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Summary.~There is a great need for more accurate data on the aerodynamic derivatives of swept-back wings in 
order to solve problems of stability, control and flutter. As one step in the search for these data the estimation of the 
three-dimensional potential solution is essential, and if it is to be of value the degree of accuracy of any approximation 
must be known beyond question. 

This report gives attention to some fundamental aspects of the vortex-sheet theory for determining the distribution 
of lift on a finite wing. The accuracy and limitations of some existing approximate forms of the theory are discussed. 
With special reference to the labour of computation an iterative approach to an accurate solution is suggested, and the 
general mathematical expression for the distribution of lift required to give an exact solution for a Vee wing is considered. 

I t  is p r o p o s e d -  
(a) That, with the specific purpose of checking the Falkner (R. & M. 1910 7, 1943) vortex-lattice theory, tile iterative 

procedure should be applied to a wing of constant chord with acute hyperbolic leading and trailing edges 
(see Fig. 3). 

(b) That  by choosing suitable functions calculations should be undertaken to determine a reliable potential solution 
%r a Vee wing (see Fig. 2) in an inclined stream. 

(c) That further study is needed before calculations can usefully be nudertaken to improve the accuracy of existing 
methods of estimating the characteristics of deflected controls. 

1. Ir~troductio~z.--The problem will be expressed in rectangular co-ordinates (x, y,  z), referred 
to a convenient point on the chord of the wing in the plane of symmetry. The undisturbed 
fluid velocity is supposed to be uniform of magnitude V in the direction of the axis of x. The 
axis of z points vertically downwards. The components of fluid velocity are denoted by 
(V + u, v, w). Within a region of irrotational flow a velocity potential 00 exists. For an inviscid 
fluid there will be bound vorticity on the wing surface, shed vorticity in the wake and irrotational 
flow elsewhere. Outside the vortical region it is permissible to write 

3o0 
- -  = V - 5 - ¢ ~  Ox 

~00 
~ y  - - "  7,1 

300 

where 00 (x, y, z) {s a continuous function. 
Laplace's equation 

~200 020p 
+ ~ - - r  + - -  - -  Ox ~ ~y 

. . . . . .  ( 1 )  

Furthermore, for an incompressible fluid • will satisfy 

a~00 
~z2 - - 0  . . . . . . . . . . . . .  (2) 

* Published with the permission of the Director, National Physical Laboratory. 



In  the first place vortex-sheet theory assumes tha t  the wing is infinitely thin. In the second 
place the theory is a linear one; and it is supposed that  the induced components of velocity 
(u, v, w) are so small compared with V tha t  the second-order terms are negligible. I t  is apparent 
that  the theory breaks down in the neighbourhood of a stagnation point. 

Let the under suffices a, b denote values immediately above and below the wing surface. 
From considerations of energy the fluid pressures p on opposite surfaces are related by 

p~ - po = ½p [{(v + u~) ~ + ~ + ~¢} - {(v + u~) ~ + v? + ~?}] 

= o V ( u o -  u~) 

= pV ~ ( ~  -- q~b) from equation (1) , . . . . . . . .  (3) 

where o is the fluid density. 

The direction of flow on the solid boundary nmst follow the contour of the wing surface defined 
by z(x, y). Thus 

8¢) ~z 
3z ~x . . . . . . . . . . . . . . . . .  (4) 

at all points of the plan form, and z/c, where c is the wing chord, is of the same order as w/V. 
Now from equation (2), 

~Z 2 ~x 2 3y~ 

~,t ~V o (W ) 

at all points inside the perimeter of the plan form. 

Oz \ -~ ' z / ,=o=  ~z ---~" z = O  7- ' 

which is negligible. 
to the plane z = 0. 

Then the variation in w with z is 

For the purpose of determining w, therefore, the vorticity may be confined 

Thus the assumption of a linear theory leads to two distinct simplifications :--- 

(a) The complete distribution of liit, given by (p~ -- p~) in equation (3), is determined directly 
from the values of the velocity potential on the wing surface. 

(b) The field of flow near the wing is represented by the velocity potential O(x, y, z), defined 
in equation (1) and continuous except across a cut C in the plane z = 0 bounded by 
the leading edge of the wing and extending to infinity in the wake. 

A unique velocity potential satisfying equation (2) is (Lamb, 1932) 1, 

where r 2 :-- (x -- xl) ~ ,-I- (3' --Yl)~ + zl ~ and ( ~  --~,)  is the required discontinuity in • across 
the cut at (x, y, 0). Since po -- p~ in the wake, to the first order it follows tha t  

0 
Ox(e~--*~)  = 0 ,  

and in the wake ( ~  -- ~ )  is a function of y only determined by its value at the trailing edge. 
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Equations (4) and (5) determine a unique potential solution for the flow in the neighbourhood 
of an infinitely thin wing of any plan form, bent or cambered to the first order. In the course of 
this introduction it has also been assumed .that the flow is steady, incompressible and inviscid. 
Non-uniform flow has been considered by W. P. Jones (R. & M. 21172, 1945). The  solution for 
compressible flow may be related to an equivalent incompressible potential solution by the linear 
perturbation theory described by Goldstein and Young (R. & M. 1909 ~, 1943).. The effect of 
thickness/chord ratio will be determined to the first order by replacing each wing section by a 
cambered plate whose two-dimensional pressure distribution * (Glauert, 1937) is equivalent to 
tha t  of the wing section at its particular incidence. On a similar basis it is possible to approximate 
to the solution with a viscous fluid by using empirical two-dimensional characteristics of the wing 
section (R. & M. 2730~). However this will not account for tile pressure gradient across the 
finite region of stagnant fluid in the wake and its influence on the free shed vorticity. With 
certain limitations, therefore, the steady, compressible viscous flow past wings of finite thickness 
may be determined from a potential solution, given by equations (4) and (5), for an equivalent 
thin wing. 

