ T ap ..o (18)
> where R =7/c, 4y = pclgo, and
Ay = a’lq’
Al = (dsz - qsz)/qlz
_asz—QSz V—'_la 952 (’)/—1) gszae
Ade="por — g ﬁg_l>+ R \g/ 7%
_ 7} + 1 a QS 2 QS 2 86
,=— zzeﬁfc}})—(y—l)aa—zz (14
By = — 9°/g:°
_ =D () (2 2 (1
Bi=""Fx g—)(;) 17 ;)
B, = 2q0,/q:" -

The above coefficients are all determined by the flow past the aerofoil in its undisturbed position.
When the aerofoil is oscillating about a mean incidence which is not zero, however, the coefficients
are different according as to whether the flow above or below the aerofoil is considered. Hence,
in general, the supersonic flow solutions would be determined by two forms ot (13) which would
refer to each side of the aerofoil respectively.

4. Determination of the Coefficients.—For the case considered in this paper, the aerofoil is
assumed to be symmetrical and to be oscillating about the zero incidence position. Hence the
undisturbed flow about the aerofoil in its mean position is symmetrical and the coefficients
Aq, B,, etc., will be the same at corresponding points above and below the aerofoil. It will be seen
from (14) that these coefficients will be determined over the region of flow under consideration
when the undisturbed velocity g, and its direction ¢ are known everywhere. Let us suppose that
the values of Ay, By, etc., at P in Fig. 1 are required. At points along the characteristic line BP
the flow is constant in magnitude and direction and is therefore determined when the flow at B
on the boundary is known. The direction of flow is parallel to the tangent to the aerofoil surface
at B, and ¢, is a function of 6 (=/ TBN) and the local Mach angle # (=/ PBT) as defined by

the known relation®.
1dg
Z]—%:—tan‘,u. .. .. .. .. .. .. .. (15)

When w is small, the value of 4 at B is given in terms of the deflection ¢ and the Mach angle
4, of the undisturbed flow by

0 = flu) — flpo) - . - . - . .. .. (18)
' 1/3 1/2
where flu) = z: _I__ } tan~* t 3: j } tan ,u} — .
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In addition, for steady motion,
ﬁ2

y — 1

2 ﬁ2 ~ 2
-+ %: ﬁ -+ %z consta‘nt,‘ - .. .. ... (17)

where @ = 7 sin x. Hence,

G _ (v —1+42sin® M)lﬂ

g% Ny — 14 2sin®p

which gives § when x4 has been derived from (16). Before the above equations can be used,
however, the point B must be determined such that BP is a characteristic line. Let X,, Y, and
X, Y be the co-ordinates of B and P respectively, where X and Y are known and where Y, isa
function of X, which defines the shape of the aerofoil. Then it is evident from Fig.1 that the
X, co-ordinate defining the position of B must satisfy the relation

X —Xo=(Y —Y,)cot(u+96), .. .. .. .. ce e (19)

where Y,, u, and 6 are known functions of X,. From (19) the appropriate value of X, for the
point B associated with a particular point P(X, Y) in the region of flow can be determined
graphically or by an iterative method. For the biconvex circular-arc aerofoil considered, the
following approximations are valid to the required order of accuracy

Y, =w(X, — X,

0 =w(l — 2X,) .
It was also found that tor high Mach numbers the following approximate formula could be used,
cot p = o+ BX,, .. .. .. .. .. .. .o (21)

where o, f are constants determined by the Mach number of the main flow upstream.

(18)

(20)

‘The coefficients 4,, 4,, . . . By, By, . . . of (14) vary from point to point in the field of
flow, but the values appropriate to a particular point P are readily derived once the co-ordinate
X, of the associated point B on the boundary is determined. Since g,, ¢ are constant for all points
on BP it follows immediately that along the characteristic line BP ‘

g, 1 9g,
a%:—COt(M—I—O—I—By)Eagp,] ‘
o6 1 26
S—R:_"COt(“+9+T)FW'[

By the use of (14), (16), (18) and (22) the appropriate form of the differential equation (18) in
the neighbourhood of any point B in the field of flow can be determined.

5. Aerofoil at Incidence.—It is interesting to note that (15) leads to a simple formula for the
pressure distribution p on an aerofoil at a small incidence o in terms of the local values of bs,
ps» s, and u, along the surface of the aerofoil at zero incidence. Let ¢ represent the velocity
potential of the small disturbance resulting from the change of incidence «." Then, if 3/as, 2 [on

refer to changes along and normal to the streamline through the point P in the field of flow, the
velocity increments due to the disturbance will be

dq:[(qﬂr%zr—g%ﬂl/ig;:% e e (29
and g do = 9¢/on .



