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1. Introduction.—The whirling of shafts carrying rotors is a subject which has attracted the
attention of many engineers and mathematicians notably Dunkerley?, Chree!, Stodola?, Jeffcott®
and Morris®” during the past fifty years. The last mentioned writer has given some valuable
historical surveys and criticisms in addition to his own elucidation of several aspects of the
general problem.

The main purpose of this paper is to bring the calculation of whirling speeds of an important
class of systems within the scope of the iterative technique of Duncan and Collar®3 and to
demonstrate by theory and example that problems involving large numbers of degrees of freedom
may thereby be efficiently dealt with. It would appear that the power of this iterative method
is not so widely appreciated as it might be. One erroneous belief is that the utility of the
method ceases whenever slow convergence of the iteration ensues. An additional refinement
of procedure, which the writer has exploited, allows two or more modes to be extracted more or
less simultaneously from an iteration which is converging slowly.

The idealised system which will be under review is an example of what has been termed &
" semi-rigid * system®. It is to be thought of as derived from an actual system of shafts and
rotors by collecting the mass into rigid body units at several well chosen positions, and then
determining, as realistically as is possible from the' original continuous system, the elastic
couplings associated with the several freedoms of the rigid bodies.

The formulation of this elastic problem presents the real difficulty in these, and indeed in
most other, vibration problems. It is usually assumed for simplicity that lateral flexibility
arises solely from the bending of shafts, taking such to be covered by the general theory of thin
rods. That is the course adopted by the writer, with the additional arbitrary principle that
when any debatable points arise, such as the type of fixing provided by a bearing, the more
flexible alternative is selected. Such procedure, however, cannot always give a satisfactory
solution of the real elastic problem. Particularly is this so in aircraft installations where the
engine structure supporting the bearings may have, of itself, a flexibility comparable with that
arising from the bending of shafts. In this connection, the importance of static tests of
flexibility upon existing systems of shafts, and their supports, should not be overlooked.

The two main features of the modern theory of whirling, in contradistinction to some of the
earlier notions™* are that any point of the flexural axis of a shaft is allowed to have a small but
general vibratory movement, and that the steady rotation, imparted by the drive, at any section
1s invariably about the tangent to the flexural axis at that section at any instant®”. In the
sequel, the terms ‘shaft rotation ’ or ‘ steady rotation ’ will refer to this rotation due to the
drive, and is not to be confused with rotary motions in plane closed curves which points of the
flexural axis may have and which will be referred to as ‘ whirling ’.

* D. Napier & Son, Report AQ. IV. y. 18, received 1st April, 1949.
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With emphasis on numerical aspects, the paper deals therefore with idealised systems of
rotors, including sometimes mere points of mass, rigidly attached to a nest of light shafts having
a common flexural axis, and having axial symmetry as regards lateral flexibility. Nominally
the flexural axis contains the centroids of all the rotors and is coincident with a principal inertia
axis of each rotor. Small departures from this ideal state of assembly concerning each centroid
and each inertia axis are known as static and dynamic unbalance respectively, and will be taken
into consideration as some of the influences responsible for the excitation of the system when
in a state of steady rotation about the flexural axis. In the steady state, the shafts are not
restricted to have a common rotational speed, but it is assumed that the steady state has only
one degree of rotary freedom, in which case it is specified by the rotational speed of any one shaft.
Only rotors having axial symmetry as regards mass are dealt with.

The writer feels that any value of this paper would have been enhanced if he had been able
to cite a personal experience of actual installations which have exhibited whirling. Such
experience is essential in order to give guidance on the importance of forms of excitation other
than unbalance, brought about for example by blades of a propeller or turbine having to pass
- close to spaced obstacles in the flow of air or of gases’. The reader who wishes to see an account
of experimental work verificative of the now accepted theory of whirling is referred to pages 429
to 470 and pages 1113 to 1143 of Steam and Gas Turbines, the authorized translation by
Loewenstein of Stodola’s standard work®.

2. The General Problem Briefly Described.—In the general theory of any dynamical system
vibrating about a state of stable equilibrium, the term ‘ normal mode ’ is used to denote any
one of the critical configurations or shapes in which the system may pulsate freely without
external agency. Associated with each normal mode is a definite frequency of vibration,
referred to as a ‘ natural frequency’. '

In the case of whirling, which concerns flexural vibration about a state of steady rotation,
the words normal mode and natural frequency have a direct physical meaning for those
systems which are axially symmetrical as regards both mass and elastic properties. For such
systems, a normal mode denotes any plane shape into which the flexural axis or axes may be
bent such that rotation of this plane about the axis of symmetry is freely possible. The definite
angular velocity w with which this plane naturally rotates determines the corresponding natural
frequency /2=, and is not to be confused with, nor arbitrarily assumed to be equal to and in
the same sense as, the steady angular velocity £ of one of the shafts. For any given steady state
of rotation, represented by the angular velocity 2, there are the same number s of positive
(1.c., in the same sense as ) natural angular velocities of whirl, w;, w,,...... w,, as there are
negative angular velocities — w_;, — ®_4, ...... — o _n,, each of these 2m natural angular
velocities being associated with a modal shape. It is convenient to think of these modes as
numbered 1, 2, ...... m in such a way that the members of each of the two sets of moduli
(w1, Wgy «evnnn wy) and (w_q, ® g ... .. w_n) are in order of ascending magnitude, and to uise
the terms ‘ forward ’ and ‘ reverse ’ to describe the sense of the whirl.

Only when axial inertia is not insignificant, and gyroscopic effects are therefore present, do
these natural angular velocities of whirl vary with the imposed rotation of the shafts. As the
imposed rotation is increased, the angular velocities of the forward whirls increase, and those
of the reverse whirls decrease, the corresponding modal shapes suffering some change.

Any natural whirling state of the axially symmetrical system cannot be sustained at any
speed of the drive unless suitable forcing excitation is present. If £ denote, as before, the
steady speed of one shaft, the case of a general excitation, periodic in one revolution of the given
shaft, will be envisaged. There will thus be considered the possibility of excitations of frequencies
Q[2m, 2027, ... ... n2[2x, the integer » being referred to as the ‘ order number ’.

The term ‘ whirling speed’ is used in this paper to denote the value of 2 at which any
excitation causes resonance of any one of the natural whirling states. Two parameters, vez.,

modal number and order number are therefore involved in the array of whirling speeds for any
system of the type considered here.
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In the case of systems which are axially unsymmetrical, there is the possibility of continuous
regions of steady speed within which the free vibrations are theoretically unstable, but to what
extent this is of practical importance the writer has no knowledge. It is not intended in this
paper to deal with such problems, though they do in fact lend themselves to treatment by the
iterative methods dealt with in Section 8.

3. Description of the Whirling Properties of some Simple Systems.—Although the acceptable
theory of whirling was finally established about thirty years ago, there still exists much confusion
of thought concerning such basic problems as that of a rotating thin shaft, or of a single heavy
symmetrical rotor on a light shaft.