2. General  Po ten t ia l  S o l u t i o n . - - T h e  potential solution for a thin wing gives a distribution of 
lift per unit area 

Pb - -  P~ = p V  g~ (¢,~ - -  c~) , . . . . . . . . . .  (eqn.3) 

where (q% -- Oh) is determined from the equations 

lim aq) ~ z (eqn.4) 
~ ÷ o  ~ = V ~x . . . . . . . . . . . . . .  

®(-1,yl ,  zl) = w l + f ( ,o  - *b)  zy, . .  . .  (eqn.5) 

where z(x,  y )  is the contour of t h e  wing surface relative to the undisturbed stream, and C is 
bounded by the leading edge of the wing and extends to infinity in the wake, where (0~ --O~) 
is a function of y only determined by its value at the trailing edge. Equations (4) and (5) 
determine ( ~  -- *~) uniquely over the plan form ±or any prescribed z(x,  y). A solution is obtained 
in three operations, which will be considered in turn in sections 2.1, 2.2 and 2.3. 

(1) assuming a general form for (q)~ -- Oh) with arbitrary coefficients, 

(2) substituting the expression for (*~ -- q)~) in equation (5), 

(3) determining the arbitrary coefficients from equation (4). 

In each operation there are practical and mathematical difficulties to consider. To elucidate 
the latter is to complicate the former; and this report will examine what additional labour is 
necessary in order to assess and improve the accuracy of existing approximate methods. 

2.1. The choice of the form for (q)~ -- Oh) is dependent on any discontinuities in the problem 
such as o c c u r -  

(a) near the perimeter of the plan form, 

(b) at abrupt changes in az/Ox. 

It  is clearly desirable that  the general form for ( ~ -  (I)b) should be capable of producing 
tangential flow along the complete vortex sheet. A particular solution in the chosen form may 
then be considered as an approximation to the unique potential solution of the problem. 

3 
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If it is assumed that  both the leading and trailing edges of the wing form smooth curves, 
the pressure distribution over a cambered or symmetrical wing without deflected flaps, for which 
~z/Ox is a continuous function of x and y, may be represented by the double series 

N M 

p V  - -  r , , ( 0 )  . . . . . . . . . . . . .  (6) 

where 0 is the usual chordwise angular co-ordinate related to (x, y) by 

x =  R(y) c(y) 2 cos 0 , 

where x = R(),) represents a curve through the mid-chord points, 

r o ( 0 )  = 2 c o t  

F,~(O) -- -- 2 sin ~0 for ~ ) 1 , 

where s is the wing semi-span, and C .... is an arbitrary constant coefficient. 

The form (6) is used by Jones (R. &M. 2145 ~, 1943) and Falkner (R. & M. 19107, 1943) but will 
not suffice when there are important  irregularities in the plan form. This complication (a) is 
discussed in section 4 of the report. 

Complication (b) arises when the vortex-sheet theory i s  applied to the problem of wing loading 
due to deflected control surfaces. The basic pressure distribution sbould then be modified to 
give the necessary discontinuities in ~z/3x round the perimeters of the control surfaces. Such a 
function can be constituted, but in the opinion of the author with (q)~--q)~) so expressed the 
evaluation of w becomes unmanageable. There remains the option of introducing discontinuities 
in w, where they should not exist or smoothing out discontinuities in w, where they should exist. 
In the accompanying diagram the control surfaces are represented by ABCD, A 'B 'C 'D ' .  

F 

E ..... ii5 

A 

G G' F' 

i " '" g i  

D D' A '  

In the approximate theory of Ref. 8 (1946), the author decided to admit the chordwise 
discontinuity by  using equation (6) with an infinite series in ~(N = oo), but to obviate Lhe spanwise 
discontinuity by taking the given polynomial form for A,, and a finite number of values of m (six). 
This only produced discontinuities in w across the line EE' .  Across most of BC, C'B', the 
discontinuities were approximately correct and across most of EB, CC', B 'E ' ,  the discontinuities 
were quite small. This type of solution, however, is only practicable when the chord ratio, E, 
of the control is constant along its span. With a variable E it is only possible to take a finite 
value of N admitting no discontinuities in w whatsoever. The apparent alternative is to supple- 
ment the functions A,,~(y) in equation (6) with the appropriate spanwise logarithmic functions 
of Multhopp 9 (1938) on the lines of the P functions recommended by Falkner (R. & M. 259P% 
1947). This would produce discontinuities in w in a spanwise direction across AF, DG, D'G' ,  
A'F'. The author would oppose this alternative for three reasons : - -  

(a) The unwelcome introduction of the discontinuities across BF, CG, C'G', B'F'. 
(b) The complication of the evaluation of w, over sizeable strips of the plan form containing 

AF, DG, D'G',  A 'F ' .  
(c) The fact that  the only advantage from this alternative, a more accurate determination 

of the spanwise distribution of lift, can always be assessed from the wavy polynomial 
solution by comparing corresponding solutions by the lifting-line theory 9. 

i 
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The remainder of the report is concerned with problems for which Oz/Ox is a continuous function 
of x and y. The form of (¢~ -- Cb) determined by equations (3) and (6) will suffice, unless there are 
important  irregularities in the plan form (see section 4). I t  is usual to take between four and 
eight spanwise variables according to the detail required. In the symmetrical problem, for 
example, 7 < M ~< 15 with zero coefficients for the even values of m. The choice of N depends 
on the application of the problem. If only the spanwise distribution of lift is required, there is a 
strong argument for taking N = 0 or 1, and when the aerodynamic centre is also required, 
N = 1 or 2. But of considerabie importance is the estimation of control hinge moments and tile 
values of b~(OCH/Oc~) will presumably be covered by  this solution provided N is large enough, 
3 or 4 perhaps. Particularly near the trailing edge little reliance can be put on the two- 
dimensional form of the pressure distribution, as the conditions of flow close to the free vorticity 
are very critical. Since rigorous justification of the approximations involved in taking small 
values of N is quite lacking, the author is undertaking a numerical calculation* of the wing 
loading on a delta wing of aspect ratio A = 3 in which only the form of (¢o -- q)~) near the 
leading edge is derived from two-dimensional theory. 

