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Summary —This paper deals with the following two-dimensional problem:—‘ The design of an aerofoil to give a
specified velocity against chord curve at a given free-stream Mach number.’” A ‘relaxation’ method is adopted,
based on the differential equations for incompressible and compressible flow. An essential feature of the method is
that the calculations are carried out in the (¢, y) or w-plane, in which the aerofoil is represented by a slit along ¢ = 0.
The square mesh in this plane is formed by the streamlines (y = constant), and equipotentials (¢ = constant) for
incompressible flow about the aerofoil. The method is developed for a symmetrical aerofoil at zero incidence, but
the modifications necessary for the more general case are indicated. A worked example is given, from which some
idea of the accuracy of the method can be gained. The compressible velocity distribution about a known aerofoil
was taken as the initial data. This aerofoil was actually 12 per cent thick at 30 per cent of the chord distance from
the leading edge. Using a mesh giving only fourteen mesh points on the aerofoil, we find that the calculations y1e1d
a 12-06 per cent aerofoil at 28-2 per cent of the chord distance from the leading edge.

I ntmducmon ——Symbols Frequently Used.

(%,9) Physical plane, in which z = x + .
(¢, v) The transformed flow plane in which the aerofoil is represented by a slit
onp =0 w=4¢ -+ . ‘
(40, 0) Incompressible velocity vector in polar co-ordinates.
L, = log (1/g).
g, L, 0 Similar quantities for compressible flow.
R Radius of curvature of boundary.
7 ~ Interval of the square mesh. '
s Distance along a streamline or boundary.
X Residual of the Relaxation process.
M Local Mach number.
M, Undisturbed stream Mach number.
o Angle between incompressible and compressible velocity vectors.
qs Incompressible velocity on aerofoil surface. '
a Local velocity of sound. ‘
a, Velocity of sound at stagnation points.
c Aerofoil chord. '
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A method of solving the incompressible flow equation V*L, = 0 . . .. (1)

subject to the boundary conditions — 96 _ 9Ly _ L .. . . .. o (9

%~ P Ry

and L, = oo at the stagnation points, has been given in R. & M. 2726'. The difficulties
encountered in the relaxation process at points neighbouring the infinities at the stagnation
points for both compressible and incompressible flow are also dealt with in this reference. The
compressible flow equations corresponding to (1) and (2) are developed below and we find that

oL 3L, 1
% a R B

1f we start with given values of ¢, and hence L, on the aerofoil boundary, and L = 0 at infinity
(corresponding to an undisturbed velocity of unity) we can solve the compressible flow equations
(by relaxation) and deduce the boundary gradientsdZ/dy. From (3) we then immediately have
boundary conditions for the corresponding incompressible flow. The incompressible equations
(1) and (2) are then solved and ¢, determined. Using these values of (3L]3y) and ¢, in (3),
we can obtain R and hence deduce the aerofoil profile. A slight complication is introduced
by the fact that until we know g., we cannot determine the positions of the equipotentials on
the aerofoil surface, and until these are known we cannot assign values of L = L(¢) on the
boundary. However, proceeding from a guess for g,, we can work through the process to find.

more accurate values for ¢, and so on. Convergence is quite rapid. The method is given in
section 3. '

Once 9L/dy and hence 3L,/3y has been found, equation (1) can be solved by either (a)
relaxation (R. & M. 2726) or (b) the ‘ polygon method "*. Relaxation is very much slower
because, although surface values only are required, the method necessitates the calculation of
values throughout the whole field of flow. On the other hand the polygon method enables us
to calculate surface values directly. The polygon method equation appropriate, for example,
to the flow past a symmetrical aerofoil at zero incidence in a free stream is

g n

T 1 /aL a1

g2 (4) = 2 (52)1og (¢ — ) — 2 Smlog s — ), .. .. W)
gy T

“where 7; is a discrete jump in 6 on the aerofoil surface at ¢ = 4,. :

The essential contribution of this paper is the method of deducing 8L,/dy from the given

compressible velocity distribution.