Substitution in (15) yields

o) )
g————%tanps, .. .. .. .. .. .. (24)
and since 8¢/on = — g,« on the surface of the aerofoil, it follows that the pressure difference

p — P, due to incidence is given by

0
b—b = pg = —pgitan, . a. .. .o .. (29)

For small values of «, (25) corresponds and is equivalent to Busemann'’s third-order formula for
isentropic flow. To allow for the effect of the shock wave at the leading edge, the Busemann
correction term (6) could be added to give

P — P [ Ps\ /[ Yqs 2 . 3 2}
pOQUZ - (P0> %> tan H“ ng o, .- . ot ot (26)
where

w = the semi-angle at the leading edge,

1) M \ 2
D= 4&]\22 )_ )7 [(5 — 3y)M* + Ay — 3)M* + 8] ;e (27)

and M, is the Mach number of the main ﬂow.

6. Numerical Method of Solution.—The method used to obtain the results given in this paper
is based on the representation of (13) in difference form. The field of flow is divided by a system
of lines drawn normal to the surface at equal intervals apart and by circular-arcs as shown
below (Fig. 2).

The normals to the aerofoil surface OBC intersect the leading Mach line OL at Ll,' M,, N,, etc.,
and through these points circular-arcs are drawn—the circular-arcs all having a common centre
O’ (see Fig. 1). Each circular-arc is divided into equal segments but the circular-arcs do not
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cut the normals at equal intervals. For convenience the network is extended below the surface
of the aerofoil to enable the boundary conditions to be represented numerically as differences.
It can easily be shown that, in difference form,

0 _[28) - 200)  28) —2(0)] b l

éﬁ o ]Zn o h712 hn kn—A ’
P Thal L e
100 0(2) — o(1) '
Ro¥w — 2k, ’ 4
820 2 [,74,,;_15(4) + 7y ®(8) — B(O)(hyyy + h)]
R M, h, + I, )
b1 + +1 (29)
1 %6 &(1) + D(2) — 20(0)
REOWE T R, ’

where @(1), @(2), @(3), #(4) denote the values of & at the corners of the typical cell marked in
Fig. 2 and &(0) represents the value at the inside or ‘ centre’ point O. The values of 4,, %,
correspond to the cell under consideration and vary over the field of flow. By the use of (28)
and (29), equation (18) can then be represented by a system of linear equations* relating the -
values of the @’s over the whole field of flow.

Along OL, @ = 0, and it is assumed that in the neighbourhood of OL the solution approximates
closely to that given by the flat plate theory for the Mach number 3, of the deflected flow.
On this basis the aerodynamic forces on a thin oscillating wedge in an airstream M, would corre-
spond to the forces given by the flat plate theory for the Mach number M,. This is certainly so -
in steady motion, for (25) is in effect Ackeret’s formula with p,, ¢y, %, for the undisturbed main
flow replaced by the local values py, g4, , for the wedge.

Q(x,,Ys)

e e ———
— -——
~

For a flat plate OD oscillating in an airstream of Mach number M, it can be shown that

0 0P
72 200) = — ‘tanm—a@
» 7 (30)
. 29(0)
= — tanp, . exp (— 24, sec® u, %) . oy

where 1, = pc/q,, cosec u; = M,, and where 99(0)/oy represents the boundary condition at O.
At the origin,
0®(0) 022(0)
3y, — 3R ° . .. . . . .. (31)

* The equations are used in complex form except when solutions for Ay =0 are required. Equation (18) is then
replaced by two real equations for M and N, where & =M + 2N,
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and the following general relations are valid

@)

100 (A4
.Z_e_ag@:—tan(%—{—w-l—y’)‘—afj
99(0) B 00(0Q) cos (u + w + ¥P) (32)
oR T 9y COS K ’ N h h -
ai_’(yQ) o 8(;5;?0) . eXp (— 12, S€C? 1y xo)'

By the use of (32) it is possible to estimate the derivatives of @ at the points L;, M,, N, etc., on
the leading Mach line since 29(0)/2R is known. When the centre points of the cells are on
the line OL, at N, for instance, formulae (29) are replaced by

*O(N) 2 hdtip)
1 °(N,) 2 22N
R 09 TR [‘D(Nz) — kSWJ ’

where 9@(N,)/oR, 2®(N,)[o0¥ are given by (82) in terms of the boundary condition at O.
Substitution of (83) in (13) leads to an equation for @(N,) in terms of @(M,) for the cell of centre
N,. Similarly,®(M,) can be determined when @(L,) is known, and @(L,) when @(B,) is determined.
In the present calculations @(B,) was assumed to have the value corresponding to that given by
flat plate theory for the mean flow conditions over OB, and the values of @ along B,N, were then
readily derived from the difference equations in the way already described. For the cell with
centre at B,, the finite difference form of (13) gives @(B;) in terms of @(B,) and @®(U,), where
& (B,) is assumed and

20(B
(U, = — 2hy —%ei) | (34)
Similarly, @(B,) is given in terms of @(L,), ®(B,), #(B;) and ¢(U;), where
29(B N
(U, = &(Ly) — 2h, a(R 5 : (35)

The value of 2@/2R on the boundary is determined by the motion of the aerofoil.