2.2. The main difficulty in the vortex-sheet theory lies in the evaluation of w. Having selected 
the form of (¢o -- Cb), the existing methods of obtaining approximate solutions of the general 
problem may be divided into the two types : - -  

(a) a method in which the flow near the wing due to the arbitrary pressure distribution 
is represented by that  due to a finite number of vortices of finite strength, 

(b) a method in which the flow at the wing surface is determined by the direct evaluation 
of the limiting normal component 

Off) 
W = ~ as Zl--+ 0 , 

where ¢ is given by equation (5). 

The following approximate solutions will be considered : 

In type (a)--  
(i) Lifting-line theory 9 (Multhopp, 1938). 

(ii) L-Method of Weissinger ~° (1942). 
(iii) Vortex-lattice theory (R. & M. 19107, 1943). 

In type (b)-- 
(iv) Method of Jones (R. & M. 2145 ~, 1943). 
(v) Numerical evaluation for a particular delta wing (A ---- 3).* 

The methods of (i) and (ii) are only of use in determining the spanwise distribution of lift. 
They both assume that  N = 0 and yield a solution in at most one computer-day. Solution (i) 
is shorter, easier to handle and applicable to problems with deflected controls, but takes no 
account of sweep and even for straight wings is subject to errors of 6 to 15 per cent. Solution (ii), 
though inapplicable to controls, has the merit of an established accuracy of the order ½ per cent 
for a rectangular wing (A = 5). For the limited purpose of determining the spanwise load the 
problem Call present a simplified picture, when it is assumed tha t  w is linear along each chord. 
As emphasised by Weissinger it is then rigorously correct to take N = 0 and to use the value of 
w at three-quarter chord. Provided ~z/3x is a linear function of x, the approximation of Ref. 8 
leads to a solution for which N ---- 1, and will illustrate this concept. If equation (6) is written 
in the form 

_ _  1 C1 ,~ ( - -  2 s i n  0 , 10 V g  - -  "m,= ~-J 1 A ' m ( Y ) [ ( C o m  - -  -~Clm) 2 .cot 10 -~ -[- co t  ½0)] . .  (7) 

* This will be published in R. & M. 2819. 
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then the second term in the square bracket of equation (7) produces no circulation and, in 
accordance With two-dimensional principles as it is assumed, gives zero w at three-quarter chord. 
The lift per unit span, 

M 

- -  1 C pVK(y) = pV c(y) 1,,1) 

then determines the boundary conditions along the line through the three-quarter chord points 

x = R(y) + ~c(y) . 

The problem is thus reduced to that  of a single variable K(y). Moreover Weissinger has shown, 

(A) that  the assumption of linearity in w leads to an error of only 1 per cent in the C~ of 
a rectangular wing (A = 5), 

(B) that  a single vortex of strength K(y) placed along the quarter-chord line 

with an associated trailing vortex wake of strength -- dK/dy per unit span will determine w at 

= R(y)  + l-c(y) 

within the accuracy of (A) for straight and swept-back wings (A = 5) of constant chord. 

.Though the accuracy of (A) and (B) may deteriorate with decreasing aspect ratio and increasing 
wing taper, it would appear that  with these limitations Weissinger's L-method is in satisfactory 
agreement with his more accurate F-method (Ref. 10, Fig. 6). 

In solution (iii), Falkner greatly diminishes the practical difficulty of evaluating w by 
substituting a rectangular network of vortices for the vortex sheet. He uses equation (6) with 
N = 2, and the solution is of wider application than (if) and requires about four computer-days. 
Van Dorn and De Young 1~ (1947) have compared the results of (if) and (iii) for wings of medium 
taper  with angles of sweepback -- 45 deg ~< A ~< 46 deg. The lift-curve slopes OCL/Ooc agree 
within 2 per cent for lAId<a0 deg, but Falkner's value lies 7 per cent below Weissinger's for 
A = -- 45 deg (A -- 2.99) and 8 per cent above Weissinger's for A = -1- 46 deg (A = 3.45). 
I t  follows that  there is a factor associated with sweep, which is incorrectly accounted for by  one 
or both of these methods. Weissinger's method is apparently inaccurate when it includes the 
boundary condition at a kink in the three-quarter chord locus. The discrepancies in the values 
of aCL/Ocz for large sweep may be attr ibuted to Weissinger's use of a solving point  at the median 
section. But serious consideration must also be given to the objection, raised by Schlichting 
and Thomas ~2 (t947), that  the rectangular vortex network used by Falkner is inadequate for 
swept wings on account of the error in the downwash due to a ' staircase vortex ' 

From the mathematical  standpoint two features of the vortex-lattice theory can be criticised. 
For any prescribed pressure distribution the configuration of the vortex network is quite arbitrary. 
Moreover the strengths of the individual horseshoe vortices are determined from certain selected 
two-dimensional principles and are effectively dependent on the positions at which the downwash 
is required. The uniqueness of the solution and the basis of mathematical reasoning are lost. 
Jones (R. & M. 222513, 1946) has shown that,  for a rectangular wing (A = 6), Falkner 's 
approximate downwash distributions agree well with the results of exact vortex-sheet theory for 
points along the mid-chord axis of the wing over the inner part of the span, but that  Falkner 's 
values are about 5 per cent low at 0.8 span and are likely to be in greater error towards the tip. 
However, it should be emphasized, in the first place, that  in the presence of free vortieity, the use 
of two-dimensional principles may be inadequate for determining control hinge moments even in 
this favourable case and for wings of low aspect ratio may introduce far-reaching errors not 
localized near the trailing edge, and, in the second place, that  at large sweeps the rectangular 
configuration of the vortex network is suspect ~. Exact calculations of downwash would provide 
isolated checks on the boundary flow conditions of any given approximate solution. 
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The accurate evaluation of w is extremely laborious. The choice of method lies between (iv) 
and (v). In (iv) Jones has expressed the double integral (5) as the limiting value of a single 
spanwise integral of elliptic functions, and the subsequent evaluation requires careful supervision. 