1. Compressible Flow—In Ref. 2, it is shown that

20 » 0L 30 | oL
%—(1——21/[)%——0, and 53‘"}—%—0,

where s and # are distances along, and normal to the streamlines respectively. Transforming
to the incompressible flow grid (¢, ) we have

o _ (cos 9 sin a>
an = D\ * 5, “ 34/

"9 ( in d -+ co a)
3s - qO S &% @ S o a_qs 5
where « is the angle between the compressible and incompressible flow vectors.
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Thus the equations assume the form

06 oL . a0 oL
-—a‘g—l—‘a—y)‘:—lslnd a—y}—@—:lcosa, e Ve . (5)
oL oL .
where A= M<8¢> COSa—f—Wsma)-

Now, for-subsonic flow at least, « is quite small, and so retaining first powers of « only, (5) can
be written

30 3L _  nfoL aL 80 9L .., AL
Putting 6 = L — L,, and subtracting the corresponding equations for incompressible flow,
we find:—
du a4 oL oL da ad oL
o 30y, O) o
v %% a9 T T =M g

From (6) and (7), by cross differentiating,

P = VAL = ¢<M2 ¢>+—;S<M2 L>+%<M2a%§>, e (8
V%:W%—Z@P%) ;@ﬁab—gﬂy%%).. )

In Appendix I more general forms of these equations are obtained, in which the vorticity is
not zero. These equations find some application behind shock-waves’. The boundary condition
for ¢ is zero normal gradient, c.f. (3), while « is zero on the boundaries, except at stagnation
points, the location of which may change, with increase in Mach number. Equation (8) can
be written with less accuracy

V%:WL—E@ﬁf>.. o)
2NF 2 . _ -
Now M?* = _%M ,mdeY=1+y21M€.. Loy
L — T Mg — 1)
oM* _ a’ -tk g _ 2 éL
thus Eralr also ¢* = e 2 therefore 26 = 2q 25

These results enable us to write (10) in the form

S

Using equations (11) we can plot M* and (a./a)® as functions of L. Except for unusually thick
aerofoils, and near stagnation points or sharp external corners, (3.L/3¢)* is much smaller than
9°L[3¢?, and can be neglected. (a,/a)® is not much larger than umty, even at large values of
M, and so (12) can be written approximately:—
a’L :
2 — 2 2
Vi = VL_ME)«;’F .. . . . .. (13)
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In the problem considered in section 5 below, results were obtained by using equation (10),
i.c., by ignoring o completely. These results are sufficiently accurate to illustrate the method.
The further step of using the full equation (8), after first using (7) to integrate through the
field to find «, can only be justified on a mesh of such a fineness, that the error due to the use
of a dz]j‘ewnce equation to replace (8) is certainly smaller than that due to neglect of «. How-

ever, 1f high accuracy is required on a fine mesh, the above remark 1ndlcates the procedure to
be adopted.

2. A Relaxation Treatment of the Equations—Fig. 1 is a typical square in the mesh. The
value of L at point 3 say, will be indicated by L;. Points 6 and 7 bisect the intervals (3,5) and
(5,1) respectively. The mesh interval is .

Now n? g;lg' == Ll- + L, — 2L5, n? g;L =~ L, + L, — 2L;.
Therefore  #* V'L == 3 L — 41,
= n? M’ {% — 2 (%’)2 <—%’>2}5, from (12).
ie. élLl S AL = ML+ L — 2L — —(@5 (L, — La)“‘} ,
andso Xy = (1 — MAL, + L + (1 — MLy + L — 22 — ML,
i %Mf(%i’)Z(Ll— )P =0, .. .. .. (4

where X is termed the ‘ residual.” If arbitrary values of L are assigned throughout the field,
in general X;, 2 = 1,2, . . ., will not be zero. Relaxation® is the process whereby the X; are

progressively reduced to a practlcal minimum. While (14) is the most suitable form from which
to calculate the residuals, it does not lead to a very suitable relaxation pattern.

