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Summary.—In this report, two matters are dealt with which were left in an unsatisfactory state in the Appendices
of Refencence 1. The first concerns the conditions obtaining near the front of a flat plate in a uniform stream with
constant continuous suction through the plate. 'We now satisfactorily prove that the boundary-layer velocity profile
tends to the well-known Blasius profile as the front end of the plate is approached. The second matter concerns the
solution of the boundary-layer equations of motion when ‘‘ similar ”’ velocity profiles are assumed—it is shown that
only two types of outside stream velocity distributions lead to *‘ similar *’ profiles, under ordinary conditions.

1. Flat Plate, Uniform Stream, Constant Suction.—1.1. 1n the usual notation, the equations of
steady motion of flow within the boundary layer are
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allows the use of the stream function ¢ for which
oy %
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We are here concerned with the flow past a flat boundary in a uniform stream, when there is a
constant velocity at and normal to the boundary. The boundary is the positive part of the
x-axis, ¢.e. ¥y = 0, ¥ = 0. This flow has been exhaustively studied (Reference 2 gives a complete
review of the work on the problem) and no exact solution has been found in finite terms. It has
always been assumed that as x— + 0 the velocity profiles of the boundary layer tend to Blasius’
profile. No indication has yet been found of the German reasons for this assumption, and no
valid proof has yet been given. The proof in Appendix I of Reference 1 assumes the answer and
we now remedy this unsatisfactory state of affairs as follows.

New independent variables (&, ) are introduced for which
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_The coefficients of x/* and yx~"/ in these co-ordinates were chosen not only to make &, 5 non-
dimensional, but also to obtain an equation whose boundary conditions are independent of the
ratio v,/U.

v, is the velocity at and normal to the boundary. For suction with which we are really
concerned, v, is negative.

Suppose ¢ = (vUx)"2f(£,9) .. .. .. .. .. . .. . .. (5)
in which f is a function of £ and 5 and is to be determined. Using (3) we obtain
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Using the expressions derived in (6), the equation of motion (1) becomes
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which simplifies to
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The boundary conditions which must be satisfied are

= Q

y=0, u=U, y=ow. .. . .. .. .. .. (9)
'U=‘1)0 ’

Two of these conditions give

?5~f=0:77=0,
n
(10)

of _ _

%—2,17—00.
For the third, we have from (6) that aty = 0
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We require v = gyaty = 0. |
If therefore f = 2¢& for n = 0, (11) gives

The third boundary condition of (9) therefore requires that
f=2&n=0. .. .. .. .. .. . .. o (12)
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The equation of motion (1) has thus been transformed into

o f s (f 3 _ oo
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with the boundary condltlons

J=2¢

. _ 0 _ —

(2]_0:0 17—0,8—77—2,77——00. .. .. .. .. .. .o (19
on

The solution is required for positive values of & and 7.

1.2 The solution of (13) appears to be regular in the neighbourhood of the origin, and hence is
expansible in powers of & for small values of & Let us put therefore

f=f) + &) + E@ + ... .« . .. .. .. .. (15)

By substitution of this expression for f in (13) and equation of coefficients of powers of & to
zero, we get successively .

Jo AL =0,
S AR =LA 20 =0, .. .. .- (16)
f' A S S = 20+ 3 fe = (A — 2L A
.and so on. Dashes denote diﬁerentiatiqn with respect to #.
The boundary conditions become -
fol0) =0, /'(0) = 0, fo'(w) = 2,
£(0) = 2,£(0) =0, fi'(@) =0, .. .. .. . V)
f0) =0,£/(0) =0, f,/(@) = 0, n > 2.
The nth equation in (16), # > 0, is linear in f,(y). The first equation is non-linear and is Blasius’

well-known equation. The form of (15) shows at once that as &— -+ 0, the velocity profiles tend
to the Blasius profile. This question therefore appears to have been cleared up satisfactorily.

2. On Similar Profiles.—In Appendix II of Reference 1, it was shown that the usual method
of “similar > profiles could not be applied to the constant suction problem considered in §1.
This is, of course, hardly surprising since we now know the profiles are different at the two ends
of the boundary. However on extension of the analysis in Appendix II, Reference 1 gives the
result that there are only three general cases of boundary-layer motion in which ‘ similar
profiles exist. We now go on to find these three cases.

For simplicity, let us use the independent variables x/», y/v, so that the equation of motion
(1) becomes, using x and y for the new variables

%%+va_;‘=UU'+g__3f§, Y 0

the dash denoting differentiation with respect to x/».

Suppose that we have a flow in which the velocity distributions through the boundary—layer
are similar for each x.

We can write, without loss of generality,

p = p(x) F(yflx)) + g(x) - .. . . .. .o .. (19

and we suppose that neither p(x) or fix) is identically zero.
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This gives

= (Bf + P'NF" + ypff ' F".