The method of (v) will 
by equations (3) and (6) 

where 

be published in R. & M. 2819. First of all the potential difference, given 

N 3I  

= w ( y )  z z C,,+A,+(y)K,,(o) . . . . . . . . .  . .  (s) 

A , o ( y )  - c ( y )  , , - s ]  - 

Ko(O) = 0  + s i n 0 ,  

1 1 KI(0 ) = g(g sin 20 -- 0) , 

and for > 2, K,+(0)= ½(sin(,+ + 1)0 sin 1)0) 
n + l  n - - 1  ' 

is tabulated at the corners of a uniform rectangular network covering the plan form. Then if 
(xi, Yl) is chosen at one of these corners, the numerical evaluation of equation (5) is achieved by 
splitting the area of integration into the rectangle of four times the linear dimensions of the 
network symmetrically surrounding (&, Yl) and the remainder of the plan form. and the wake. 
By using polynomial representations of (s)+ -- O0) the contribution to w from the rectangle is 

• expressed as a linear function of the 25 values of (cD+ -- *b) distributed inside and on the rectangle, 
and the remainder is obtained by direct integration outside it. The accuracy of this process for 
the delta wing (A = 3) is considered to be about 0.1 per cent provided tha t  (&, Yl) is not too 
close to the wing tip or leading edge. The numerical operations are straightforward but lengthy 
and sensitive to small computational errors. 

A satisfactory potential solution of the general problem for a particular plan form would 
probably need 24 arbitrary constants, e.g., equation (8) with N = 3 and 6 values of m. Accurate 
calculations of w at any position in terms of the 24 arbitrary coefficients would require 10 to 20 
computer-days, the choice of method depending primarily on the plan form of the wing. After 
w had been obtained at 24 points of the plan form, it would remain to solve the 24 resulting 
simultaneous equations for each specified set of values of Oz/Ox in accordance with equation (4). 
Thus it could not take less than 1 computer-year to establish one satisfactory solution. How 
much of this labour could be avoided, if it were merely required to determine the spanwise 
distribution of lift on a wing of large sweep, is not clear. Provided that  there is no kink at the 
median section, the problem is equivalent to Weissinger's F-method 10 (1942), which would employ 
either (iv) or (v) to evaluate w at the three-quarter chord, putt ing N = 0 in equation (8). It  should 
be possible by this means to arrive at the spanwise distribution of lift in 25 computer-days, and 
to confirm the accuracy of Weissinger's L-method, i.e., (ii) for tapered wings of small aspect ratio. 
Jones has suggested to the author tha t  some light would be thrown on the problem if an at tempt 
were made to assess the errors in any approximate solution and then to improve the solution by 
iteration. A numerical process is briefly outlined in section 3 to make clear the labour involved. 

2.3. From the practical point of view it is plain that  the boundary condition (4) cannot be 
satisfied at more than a small number of representative positions. I t  is usual to solve as many  
linear simultaneous equations as there are constants C ..... in equation (8), each equation expressing 
the condition (4) at one point of the plan form. Very roughly the labour involved is 0" 002L 3 
computer-days, where L is the number of equations. Ill-conditioned equations may arise through 
an unfortunate choice of the L positions or through an unsatisfactory form of (cD+ -- O0) discussed 
in section 2.1. In the former case it is best to compute the 'boundary conditions at additional 
positions and to examine the solution obtained by normalization, which is clearly described and 
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illustrated in R. & M. 259P% section 7. I t  is more practicable to save the extra labour in 
evaluations of w by reducing the number of constants C ..... to L' ,  solving the curtailed L equations 
by  normalization and comparing tha t  solution with the ill-conditioned one. 

There always remains uncertainty as to how the flow behaves between the selected positions 
and near to the perimeter of the plan form. In the approximate theories of Ref. 6 and Ref. 8, 
this difficulty is part ly overcome by assuming tha t  the normal velocity w,,,(O, y) induced by  each 
term A,~(y)I",(O) in equation (6) along the chord of each wing section is proportional to the 
corresponding function in two-dimensional theory. Thus if equation (6) is written in the form 

- [ _ 1 0 ( 0 )  
Pb V?~ _ E A,,(y) (Co,,~ -~-CI,,) 2 cot ~ -}- C~,~ -- 2 sin 0 - / c o t  

P #~,= 1 

+ X C,,.~(-- 2 sin ~0 , • . . . . . . . . .  (9) 
1 b = 2  

the normal velocity is immediately expressible in the form 
M 

w = - V Z  

N 

+ z 
~ t=  2 

1 [(Com - -  ~Clm) rgVom(J) -1- ClmW1m(y ) (1 _]_ COS 0) 

C,,,.W,.,,(y) cos z 0 ] .  

I t  follows from equations (4) and (10) tha t  

"~ 1 S (1 - cos  o) az (.,y) do z (Co,. - ½c~.,) Wo,.(y) = ~ o ~. 

and forn~> 1, 

M 2 S ~z ( . , y )  x C,.,,W..,(~) = -  cos  ~0 do 
zc o 8* 

(10) 

(11) 

Subsequently to Ref. 8, the author has shown that  an additional linear variation in w due to 
the trailing vorticity must also be included, and, as remarked earlier in this report, it is not 
certain whether quadratic chordwise variation in Wo,,(O, y) should be considered for swept wings. 
But  these considerations only complicate the process by which w is expressed in the form (10) 

1 and would lead to additional terms in (Co,,-  -~C1,,) in the first two or three of equations (11). 
I t  remains to satisfy (11) at various sections along the span. This reduces both the risk of ill- 
condition and the number of variables in each set of linear simultaneous equations. 