With the aid of the preceding formula, it is possible to derive values of ©® along the aerofoil
surface and hence to deduce the pressure distribution. The various stages of the calculation are
listed below for reference :—

(1) Choice of spacing for the network.

(2) Determination of the X, ¥ and R, ¥ co-ordinates of the corners of the cells.

(3) Calculation of g,, 6 at each point of intersection of the normals and the circular-arcs.
(4) Calculation of 4,, A;, 4,, As and B, B;, B, for each point by the use of (14).
(5)

5) Estimation of @(B,) as suggested and the calculation of the first derivatives of @ along
OL by (30).

(8) Determination of @(L,), (M), etc., along the first line by use of the above results and a
particular difference form of (13).

(7) Calculation of @ values over the network using the full form of the difference equations
and the appropriate surface boundary conditions. ‘

(8) Determination of the pressure distribution.
(9) Calculation of the aerodynamic derivative coefficients.
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7. Boundary Conditions.—Let us suppose.the aerofoil is describing translational and pitching
oscillations

| " ipt
'é—hc-—-hL ze Ip!

Fic. 4.

as shown in Fig. 4, where the point N distant 4c from the leading edge denotes the position of
the axis of oscillation. The velocity distribution ¢, corresponding to steady flow at zero incidence
is known, and the condition for tangential flow at the upper surface when the aerofoil is oscillating
can be expressed as

ol . . : | |
“pR = Ge X —Ratigie .. L (36)

when terms of order a%? z¥* are neglected. The amplitudes of oscillation are assumed to be
small and, since the aerofoil in the case considered is only 5 per cent thick, (36) can be regarded
as being correct to second order. To this order of accuracy, the shape of the aerofoil section
only affects the first term in (36). For convenience, let the velocity potential @ for the flow
above the wing be represented in the form '

b = — c[ugi®: + igohou®y + igoholz — ho) D). .. .. .. .. (37)

The symbols ®,, ®,, &, respectively are the velocity potentials corresponding to the boundary
conditions

09, qs .

B - (88
oD '

SEeX, @)
10)]

R C e (40)

where ¢, in (38) represents the speed of the deflected airstream at the leading edge when the
aerofoil is fixed at zero incidence. When the solutions of (13) corresponding to (38), (39), (40)
have been determined, the general solution corresponding to simple harmonic motion of the aerofoil
is given by (37).

For the case of an aerofoil at incidence in steady flow the right-hand side of equation (13)
vanishes and the general solution of the reduced equation for boundary condition (38) above
should agree with the known exact solution for isentropic conditions.

8. Aerodynamic Deyivatives.—The pressure distribution over the aerofoil’s surface can be
derived from equation (6) as follows: Let p,, p,, ¢, represent the local pressure, density and
velocity at the aerofoil’s surface when at zero incidence. Then, if ¢ represents the potential of
a small disturbance, it can be deduced from (8) that the pressure change p — $, at a particular
point is given by

‘ 0 0
P—_PS:_P8<5‘?+gsa—f>, . .. .. . . (41)

where 94 /9s defines the rate of change of ¢ along the surface of the aerofoil. From (41) it follows
that the lift distribution
a¢1¢

a U
l(x)zﬁ_‘?uzzlos(*ai‘—l—gsgs‘ ) . . .. . (42)
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where the suffix # refers to the upper surface and / to the lower. Then, to second-order accuracy
in the displacements and the thickness/chord ratio (R. & M. 26799, it can be shown that the total
lift L and pitching moment M about the reference point are given by

L=c [ (p—p)ax
1 (43)
M=— C2f0 (pl — ?u)(X — h) aX.

Since ¢ = ®e? and 1, = pc/q,, (42) can be expressed in the form

ffo—};):%(f’;—o)[muqs—r(g—)%} R )

when s = ¢X is substituted. By the use of (37) and (44), equations (43) lead to expressions for
the amplitudes L', M’ of the lift and pitching moment of the form

L L lps : . .
o= —2 [ (f}—) [ « [Z‘ Ly i (Ls — th)] 4 il 2L, de .. (45)

M Lo, [gl . i } . _
WZ2JO<ITO>{M E)'I‘l_{—lﬂ'o(LZ_hLE) —{—Z/'{OL:;Z}(X—]’L)dX, . « (46)

where L, = ¢4, &, - % . %%, etc. From (45) and (46), the Values of the derivatives can be
determined. In the notation of R. & M. 2140® and 2679°

I

PolGo

’

5= (L i)z 4 (L + il by .. .. .. .. .. (47)

oI = (m, + 1dom;)z + (m, + tAemy)o .. . .. .. (48)
so that when the complex coefficients of z and « in (45) and (46) have been calculated the values
of the derivative coefficients /,, ;, m,, m,, m,, m;, I,, [, can readily be derived.