Herein dashes on F denote differentiation with respect to 4 = yf(x).
We have the two boundary conditions

u=0,y=0andu =U,y =ow. .. .. .. .. .. (21

We may suppose that F'(cc) = 1, without loss of generality.
Then from (20),

v=12 (22)
=pf + 27
Using the expressions of (20) and (22), the equation of motion (18) becomes
TP [(of + pNE" + ypf'F'] — [p'F + ypf'F' + g1 pf°F"
= pf(pf + P'f) + pPPF”, .. .. SR .. .. .. (23)
or (F) — 1] (pf" + pf) — pfFF" — fPF" — fo'F" = 0. .. .. o (249)
This equation is soluble for F(y) if and only if ‘
fg :zbf+pf_7?_f_ff N £
or ;
’ p, + p i ’
%:_,c_f:%”__hf, L @8

a, b, ¢, d being numerical constants, for the coefficients of the F’s in (24) cannot be expressed as
functions of 7 since they do not contain y.

(24) then becomes
aF" + bF"F 4 ¢ [1 — (F)*] + dF" = 0. . .. .. .. (27)

From (26) since f 0, a # 0, for otherw1se there would be no motion at all. We may further
suppose that d s 0, since this would mean g’ = 0, or the addition of a constant to y Wh1ch is not
significant. We also have

:gp' .. - .. . .. . .. . .. (28
and

p’:gg’, O ')
and thence

(7’9)+7515” izb_
or
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.. We must now distinguish between the following cases :—

(i) CZZb,c#O,thengjzg, .. .. .. L .. (3D
whence p = Be",

32

f:ABgeAx’ ( )

and U=ABzgeW. R £ %)

In this case

a rm " d e
‘F —I—FF<1+E>+2[1—(1")]_O R & 7))

Here the stream velocity is an exponential function of x, as is also the boundary-layer thickness.
This solution was independently found earlier by E. J. Watson. *

(ii) ¢ =05b=0,then p' = 0.
and , [ 0 (35)
fo

Thus since $ = 0, f = 0 .. .. .. ce e .. .. .. .. (36)
and f=C,$p = D.

Also, g = g J, from equation (286).
. , _ d
Therefore g = C,

a

whence g:&Cx, . . .. . .. .. . N 72!
the arbitrary constant being insignificant in the value of the stream function.

Equation (27) becomes '
| aF" 4+ dF" = 0 .. .. .. .. .. .. .. .. (38)
whence F'=1— g-tam .. .. .- .. . .. .. .. (39)

the constants having been disposed of to ensure that the two boundary conditions F (0) = ¢,
F’(0) = 1 are satisfied.
In this case, the velocity at and normal to the boundary is equal to — g',or — (d/a)C. This

is a constant, equal, say, to »,. Further the stream velocity at infinity, U is equal to pf and is
constant.

Thus the equation (39) can be rewritten as

% ” -
U:l——-ey, .. . . . - e v . .o (40
which is the Griffith and Meredith asymptotic suction profile.
. (111 B ” __ ¢ ’
i c#Zb,then%_<z—l>%.. O 23,

log p* = (% — 1) log p -+ constant,

{81516) : ‘ B
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. [(Ax +B) (2 - %)} (43)
At the front end of the boundary, x = 0, we assume the boundary layer to be of cither zero or

infinite thickness, and hence B = (.
(43) then gives '

a c\]e—bib—c) ‘
f_EA[Ax(Z—E)] O 7 7

o .. a e c/(2h=c)
whence U= pf = -6/1 [Ax (2 5>] C o o . . .. .. (45)

Here U is proportional to some power of x.
This 1s the general motion considered by Falkner and Skan in which U = cx”.
The boundary conditions, # = 0 at y = 0 and #= U at y = « become, as usual,
F'(0)= 0, F'(0) = 1.
The normal velocity at the boundary is, from (20)

v = — (p'F0) + &)
a
om0 +2)

If therefore I7(0) = — d/b, we have the solution of flow along an impermeable wall, and if
I(0) £ — d[b there is a distribution of suction along the wall proportional to p’. If Uecx,
then the corresponding suction distribution to give ““similar *” profiles is v,oc x™~1/2,

Scveral authors have pointed out the possibility of solving the boundary-layer cquations of

motion under this particular type of stream and suction velocity distributions. In particular
Holstein in Germany has carried out the computation in a number of cases.

In (1), (i) and (iii), above, we have therefore shown that solutions of the boundary-layer
cquations to give ““ similar ” velocity profiles exist in only three general cases. With cach case,
there is an associated distribution of boundary suction velocity, for which “ similar ” profiles
also exist.

b/{2b—c)

Conclusion.-—The assertion that the boundary-layer velocity profiles tend to Blasius® profile
as the front end of a plate in a uniform stream under constant continuous surface suction is
approached has, we believe, now been satisfactorily proved.

It has also been shown that “ similar ** profiles can be obtained in boundary-layer flow in
only three general cases of stream velocity distributions, in each of which there is associated a
particular distribution of surface suction giving also similar profiles.
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