One of the most widespread beliefs is that a perfectly balanced thin uniform shaft, if disturbed
laterally whilst running at one of the critical speeds associated with out-of-balance excitation,
will then assume the whirling state to an ever increasing degree. In actual fact, and as pointed
out in section 2, sustained whirling of the single uniform shaft is a forced circular motion of each
point of its axis, the usual source of excitation being lack of balance of the shaft about its own
axis. If the perfectly balanced shaft, thin enough to make gyroscopic effects negligible, be
plucked or struck whilst rotating at any speed, the resulting free vibration is substantially in
the plane of the disturbance and is indistinguishable in other noticeable matters from the
vibration resulting from plucking the shaft whilst at rest.

It is also fallacious to regard the balance of a naturally straight shaft as modified by any
bending produced by invariable forces, such as gravity for example. The notion that the
whirling of the horizontal shaft is directly influenced by gravity, is undoubtedly stimulated by
those elementary treatments which tacitly employ Rayleigh’s principle and make use of the
gravity shape as the approximation to the fundamental whirling shape. In consideration of bent
shafts as influencing whirling, contrast should be apparent between one shaft whose central
line is naturally curved, and another whose central line is naturally straight but is being
elastically bent by gravity. The former shaft is unbalanced as its flexural axis is not its central
line.

Let attention now be given to the case of a light shaft arranged horizontally on two supports
and carrying an over-hung balanced disc. When the shaft is not rotating, flexural vibration
of the shaft in a vertical plane will involve a linear vertical oscillation of the centroid of the disc
together with a tilting oscillation of the disc about its horizontal diameter. There will thus be,
under these conditions, two normal modes of vibration having, in general, differing frequencies
w,/27 and w,/2=. In the first mode, the vertical sinusoidal motion of any point of the shaft,
including the centroid of the disc, may be regarded as the superposition of two circular motions
of equal radius but having the opposite angular velocities @, and — w,. Thinking similarly
of the other mode leads to the idea that four natural circular whirls of angular velocities o,
and o, in the forward sense, and o, and w, in the reverse sense, are associated with the system
in its non-rotating state. Now suppose the shaft and disc to be rotating with any steady
angular velocity 2. There are now, as before, four natural circular whirls, two forward and two
reverse, but, owing to the gyroscopic effect of the spinning disc, these are no longer equal and
opposite in pairs. The change in the natural angular velocities was described in section 2.
Moreover, there are now four distinct modal shapes of the shaft. If the shaft of such a system
be disturbed laterally whilst in steady rotation, all four of the natural whirls will in general
appear, so that the resulting free motion will not be in one plane, neither will it appear circular,

except perhaps after sufficient time has elapsed to allow the three most heavily damped ones
to disappear.

As an example of whirling speeds, suppose that the overhung disc system just described was
excited by giving one of the bearings a sinusoidal vertical movement of prescribed amplitude
and of the same frequency 2/2n as that of the shaft revolution. There are thus circular
excitations of angular velocities 2 and.— @ acting on the system. As  is slowly increased,
the first resonance to occur would be the first reverse whirl, characterised by any point of the
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axis of the shaft describing a circle with angular velocity 2 in the reverse sense. At higher
speeds resonances would be obtained with the first forward whirl and with the second reverse
whirl, but, for a relatively thin disc, the frequency of the excitation would never actually overtake
the frequency of the second forward whirl, however high 2 became.

The experience such as this with a system having appreciable axial inertia, in contrast to the
thin shaft for example, discounts the impression given by some authorities that there is no
distinction between lateral vibration of shafts when rotating and when not rotating.

4. The Dynamic Loads Produced
by a Disturbed Balanced Rotor.—
Ox, Oy, Oz (Fig. 1) form a right-
handed system of orthogonal axes
fixed in space. The unit vectors
a, b and ¢, radiating from G, the
centroid of the rotor, are along the
principal axes G1, G2, G3 of the
rotor, the corresponding inertias
being A, B and C (Ibin.sec?. In
the steady state, G is coincident
o with O, and the unit vector ¢ lies
along Oz, the flexural axis of the
system to which the rotor belongs.
The mass of the rotor is M (Ib in.~*
sec?).

At the instant ¢ the co-ordinates

Fic. 1. Pictorial representation of the disturbed rotor. of G relative to the fixed frame are
%,7, %, assumed to be small, and the

vector ¢ is slightly inclined to Oz.

If «, g, 6 and ¢ are small, and y is an angle of any magnitude, then (cos v, sin y, — g),
(— sin w, cos , — «) and (¢, 0, 1) are each unit vectors, the first two being orthogonal to the
first degree of smallness. Each of the first two will be orthogonal to the third if

o = —¢siny)+6cosw,:|
and g = é cosyp - 6 sin .

(4.1)

The unit vectors a, b and ¢ may thus be given to this degree of accuracy by

a = (cos y, sin y, — f),

b = (— siny, cosp, — a), .. .. .. .. .. .. (4.2)
c = (¢, 6, 1 ),

together with the relationships (4.1). It will be noticed that the vector ¢ fulfils the condition
of being only slightly inclined to Oz.

I

The angular velocity vector at G will be expressible as @,a + @,b + @;c where the components
@y 2,3 are given by

a~)1=c.f)=—é.b=qﬂsinw——5COSw,
Gy —a.¢= —a.c=d¢cosy + 0siny, .. .. .. .. (4.38)
c?;s:b.é=—i).a=1p'.



Owing to the fact that the angle y, unlike the angles 6 and ¢, is not restricted to be small,
some care is needed when describing these three angles geometrically. 6 is an anti-clockwise
rotation about an axis through G parallel to the fixed axis Ox, whilst ¢ is a clockwise rotation
about an axis through G parallel to Oy. v is a clockwise rotation about the principal axis G3 in
its actual position. This definition of the angles may be shown to be unique by demonstrating
analytically that it is immaterial in what sequence these rotations are performed, on the
understanding that when the rotation y is made, it must be about the line in which G3 then
lies (see Fig. 1).

It will be supposed that the angular velocity v consists of a constant part 2 upon which is
superimposed a small variable é. Accordingly the angle v, as defined above, may be written

py=0t+y +e .. .. .. .. .. .. . .. .. (44)

where y is a constant phase angle, and its corresponding derivatives v and ¢ are
p=0-+& .. . . . .. .. . .. .. .. (4.5)
and P =&. .. . .. . .. .. .. . .. .. (4.6)

It may be remarked that it is immaterial whether the small rotation ¢ is considered to be about
G3 or about a line through G parallel to Oz.

Resolving the linear momentum of the rotor into components (p., #,, $.) parallel to the fixed
axes, and taking their rates of change, it is clear that

ﬁx :Mx,
p, = M5, .. .. .. .. - .. .. .. .. (4.7)
P = M3.

The angular momenta about G1, G2, G3 may be written down and then resolved into
components (P, P4, P.) about the fixed axes in the sense of positive 8, § ande. Provided x, y and z
are small as premised, the momenta (p,, P, p.) Wwill, to the first degree, be also the angular
momenta of the rotor about the fixed axes Ox, Oy, Oz. Taking rates of change, it may be
shown that, to the first degree of smallness,

po = {A" + B’ cos 2(2¢ + y)}§ — {B’ sin 2(Q¢ + y)}¢ ]

— 2{B’ sin 2(Q¢ + »)}26 — {C' 4+ 2B’ cos 2(2t -+ »)}124, ,
s = — {B'sin 20t + y)}i -+ {4’ — B’ cos 2(0% + )} 48

+ {C" — 2B’ cos 2(Q¢ + ¥)}26 ++ 2{B’ sin 2(Q¢ + y)}2¢,
pe = C', _
where A’ = (4 + B),

B'=}4 — B), .. .. .. .. .. .. .. (4.9)

and C'= C,

and substitution has been made for ¢ and its derivatives.