9. Numerical Applications.—The method of solution suggested wasused to calculate the pressure
distribution and the lift and pitching-moment derivatives for a biconvex, symmetrical, circular-arc
aerofoil of 5 per cent thickness/chord ratio. In order to test the reliability of the method,
network solutions were first obtained for the following cases—

(@) an oscillating flat plate¥,
(b) an aerofoil at incidence in steady flow,

and they are compared with the known exact solutions in Figs. 5 and 6. It was found that the
network obtained by dividing the surface of the aerofoil into ten equal segments was sufficiently
fine. The results show good agreement with the exact solutions for () and (), and in view of this
it is believed that the solutions obtained for the oscillating thick aerofoil are reasonably accurate.
As the speed decreases, however, the leading Mach line OL increases in slope and the network
becomes rather extended in the direction normal to the surface. For the lower values of M, a finer
network might have to be used.

In the determination of the pressure distribution from the calculated values of @, it was found
advisable to represent @ as a quartic in X of the form

& = oX L pX* 1 pX° 1+ 5X* o (49

where o [ = (00/0X)x_,] was chosen to give the correct value at the leading edge. The best values
of g, y, 6 were then determined by the least-squares method. In all cases it was found that the

*In both cases the values of 9¢/0x and 9¢/dy along OL and of ¢, were assumed as suggested in section 6.
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values given by (49) agreed well with those derived from the network. Since slight irregularities
in @ lead to marked irregularities in 8¢/2X when differences are taken, the values of 0¢/0X were
deduced from (49) rather than by differencing. ,

For the particular aerofoil considered the theory breaks down at about M = 1-3 as the flow
at the leading edge is then subsonic. However, it 1s thought that the values for the aerodynamic
derivatives given in this report for M, = 1-4, 1-5 and 2-0 are reliable within the limitations of
inviscid, isentropic, irrotational flow theory. Values of —m, and — m, are plotted in Figs.
8, 9 and 10 for various values of 4., and it will be noted that the values of the damping coefficient
— 1, are larger at the lower Mach numbers, but slightly lower at the highest Mach number, than
those given by the flat plate theory. The variation in — s, with the position of the axis of
oscillation is shown in Figs. 11a, b and ¢, for certain values of M, and 4,. Similar curves for the
other derivative coefficients are given in Figs. 12 to 14.

10. Concluding Remarks.—The results show that thickness has a marked effect on the
aerodynamic derivatives for a two-dimensional aerofoil and, in view of this, some allowance for
such an effect should be made in flutter and stability calculations. TFor oscillations about the
half-chord axis, the value of the damping coefficient — m, is increased, but for more forward
axis positions, thickness appears to have the opposite effect. According to the flat plate theory
the damping is positive for oscillations about the leading edge, when M = 4/2 but Fig. 11b shows
that the damping for the thick aerofoil is still negative at M = 1-5. This indicates that the
range of Mach number and axis position for which it is possible to get one degree of freedom
instability would be dependent on the thickness of the aerofoil. ‘ '

In R. & M. 2679° it was assumed that the effect of thickness was independent of the frequency
parameter. This is approximately true -as far as the pitching-moment aerodynamic-stiffness
coefficient is concerned, but the results for —m, shown in Fig. 9c, for instance, give an initial
decrease in the amount of correction due to thickness followed by an increase as the frequency
parameter 1, increases.

Measurements of aerodynamic damping on oscillating aerofoils in two dimensions and on half-
delta wings are to be made at the National Physical Laboratory. These tests will provide a
~ control on present theory and a guide to further development. An attempt to allow for thickness
effects on derivatives for a wing of finite aspect ratio could be made by the use of strip theory in
conjunction with the present method. Such a procedure may, however, not be valid in general
and one must look to experiment for guidance on this question, particularly in the case of low
aspect ratio wings. ’
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The Effect of Thickness on the Aerodynamic Forces on Biconvex Aerofoils
Oscillating in a Supersonic Airstream, and Calculation
of Forces for Aerofoil with Flap®
By
_ Syrvia W. Skaw,
of the Aerodynamics Division, N.P.L.

Summary —The lift distribution and the aerodynamic force coefficients are calculated for a 7-5 per cent thick
symmetrical circular-arc aerofoil at Mach numbers My = 2-0, 1-7, 1-5 for a range of frequencies. These results are
compared with those given in an earlier report (Ref. 1) for a 5 per cent thick aerofoil, and with the values derived on the

basis of flat plate theory.
A limited comparison is also made between the calculated results and those obtained experimentally.

