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Summary.--Two simple means for establishing a relation between a pair of oscillation problems are briefly discussed. 
In the first, the displacements are connected by use of a differential operator. The set of natural frequencies is identical 
for the two problems and results of interest are obtained when the transformed boundary conditions can be physically 
interpreted. In this manner it is shown, for example, that  a flywheel on a uniform shaft can be transformed into a 
flexible coupling and a mass carried on a uniform beam into a flexible hinge. In the second, the connection is established 
by  use of the concept of mechanical admittance. , Here the frequency equations are simply related but the frequencies 
are not. 

1. Introduction.--In this paper at tention is drawn to two simple ways in which problems of 
free oscillation can be connected. For the first, the displacement in problem B is derived from 
that  in problem A by means of a linear differential operator and the two problems have the same 
set of natural  frequencies. The boundary conditions for B differ from those for A and in some 
instances it is possible to give them a simple physical interpretation. When this is so, results of 
interest can be obtained. For the second, the connection is established by  use of the concept of 
admittance 1, ~ and here the equations which determine the natural  frequencies are simply related 
but  the natural  frequencies themselves are not. 

The first method of connection is illustrated by some applications to the free oscillations of 
uniform shafts and beams. By use of very simple operators it is shown that  the end conditions 
are transformed into others which have an easy interpretation; likewise the conditions at such 
discontinuities as carried masses and flexible joints are transformed into others which can be 
interpreted. For example, a flywheel carried on a uniform shaft can be transformed into a 
flexible coupling and a massive particle carried by a uniform beam can be transformed into an 
elastic hinge. 

Rayleigh in the first volume of his Theory of Sound" pointed out tha t  the solution for the 
longitudinal oscillation of a uniform rod with both ends fixed could be obtained by differentiating 
the solution for the rod having both ends free with respect to the abscissa. He also pointed out 
tha t  the solutions for the flexural oscillations of doubly built-in and doubly free uniform beams 
were related by  double differentiation with respect to the abscissa. He did not, however, indicate 
tha t  these special results illustrated a method of wide generality. 

The connection of problems through the use of admittances is only briefly touched on here. 
The illustrative examples relate to shafts and beams and are thus relevant to the problems 
discussed by tile other method. 

The illustrative examples in this paper are all mechanical. However, both methods described 
are applicable whenever the basic differential equations are linear; hence they are applicable to 
electrical problems, in particular. Ordinary differential equations appear in the examples, but  
the methods can be applied to linear problems whose differential equations are partial. 

* College of Aeronautics Report No. 27, received l l t h  June, 1949. 
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2. Problems Related by a Differential Operator (Generat).--Suppose that  the displacement u in 
some pure mode of oscillation of a body satisfies the differential equation 

f ( D ) u  - -  oPu = 0 . . . . . . . . . . . .  (2.1) 

where co is 2~ times the frequency andf(D)  stands for a linear differential operator in the spatial 
co-ordinate or co-ordinates. Operate on (2.1) with the linear differential operator ¢(D). We get 

¢(D)f(D)u --  co~¢(D)u = 0 . . . . . . . . . . . . .  (2.2) 

Now suppose that  f (D)  and ¢(D) are commutative. Then the last equation can be written 

f (D)v  -- o=v = 0 . . . . . . . . . . . .  (2.3) 
where 

v = ¢ ( D ) u  . . . . . . . . . . . . .  (2.4) 

Thus v is also a solution of (2.1) but it will not, in general, satisfy the same boundary conditions* 
as u. However, it will be possible to obtain the boundary conditions for v from those for u and 
it may be possible to give these a physical interpretation. When this can be done we shall have 
a pair of related problems whose modal displacements are u and v respectively and which have 
an identical set of natural frequencies, for the same o) appears in (2.1) and (2.3). 

We may remark that  f (D)  and ¢(D) always commute when they are polynomials in D with 
constant coefficients or like polynomials in D1, D~, etc., where these symbols represent partial 
differentiation with respect to corresponding independent variables. More generally, the 
operators will commute when they are both polynomials with constant coefficients of the same 
linear operator, whose coefficients need not be constants. 

The examples given in sections 3 and 4 show that  it is, in fact, possible to derive interesting 
and useful results by means of the device described above. 