Now il (o0 ), = (oen 57, — (a0 55),

= M*(Ls — Ls) + M(Ls — L),
and hence equation (10), which is identical with (12}, is represented by the difference equation:—
Xg= (1 — MAL + L+ (1 — M) Ly + Ly — {4 — (M + MP}L; = O,
from which we find the ‘ influence coefficients’

X, _ | X,

8X; . 0X,
3L,. oL, 1—u

oL, "L,
These give rise to the relaxation pattern shown in Fig. 2. M*and %(ao/a) are readily determined
from a graph, in which they are plotted as functions of L. It is sufficient to estimate L, and

L, to obtain values of M ? and M,>. The small errors introduced in this way are detected when
_ (14) is used to recompute the residuals towards the end of the relaxation. ‘

On the aerofoil boundary (14) and (15) are modified as follows. Referring to Flg 1 n Wthh
the line 153 is now taken to represent an aerofoil boundary, we have from (3)

oL 2n
2(5)e = () =1 Lo

4

=4 — (My* + M7), —1— M . (15)



which we use to eliminate L, from (14) and (15). Equation (15), for example, becomes

X, = (1 — ML, + 2L, + (1 — ML, — %(%) — 92 — ML,

+§M5(>(L—L) N 0 1)

3. Conditions to be satisfied by the Specified Velocity Distribution.—If the velocity distribution
is specified over the whole chord then it will have to satisfy certain conditions in order to apply
to a closed profile. When the method given above has been used to determine the corresponding
incompressible velocity distribution, ¢,(¢), the conditions that ¢, must satisfy could be used to
infer (R. & M. 2112") whether or not the compressible velocity distribution was satisfactorily
specified. This would be a very tedious process and can be avoided by specifying the velocity
distribution over all but the regions of the chord adjacent to the leading and trailing edges.

Consider, for example, the symmetrical aerofoil at zero incidence shown in Fig. 3. In order
that GH and AB be parallel we must have

4

f d@ —|— Ty —I"‘ Tgqg = O
H R
Suppose we have m mesh points, then using (2) this equation becomes

Z[—8¢>_1A+1H, .. .. .. .. .. .. (17

i=1

where { }; is the value of the function at the ¢-th mesh point. Furthermore, in order that the
profile be closed, =gz should be adjusted to make '

e=0. .. .. .. .. ... ..o oas

If then we specify the velocity distribution over all but the regions between H and the next
mesh point, and 4 and its next mesh point, we are then free to select vy and 7, to satisfy (17)
and (18). When the solution is complete it is a simple matter to subdivide the mesh in the
neighbourhood of 4 and H, and to determine whether the velocity distribution in those regions
violates any design condition.

Since the treatment of the infinities in log 1 /g at the stagnation points (given in R. & M. 2726Y)
requires knowing the values of 74 and 7, from the start, there is a difficulty. This is not serious
however, and is overcome by initially assuming values for 7y and 74. [Even with a very fine
mesh 74 can not be taken as 90 deg for a rounded-nose aerofoil (R. & M. 2727")]. Then as the
calculations proceed and improving values of {(dL]dy)é¢} are found at each mesh point, v, is
continually adjusted to satisfy (17). When the solution has been roughly completed in this
way (c.e., with a fixed 7g), ¢ is calculated, 75 is replaced by 75 — ¢, and the whole process
repeated One or two iterations of this type will enable the computor to simultaneously satisfy
(17) and (18). It is important that a relatively fine mesh be used in the region of the aerofoil
nose, otherwise the calculated value of y, (see Fig. 8) will be in error due to too coarse -a mesh.
The deduced value of ¢ will be wrong and this will have a significant effect on the shape of the
deduced profile.