3. Iterative Potential Solution.--Jones has recommended a solution of vortex-sheet theory by 
iteration. The numerical process described here will make clear the labour involved. 

~Z 
If w = V~-)represents the known downwash distribution and K = (q)~-  O~) denotes the 

required circulation or discontinuity in velocity potential, then from equation (5) at all points 
of the wing 

02 
4 ~ = l i m  f f K - - ( ! ) d ,  dy (12) 

z1-->o c ~Zl ~ . . . . . . . . . . .  

Now let KA denote an approximation to K obtained by any convenient method. Next evaluate 
the exact downwash distribution wA corresponding to KA as given directly by  equation (12). 
In general since KA is only approximately equal to K, WA will differ from w. This difference 
will give an indication of the accuracy of KA. If the accuracy is insufficient the solution can be 
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improved by finding KB the approximate solution of (12), when w is replaced by (w - -  WA). 
Then K = K~ + K~ is an improved solution. By repeating this process several times it should 
be possible to derive a solution to any required accuracy. 

One could use any approximate method, however crude, with such a scheme. To reduce the 
computational labour, however, it would be best to start  with a fairly accurate KA, estimated by 
Falkner 's method (R. & M. 1910 ~) for instance. In more detail Falkner assumes equation (8) 
with N = 2, 

M 

1 1 0) K = Vc(y) Z A,,(y)[Co,~(O -}- sin 0) + ~C1,~(~ sin 20 -- 
m = 1 

1C /1 sin 30 -- sin 0)] -}- g 2 m \ g  

= X C~K~ . . . . . . . . . . . . . . . . .  (13) 
i = l  

where K~ are simple doublet distributions of a particular type and C~ are constants to be 
determined. The substitution of K in equation (12) yields the exact relation 

3M 

w = y,  C,W  . . . . . . . . . . . . . . . . .  (14) 
i = l  

where W~ represents the exact downwash distribution corresponding to K¢ as given by (12). 
To calculate W~ exactly for a large number of simple distributions would be very laborious. 
However by  the use of Falkner 's vortex-lattice theory the values of W~ can be calculated approxi- 
mately without much difficulty. Let W~(F) represent these approximate values and replace 
equation (14) by the relation 

3M 

= x C Wi(F) . . . . . . . . . . . . . .  (15) 
/ = 1  

which can be satisfied in general at 3M points on the wing. In practice odd and even values of m 
are treated separately as the corresponding symmetrical and antisymmetrical contributions to 
the problem are independent. This leads to a system of L simultaneous equations, where 
respectively 

3 L = ~(M + 1) and ,~M 

These equations can be expressed in matrix notation as 

where [Wis(F)] represents a square matr ix of order L and {ws} and {C~} denote columns. Hence 

{ C i } = [ W i s ( F ) J - l { w g } ;  . . . . . . . . . . . .  (17) 

and on substituting C~ in equation (13) the first approximation KA is given by 

Similarly it follows tha t  the approximate solution for K~ is given by substituting {(w -- wAjs} 
for {w;} in equation (18), wx being obtained by substituting KA for K in equation (12). For a 
particular lattice the inverse matrix [w~s(F)] -1 is invariant and the simple distributions K1, 
K~ . . . .  KL would be used throughout. The accuracy of solutions obtained in this way would 
be automatically assessed at each stage and the rate of convergence of the iterative process 
wouid indicate whether the chosen distributions K~ were suitable. 
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The labour in calculating wa, w~, etc., depends on the form of K~. 
Jones (R. & M. 2145 ~) has reduced the corresponding integral for w to the form 

4~W z V l i m  O [ f ' z l  

-k C~(y)([P~- I~D1) 

M 

If equation (13) is used, 

1 {Co(y) -- ½C~(y)}(Po' .+ P,) --k C,(y)(1P= -k .gP1) 

~C 

w a k e  

. . . .  (19) 

where C,,(y) = Y C,,,,,A,,~@) (n -- O, 1, 2), 
Jib = 1 

and Po', P1, P~, P3 are expressible in terms of el!iptic integrals and for any given plan form 
depend only on y and the point (&, Yl) at which w is required. As it is remarked in section 4, 
the integral (19) will diverge if the slope of the leading or trailing edge is discontinuous at the 
sectiony = Yl. In the case of swept plan forms, for example, there would normally be singularities 
in w along the whole section y = 0 owing to the unsuitable choice of K in equation (13), and in 
this neighbourhood the value of the solution would be seriously impaired. The evaluation of 
(19) could only be undertaken by an experienced computer, who with careful supervision would 
take at least 7L days to complete the calculations for L points (xl, yl). But the additional labour 
for each subsequent iteration would only amount to L computer-days. If it is supposed tha t  
I iterations will produce a satisfactory solution the exact calculations of downwash would involve 
L(6 q- I) computer-days. 

If it is necessary to consider a more general form of K than (13), K~ now being a more general 
function of the two co-ordinates x and y, the limit of the surface integral (12) should be evaluated 
by an entirely numerical process such as (v) in section 2.2. In this case there is no computational 
advantage in working with the separate terms K~. Instead KA would be evaluated at corners 
of a uniform rectangular network over the plan form in about 8 computer-days. Then provided 
tha t  the L points are ~chosen not too close to the ~leading edge or the wing tip, the technique in 
use for the calculations of w for the delta wing (A = 3) would serve for any plan form. The 
amount of preparatory work would be small as the constants of integration near the singularity 

and the values of azl~ ~ would be unchanged. I t  is estimated that  the labour would amount 

to (8 + 4L) computer-days for each iteration. 