3. Torsional Oscillations of Uniform Shaf ts . - -& 1. P r d i m i n a r i e s . - - W h e n  the shaft is oscillating 
freely in one pure mode the angular displacement 0 satisfies the equation 

+ = 0 . . . . . . . . . . . .  (3.1.1) 

where /~ = "°)2j (3.1.2) 
C . . • • ° • • ® * • • , 

with j moment  of inertia of unit length of shaft about its axis, 

C torsional stiffness of unit length of shaft, 

d 
D = d x "  

The value of the characteristic number /~ depends on the boundary conditions and on the 
particular mode selected. 

I t  follows from (3.1.1) by differentiation that 

D"+~O + ~ D"O = 0 . 

Hence at any point where 

we must have also 
D"O = 0 

D "+~ = 0 . . . .  

D"-~o = 0 (n > 2) 
where in deriving the last equation it is assumed that  co is not zero. 

. . . . . .  (3.1.3) 

. . . . . .  (3.1.4) 

* We include here the conditions at points of discontinuity ill the solution, such as points where loads are applied. 
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The conditions to be satisfied at  the  supports  and at  discontinuities of various kinds are as 
follows, where the  displacements to the  right and left of a discont inui ty  are denoted  by or and O t 
respectively. 

(A) Fixed End 
0 = 0 .  . .  ( 3 . 1 . s )  

(B) Free End 
DO = O. . .  (3.1.6) 

(C) Sp.ring Support 
CDO~ = CDOI + aot ] 

O~ -= O~ l "" 

where a is the  stiffness (restoring m o m e n t  per radian) of the  support.  

. .  (3.1.7) 

(D) Carried Flywheel 
CDOr = CDO~ -- Jco2o~ 

o~ = oz 

where J is the  m o m e n t  of inertia of the  flywheel. 

. . . . . . . .  ( 3 . 1 . s )  

(E) Spring Coupling 
sO~ = sOl + CDO, I 

(3.1.9) • . ° 

' D0~ = D0l 

where s is the  stiffness of the coupling (moment  per radian of relative twist) which is assumed to 
have a negligible m o m e n t  of inertia. 

(F) Change of Torsional Stiffness of Shaft 

Displacement  and torque are continuous. Hence 

O~, ~-- 0 l 

C~DO, = C~DOz. 
.. (3.1.10) 

which implies 

and 

( 5 2 2 1 1 )  

3.2. Application of the Operator D to Torsional Oscillations.--Let us take  the new variable to be 

¢ - -DO 

D ( , =  D20=--t ,~O . . . . . . . .  (3.2.1) 

D 2 ~  = DaO = - - ~ D O  

Example 1. Apply Transformation to Free-Free Shaft without Discontinuities. 

T h e  free ends become fixed ends and we see tha t  a uniform shaft with both  ends free has 
the  same spectrum of non-vanishing frequencies as an equal shaft with fixed ends. In  fact 
the  frequency equat ion is 

sin ~l = 0 . . . . . . . . . . . .  (3.2.2) 

in bo th  cases, where 1 is the  length of the shaft, bu t  the  zero root does not  apply to the  shaft 
with fixed ends. 
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Example 2. Apply Transformation to Carried Flywheel. 

Equations (3.1.8) become when transformed and reduced 

Y De, ¢ , = ¢ , + ]  

De, = D¢ i .  

These are identical with equations (3.1.9) provided that  

s c j  . . . .  (3.2.3) 
- -  J " ° • • • • • • 

Thus a carried flywheel is transformed into a spring coupling whose stiffness is given by the 
last equation. The relation is a reciprocal one for we find tha t  a spring coupling is trans- 
formed into a flywheel whose moment of inertia is 

j ca 
S 

in accordance with (3.2.3). I t  is to be remarked tha t  the relation (3.2.3) is independent of 
the frequency. 

3.3. Some Specific Examples of Related Torsio~cal Problems.--In each case the two systems have 
identical spectra of non-vanishing frequencies. The moments of inertia of the flywheels and the 
stiffnesses of the corresponding spring couplings must be related as in (3.2.3). 

FLYWHEEL 

FIXED 
END 

I 
I 
I 

FREE I 
END 

~(SPRING COUPLING 

~///FIXED 
// END 

FREE 
END 

FIXED 
END 

i. 