In the example treated below the velocity distribution was that about a known profile, and
so there was no question that it satisfied the necessary conditions mentioned above. To avoid
too much detailed calculation in the neighbourhood of the nose vy was obtamed from the given
(g, x)-curve using (R. & M. 2726")

" 2
TH:%V(1—MO), e (19)
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log (¢"/¢')
log (x"[x")
to the trailing edge as the data permits. z, was then selected to satisfy (17).

rr

where m = , and (¢", x”'), (¢’, «") are points on the given (g, x)-curve taken as near

4. Details of the Design Procedure for a Symmetrical Aeroforl.—We start with a given com-
pressible flow curve ¢ = g(x/c), and take the following steps:—

(i) Estimate the corresponding incompressible velocity. Two simple, but comparatively

accurate methods are available:—(a) von Karmdan’s approximation?, (b) the Temple-Yarwood
approximation’. Von Kdrmdén’s approximation can be written:—

qoim —_ qe_(qz_l)/-iaoz

ie., Lozm(L+%‘—21>,.. P 1)

y — 1
2

r-1y/2 y _ 1
where " — (1 ¥ M) (1 — M2 and o = <1 + 15 M;;"‘)/MOZ.
(ii) Assuming at first that x/c == s/c and applying (20) to the given ¢ = ¢(x/c), we deduce an
approximate ¢, = g¢,(s/c). The free-stream velocity is conveniently taken as unity. Assuming
the values 0 and 10 for ¢ at the trailing and leading edge respectively we find:—

¢=¢<§>=cfjcqsd<§), L @
where ¢ = 10/ l:fl q.d (—‘Z)]

Now L = L(x[c) === L(s/c) can be obtained from the given ¢ = ¢(x/c)-curve, and hence, from
(21), we can find L = L(4) on the aerofoil. These are the approximate boundary values to
be used in the solution of the compressible-flow equations given in section 2. The trailing and
leading-edge angles are dealt with as in section 8 above.

(iii) The outer boundary conditions remain to be determined. These are, of course, relatively
simple if the aerofoil is situated in a channel. On the channel walls we have R = oo, and
therefore 8L/dy = 0. Upstream and downstream it is sufficient to assume that L = 0, since,
if the upstream and downstream boundaries are taken far enough away, say two chords from
the centre of the aerofoil, it is known that the channel wall rapidly damps out the influence of
the aerofoil (R. & M. 2033°%).

In the open-field case the boundary condition becomes L = 0 at infinity in all directions.
Short of inverting the w-plane to limit its extent, we can only use approximate methods, such
as replacing the aerofoil by a substitution vortex*, and calculating theoretically the values of
L, on an outer boundary, say two to three chords radius from the aerofoil centre. Equation (20)
can then be applied to find L. Inversion produces a curved boundary and is thus clums
numerically. A substitution vortex has been found to be of sufficient accuracy (R. & M. 2727%).

(iv) Having determined approximate boundary conditions we can now solve equation (12) by
the relaxation process given in section 2, dealing with infinities at the stagnation points as
indicated in R. & M. 2726". Residuals are computed using (14) and relaxed in the usual way
using the influence coefficients given in (15). Residuals must be checked at the end of the
relaxation, as errors creep in when the non-linear influence coefficients are made linear for small
steps during the process.

6



(v) Equation (186), in which of course X; = 0, is now used to determine (3L/3y) = f(¢),  (22)
and this by (3) is the normal boundary gradient for the corresponding incompressible flow.

(vi) Using this aerofoil boundary condition, with appropriate outer boundary conditions, we
now solve the incompressible-flow equation (1) to obtain a new and more accurate value of

9. = q:($). (23)

Integration of ds = d¢/g,(¢) yields s = s(4). (See Appendix for formula to use when this inte-
grand becomes infinite at the stagnation points.)

(vii) From (2), d0 = — (9L]3dy)ds = db(4), and so with 6(0) = 74, and (3L/3y) given by (22),
we can integrate to find 6(¢). Then dx = ds cos 0, dy = ds sin 0, are integrated to give x = x(¢),
Y = Y(¢), ¢ = x(10), which parametically define the aerofoil profile. The process is set out for
the selected example in Table 3.