A dynamic load is defined to be the reversed rate of change of any linear or angular momentum,
and corresponds with the positive sense of some linear or angular variable. Thus the dynamic
loads corresponding to x, ¥, z, 8, ¢, e of Fig. 1 are — 9., — Py, — P2, — Do, — Py, — P. Tespectively.
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5. Dynamic Loads due to Static and Dynamic Unbalance, and to Other Effects.—The unbalance
may be thought of as due to the attachment to the ideal rotor of the masses shown in Fig. 2.

1
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my

of—
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N
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c

F1G. 2. Representation of unbalance by means of particles.

The masses of the particles and their positions relative to the axes G1, G2, G3 of the rotor are
as follows: 4m, at (a, 0, 0), — &m, at (— a, 0, 0), Im, at (0, b, 0), — Lm, at (0, — b, 0), Im, at
(@, 0,¢), — dmy at (a, 0, — ¢), ¥m, at (0, b, ¢), and — Lm, at (0, b, — c).

It may be verified that these particles make no addition to the mass of the rotor, nor do they
affect its inertias 4, B and C. They do, however, shift the centroid of the whole assembly to
the point (ma/M, m,b/M, 0) and introduce products of inertia F = m,bc and G = msac
corresponding to the pairs of axes G2, G3 and G3, G1 respectively.

The dynamic loads due to this lattice of particles and corresponding to %, y, z, 0, ¢, « are
found to be

ma2® cos (2t + y) — mbQ* sin (¢ + ), ]
maaf2® sin (2t 4 y) + mbQ® cos (¢ + ),

0,

(5.1)
mgcal2® sin (2t + y) + m,bc® cos (2F 4 ),

macaf2® cos (2t + y) — mbcQ%sin (¢ |y ),
: 0,

respectively, when the effects of the small disturbances are ignored. The omitted terms have

some significance when the unbalance is large, but it is not proposed to.deal with this question
in the present paper. '

Any loading which is independent of the displacements of the rotor will be referred to as
. external loading.
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Notice that the external loads given by (5.1) are of the form

P cos 2t — ( sin Q¢, corresponding to x,

P sin Q¢ 4 Q cos 24, . Y,
K cos Q¢ — L sin Qt, ’ » P
and K sin Q¢ 4+ L cos ¢, ., 6.

If two similar lattices of particles could exist around G, one rotating with angular velocity
72 and the other with — »#2, the external loads would be of the form

P, cos n2t — Q, sin n2t 4 P_, cos nlt + Q_, sin nQt, |
P, sin wQ¢ - Q, cos n2t — P_, sin nQt 4 Q_, cos n&,

K, cos nQt — L,sin n2t + K_, cos nt 4+ L_, sin nft, .. .. .. (5.2

K, sin Q¢ + L, cos nt — K_, sin nt + L_, cosnfi, |

corresponding to x, v, ¢, 6 respectively.

The most general kind of pure #th order external loading corresponding to x and y respectively
would be A cos #n2t + B sin n2¢ and C cos nQ¢ + D sin n2¢. Thé first two forms of (5.2) show
clearly that this generality has been achieved with P, = §(4 + D), ¢, = 3(C — B),
P,= %A — D) and Q_, = HB + C). Similarly the last two forms of (5.2) give the most
general kind of pure nth order loading corresponding to ¢ and 6.

The superposition of loadings, formed from (5.2) by giving # all integer values from 1 upwards,
will be a representation by Fourier series of external loading which is generally periodic in one
revolution of the rotor, and which might arise, for instance, from aerodynamic effects due to
the presence of blades attached to the rotor.

It follows, therefore, that the possibility of such generally periodic external loading of the
rotor will be catered for by taking loads

B OC?P,, cos n2t — Q, sin #Q4¢) along Ox

4

P, sin #Q2t + Q,cosnf) ,, Oy

N/
8 8.8 8

(5.3)
K, cos nQt — L,sin nQt) about Oy

—~

Re= —

8 8

K, sin n0Q¢ + L, cos nQt) ,, Ox

8.—~

N=— —t

The order number # will be referred to by its modulus, together with the descriptive term
forward or reverse depending upon its sign.

8. The Assumed System and its Elastic Properties.—The general type of system to be considered
consists of m rotors, similar to the one dealt with above, and carried by a system of co-axial
shafts having a common flexural axis. The centroids of the rotors nominally lie upon this axis
at points 1, 2, 3, ...... VYoo S, v etc. Any one of these points, say 7, 1s considered
to be rigidly attached to the rth rotor which is itself rigidly attached to one of the shafts over
a certain length usually considered small in comparison with the length of the shaft itself.
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In relation to the fixed axes of Fig. 1, the flexural axis of the shafts will lie initially along Oz,
regarded for convenience as horizontal, and Ox will be thought of as vertical.

Associated with each of the points » will be small displacements of type x, v, 2, 8, ¢ and g,
as defined in section 4. _ _

The transverse elastic properties of the system, invblving displacements of typé %, ¥, ¢ and 6,
are supposed to be such that if (#v),, denote the deflection of type » at point s due to unit loading
of type # at point 7, then, for all » and s,

N ) 7

(%8)rs = (36).s,

($%)se = (0)ss,

($b)rs = (68),, (6.1)
()5 . (¥%)s =0,

(#0)rs = (0%)rs = (y$)re = ($¥)s = 0,

(0¢)s = (40),c =0, ]

together with others which follow as a mnecessary consequence of Rayleigh’s reciprocal
relationships. The equations (6.1) define what was referred to in section 1 as © axial symmetry
regarding lateral flexibility ’.

Assuming that the non-zero flexibilities (yy),,, (38),, (69),s and (06),, arise solely from the

bending of shafts, a general treatment of their numerical evaluation will be outlined in section 9.

Meanwhile it should be noted that flexibility due to the structure itself, and determined
experimentally, is not excluded from the flexibilities provided that it obeys (6.1).

7. Formation of the General Equations of Motion, and Those for the Particular Case of Axial
Symmetry of Mass—Letting a suffix » be used to distinguish the properties of the th rotor
from those of others, the displacements x,, y,, ¢, and 6, of the sth rotor at time # will be given by

%+ S16). (9)] + 80 091 =

I Y s o vt gt
%+§wmwm+ﬁwﬁmm=

2 [ty wn 0ad + (L e i ) a2
ot B8 090 + 51064 09)] =

I I s gt B e g | a3

Qo



w

0, +z: () (9] + 1140 (09)] =

,sin (n2,8) + (Q,), cos (Y} 0)e 7 - ¢
2 LL (). sin (1) + (L (nQ,t)}(GB),S‘-:” e (79)

in which the relatlonshlps (6.1) .appear, and (p, ),, (py),, ($,4)» and (Do), ére taken from (4.7) and

(4.8). - :

Suppose now that one of the shafts be chosen as the reference shaft that its steady rotation
is 2, and that only the external loadmg of frequency #£/2z .is acting upon one rotor of that
shaft. .