The same scheme of computation is then applied to the determination of the derivatives for an aerofoil with a flap
hinged at 06 chord from the aerofoil leading edge, for M, =1-7 only. The values thus obtained for the 7-5 per cent
and the 5 per cent thick aerofoils are compared with the limiting values for 4, tending to O derived by Temple and
Jahn for a thin aerofoil with flap (Ref. 2), and with the two-dimensional derivatives calculated for several values of 4,
from formulae given in a paper by Huckel and Durling (Ref. 5).

1. Introduction.—Isentropic, irrotational and inviscid flow conditions are assumed. The known
flow at zero incidence is slightly disturbed, and the non-linear equation defining the resulting
motion is reduced to linear form. The differential equation thus obtained is put into difference
form, and is solved by a step-by-step process to give @, the amplitude of the velocity potential
of the disturbance. ~For the numerical applications given here and in Ref. 1, the field of flow
is divided into a network by lines drawn normal to the surface of the aerofoil through ten
equally spaced points and by circular-arcs parallel to the surface.

The derivation of the differential equation and the numerical method of solution are described
in detail in Ref. 1. The same notation is used here as in Ref. 1, and a list of symbols is given

below.

List of Symbols

M, Mach number
o Velocity of undisturbed main flow
Po Air density in undisturbed main flow
¢ -Chord of aerofoil
¢ Thickness of biconvex aerofoil at mid-chord
y =cR Radius of a circular-arc of the network
w Semi-wedge angle
g1 Velocity of deflected airstream at leading edge when aerofoil is
at zero incidence
gs Local undisturbed velocity
ps Local air density

*Pyblished with the permission of the Director, National Physical Laboratory.
A.R.C. Report No. 14,217. August, 1951.
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List of Symbols——continued

B Local Mach angle
| P/2x Frequency in cycles per second
¢
Ao <_=. %) Frequency parameter
¢ (= De) Velocity potential of disturbance ‘
cX Distance measured along aercfoil from leading edge
ch Distance of axis of oscillation of aerofoil from its leading edge
cze’t Vertical displacement of aerofoil ,
xe'?* Angular displacement of aerofoil as a whole
cX; Distance of a point P on the flap from the hinge
cH Distance of flap hinge from leading edge of aerofoil
- pelt Angular displacement of flap relative to aerofoil
UX) [= apege® (R + 11)] Lift distribution
L (= L'e?) Total lift
M (= M'e™) Pitching nxqo‘ment
H (= H'e?) Flap hinge moment

2. Estimation of Accuracy.—The method developed in Ref. 1 was used there to determine
the forces on a 5 per cent thick aerofoil for Mach numbers M, = 2-0, 1-5, 1-4, and additional
values are given here for M, = 1-7 and 4o = 0. For this aerofoil, which has a wedge angle of
about 11-4 deg, the flow at the leading edge becomes subsonic, and the theory thus breaks down,
at about M, = 1-3. For the higher thickness/chord ratio of 7-5 per cent, corresponding to a
wedge angle of about 17-2 deg, the flow at the leading edge is subsonic when M, is just under
1-4, and the calculations for this aerofoil cannot be carried much below M, = 1-5.

In order to gain some idea of the degree of accuracy to be expected, the estimated lift
distribution for steady muotion is plotted in Fig. 1 for the 5 per cent and the 7-5 per cent thick
aerofoils, together with the known exact solutions. At M 0o =2-0, 1-7, and 1-5 for the thinner
aerofoil, and M, = 2-0 and 1-7 for the thicker aerofoil, agreement between the estimated and
the exact values is extremely good. For the thicker aerofoil at M o = 1+5 the maximum error
over the range X = 0 to X = 0-9is about 5 per cent .(at X = 0-4), compared with about 2-6
per cent (at X = 0-4) for the thinner aerofoil at M, — 1-4. The slightly greater divergence
of the estimated curves at X = 1 is due to the fact that the & values obtained from the network
were represented as a quartic to facilitate the determination of od/oX.

It is probable that better agreement would be obtained at the lower values of M, if a finer
network were employed. ‘ '

3. Discussion of Results for Rigid Aerofoils.—Values of the mid-chord derivatives for the
5 per cent thick aerofoil (Ref. 1) are given in Table 1, and the values obtained here for the
7-5 per cent thick aerofoil are given in Table 2. Comparisons between the results for the two .
aerofoils and those for the flat plate are represented graphically in Figs. 2-12.

Figs. 2 and 3 give the chordwise lift distribution for M o= 2:0 and M, = 1-5. Numerical
results were obtained for 1, = 0, 0-25, 0-5, 0-75; but, in order not to confuse the diagrams,
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only extreme values of 4, are included. The diagrams show that the thickness effect on the lift
distributions R and 7 is reasonably linear when M, = 2-0, but that there is a more rapid
variation with thickness when M, = 1-5.

In Figs. 4 and 5 the aerodynamic stiffness coefficient — m, and the damping coefficient — s,
for pitching oscillations about the mid-chord axis are plotted against 4, for M, = 2-0and M,=1-5.