Since in step (vi) we obtained ¢,(¢), s($), we can deduce ¢, = ¢,(s). Using the value of ¢ found
in step (vii), we find a new value of ¢, = ¢,(s/c) to use in step (ii). We repeat steps (i1) to(wvii)
unti] there is negligible difference between successive values of ¢,(s). The final relations x(4),
¥(#) found this way then define the aerofoil profile.

The process may appear to be very laborious, but when steps (i) to (vii) have been worked
through once, only a fraction of the time is required to repeat them. Convergence is rapid,
and the process needs to be repeated only two or three times.

5. Modufications Necessary for an Asymmetric Aerofoil—Only two modifications are necessary.

(a) Using an approximate ¢, calculated, not from (20), but from the corresponding von Kdrmdn
equation for flow with circulation®, we find an approximate circulation K = § ¢, d(s/c) = 4¢,
where A¢ is the potential jump at the front stagnation point, taking ¢ = 0 at the trailing edge.
Thus on the upper surface ¢ varies from 0 to 10 say, while on the lower surface ¢ varies from
0to10 — 4¢. Integrations are now necessary on both upper and lower surfaces, and the upper
limits of these integrations are different. :

(b) The circulation makes a substantial contribution to the substitution vortex calculated for
the outer boundary in the open field.

6. An Example: A Symmetrical Aevofoil in a Channel—In Ref. 7 Emmons started with a
symmetrical aerofoil of specified profile between channel walls, and deduced the velocity distri-
bution curve for flow at several Mach numbers. He used an entirely different approach to that
given above, based on the compressible-flow stream function. He gives experimental curves
agreeing closely with his theoretical results. For these reasons this has been selected as a suitable
example to illustrate the method of this paper. We shall start with his ¢ = g(x/c)-curve at -
M = 0-70, and deduce the aerofoil profile, which can then be compared with the actual profile.

Table 1.—This sets out g(x/c) at M = 0-70, the deduced ¢,(x/c) using equation (20), and for
comparison, the value of ¢,(x/c) given by Emmons. "

.. Table 2 gives the true aerofoil coordinates, while Fig. 4 gives the geometric relationship
between the aerofoil and channel. Of course at the start of the problem we are only supposed
to know that Hjc = 3-6.
Applying equation (21) we find a first approximation to ¢. Thisis¢ = 9-26. Ify = 0 on
the axis, and y’ is the value of % on the upper channel wall, then far upstream, where ¢ = 1,
2y9'[H = q = 1. Therefore v’ = H/2, but Hjc = 3-6, and so

1_3'6X9'26
"/’—_2—

say, as an initial approximation. We can now set up the square mesh in the w-plane. Fig. §
shows a part of the grid actually used in the relaxation. Using the last three entries in Table 1,
column 3, we find that an estimate for the value of v is 8-55 deg.

7
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Table 3 sets out steps (vi) and (vii) of section 4, for the third and in this case, final round
of the process outlined in that section. We shall describe the columns of the table that are not
obvious.

Column 2  Values of ¢, from the previous round.

Column 4 és = ks (Use formula (30) of Appendix II for the first and last steps).

s

Column & 46 = (%ﬁ 60) expressed in degrees.

86,, mean value of 86 at midpoints of the intervals of ¢.
Column 8 ds — 6x = ds(1 — cos 6) ‘
Column 9 % from columns (8) and (4). ¢ is the value of x at ¢ = 10.

Column 11 éy = ds sin 6.

The results given in columns 10 and 12 are shown plotted in Fig. 6, and can be compared
with the actual aerofoil profile also shown in the Figure. The values of g, ¢, given in Table 1
and in Column 2 above, are graphed in Fig. 7.

Now with v’ = 17, ¢ = 9-110, we have H/c = 9110 — 3-73, instead of 3-6 as specified.

The next step is to change. the mesh so that y" = (86 X 9:110)/2 == 16-5. This means that
interpolation formulae are required when relaxing on or adjacent to the channel walls. How-
ever, making this change, we find that the new residuals are such to make a negligible contri-
bution to g..