' ‘When there is axial symmetry of mass, and therefore 4, = B, for all values of 7, it follows
from (4.7) and (4.8) that

(B =MA, ]
(b = M, L gl

(Ps)r = A¢ + G246,
(pﬁ)" =4 0 Cr‘quSr- _

The trial substitutions

x, = X, cos nQi,
v, = X, sin nQft, ,
(7.6)
¢, = B, cos ni,
. 0, = @, sin nQ2¢, |
give’' - o
— (py)y = n2Q2*M, X, cos nQt, 7
— (py)r = n°2°M, X, sin nt,
o (P'¢)r = n2Q2<Ar _ %{) @, cos n, ce .. .. - (77)
F 202 Cr .
— (po)y = nQ (Ar — —> @, sin nf¢,
where g -

7, = (2/2,)n = number of complete cycles of the excitation per
revolution of the 7#% shaft.

Hence if only excitation of the P and K type is present, the equations (7.1), (7.2), (7.3) and (7.4)
may be-satisfied by choosmg the X, and &, so that

S0+ 5 (4 S ] - amenx, -

g

= — {Pu(y¥)s + Ka(6)} /02,

a‘nd mn n C ’
o 2onen.xd+ £ [ (4, S0, | - apeye,

¥

.. (7.9)

= — {Py(s0)s + K.(00),}/n*Q".
9




Each of the 2m expressions on the left-hand sides of the set of equations, given by (7.9) when
s takes all its m values, can vanish when 1/#?Q? is a latent root of the matrix product

[%%}%][%]%%] R ¢ 2 11

in which [yy], [6y], [¥9], and [60] each denotes an m X w square matrix formed from (yy),,
(69),s (¥8),, and (86),, [M] denotes a diagonal matrix of the masses, and [J] is also a diagonal
matrix whose diagonal elements are 4, — Cy/n;, 4, — Cyfn,, etc. These diagonal elements of [ J]
will sometimes be referred to as ‘ equivalent inertias ’.

- When £ is such that (1/#2Q?) is a latent root of (7.10), a whirling speed has been reached, and
the balance of the equations (7.9) is undertaken by the usual device of assuming suitable small
damping loads which are linear expressions in the velocities, and which limit the amplitudes
X,, @, to finite values, in addition to giving a continuous change of = in the phase lag of the
response of the particular normal mode behind the particular excitation as the whirling speed
is passed through. As interest here lies only in the whirling speeds, however, a general
discussion of damping will be avoided. ~

The same matrix (7.10) is obtained as a result of the trial substitutions

%, = — Y, sin nQ¢,
Y, = Y, cos nft,
¢, = — O, sin nQi,
and 6, = 0, cos nLt,

in (7.5) with the object of balancing the excitation of the Q and L type of frequency »nQ/2x.

For convenience in numerical work, the matrix (7.10) is compiled after expressing the
flexibilities in micro-inches (or micro-radians) per Ib (or per 1b in.), working with weights (Ib)
in place of masses, and expressing all inertias in the units 1b in.? The whirling speeds will then
be given whenever 4 = 10°%/n*Q* is a latent root of the matrix so modified.

When all the elements of [J] are positive, all the latent roots must be necessarily positive,
and the corresponding whirling speeds Ny, N,, —— etc., written in ascending order of
magnitude, are then calculable from the equation

187,711 ro.m
[y () P

where A1, As, efc., are the latent roots written in descending order of magnitude, and the
numerator is based upon taking g = 386-4 in./[sec’.

N,, = (7.11)

When, however, [ J] contains a certain number of negative elements, there will be this same
number of negative latent roots, which are not of interest in connection with whirling speeds.
It may for instance be found that A, = — 200, 1y = 100 and 13 = 25 in some problem
concerning one large thin disc and another of negligible inertia. In this case there are only two
whirling speeds under the postulated first order forward excitation, viz., at 18,771 r.p.m. and
37,542 r.p.m. '

8. The Iterative Technique.—In order to simplify the description of the method, the notation
of section 7 will be changed in such a way that there is no symbolic distinction between deflection
and slope, force and couple, and between weight and inertia. The symbol y, will denote either a
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linear displacement or a slope, and the corresponding flexibilities will be written fr-  The symbol
w, will denote the weight if v, is a deflection, or the equivalent inertia if y. is a slope. The
dynamic matrix (7.10), modified by using weights in place of masses, would be, for a system
having four variables ¥, ¥,, ¥s and ys,

B wlfll wzfm wsfw w4f14 1
w1f21 wzfzz wsfz*s 73")4][24
w1f 31 wsf 32 Wy f 33 w4f a4

- w1f41 wzfu w3f43 w4f44 _
in which £, = f.

The extraction of the latent root of highest modulus, and the corresponding mode, of (8.1)
would be according to the following prescription:—

(8.1)

Underneath the dynamic matrix write down a row of 4 numbers. These can be chosen
arbitrarily, but if the calculator has a rough idea of the mode he should write down this guess.
The largest of these numbers should be 1. Let this row be (a,, s, 45, as). Concentrate on the
first row of (8.1) and add together the products of corresponding terms from this row and from
the Tow (a;, @, s, ). Enter the result, yi, underneath 4,. Now take the second row of the
matrix and use it in a similar way, entering the resulting y, under 4,. Carry on this process
until all four rows of the matrix have been employed, thus completing the row (31, Y2, Vs, ¥a)
underneath (a,, @, @5, @,). Now make a note at the side of the y-row, of the value of the member
of this row, say ¥., which is of greatest modulus, and then form a new a-row underneath the
y-row by dividing throughout the latter row by ¥,. Repeat the sequence of operations upon
the new a-row, thus giving underneath it a new y-row and a new y,. From this y-row and y, a
new a-row is obtained, and so on. The work of passing from one a-row to the next is described
as one round of iteration. The rounds are normally continued until two successive a-rows
are identical to the order of accuracy employed. This last a-row is the mode corresponding to
the latent root 1,, whose value is the last recorded value of y,.

If during the extraction of 1,, the iterative scheme just described does not appear to be
converging after five rounds, the calculator should modify the scheme as follows:—

Starting with the sixth a-row, determine the sixth y-row, but omit the step of dividing through
this row by its ¥, and continue with the y-row instead. The resulting row is, in turn, operated
upon in like manner, and so on. At least two rounds of this modified iteration must be
completed, thus giving to hand a succession of rows which will be denoted by 6, 7, 8, etc. First
see if numbers p; and p, can be found so that :

8 — p7 + pb = 0; L 8y

i.e., this equation must hold for the first, second, third, etc., entriesin rows 6, 7 and 8. Obviously,
if all the equations (four in this case) represented by (8.2) were written down they would be more
than is necessary to determine unique values for p, and p,. Rather than take a least-square
solution, it is advisable to solve for , and p, from any two of the equations and then to test the
remainder with the values obtained. If the test is satisfactory, it means that 2, and 4, may be
calculated as the two roots of the quadratic equation

AR — pid + p=0. .. ce .. .. .. .. .. (8.3)
Further, the modes are given by
7 — 4.6, corresponding to i,,
(8.4)

and 7 — 46, " vy A
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If the test (8.2) fails, complete a further round of this modified iteration and see if p;, $,, and p,
can be found so that

9 — 58 + $.7 — ps6 = 0, .. .. . .. .. .. (8.5)
and, if so, 4;, 4; and 4; may be calculated as roots of the cubic
RB—pd®d ok —ps=0. .. .. .. . ... (86

In this case the modes are
8 — (A + 45)7 + 1,4,6, corresponding to 4,,
8 — (A + 4)7 + 4:4,6, ” v Az .. .. .. (8.7)
8 — (A4 + A)7 + 2,2,6, " v Age

The calculator should not rely upon such separation of even the first mode without testing

it by a further round of iteration according to the original scheme. If this is not satisfactory
he will have to continue the iteration. '

The theory underlying this numerical technique will be dealt with in a separate paper.