Assuming tha t  the solution (18) has been obtained in the first place, the labour in determining 
K~ lies almost entirely in evaluating the L quantities (w -- wJj.  For instance, consider L = 24. 
Table 1 shows that ,  if satisfactory, evaluation by means of equation (19) would be more 
economical provided tha t  more than one iteration is issued. 

I 

• L(6  + I )  

I(8 + 4L) 

TABLE 1 
1 2 

168 192 

104 208 

3 

216 

312 

4 

240 

416 

The solution could of course be obtained directly without approximation from the linear 
equations (14), if the ~W~-'s were known exactly. But the calculations corresponding to a large 
number of distributions K~ would be very laborious and if L = 24, for instance, they would 
probably require 15 × 24 = 360 computer-days. So it is thought tha t  the present iterative 
method would be relatively easier, since only the exact downwash calculations corresponding to 
KA, KB and possibly Kc would have to be carried out in order to obtain sufficient accuracy. 
This  scheme would certainly check the accuracy of a solution by vortex-Iattice theory and could 
be used to improve it, if necessary. The main disadvantage of the scheme is tha t  it is based on 
the special type of distributions K~ defined in equation (13) which may not always be the most  
suitable. 
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4. Form of the Pressure Distribution.--On the basis of vortex-sheet theory the distribution of 
pressure difference is directly related to the discontinuity in velocity potential by equation (3). 
The choice of form for (*~ -- 0~) is discussed in section 2.1. Special care is needed : - -  

(a) near the perimeter of the plan form, 

(b) at abrupt changes in Oz/ax; 

otherwise it is impossible to fulfil the boundary conditions determined by equations (4) and (5). 
Provided that  the problem is not complicated by (b) it is usual to work with equation (6) or the 
equivalent form (8), which can reasonably be expected to serve near the perimeter of the plan 
form unless there are important irregularities there. 

4.1. From equation (4), 

w = l i m  aO 1 lira a I f  f ( O ~ - - O b ) a  ( 1 )  t ~,÷0 ~ 1  - 4~ z ,+0 ~ c ~ ; gx  gy  . . . . . . .  (20) 

A necessary and sufficient condition for the convergence of w is that  (*~ -- Oh) should be differenti- 
able at (&, Yl)- Put 

( * o -  <)  -- ( * o -  <)1 + (x - Xl) l -<) t"  

+ (Y --Yl){  ~ ( O ~ -  *~)}1 + R . . . .  (21) ~y . . . . . . .  

Then w will be convergent or divergent according as 

azl ;~ dx dy ] 

is finite or infinite, where S is any finite area enclosing (xl, Yl). Let S denote the rectangle 

Ix - xll ~< ~ 1 (22) 
lY - y l l  ~< ~ . . . . . .  I 

The first term of equation (21) contributes 

- - ( * ~ - - O ~ ) l l i m  ~ ( ~ )  , . ÷ 0 ~  4 t a n  -1;71 , 

where r ~ = ~ + ~2 q_ z2; and this tends to a finite limit 

+ 4( ~ + ¢)~/~ 
ff~] ( I~Da - -  O b ) l .  

The contributions of the second and third terms of (21) vanish identically. I t  follows that  

1 ~.+o ~ s . ~ dx dy 

indicates the convergence of w. Since (q},, -- *v) ig differentiable at (&, y~), it follows that  

R = o ( ~ ) .  

It  is clearly sufficient for convergence that  

R = 0 ( ¢  +~) or o(¢  +~) , 

where ,t > 0, for then there exists a number X such that  throughout S, 

I RI < X r l +  ~.. 
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Now 
0 0 / 

- -  . d x  lira ~z~ [ f s f  --  Rzl  li~no[/s / l R ~ )  dy]  

~,+0L~s~ ~ x  A in polar,co-ordinates 

X ~)~/~ 
~< ~ 2~(~ ~ + . 

Thus w will converge. 

But  it is impor tan t  to note tha t  con t inu i ty  in (q),, --  %) is not  a sufficient condition. For  if it 
is supposed t ha t  

(0o - ,~)  = ( , o  - ,~)~ + XE(x - x~) ~ + (y  - y~)~] i /~  . . . . . . . .  (2a) 

th roughout  S, then  from equations (20), (22) and (23) 

w = ('/:',~- ~)1 <~2-k V~)1/2 1 lim 0 I f  f z lXr  ] 
~ 4z~ ~,+o ~z~ s (r ~ -k  z~2) ~/~ dx dy 

+ {finite contr ibut ion from the  area (C -- S )} ,  . . . . . .  (24) 

where r now denotes [(x --  x~) ~ + (y --  yd~] ~/~. The second term of the r igh t -hand side is t rans-  
formed in polar co-ordinates to 

X lim 0 V C ( z~r~ dO dr 1 
-- 4~ ~,+o ~ LJsJ (r ~ -~ z~)~/~J " 

I t  is convenient  to replace S by  a circular area S' ,  

r <~p,  

since clearly the  contr ibut ion from (S --  S') is finite. Thus the term becomes 

1 
- -  1-X lim fo (r ~ + z~)3/~A z~--~ 0 ~ i  

= + ½X lira 0 [ pZ 1 (p2 -~- Z12)1/2 -~- p l  
~,+,> ~ (p~ + z?)~/~ - z~ l o g  z~  ' 

which will produce a logari thmic infinity. 

4.2. Now consider the  behaviour  of w, as given by  equat ion (20), when (O~ -- O~) is given b y  
equat ion (8) and there is a d iscont inui ty  in the  direction of the leading or t rai l ing edge of the  
wing at y = Yl. I t  follows from the definition of 0 in equation (6), t ha t  

~o ~c(y) dR(y)  
c o s  0 . .  . .  . (25) ~c(y) sin 0 ~y --  ~ dy dy . . . . . . . . .  

dc dR  
There will be discontinuit ies c~', R~' in the  values of ~ ,  ~ f  a t y  = y~, one of which m a y  disappear .  