It will be noticed in Table 3 that y at ¢ = 10 is not zero as it should be. This is, of course,
due to the coarse mesh used in the neighbourhood of the nose. With a fine mesh, instead of
relying on the value of the trailing-edge angle, calculated from (19) we could arrange this angle
so that y is zero at the nose. The fine mesh, however, means a great deal more computation.

In this case there is another check. Integrating d6 = % dy from the channel wall, where 6§ = 0,

along ¢ = 6 we find § = 1-66 on the aerofoil, which is sufficiently close to the value of 1-63
obtained in Table 3.

8. Conclusions.—Considering the sources of error, which are:—
(a) due to using a finite difference equation instead of the differential equation,
(b) due to neglect of «, '

(c) possible small errors in the results taken from Emmons’ paper (Emmons provided graphs
only), ‘

the comparison between the results of this method and those given by Emmons, given in Figs. 5
and 6, is quite good. The method would thus appear to be a suitable one for the design of
aerofoils in compressible flow. Problems in which the profile is given, and the velocity field is
required, have been solved along similar lines (R. & M. 2727*. See also Appendix III). The
method is quite satisfactory for small supersonic patches on the aerofoil, and presumably the
design problem could also be sovled if the specified velocity distribution has a small supersonic
section.

7. Acknowledgements—The compressible-flow equations given in section 1, and in the
appendix, were brought to the author’s attention, in a different form, by Professor Thom, who
has used these equations in a somewhat different method® to that given in section 2, to solve
compressible-flow problems.
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APPENDIX 1
To prove:—
' 3 . ? .
Vil = — — (/ICOSoc —{—£s1noc> S — (lsmoc — £—005a>,
9¢ o oy goqd :
d ; 0
Vg = — —; (lsmcx —iCOSoc> + = <A-c05m-+ ismoc>,
I qoq xe 909
9 aL . oL . . .
where A= — M?*{cos 3 4 sin « ey L = log (1/g), and ¢ is the vorticity.

Proof.—We shall denote by Rla, the real part of 4, and by Im a, the imaginary part of a.
p is the density.
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1. Continuty.—This équation can be written

0 a .
Fp (pg cos 6) + By (pq sin 6)

a .
or Rl 2 e (pge”®) = 0, |
. a ) .9
since Zd—z—_— Py @,and thus

= 0.

d .o ‘ .. a d .
R1 (zﬂ — 1 @>pg(cos 6 + ¢sin §) = Fy (pg cos 8) + B (pg sin 6).

Transforming to the w-plane, we have for the velocity vector,

az
QwZdeTﬂ:

ie., gy = q./q, also 0, = 6, — 0, = «.

Therefore in the w-plane continuity can be written

R121<pqiefa)=0.

.. d
2. Vortecity.—Im <a_x —

dw

[

and hence the equation can be written

In the w-plan this becomes

3. Beynoulli’s equation isi—

dg a*dp . , AL
q Ez—S — _p— ~‘—g‘ , Le., M ZZ‘;
. a d . )

Since 75— cosu EF; -+ sin « ay),

e (o 2E) =
dw

) a(q

Now from equation (24) Rl P 7w\, e} -

0

Therefore e—a L0 R] i (
q aw

i ia> 1 —fa
9o )T P ©

. d .o
1 55}>q(cos 6 -4 ¢ sin 6)

ImZ—cE

i (2__ fa — 2
Im 2 qoe)__i/qo.

1 dp
ds

- Rl

9o

R1 (e"”

__]_ gela

dz

= (a-ax (g sin 6) —

(") =t

dw

(

i) =

we can write (26) in the form

d") — A2

dw

dw

dp
d

With the aid of (25) and (27) this equation becomes

2 ~1a qo i

g dw

(

g
o

) = e

A+
10

99

=) =0

) :

) .
£ (g cos 0)> =,

(24)

(25)

(26)



£ te) - )
Therefore 4% 7% (logg e’ = 2% e A+ ,

0 709
a* 3 . 9
where 2 T = 33 + zap
. . ax* { _. A
e Plgle—a® feipi D) (s
.8 og 7 € 7 \© + 1 7 (28)
whereas for incompressible flow F* log ¢, = 0. . .. .. .. .. .. (29

The real and imaginary parts of (28), with the aid of equation (29), yield the equations required
to be proved.