If the calculator has been obliged to separate the modes according to the methods summarised
in equations (8.2) to (8.7), and has achieved a satisfactory result for 4; and its mode, he should
not be content to assume that the second or higher mode has been equally well separated. This
assumes of course that he is interested in the modes higher than the first. If, on the other
hand, the second mode is required, but no other, it may be sufficient to test the suspected second
mode by a round of iteration according to the original scheme. But if this fails, the calculator
must remove, by a method given later in this section, the effects of the first mode from the

original matrix. In the meantime it will be convenient to deal with a simplifying procedure
based on Rayleigh’s principle.

It frequently happens in whirling problems that only the first latent root of the matrix is
required and no special interest attaches to the corresponding modal shape. In such a case,
Rayleigh’s principle, appealed to after each round of ordinary iteration, will often enable the
latent root to be deduced to a given accuracy at a stage of the iferation previous by many rounds
to that at which y,, would have the same accuracy. The Rayleigh approximation to 4 is deduced

from an a-row and the y-row which comes from it after operating once with the matrix, and is
given by

A= Wiyt -+ Wy + WyYs® 4+ .. ..
Wi Y14, + Wy Yally _l— W3 Ysy + e

(8.8)

A convenient way of using this to evaluate the row (w191, Wy Ys, W5 .. ..) ON a separate sheet
of paper, offering this up to the a-row and y-row in turn, and using (8.8) as 4 === { X (wy)y}[{ Z(wy)a}.

It remains to describe the method of reduction whereby, from a knowledge of the first latent
root 4, and its mode («;, «y, 5 - ...), there can be deduced a new matrix whose latent roots are,
in order of descending moduli, ,, 1;, 4,, 0, and whose modes are the second, third, fourth and
first modes respectively of (8.1). Iteration using this new matrix would proceed as it did for

the original matrix, but 1, is now the privileged latent root. The reduction is performed as
follows:— ‘

Underneath the row

2 - X)
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write down the row

(wlal, Waly, Wy, 'LW4OC4). .. o . .. .- .. . (8.10)

The summation of products of corresponding terms in (8.9) and (8.10) gives Zwa?, and this is
immediately divided into ; to give

= Ag)(Swa?). PO (< 8 8 )

An additional row

(B1%ts, poaka, frks, H1%s) .. ce e .. .. ‘e .. (8.12)

is then written down, and then a 4 X 4 matrix is compiled by taking the row (8.10) and
multiplying throughout by the first, second, third, etc., members of the row (8.12); this matrix
is therefore

—

— 2

HaWiy", 1 Watl %y, M lW3gty, B0y q0q

2
W00, M1 Wotks™, P13 a&e, P W%
(8.13’)
2
H1Wy%q%g, PqWalalty, Py Watts™, P Watt &y
2

L P10y, H1Wsllglly, M1 Wstgtly, P Waty ]

A new matrix is then compiled by subtracting corresponding members of (8.13) from those of
(8.1) thus giving

B w1(f11 — ,u1°‘12), Wal J12 — #1“1“2): Z")3(](’13 — Nl“l“s), 'w4(f14 — /11‘11@4) ]

(
wl(fm — ﬂ1°‘1°‘2): wz(fzz ”—_#1“22): ws(fza — Ml“z“s); w4(f24 — #1“2“4)
: (8.14)

wl(flfi — M1“1“3), Wy f23 — ,“1052“3): w:s(faa — H1°‘32); . w4(f34 — #1”-30‘4)

| w1(f14 - #1“1“4), wz(f24 - #1“2“4); ws(fm - #1“3“4); w4(f44 - ;“10‘42) B

The matrix (8.14) is the required reduced matrix. It may be worked with in the same way as
was (8.1), and may be checked by operating with it upon (8.9) when a row of numbers should
result which are acceptable as zeros.

In describing the iterative methods, the writer has tacitly assumed that an ordinary Brunsviga
type of mechanical or electrical calculating machine is available. Some examples will be found
in section 10.

9. Numerical Work in Connection with the Elastic Problem for Co-axial shafts—The basic
problem concerns a single shaft of length L, constant flexural rigidity EJ, and encastré at one
end O (Fig. 8). The flexibilities at any other point A are

— 3
. 2 (y¥)aa = L¥3EL,

ﬁ . (v0)4a = (0¥)aa = L*|2EI, (9.1)

QQ i ] (GG)AA _ L/EI,

- e —b——— — _...___H
the loads and deflections being positive when
) measured downwards, and the couples and
Fic. 3. Single built-in shaft. rotations being positive when clockwise.
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Consider now the case of several shafts OA, AB, BC, ...... , (Fig. 4), having flexural rigidities
(ED)y, (ED)y, (ED)gy ... .. , lengths L,, L,, L,, ...... joined rigidly at A, B, C, ...... forming
a single straight shaft encastré at the end O. It is required to find the flexibilities corresponding

O
ﬁ ! A s B c
] - ! 2 ; 1
e ! y i
SN « S S . . i 1
: =1 53 —?i‘ ! :

t

PR PO Y S S P

Fig. 4. Composite built-in shaft.

to two points R and S, where OR = a4 and AS = b. It is clear at once that, with unit load at
R, the displacement and rotation at R will be (yy)zx = @[3(EI), and (y0)rz = a®/2(EI),.
The corresponding movements at S, viz., (yy)zs and (¥0)rs, may be deduced by observing
that, since the load is at R, the whole shaft beyond R will be straight with a slope (¥0)zz. Hence
(¥)rs = (¥Y)re 4 (Li — @ 4+ b) (¥0)zr, and () gs = (v0)rr. Similarly, with unit couple at R,
it would be found that (6y)zr = a*/2(E1),, (06) sz = al(EQ)1, (0¥)rs = (6¥)rr + (L, — & + b) (00) g,
and (00)rs = (60)z. The flexibilities at A are (yy), = L/3(E]),, (¥0).an = (0y)aa = L*2(ET),,
and (80) 44 = L,/(E]),.