FREE FIXED 
END L.._ END 

SPRING ~ FLYWHEEL 
COUPLING FREE END 

I 

1 
I 
I I 
I i 
i I 
I I 
i i 

FLYWHEEL I SPRING 
I COUPLING 

x 

As a special case, a shaft with an end anchored through a spring coupling is related to one 
carrying a flywheel at a free end. 
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4. Flexural Oscillations of Uniform Beams.--4 .1 .  Prd iminar i e s . - -The  differential equat ion 
satisfied by  the normal  displacement y of the  beam when oscillating in a single pure mode is 

D~y _ fl4y = 0 . . . . . . . . . . . .  (4.1.1) 
where 

d 
D - -  dx 

and 

wi th  

X 

t o o )  2 

f l~--  E I  . . . . . . . .  

m mass of beam per uni t  run (constant), 

E I  constant  flexural r ig idi ty  of beam. 

abscissa, measured along the axis of the  beam 

. .  (4.1.2) 

The value of the  characterist ic  number  /~ depends on the bounda ry  conditions and on the  
par t icular  free mode considered. 

I t  follows from (4.1.1) by  differentiat ion tha t  

Dn+4y - -  3~D'~y = O . 

Thus at any  point  where 

(4.1.3) 

D"y = 0 
we have  also 

D"+4y = 0 
and 

D'~-4y = 0 (n ~ 4) 

where in deriving the last  equat ion it is assumed tha t  the  f requency is not  zero. 

(4.1.4) 

The conditions to be satisfied at  the  supports  and at  discontinuit ies of various kinds are as 
follows. We denote the  displacements to the  r ight  and left of a d iscont inui ty  by  y~ and Yz 
respectively. 

(A) Rigidly Buil t- in End  
y =  D y = O .  

(B) Sim2bly SulSported E n d  
y =  D y=O. 

. . . .  (4.1.5) 

. . . .  (4.1.6) 

. . . .  (4.1.7) 
(C) Free E n d  

= = o .  

(D) Spring Support giving Restoring Force Pr@ortional to Normal  Deflexion 

Let the  stiffness of the  spring support  be a. Then 

Y r 7--. Y I  

Dy~ = Dy~ 

D %  = D %  

E 1  D3y~ == E I  DSy~ --  Gy~ 

. .  (4.1.8) 
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(E) Spring Support giving Restoring Couple Proportional to Change of Slope 

Let s be the stiffness (moment per radian). Then 

, : y ~  = y ,  

D y , =  Dy, 
. . . . . . . .  (4.1.9) 

E I  D~yr = E I  D2yz + s Dy~ 

D %  = D % .  

(F) Carried Mass 

i The mass M is supposed to be rigidly connected to the beam at the neutral axis, and not to 
influence the local flexural rigidity. The moment of inertia of the carried mass about the point 
of a t tachment  is J .  Then 

y~ -- y, 

D y , - -  By, 
. . . . . . . .  (4.1.1o) 

: E1 D~y, = E1 D~y, -- ]a~ ~ Dy, 

E I  DSy~ = E I  D~y, + .Ma,23 ,, . 

For a mere particle we may make J zero. We could take J to be finite with M negligible if the 
radius of gyration were sufficiently large. 

(G) Elastic Flexural Hinge in Beam 

Let s be the stiffness of the hinge (moment per radian of angular deflexion of hinge). Then 

Y r ~ "  Y l  

s Dy, = s Dy~ + E I  D~y, 

D"y, = Day, 

D.~y,.--D3y,. 

. . . . . . . .  (4.1.11) 

(H) Sliding Connection giving Relative Deflexion Proportional to Shearing Force 

The connection is supposed to preserve continuity of slope. The stiffness is a (force per unit  of 
relative displacement). 

y,  = ay~ -- E I  DSy~ 

D y e =  Dyz 

D2y~ = D~y~ 

DSy~ = Day,. 

. . . . . . . .  (4.1.12) 

4.2. Application of the Operator D 2 to 
obtained by taking the new variable to 

Z ~  

Then 
D z  = 

Dpz= 

D~z= 

Flexural Oscillations.--Some results of interest can be 
be 

D y. 

D3y 

D4y = #4y 

DSy = #" Dy  . 