APPENDIX II
Formula at Stagnation Pounts.

In R. & M. 2726" the formula

—_(#_ 1 ¥
s foq—(l—r/Zn)q' e (30)

is established for the value of s measured from a stagnation point of trailing-edge angle of z, to
the point on the aerofoil at which ¢ = ¢', ¢ = ¢'.

APPENDIX III

This Appendix contains the results of an investigation into the compressible flow about a
circular cylinder by the method outlined in sections 1 and 2. Results are obtained at values
of M, of 0-35, 0-40 and 0-45. The most interesting feature of the solutions is that at the
higher Mach numbers the velocity peak moves off to one side of its usual symmetrical position
on a circular cylinder.

This relatively simple profile was actually selected as a preliminary example to ensure that
no special difficulties had been overlooked, but in any case so much work has been done on the
circular cylinder by various investigators that the results obtained here have an intrinsic value.

The incompressible solution could have been entirely calculated by theory, but relaxation was
used so that the approximate theory of R. & M. 2726 could be applied, and hence its accuracy
checked by comparison with exact theory.

Incompressible Flow.—Suppose the cylinder of radius « is situated at the origin, then if the
velocity at infinity is unity and parallel to the real axis, the (¢, ¥) and (x, y)-planes are related

by .
w=<;6—|—i1p=,—(z+%>,wherez=x—|—iy

11




or writing  z = re’(**-9))

' azA o A a S “ A
¢o:—?Siﬂa(l—F?),y):——7’C050c<1—;/—2)' .. .. (31)
e o dw a
The velocity is given by  ge? = = = 1 — 5,
. 2 ay1/2 : '
.., . g = {1 + 2 <6-;-> cos 2a - (%)} ,tan 0 = — sin 2« < e .. (82)

7\
o ezt ()
Writing p = (a/r)?, 'we find from (31) the reciprocal quartic

@ (84 3) = 8+ 9 (p+5) + 2680 — v — a9 =0, (since p £ 0).

Writing ¢ + 1/p =4, sa.ty, reduces this equation for  to two quadratics, which are easily solved.
From (32) it follows that

_ 1 « 4P 2}]/2) _ — 2Zy¢p(1 + p)° -

This method enables ¢ and ¢ to be found at specified-values of the ratios ¢/a, y/a, but it can
be seen that even for this simple problem the theoretical solution in the (¢, )-plane is not easy
(from the computational point of view) to obtain. In fact it was quicker to use relaxation in
the main part of the'field. The theoretical solution was used to calculate results in the neigh-
bourhood of the stagnation point and thus to check the approximate theory of R. & M. 2726,
which was justified by the results. Boundary values on the cylinder and on an outer boundary
at a large distance from the cylinder were also calculated by the exact theory. Fig. 9 shows
. a portion of the (¢, v)-mesh on which the relaxation was carried out.

Comgpressible Flow.—The only change in the calculations from the design method was in the
use of equation (16) to calculate X; instead of using it to calculate values of the gradient, which
are now known. No special difficulties occurred in calculating the compressible flow. The
angle between the compressible and incompressible-flow vectors was ignored and, as a check on
this approximation, this angle was calculated for M, = 0-35, for'which its maximum value
in the field was less than 2 deg. ‘The results for M, = 0-35, 0-40 and-0-45 are shown in Figs. §,
10, 11 and 12. - : o ' : - ‘ - o

Shen Yuan' found results similar to those of Fig. 8 by an application of the hodograph
transformation. At the higher Mach numbers the velocity peak moved off to one side of its
usual- symmetric position on a ciréular cylindér: Yuan’s results are not strictly comparable -
with the author’s, since, as M, increased, his cylinder distorted in shape.’ This profile distortion
is an undesirable feature associated with the hodograph method. C

The results in Fig. 8 indicate that the lower critical Mach number () is slightly less than
0-4 whereas the Janzen-Rayleigh''method gives M, = 0-42." Without a recalculation on a
finer mesh the author cannot be confident that M, > 0-4, but the error in calculation from this
source would not account for a discrepancy of 0-2 in M,.