With unit load at S, the whole shaft OA is first kept undeflected by applying at A a load — 1
and a couple — b, under which conditions the deflection and rotation at S will be b*|3(EI), and
b*[2(ET), respectively. A is then released by first applying at A a load -- 1 giving a further
deflection {(yy) 44 4 b(¥6) 44} and rotation (y6) 4, at S, and then applying a couple - b at A, giving
the additional deflection b{(6Y)aa + 5(60)4a} and rotation 6(00)4, at S. Similarly, with unit
couple at 5, OA is first kept undeflected by applying a couple — 1 at A, after which A is released
by reversing this couple. In this manner it would be found that -

(99)ss = VIB(ED)s + (y¥)aa + 2b(¥0)aa -+ 5(09) aa, ]
(98)ss = V2(ET)s + (30)aa + (00) as,
(09)ss = (¥0)ss,

(00)ss = b/(ET), -+ (66) 44.

If the point S were in the next shaft BC, the preliminary calculation of the flexibilities at the
joint B would be required. These are given from (9.2) by putting b = L,.

Simple extension of this method of fixing and releasing joints in turn, taking account all the
while of movements at any chosen points of a composite shaft, enable flexibilities relating to
these points to be calculated. ‘ ‘

(9.2)

-

The next problem for consideration is a composite shaft ABC .... DE simply supported at
A and E, interest lying in flexibilities
A B c D E
; —— 2 I ¢
‘|1 - . N L . - . I\
Fig. 5. Composite shaft simply supported at two points.
atany points 1,2, 3, ....... Consider first the application of a unit load or couple at 1. Since

there are only two simple supports, the loads P at A and ¢ at E, acting on the shaft, are known
from statical considerations. With the bearings A and E released but the point C encastré, the
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shafts are allowed to bend under the action of the unit load at 1 and the loads P and @ at A and E,
record being made of the deflections of interest at the points 1, 2,3 ...... and also the deflections
y4and yzat A and E.  Finally the whole shaft is given a rigid-body movement represented by a
displacement ¢ of C and a rotation 6 about C, in such a way that A and E are brought back to
their original undeflected position. That is, 6 and 6 are chosen so that

8 + (CE)o 4+ yzg =0,
and 6 — (CA) 4+ y4 = 0.

Of frequent occurrence is the uniform shaft

simply supported at two points, and the results IA ? > 2
for this are quoted with reference to Fig. 5(a). Fo e o — AR A — —-—v}
A and B are the two supports, and R and S b i i |
the two given points lying within the supports, ’ Q
with AR = a, RS =0, SB = c and AB = L. 7 o
The results f———— - b e — —— — — — -

Fig. 5a. Uniform shaft simply supported at two points:
are .

EI(yy)an = a0 + o}3L,

EI(98)ze = EI(6y)re = {a(b + ¢) (b + ¢ — a)}3L, 9.2)
EI06)a = (@ — afb + ¢) + (b + ¢))/3L,
EI(y9)s = {ac(L* — a* — 6L, ]
EI(30)es = {ala® + 3¢ — LY}f6L,
EI(0y)rs = {o(I* — & — 3a')(/6L, 3
EI(60)gs = {3a® + 3¢® — L3I6L, ]
from which other useful formulae sucﬂ as
ET(00)ss — LJ3 R (- ¥)

may be obtained as special cases.

The elastic systems dealt with thus far have been ‘ just stiff ’, 7.e., encastré at only one point,
or simply supported at two points. It is however a relatively simple matter to introduce
additional constraints into the system illustrated in Fig. 5. Suppose for instance that points
2 and 3 are required to be simple supports in addition to the ones at A and E. Knowing the
flexibilities at 2 and 3 when the system is only just stiff, application of unit load at point 7 for
instance would need loads Y, and Y, given simultaneously by :

Ya(39)ee + Ya(3¥)a2 + (9¥)r = 0,
and Ya(yY)es + Ys(¥¥)se + (33)e = 0,

in order to produce the conditions of simple support at 2 and 3. Under the new four-point
support, unit load at » will produce at.s the deflection -

Yo(y¥)es + Ya(3)ae + (395 o |

and the rotation

Yz(y'e)m -+ Ya(ya)ss + (yﬁ)m-
15



Consideration may now be given to just-stiff systems of two co-axial shafts, of which, when
only simple supports are used, there are six types illustrated in Figs. 6 to 11. After each type
has been introduced, a sufficient outline of the corresponding elastic problem will be given.

‘Type 1. Two external bearings A-and B on outer shaft. Inner shaft bearing on outer at
Cand D. No external bearings on inner shaft. R S =

A

0O Ne)
® O
C D
0 ) 0
@ O

Fic. 6. First type of co-axial shafts.

" For any load or couple applied to the outer shaft the deflections of that shaft may be found
as for a shaft with two supports. For such loading the inner shaft will deflect as-a rigid. body
with known movements at'C and D. For loading applied to the inner shaft and with C and 1)
temporarily held by known loads, deflections of the inner shaft may be determined. Knowing
the flexibilities of the outer shaft at C and D, the loads holding the inner shaft at C and D may
then be reversed giving an additional known rigid body movement of the inner.shaft.

Type 2. ‘Two external bearings A and B on outer shaft. Inner shaft bearing on outer at

one point C. One external bearing F on inner shaft:

A . B
e 0 g
Q) . - 0O
@) O
O —0

~ Fre. 7. Second type of. co-axial shafts.. co ;
Similar remarks to those relating to the first type apply, but this is slightly easier to deal
with in so far as any rigid body movements given to.the inner shaft are in fact rotations about F. -

Type 3. Two external bearings A and B on outer shaft, and two external bearings E and F
on inner shaft. ‘ S s = S

A B
3 O ‘O., OB
O R i 5
O . Q

N , Fic. 8. Third type of co-axial shaifts. a _ ,
The inner and outer elastic systems are clearly independent, each being an example of a:shaft
with two simple supports.

Type 4. One external bearing A on outer shaff. Inner shaft bedring on outer at C and D.
One external bearing F on outer shaft. s g P

A

@) (@) (@)

E b

(@) (@) : O
@)

F1e. 9. Fourth type of co-axial shafts,
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Since there are only two external bearings at A and F, the loads exerted on the shafts at these
two points, when any load or couple is applied to the shafts at some point, may be determined
_ statically. Thence, by considering statically the outer and inner shafts in turn, the equal
and opposite loads on the two shafts at each point C and D may be determined. If now C be
kept in a fixed position, the bearing D removed, but the loads at D on each shaft retained, the
deflections of the two shafts under these conditions may be found. To reproduce the original
problem, all that is then necessary is to rotate the inner shaft as a rigid body about F until
contact between inner and outer shafts at D is restored.

Type 5. One external bearing B on outer shaft. Inner shaft bearing on outer at one point C.
Two external bearings E and F on inner shaft.

Fic. 10. Fifth type of co-axial shafts.

This is comparable elastically with the second type. Under a load or couple applied to the
inner shaft, the deflections of the inner shaft will be found as for a shaft with two supports.
The corresponding deflections of the outer shaft will be due to a rigid body rotation about B.
Loading on the outer shaft may be dealt with by fixing and then releasing bearing C.

Type 6. Two external bearings E and F on inner shaft. Outer shaft bearing on inner at
C and D. No external bearings on outer shaft.

E F
Q Q Q O
c D
O Q Q @)

F1c. 11. Sixth type of co-axial shafts.