. .  (4.2.1) 

From (4.1.5), (4.1.6), (4.1.7) and (4.2.1) we see tha t  the transformations of end conditions are : -  

Built-in becomes free 
Simply supported becomes simply supported 
Free becomes built-in. 
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Example 1. Apply Transformation to Free-Free Beam without Discontinuities. 

By the results just obtained we deduce that  the variable z is the deflexion in a free oscillation 
of a doubly built-in beam. We see that  the free-free and doubly built-in beams (of identical 
lengths and flexural rigidities) have the same spectrum of non-vanishing natural  frequencies. 

I t  is well known that  the frequency parameter/3 for both cases satisfies 

cos/3l cosh fil = 1 . . . . . . . . . . . . .  (4.2.2) 

Example 2. Apply Transformation to Beam without Discontinuities having Built-in and 
Simply Supported Ends. 

The transformed beam, which has the same spectrum of non-vanishing frequencies as the 
original, has one end free and the other simply supported. The frequency equation is 

tan fil = tanh fil . . . . . . . . . . . . .  (4.2.3) 

Example 3. Cantilever Beam. 

This transforms into a cantilever beam, but  the ends are interchanged. 

We now apply the transformation to some of tile discontinuities already listed. Not all 
of the results find obvious physical interpretations and only the useful results are recorded 
here. 

Transformation applied to Carried Particle.--We find from (4.1.10), with J made zero, and 
(4.2.1) tha t  

Z r = Z~  

D2z~ -= D2Z~ 

D~z, = Dsz~ 

M w  2 
Dz, = Dzl + EI/3~ D~z~ 

M 
= Dz~ + ~ D % .  

Therefore 
sM 

s Dz~ : s Dz~ + - -  D% . 
7 n  

By comparison with (4.1.11) we see that  these conditions appertain to a flexural hinge of 
stiffness s given by 

m E I  
s =  M . . . . . . . . . . . .  (4.2.4) 

I t  is notable tha t  this relation is independent of the frequency. 

Transformation ap2blied to Flexural Hinge.--We find from (4.1.11) and (4.2.1) tha t  the 
flexural hinge is transformed into a carried particle of mass M given by 

m E I  
M - -  - -  g ' 

which accords with (4.2.4). 

7 



Transformation applied to Flywheel fixed to Beam at  Simple Support.--Suppose tha t  the 
flywheel of moment of inertia J is fixed to the beam at its left-hand end, which is simply 
supported. By (4.1.10) 

y = 0  

E I  D~y =- - -  ]o7 Dy . 

On application of the transformation and use of (4.1.2) these equations become 

D~z = 0 

z = J D~z 
m 

By (4.1.8) we see tha t  these conditions relate to the left-hand end of a beam with a spring 
support whose stiffness is 

m E I  
o----- . ]  . . . . . . . . . . . .  (4.2.5) 

and with no other constraint at this end. 

4.3. Some S~becific Examples of Related Flexural Problems.--A large number o f  pairs of problems 
having identical spectra of non-vanishing frequencies can be constructed by  use of the foregoing 
results. A few specimens of these are set out here. 

(@ MASSIVE 
PAR T IC L E B U I LT-I N//j//~ 

END ~ 0 FREE END 

I i 
i I 

FREE END I X,~ 

FLEXURAL 
HINGE 

BUILT- IN 
END 

The mass of the particle and the hinge stiffness are related as in (4.2.4). 

As a special case we may take the particle to be at the free end of the first cantilever. Then the 
flexural hinge is at the root of the second cantilever, which thus has angular elastic yield at the 
root. 

Cb) MASSIVE 
PARTICLE 

@ 
I 
I 
I 
L 
[ 

FLEXURAL 
HINGE 

Here the beams are both simply supported and the relation (4.2.4) must again be satisfied. 

8 



MASSIVE 
( c )  / ~  HINGE PARTICLE HINGE 

=U,LT_,I. I @ x I I I UILT- IN 

END I I I I [ END 

l I i I l 
I I I 

, 
 REE @ "2 I FREE 
END I END 

PARTICLE HINGE PARTICLE 

Relation (4.2.4) is satisfied by each corresponding pair of particles and hinges. 

FLYWHEEL LOCKED 
TO BEAM AT ITS END 

t 1 
SIMPLE I ] 

ELASTIC ~ l 
SUPPORT 

The moment of inertia of the flywheel and the stiffness of the support are related by (4.2.5). 