The author was unable to find a continuous solution at M, = 0-50.  This was to be expected .
since it is known that the Mach number at which shock-waves appear for a cylinder is about
M, = 0-475. In the relaxation the residuals could not be eliminated, and it was concluded
that this indicated the need to introduce a shockswave into the field.

12



TABLE 1

Surface Velocities

(1) @ 3 @)
zfc % g (M =0-7) o {v. Kdrmdn) go (Emmons)
1 0-905 0-925 0-920
1-8 1-060 1-046 —
3 1-159 1-104 1-123
4 1-197 1-127 1-149
6 1252 1-156 1-170
8 1-274 1-168 1-178
10 1-296 1-180 1-183
12 1-307 1-185 1-188
14 1-320 1-193 1-188
16 1-332 1-197 1-188
18 1-338 1-200 1-188
20 1-340 1-201 1-183
24 1-317 1-192 1-175
26 1-303 .1-183 1-169
30 1-276 1-169 1-155
40 1-228 1-143 1-132
50 1-187 1-120 1-107
60 1-135 1-089 1.083
70 1-095 1-064 1-058
80 1-039 1-029 1-023
90 0-990 - 0-992 0-990
95 0-948 0-960 0-955
TABLE 2

True Aerofoil Co-ordinates

L.E. Radius = 1-58%c.
' 13




TABLE 3

Determination of Profile Co-ovdinates

4!

2 (3) @ | 6 (5) (6) (7) ) ©) (10) (11) (12)
(6s —
q 1/q s Bli 36, 9 0., %) % x/e% sy v/c%
x 10 x 107

0 0-000 — — — — — — —
11 0-995 1-005 1-048 1-02 1-32 7-23 7-89 11 1-037 11-4 145 1-57
2 1 1-033 0-968 0-987 0-61 0-82 6-41 682 7 2:017 22-2 117 2-86
3 1 1-069 0-936 0-952 1-08 0-85 5-56 5-96- 5 2-964 32-6 99 3-94
4 1 1-094 0-914 0-925 1-14 1-11 4-46 5-01 4 3-885 42-7 81 4-83
5 1 1-119 0-894 0-904 1-37 1-26 3-19 3-82 2 4-787 52-7 60 5-49
6 1 1-139 0-878 0-885 1-65 1-56 1-63 2-61 1 5-671 62-4 40 5-92
7 1 1-156 0-865 0-871 2-44 2-05 | — 0-42 0-60 0 6-542 71-8 9 6-03
3 1-170 0-855 0-430 1-52 1-37 | — 1:79 | — 1-11 0 6-972 76-7 — 8 5-94

3 1-178 0-850 0-426 2-09 1-81 | — 360 | — 2:70 0 7-398 81-3 — 20 5-72

1 1-182 0-845 0-424 2-32 2-21 | — 581 | — 4-71 2 7-831 86-0 — 35 5-34

3 1-180 0-848 0-423 3-63 298 | — 879 | — 7-30 3 8-241 90-6 — 54 4-73
1 1-177 0-850 0-212 2-74 319 | —12-08 | — 10-38 3 8-450 92-8 — 38 4-32 -

1 1-167 0-857 0-213 4-96 3-85 .| —15-73 | — 13-91 6 8:657 95-2 — 51 3-76

1 1-105 0-905 0-220 | 8-38 667 | —22:50 | — 19-17 13 8-864 97-4 — 72 2-97

1 | 0-000 0-279 — 10-67 — — 27-83 33 9-110 100-0 | — 131 1-66

All distances measured from the trailing edge.



Fic. 2. ‘Relaxation Pattern.
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Fic. 5. Section of relaxation mesh.
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Fi1G. 9. Equi-velocity contours at My = 0.
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Fic. 10. Equi-velocity contours at My = 0-35.
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