It will be seen from Fig. 4 that the variation of the coefficient — #, with thickness is approxi-
mately linear for both values of M, Fig. 5 shows, however, that the variation of — m, with
thickness deviates considerably from a linear law, especially at the higher frequencies and lower
Mach number. This effect is shown more clearly in Fig. 6, where — m, is plotted against the
thickness/chord ratio for constant 4,. It will be noted also from Fig. 6 that the value of — m,
for the mid-chord axis position falls slightly as the thickness increases at M, = 2-0, but that
there is a definite increase of — s, with thickness at M, = 1-5.

Fig. 7 shows the variation of — m, with M, for various values of 1,, together with the flat
plate results for 4, = 0, and experimental results for 2, tending to O taken from Ref. 3.
It will be seen from Fig. 8, where — s, is plotted against % for M, = 1-5 and 2, tending to 0,
that the mid-chord axis position is relatively sensitive and that a small change of axis position
would give close agreement between theory and experiment. Fig. 7 may thus give a misleading
impression of the divergence between the present theory and the available experimental results.

In Fig. 9, — m, is plotted against % for M, = 1-5 and 2, tending to 0, and the results again
show that a small change of axis position would give good agreement between theory and
experiment. It will be seen that Hilton’s static measurement is nearer to the theoretical value
than Bratt’s oscillatory measurement.

The other derivative coefficients are plotted against 1, for constant M,, and against M, for
constant 2,, in Figs. 10-12.

4. Force and Moment Derivatives for Aevofoil with Flap.—

LEADING EDGE

t

cze'P

The diagram above shows the motions of an aerofoil carrying a flap. The aerofoil as a whole
is describing translational and pitching oscillations about an axis N at a distance ¢k from the
leading edge of the aerofoil. In addition, the flap is oscillating about its hinge H, distant ¢
from the leading edge of the aerofoil. X, denotes the distance of a point P on the flap from the
hinge. The angles oo and § are assumed to be small and are exaggerated in the diagram.

The condition for tangential flow at the upper surface, corresponding to equation (36) of
Ref. 1, is now
1oo . - . _
—3p =¢o+ 1Goo(X — A)ar -+ 1godez when X < H
= q.& + 1qeho(X — h)o + igehoz + g8 + gheX,8 when X > H . .. (1)
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The velocity potential @, for flow above the aerofoil as a whole, and the additional velocity
potential @, for the flap, are represented in the form

Dy = — ¢ [0giPy + 19ohet Dy + Gohe(z — Do) Ds] R i (2a)
Dp = — ¢ [Bq1P1s + 19oh0 D]
=0when X < H, .. .. .. . .. .. .. (2b)
where @,, ‘@2, &, correspond to the boundary conditions
0Py ¢
oR g’
0P,
3R =X,
00,
= = 1;
and the boundary conditions over the flap corresponding to @, and &, are
0Py g,
R T q’
- . . . ce . .. .. . (3)
28 X
oR I

The litt distribution is given by

UX) 2p, g; 9% |
;@zzp[oqurqax] T

where ¢ represents the potential of a small disturbance.

Equations (2) and (4) lead to the following expressions for the amplitudes of the lift and
moments

—2 fo o { [% Lo+ ity (Lo — Ma)] 4 iAOZ_L3] ix

POCQO
—9 H%{ﬁ %Lﬁmugﬂ]}dx |
= (, 4+ i)z + (Lo + dddda + (G + idd) B, .. .. .. (5)
Ocq zjﬂpo{ [ Ly idg(L, ——kLs):‘ T 7,'/1021;3] (X — By dX
+ ZL% [ﬁ [%Lm + mDLzﬂ}} (X — By dX
= (m, -+ iAgm;)z + (m, + idgmg)o + (mg + GAgmg) B, .. .. (6)
s go — 2 jﬂ b { [91L F ing(Ls — th)] + Most} X, dX

+2f {[ L+ ituly) | X,ax
= (b, —[—zﬂh) (h + idha)o+ (s + 2B, .. .. (7)

Y
where L, = 41,8, -+ g aXl , etc.
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The calculation for the rigid aerofoil to give @,, @, @; having been completed, it is only
necessary to obtain in addition network solutions for a small aerofoil extending from X = 0-6
to X = 1 to give @,, and @,,. For this small aerofoil the angle corresponding to the semi-wedge
-angle w of the complete aerofoil is — 1-14496 when #/c = 0-05 and — 1-71566 when #/c = 0-075.
The same spacing for the network is used as before, yielding values of @ at X = 0-7, 08, 0-9,
10 (X;=0-1, 0-2, 0-3, 0-4). In this case the & values obtained from the network solution
are represented as a quadratic for the purpose of determining 9®/0.X.