This is comparable elastically with the first type. The deflections of the inner shaft due to
a load or couple applied to that shaft may be found as for a shaft simply supported at two points.
The corresponding deflections of the outer shaft are due to a rigid body movement defined by
the known deflections at C and D. A load or couple on the outer shaft may be dealt with by
first fixing and then releasing the bearings C and D.

Additional fixing, such as extra bearings, may be introduced into all these types by including
the proposed points in the scheme of flexibilities for the just-stiff system. Then, for any applied
loading, the reactions needed to satisfy the required conditions may be determined.

Systems of more than two co-axial shafts may be dealt with in the same general manner.

10. Numerical Examples.
Example. An artificial example illustrative of the iterative technique and method of reduction.
Suppose that the flexibility matrix appropriate to four variables y;, v, ¥, and y, was

T 261, 255, —30, —45 7
955, *9258, —380, —45
(10.1)
—30, — 30, 12, 10
| 45,  — 45, 10, 19 |
17
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the units being micro-inches (or micro-radians) per Ib (or per Ib in.
associated with the variables were 1, 2, 3 and 4 Ib (or Ib in.?)

is accordingly

- 261,
255,

— 30,

L — 45,

510,
5186,
— 60,
— 90,

— 90,
— 90,
36,
30,

—180 7]
— 180
40

76

o

) and that the ‘ weights’
respectively. The dynamic matrix

(10.2)

compiled by multiplying the successive columns of (10.1) by 1, 2, 3 and 4.

Starting with the arbitrary mode (1, 1, — 1, — 1) the iteration, using (10.2), would proceed:—

Nm

1 1 —1 —1
1041 1041 —166 —241 1041
1 1 —  0-159462 —  0-231508

82702302 827-02302 —105-000952 —157-738468 82702302
1 1 —  0-126962 —  0-190295

816-679680 816679680 —102-182432 | —153-271280 816-679680
1 1 —  0-125119 — 0-187676

816-042390 816042390 —102-011324 —153-016946 816042390
1 1 —  0-125007 — 0-187511

816-002610 816002610 —102-000692 | —153-001046 816-002610
1 1 — 0-125000 | — 0-187501

816000180 816-000180 —102-000040 —153-000076 816-000180
1 1 — 0-125000 | — 0-187500

816-000000 816-000000 —102-000000 | —153-000000 816
1 1 — 0-125000 | — 0-187500

Thus 4, = 816, and the mode corresponding to it is

(16,16, — 2, — 8).-

Following the method given in Section 8, the calculations would be:—
— 3).

— 12).

(8.9):— (18, 18,

(8.10):— (18, 32,

— 9
— 8,

(8.11)i— s, = 816/{256 + 512 + 12 + 36} = 816/816 — 1.

18
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(8.12):— (16, 16, — 2, — 3).

813)— [ 256, 512, —96, —192 7]
956, 512, —96, — 192
— 32, — 64, 12, 24
| — 48, — 09, 18, 36 |
814)— [ 5 —2 6, 12 7
—1, 4, 6 12
(10.3)
2, 4, 24, 16
L3, 6, 12, 40

To illustrate the correctness of the principles used in the method of separation of modes, the
modified iteration using the matrix (10.8) will be commenced with the mode (3, 0, 4, 2) which
is void of the first normal mode. The iteration will be found to proceed:—

(1)— ( 3, 0, 4, 2)
(2):— ( 68, 45, 134, 137)
(3)— ( 2678, 2565, 5714, 7547)
(4):— (133083, 132435, 273494,  393857).

It may be verified that
(4) — 73(3) + 1218(2) — 4896(1) = (0, 0, 0, 0),

and thus ,, 4, and 1, are the roots of the cubic

AP — 732% 1L 12184 — 4896 = 0,
giving A, =51, A, =16, i, =86.

The corresponding modes may be found according to (8.7) which shows

(3) — 22(2) + 96(1) = (1575, 1575, 3150, 4725),

(3) — 57(2) + 306(1) = (O, 0, — 700, 350),
(3) — 67(2) + 816(1) = ( 900, — 450, 0, 0),
or, more simply,
(1, 1, 2, 3) corresponding to 4,
(0, 0, — 2, 1) . o Ag,
and (2, — 1, 0, 0) " I



- Example 2. Elastic problem of type 2.

P i
' l
A bee — — — — 15" — e e —
L_ [ l | ® T |
: 3 >1C<;— 31+s--—- 6 —-;]7 : 3 1 ?
Q (@) 4 |
gi=300.10% D El=400.10°
(l_) (l)
O
; 7 |

i
!
<] K 6 }
EI=I0Q0. 10 EI=500. !0

Fic. 12. Example of second type of co-axial shafts.

The outer shaft has two external bearings A and B where AB = 9 in. At point P where
PB = 6 in. there is a change of section of the outer shaft, the two portions BP and PA having
flexural rigidities 500-10° and 1000-10° 1b in.* respectively. The remaining portion of the
outer shaft has flexural rigidity 500-10° Ib in.2. The point of interest on the outer shaft is 2
where B2 = 12 in. The inner shaft has an external bearing at E where EA = 3 in., and bears
on the outer shaft at D where BD = 15 in. Between these two bearings the flexural rigidity
is 300-10°Ib in.? The overhung portion of this shaft has flexural rigidity 400-10° Ib in.? and the
point of interest is 1 lying at a distance 12 in. from D.

Considering the outer shaft first, a clockwise couple of 1 1b in. at B will involve loads of -4 1/9
Ib and — 1/9 1b on the shaft at A and B respectively. With A and B free to move but with the
above loads acting, and with P encastré,

-

3
Ya = <—3——> = (-001, g-in.,

3 x 1000

B 6 1( 6° )__ .
v = gs500) — Hg500) = 0-020, i,

_ (.8 1< 6 \_ . )
and Op = 1(%) — 9 m) =0 008, M radn,
where p is used as an abbreviation for 10-°.

A rigid body movement represented by a displ_acemeﬁt of — 0-001, wu-in. at A, together
with a rotation about A of — (0-019)/9 = — 0-0021, p-radn, would bring A and B back to their
correct positions, from which it follows that (60)ss = 0-008 — 0-0021 = 0-0058, radn/lb in.

Hence

(¥¥)ee = 1(3%00) -+ {12(60) 5312 = 2-0, u-in./Ib,

(39)22 = 1<.%)T)> + 12(60) 5 = 0-214,666, y-radn/Ib,
(¥V)ep= (¥¥)22 + 3(30)s = 2644, p-in.[Ib,

(ye);l = (¥9)0/27 = 0-097,925, u-radn/lb,
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8)e = (30)a

(60)gp = 1<SIT20> + (06)zn
(03)ep = (03)2r + 3(60)20
(60)2r = (6y)2n/27

(0)

(79)op = 1(3 iioo) + {15(00)25 315
(¥9) o= (¥¥)on/27 |

— 3-819,111, p-in./Ib,
— 0-214,666, p-in.[Ib in.,
— 0-029,888, 4 radn/Ib in.,
— 0-304,333, u-in./Ib in.,
— 0-011,271, p-radn/Ib in,,
— 0-439,592, p-in.[Ib in.,
— 8575, p-in.[lb,

= (-132,407, p-radn/lb,

— 5-163,888, u-radn/Ib.