Unless 
c (  cos 0 = 2 R / ,  . . . . . . . . . .  (26) 

there will be a corresponding d iscont inui ty  in OO/~y. I t  follows from equat ion (8) tha t  

(0~ 0~) = Vs X X C ...... \ s /  1 s 
~ Y  n = 0 m = 1 - 

. . . .  . y . . , .  

dO 

12 

1/~ i K,,(o) 

. .  (27) 



Therefore with the possible exception of a position defined by equation (26), there will be finite 
a 

spanwise discontinuities K'(x), say, i n ~  (~¢ -- O~) at all points of the section y = y~. 

(O~ -- ~b) may be expressed in the form 

(0 , - -  Oh) =f(x ,  y) + }K'(x) Iy -- ylt , 
where f(x, y) is a differentiable function of x and y. 
wash velocity at (x~, Yd is 

w = finite contribution from If(x, y) -}- 
# 

( 

Then 

. . . . . . . . . . . .  (2s) 

From equation (20) the corresponding down- 

K'(x) -- K'(x~) 
2 ly-y l} 

K'(xl) a zl 
- - - - ~  lim f f c f  l y - - y l  ] ~ d x d y  1 

~ - - ~  0 ~ 1  " " 
(29) 

Similarly to the instance in equation (24), it can readily be  shown that  the contribution to the 
integral in equation (29) from the area S, defined in equation (22), is 

K'(xl) lim a E zl{(~ + ~2 q_ Z12)1/2 q_ ~} 1 
2= ,,÷0 ~1 zl log (~ + z~)~/~{(~ + z~)i/~ + ~} , 

which will diverge as the limit is taken. 

I t  follows that  the use of equation (8) will necessarily produce a logarithmically infinite down- 
wash velocity along a section at which the direction of the leading or trailing edge is discontinuous. 
I t  seems unsatisfactory that  conditions at the perimeter of the plan form may compel violations 
of the boundary conditions in the centre of the plan form. For small discontinuities of sweep 
and sudden changes of taper this consideration is probably unimportant.  In the opinion of the 
author such irregularities are trivial in that  they can scarcely improve the flow and that  any 
beneficial aerodynamic properties associated with such plan forms would not suffer if the changes 
of sweep or taper were made smooth; and it would seem preferable to modify the wing rather 
than the method of the theory if a special theoretical comparison were required. But the large 
angularity that  frequently occurs near the root of swept-back wings will have an influence on 
the chordwise pressure distribution, the importance of which can only be determined by 
abandoning the form of the velocity potential in equation (8). 

4.3. When considering the problem of a uniform incidence applied to any plan form, the 
objections of the preceding sections may be overcome by assuming a solution of the general form 

z v  - z F .  f . . . . . . . . . . . . . . . .  (a0) 
/ z  

where I is a length, 

F, ,  G, are arbitrary functions of a single variable, 

f~,7, ~-)is a function differentiable at all points inside the plan form and monotonic in xll 

such that  

/x Y \ f~~- ' l  )----- 0 is the equation of the leading edge 

/ x  "V X. 

f(~, ~)=l is the equation of the trailing edge. 
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There are necessary conditions that  

F~ ( Y )  = 0, when~y = s 

G~(f) = O, when f = 0 

dG,~ 
d f  - -  G'/ = O' w h e n  f = 1. 

The general velocity potential may be expressed similarly to equation (8), 

0 ~ - -  0 ~ - -  E E C .... -s 1 - -  , . s / . ~  K , , ( O )  
V $  n = o m = 1 ' " " 

where 

. .  ( 3 1 )  

replaces the definition of 0 in equation (6). I t  is clear that,  if O = 0, 

f 7 '  = ½(1 -- cos 0) 

__ 1 R ( y )  - -  x 
c(y) 

will not satisfy the condition of differentiability, when equation (8) is unsuitable. 

For complicated plan forms a function f ( / ,  Y) would be difficult to construct. To illustrate 

the types of wings that  could be represented conveniently, consider the functions 

x 2 _ yZ tan ~ 
f,(~o) = 12 

f~(w) = x{(x + d tan W)~ --y~ tan ~ W} 
l(1 + d tan ~)2 .. (32) 

f~(~l = 1 [ ( / - -  x)~ + 911/~{(1 - -  x) - / s i n  ~[(l - -  x) ~ + y~]1/2} 
- -  l~(1 + sin W) 

For each of the three functions the corresponding leading and trailing edges together with other 
intermediate curves of the family 

f = constant 
have been plotted in Fig. 1 in the case W ---- 45 deg. 

Fig. l a  shows a family of rectangular hyperbolae, f l  = constant, with the leading edge as 
asymptotes. 

Fig. lb  indicates the possibility of representing a Pterodactyl wing with functions of the 
type f~. 

Fig. lc shows tha t  f~ = constant, will represent a family of curves asymptotic to a V-shaped 
trailing edge. 

By the use of the functionsfx(W) andfa(w) any wing of constant sweep and taper can be represented 
in the form 

f l ( A L )  

f =  1 + ' 

where AL and Ar  are the angles of sweepback of the leading and trailing edges respectively. 
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Thus from equation (32) 

f 7' = l + P '  . . . . . . . . . . . .  

where P = [ ( / - -  x)2 + Y2Jt/2{(1 --  x) + sin Ar [( / - -  x) ~ + y2]~/~} 
(x ~ -- y2 tan s AL)(1 + sin At) 

Instead of equation (33) there are slight advantages in taking 

x 1 
+ < . . . . . . .  