5. Results for Aerofoil with Flap.—The coefficient of g in the lift distribution is plotted in

Fig. 13, together with the exact values associated with 80,,/6X = — tan ysg (for X =0-6

to 1). The variation of the inphase component R of the lift distribution with frequency is so
small that it cannot be shown in the diagram. For a four-point network solution, the agreement

(X)

between the exact and the estimated values of WAy
[y A4

The additional mid-chord derivatives for an aerofoil with flap are given in Table 3; and they
are plotted against 1, in Fig. 14, together with values for a flat plate with flap calculated from
approximate formulae given in Ref. 5.

is very satisfactory.

In Table 4 the results obtained here for 3, tending to 0 are compared with the limiting values
of the leading-edge derivatives given by Temple and Jabn’s formulae* for a thin aerofoil with
flap (Ref. 2).

For the purpose of comparison, the leading-edge derivatives for 2, tending to 0 calculated for
the 5 per cent and the 7-5 per cent thick rigid aerofoils are given in Table 5, together with the
corresponding values obtained from Temple and Jahn’s formulae for a thin aerofoil.

A comparison of Tables 4 and 5 shows that the derivatives for an aerofoil with flap vary with
thickness in much the same way as those of a rigid aerofoil.

6. Concluding Remarks.—The results given here for a rigid aerofoil confirm the conclusions
given in Ref. 1 that thickness has a marked effect on the.aerodynamic derivatives; and
it is shown, moreover, that this effect ceases to be linear as #/c increases.

It is difficult to judge from results so far available how nearly theory agrees with experiment.
Fig. 7 shows, however, that, for mid-chord axis position, the present theory agrees with experi-
ment in giving an increase of — m, as M, decreases, whereas flat plate theory gives a decrease
in — m, as M, decreases.

. The theory developed in Ref. 1 neglects the effect of the shock wave at the leading edge,
and the effect of the boundary layer. The latter effect would result in a falling off of lift towards
the trailing edge of the aerofoil (Ref. 4). In order to get some idea of the magnitude of
this effect, the value of the mid-chord stifiness coefficient — s, for the 7-5 per cent thick aerofoil
at M, = 1-5 is calculated when the 11ft is neglected beyond a certain value of X. It is thus
found that the experimental value of — m, (— 0-254) is arrived at by neglecting the lift beyond
a point estimated to be X = 0-748. The value of the damping coefficient — m, obtained by
neglecting the lift beyond the point X = 0-748 is found to be 0-173, which agrees more nearly
with the experimental value of 0-28 than the value of 0-070 correspondmg to the normal lift
distribution of the present theory. The effect due to boundary layer would thus appear to be in
the right direction.

As already indicated, however, the effect of axis position on the experimental values needs
further investigation.

*If x, (denoted here by %) is put equal to 0 in the expressions of Ref. 5, the resulting leading-edge derivatives
for 4; tending to 0 agree with those given by Temple and Jahn’s simple formulae.
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In view of the marked effects of the boundary layer near the trailing edge, no accuracy can be
claimed for the calculated values of the derivatives for an aerofoil with flap. The calculation
was carried through for one value of M, (1-7) merely to indicate whether the scheme of
computation used for a rigid aerofoil could be applied satisfactorily to an aerofoil carrying a
flap. The results obtained appear to be of the right order, and suggest that reliable values could

be obtained if a finer network were used and the present theory were modified to allow for the
effect of the boundary layer. ‘

1 'W:P. Jones and S. W. Skan
2 G. Temple and H. A, Jahn

3 J. B. Bratt and A. Chinneck"

4 D. Beastall and R. J. Pallant

§ V:Huckel and B. J. Durling
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‘ TABLE 1
Mid-chord Derivatives for Biconvex Aerofoil (£ = 0-05¢)
Mo )‘0 la l(z, lz l; L — My -— My - W, — M,
20 0 1-168 —0-334 0 1-176 —0-048 0-062 0 —0-061
0-25 1-150 —0-370 0-018 1-168 —0-052 0-054 0-002 —0-062
0-5 1-102 —0-340 0-067 1-133 —0-061 0-061 0-009 —0-070
0-75 1-031 —0-299 0-1385 1-082 —0-073 0-072 0-015 —0-081
1-7 0 1-472 —0-595 0 1-493 —0-057 0-060 0 —0-074
1-5 0 1-813 —1-086 0 1-848 —0-083 0-054 0 —0-110
0-25 1-731 —1-114 0-065 1-778 —0-097 0-049 0-007 —0-125
0-5 1-513 —0-907 0-221 1-597 —=0-131 |- 0-097 0-017 —0-160
0-75 1-260 —0-633 0-378 1-362 —0-158 0-156 0-008 —0-198
1-4 0 2-083 —1-712 | 0. 2-135 —0-108 0-038 0 —0-145
0-05 2-075 —1-886 0-004 2-128 —0-109 0-004 0 —0-146
0-15 2-022 —1-822 0-040 2-081 —0-118 0-018 0-004 | —0-155
0-25 1-919 || —1-702 0-105 1-990 —0-135 0-046 0-009 —0-172
0-5 1-539 —1-222 0-322 1-639 —0-184 0-153 0-012 —0-233
0-75 1-184 —0-651 0-456 1-271 —0-197 0-263 —0-034 —0-272