A load of 1 Ib at I causes a load of + 13/9 1b on the outer shaft at D; similarly a couple of
11b in. at 1 gives at D on outer shaft a load of + 1/27 1b. Hence

(V) = 1<3—>i—2ﬁ)> + 12(3—323@)12 + B3 (yy)p = 13-218,950, p-in.[Ib,
() = 1(.2%% + 12<3—%0—0> 4 1B(y8)p = 0-731,255, u-radn/Ib,
(09)n — 1(2%2—;@ . 5%%(7))12 4 A (yy)e = 0-731,255, u-in./lb in.,
(08)s = 1(%20) + (5 Z) + #(50)m — 0-064,903, p-radn/Ib in.

Other flexibilities such as (0y)5s, (¥¥)1s, (06):s, etc., may be be determined to serve as checks upon
(ye)zl; (yy)zb (60)21: etc.

Example 3. Whirling of contra-rotating propeller system.

A hypothetical example will be considered by imagining a rigid propeller of weight 486 lb
and of polar moment of inertia 364,500 Ib/in.? at each of the stations 1 and 2 of the co-axial
shaft system of Example 2. The inner shaft will be imagined to be rotating clockwise looking
along it from left to right, and the outer shaft is rotating anticlockwise with the same angular
velocity at any instant. Each propeller, for the purpose of this example will be assumed to
be so thin axially that its diametral inertia is half its polar moment of inertia. It must also be
postulated that the number of blades in each propeller is three or more in order that the condition
of axial symmetry of mass shall apply. The distribution of weight along the shafts is ignored
in this example.

Taking the variables in the sequence ¥y, ¥, 61, 05, the flexibility matrix is, from Example 2,

13-218,950, 3-819,111, 0-731,255, 0-439,592,
3-819,111, 2-000,000, 0-097,925, 0-214,666, (10.4)
0-731,255, 0-097,925, 0-064,903, 0-011,271,
0-439,592, 0:214,666, 0-011,271, 0-029,888

in micro-units of deflection per unit load.
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The two sources of excitation which must be considered are (i) unbalance of the ‘ outer’
propeller, and (ii) unbalance of the ‘ inner ’ propeller. The * inertias’ to be taken are therefore

486, 486, 546750, — 182250 for excitation (i),
o (i),

since the equivalent diametral inertia of each propeller is {182250 — 364500/x}, where # is the
order number which is + 1 for the exciting propeller and — 1 for the other; see relationship (7.8).

and 486, 486, — 182250, 546750 ,,

Accordingly the two dynamic matrices are

6424-410  1856-088 399813-750 — 80115-750
1856- 088 972-000 53541-000  — 39123000

.. (10.5
355-390 47-592 35486-250 — 2054-250 (10-5)
213-642 104-328 6162-750 — 5447-250
for excitation (i), and
6424-410  1856-088  — 133271-250  240347-250
1856-088 972-000 — 17847-000  117369-000 (10.6)
355-390 47-592  — 11828-750 6162-750 ' '
213-642 104-328 —  2054-250 16341-750

for excitation (ii). It should be noted that in compiling these matrices, the flexibilities were
taken in rational instead of the decimal form of (10.4), and that the matrices (10.5) and (10.6)
are ‘exact’.

Using the matrix (10.5), and commencing with the mode 1, 0-09, 0-09, 0, the iteration
proceeded :—

Vo
1 0-09 0-09 0 42574 -695
1-000000 0-158833 0-081350 0-018266 37780-672
1-000000 0-149585 0-085023 0-016730 39355-081
1-000060 0-149896 0-085003 0-016824 39340-131
1-000000 0-149840 0-085012 0-016815 39344 -346
1-000000 0-149844 0-085012 0-016815 39344 -354

in which the intermediate y-rows have been omitted as indeed they may in the actual process
if v, is evaluated first. The mode appears in the last row together with 1, = 39344354 giving
N; = 946 r.p.m.

The iteration with the matrix (10.6) was commenced upon the mode 1, 0-36, 0:03, 0-086.
After five complete rounds, as shown by the next Table, it was clear that at least another mode
was active, and the separation method was resorted to.
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The iteration proceeded:—

Ym
1 0-36 0-03 0-06 17515-299
1-000000 0-497436 0-022119 0-066789 20452421
1-000000 0-478369 0-025866 0-064115 19274975
1-000000 0-486877 0-024245 0-065261 19782-237
1-000000 (-483072 0-024970 0-064748 19555255
1-000000 0-484750 0-024650 0-064974

Completing two further rounds of the modified iteration led to the following equations for
Py and py—

385,458,504 - 74905 — 19,655 33457p, + P2 =0, (@)
186,691,010-43033 — 9,513-26986p, -+ 0- 484750, = 0, (b)
9,532,126-92672 —  487-30005p, + 0-024650p, =0, .. .. .. (¢
95,023,320+ 14868 — 1,275-11460p, - 0-064974p, = 0. .. .. .. (d)

Solving for $, and $, from (a) and (b) gave
p, = 10921 - 80092
and P, = — 170,786,943 - 55952

with equation errors of only 0-00000, + 0-03069, + 34-63357 and 4 61-46646 in (a), (b),
(c) and (d) respectively. The test (8.2) was therefore satisfactory, and the deduced roots were
A, = 19624-52914 and A, = — 8702:72822. The deduced first mode was

1-000000, 0-484233, 0-024749, 0-064904,
and a further round of iteration reproduced this except for some errors of 1 in the last place.
It followed that the whirling speed (corresponding to 4, = 19624-5) was 1340 r.p.m.
It may be noticed from either matrix (10.5) or (10.6) that if inertia effects are neglected,
the two corresponding latent roots are given by

(6424-410 — 2)(972-000 — 1) = (1856-088)?;
A, 1s 6996-274 on this basis, corresponding to a 1st order whirling speed‘of 2244 r.p.m.

11. Concluding Remarks.—An interesting topic which has not been included in the paper is
the coupling which exists between flexural, longitudinal and torsional vibration when the system
of the type considered has appreciable unbalance. Such effects were not apparent in the theory
because all dynamic loads due to vibratory displacements of the unbalance particles were ignored.

An attempt has been made to indicate the importance of gyroscopic effects in some cases,
and a numerical technique for dealing with practical problems was developed.
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Attention is drawn to the important example of a pair of contra-rotating propellers arranged
on co-axial shafts. The particular danger associated with this arrangement appears to be the
whirling speed associated with unbalance of the propeller driven by the outer shaft.

The examples were chosen in such a way as to illustrate various points of numerical technique,
and it was decided on that account to avoid anything spectacular in the way of large numbers
of variables. To give some idea of the time involved in moré complicated examples, reference
may be made to an interesting problem recently worked out by the writer. It was of a similar
kind to Example 3, but one for which there had to be several point-masses to give a reasonable
allowance for the inertia effects of the shafts, whose weight was not negligible compared with
the three rotors affixed to them. Altogether there were 13 degrees of freedom, and the particular
solution sought was complicated by the fact that the first three latent roots of the 18 X 13 dynamic
matrix were approximately — 193, — 182 and 4- 85. The third root was the one required,
and its mode was successfully separated from the iteration in just under two days.
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