(33) 

(34) 

I t  is then convenient tha t  

f x ' °  = 7 '  

and when ( ~ -  Oh) is given by equation (30), it is necessary that  G,(f) should be a polynomial 
function such tha t  

G,(f) = 0, when f = 0 / 

G,/(f)  = 0 and Gj ' ( f )  = 0, w h e n f  = 1 [ " 

Provided tha t  y =# 0, G,'(0) # 0 and G,,"(1) va 0, it may then be verified that  near the leading 
edge, x = xL = y tan AL, 

eo~ --  --  0 ( x  --  xL) ' 

and tha t  near the trailing edge, x = xr -- l + y tan A r ,  

~ x~ [ q) ~ --V O ~ ] ~ o ( X'~ --  x ) I / ~ 

The evaluations of downwash due to a velocity potential given by equation (30) cannot be 
carried out by  the method of Jones (R. & M. 2145~), unless equation (31) with O = 0 is valid. 
A purely numerical process such as the method (v) of section 2.2 would have to be adopted. 
In the opinion of the author such a calculation should be undertaken, say, for a wing derived 
from equation (34), as shown in Fig. 2. The labour of computation would depend on the number 
of positions of the plan form at which the exact boundary conditions are required. I t  is estimated 
that  if L variables are admitted into equation (30) and the direction of flow is established at 
L positions, the calculations would involve approximately 8 + 4U/2 + O. 002U computer-days 
which is expressed in tabular form. 

TABLE 2 

L . O02L ~ 6 12 18 24 

8 + 4L  312 + 0 67 178 325 506 

I t  is considered tha t  the fundamental knowledge gained would justify the heavy labour of 
computation in the case L = 18, say. 

5. Concluding Remarks . - -There  is a great need for more accurate data on the aerodynamic 
derivatives of swept-back wings in order to solve problems of stability, control and flutter. As 
one step in the search for these data the estimation of the three-dimensional potential solution is 
essential, and if it is to be of value the degree of accuracy of any approximation must be known 
beyond question. 
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The fundamental derivative O CL/a c~ may be readily determined by the methods of WeissingeP ° 
and Falkner (R. & M. 19107), but for an unknown reason the two estimates differ by about 
7½ per cent for wings of 45 deg sweep (Van Dorn and De Younger). I t  is concluded that  there 
are only two possible explanations; Weissinger's use of a solving point at the median section 
may be unsound for wings of large sweep and Falkner's rectangular vortex network may be 
inadequate on account of the error in the downwash due to a ' staircase vor tex '  (Schlichting 
and Thomasl~). 

In the first place it is suggested that,  with the specific purpose of checking the Falkneff vortex- 
lattice theory, the iterative procedure, described in section 3, would lead to greater accuracy 
in the detailed pressure distribution, especially over the parts of the wing which would form 
control surfaces. I t  seems very doubtful whether iteration would help in improving the pressures 
at the root of a Vee wing; and it is therefore proposed that  a wing of constant chord with acute 
hyperbolic leading and trailing edges (see Fig. 3) should be selected for the necessary calculations, 
which would probably involve labour amounting to at most 8 computer-months. 

I t  has been demonstrated in section 4 that ,  i f  the pressure distribution is taken in the usual 
form (equation (6)) which is assumed by Weissinger 1°, Falkneff and Jones (R. & M. 21456), there 
is necessarily a logarithmically infinite downwash at virtt~ally all points of a wing section at 
which the direction of the leading or trailing edge is discontinuous. I t  seems unsatisfactory tha t  
the shape of the perimeter may compel violations of the boundary conditions in the centre of 
the plan form. The large angularity of Vee wings may have an influence on the chordwise pressure 
distribution, the importance of which can only be determined by abandoning equation (6). 

In the second place, therefore, i t  is suggested that  by choosing suitable functions for the 
distribution of the velocity potential over the plan form it is possible to solve the problem of the 
Vee wing exactly. I t  is proposed that  calculations should be undertaken to discover the distribu- 

• tion pf pressure on a wing, such as that  shown in Fig. 2, in an inclined stream. A reliable solution 
would require at least 13 computer-months ; and it is considered that  the fundamental knowledge 
gained would amply justify the heavy labour of computation. 

The characteristics of deflected controls are complicated by the introduction of partial spanwise 
and chordwise discontinuities, which, in the present state of knowledge, cannot practicably be 
incorporated in an exact theory. I t  is therefore expedient to create discontinuities in downwash 
where they should not exist or to smooth them out where they should exist. The approximate 
method, described in Ref. 8, is a compromise which, subject to the modification mentioned in 
section 2.3, is satisfactory for straight wings, though possibly less accurate for swept ones. A 
typical calculation by this method involves about 1½ computer-months. A more accurate 
approach to the problem of deflected controls requires further study. 
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I N D E X E S  TO T H E  T E C H N I C A L  R E P O R T S  OF T H E  A E R O N A U T I C A L  
R E S E A R C H  C O U N C I L - -  

December I, I 9 3 6 - - J u n e  30, 1939. 
July r, I 9 3 9 -  June 30, I945. 
July r; 1945 m June 3 o, I946. 
july I, I946--December  31, I946. 
January I, 1947 m June 30, 1947. 
July, ~9~I. 

R. 8, M. No. 185o. 
R. & M. No. I95o. 
R. & M. No. 2050. 
R. & M. No. 215o. 
R. & M. No. 2250. 
R. & M. No. z35o. 

u. 3,t. (Is. 4½/.) 
is. (is. I½d.) 
Is. (IS. x½d.) 
is. 3d. (is. 4-~a'.) 
Is. 3d. (Is. 4½/.) 
Is. 9 a'. (Is. *old.) 

Prices in $rackets include postage. 

Obtainable from 

H E R  M A J E S T Y ' S  S T A T I O N E R Y  O F F I C E  
York House, Kingsway, London, W.C.2; 423 Oxford Street, London, W.1 (Post Orders : 
P.O. Box 569, London, S.E.I) ; 13a Castle Street, Edinburgh 2 ; 39, King Street, M0axchester,2; 
2 Edmund Street, Birmingham 3 ; I St. Andrew's Crescent, Cardiff; Tower Lane, Bristol ! ; 

80 Ckichester Street, Belfast, or through any bookseller . 

S.O. Code No. 23-272I 

R. & M. No.  2721 