TABLE 2
- Mid-chord Derivatives for Biconvex Aevofoil (¢ = 0-075¢)

M, Ay lq Ls L, L — My — g — — m;
2:0 0 1-185 —0-420 0 1-213 —0-072 0-062 0 —0-088
0-25 1-162 —0-472 0-022 1-198 —0-076 0-050 0-003 —0-091
0-5 1-100 —0-432 0-082 1-154 —0-087 0-060 0-010 —0-101
0-75 1-011 —0-373 0-164 1-088 —0-102 0-074 0-018 —0-115
1-7 0 1-485 —0-733 0 1-531 —0-087 0-065 0 —0-114
0-25 1-436 —0-787 0-042 1-493 —0-096 0-054 0-004 —0-122
0-5 1-304 —0-687 0-152 1-389 —0-117 0-078 0-014 —0-143
0-75 - 1-132 —0-536 0-283 1-243 —0-139 0-112 0-015 —0-169
1-5 0 1-826 —1-410 0 1-906 —0-130 0-070 0 —0-174
0-25 1-690 —1-488 0-090 1-786 —0-151 0-067 0-007 —0-197
0-5 1-366 —1-095 0-284 1-487 —0-191 0-153 0-008 —0-247
0-75 1-056 —0-619 0-414 1-158 —0-199 0-241 —0-032 —0-281
TABLE 3
Mid-chord Derivatives for Biconvex Aerofoil with Flap. M, = 1-7
e 2 Ig ls — g — g — b, -k
0-075 0 0-468 0-0362- 0-136 0-0128 0 0-0866
0-25 0-467 0-0336 0-135 0-0119 0-0047 0-0807
0-5 0-466 0-0337 0-135 0-0119 0-0155 00648
0-75 0-465 0-0340 0-135 00120 0-0240 0-0444
0-05 0 0-501 0-0420 0-147 0-0151 0 0-0952
te kX — g — B — I — Iy
l
0-075 |" 0O 0-0896 —0-0382 0-0896 0-00922
0-25 0-0835 —0-0467 0-0886 0-00856
0-5 0-0658 —0-0294 0-0884 0-00858
0-75 0-0457 —0-0046 0-0882 0-00863
0-05 0 0-0978 —0-0282 0-0978 0-01087
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TABLE 4

Leading-edge Derivatives when Ay—0 for Biconvex Aerofoils with Flap, Compared
with Corresponding Limiting Values for Thin Aercforl with Flap

Value given by Network
Derivative | Le@Ple and Jahn’s Formula for Thin | Value Given |Solution for Biconvex Aerofoil
Aerofoil (Reference 2) by Formula
t=0-05c | ¢=0-075¢
Iy 2F tan p e 0-582 0-501 0-468
I E?tan g (1 — tan®p) e 0-055 0-042 0-036
—dig | E(2—E)tangp e 0-466 0-398 ©0-369
— E? (1 )tan p(l —tan2p) .. 0047 0-036 0-031
— h, 0 0 0
— E%tan p .. . .. .. 0-116 0-095 0-087
—F, E*tan u . 0-116 0-098 0-090
— I E2 (1 ) tanp (1 —tan%p) .. 0047 0-019 0-005
— g E? tan u : e e 0-116 0-098 0090
—h §E3tanu(1—tap2y) .. .| 0015 0-011 0-009

Bars are used here to distinguish the leading-edge derivatives from the mid-chord derivatives of Table 3.
¢ = Mach angle. tan p = 07274 for M, =1-7.
E = ratio of flap chord to total chord = 0-4.

TABLE 5§

Leading-edge Derivatives when A,—> 0 for Biconvex Aerofoils, Compared with
Corresponding Lzmztmg Values for Thin Aerofoil

Value given by Network
L Temple and Jahn’s Formula for Thin | Value given |Solution for Biconvex Aerofoil
Derivative Aerofoil by Formula
t=0-05¢c | ¢=0-075¢
7, 0 e e 0 0 0
L 2tang .. .. .. .. .. 1-455 1-493 1-531
la 2tan p .. .. .. .. 1-455 1-472 - 1-485
A tanp (1 —tan2p) .. .. .. 0-343 - 0-152 0-032
— &, 0 . 0 0 0
— tan g .. .. 0-727 0673 0-652
— F7lg tang .. .. e e 0-727 0-680 0-655
— g gtan,u (1 — tan? p) e 0-228 0-099 0-024

Bars are used here to distinguish the leading-edge derivatives from the mid-chord derivatives of Tables 1 and 2.
tan g = 0-7274 for My =1-7.
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