5. Oscillation Problems Related by the Admittance Conc@t.--The method of admittances 1'2 very 
readily enables us to establish relations between the frequency equations of related systems. 
Here we shall make no at tempt  to give a highly general discussion and shall content ourselves 
with giving a few simple examples which are relevant to the problems already discussed. 

Suppose that  q, is a particular generalised co-ordinate of a conservative dynamical system 
whose equations of motion are linear with constant coefficients and let Q; be the corresponding 
generalised force. Let the generalised force be proportional to sin cot and let @ now be its 
amplitude while q~ is the amplitude of the steady simple-harmonic response to the force. Then 
the quanti ty 

( s . 1 )  

is called the direct admittance for the co-ordinate q, and it is the dynamic flexibility for simple 
harmonic motion. If in the same circumstances the amplitude of the s-th generalised co-ordinate 
is q, the quant i ty  

q" (5.2) (~S/t - -  Q# .  " • . . • . • . • o • • 

For the kind of system considered the cross admittances have the is caned a cross admittance. 
reciprocal property 

= . . . . . . . . . . . .  ( 5 . 3 )  

as follows from the Lagrangian dynamical equations ~. Admittances are, in general, functions 
of the frequency. 

Let us consider a dynamical system composed of two parts which we may designate sub-systems 
1 and 2 and suppose that  there is a simple connection between the sub-systems at P. This means 
that  the reaction between the sub-systems at P depends on a single parameter; simple examples 
are a single force in a fixed direction and a single couple about a fixed axis. Then it follows from 
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the facts that  the displacement at P is shared while the reactions are equal and opposite tha t  the 
sum of the admittances at P of the sub-systems is zero for any free oscillation of the complete 
system. Thus for any free oscillation of the system 

10: + ~0: = 0 ,  . . . . . . . . . . . .  (5.4) 
where the admittances are measured at P and the numerical subscripts correspond to the respective 
sub-systems. Since the admittances are functions of the frequency this equation serves to 
determine the natural  frequencies of the complete system. 

Next, suppose we alter the system by replacing sub-system 2 by another to which we assign 
the numeral 3. Then the frequency equation becomes 

10: + 30: = 0 . . . . . . . . . . . . . .  (515) 

This is of part icular uti l i ty when sub-system 1 is relatively complicated or when it is a continuous 
elastic body. 

The method briefly discussed above can easily be extended to systems whose sub-systems are 
multiply connected 2. 

We now give some very simple examples which concern thin beams and we adopt the notation 
of section 4. 

Example 1. Oscillations of a uniform simply supported beam loaded at mid-@an. 

I t  can easily be shown that  the admittance giving the normal displacement at mid-span 
for simple-harmonic normal loads applied there is 

. . . . .  tan ~- -- tanh g . . . .  

lo: = 4flaE I 

Now let the beam be provided with an elastic support at mid-span of stiffness ~ and of 
negligible inertia. Then 

1 
# - -  ~ . . . . . . . . . . . .  (5.7)  

and the equation determining the frequencies of the propped beam is accordingly 

tan g -- t anh  -~ 
+ ! = 0 . . . . . . . . . . . . .  (5.8) 

4 fiaE I a 

If we substitute a carried particle of mass M for {he elastic support we have 
- - 1  

ac~ - -  M e ) 2  

and the frequency equation becomes 

tan -~ -- tanh g _ 1 
M~o= = 0 . . . . . . . . .  (5.9) 

4~aEI 

Similarly, if we connect the particle to the beam through a spring of stiffness ~ the admittance 
of the spring cure particle as measured at the end of the spring is 

1 1 
O~ M f D  ~ 

a n d  t h e  f r e q u e n c y  e q u a t i o n  is t h e r e f o r e  

t a n  ~ - -  t a n h  -~ 

4 /~aEI  
1 1 

-t ~ M ~  - -  0 . . . . . . . . .  (5 .10)  

10 



Example 2. A free uniform beam loaded at its middle. 

I t  follows as above on making use of the appropriate admittance for the beam that  the 
frequency equation when there is an elastic support at  the middle of the beam is 

--  1 + cosh-~cos 1 

( fil . fil fll ~ ) + - = 0  . . . . . . .  (5.11) 
2~3EI cosh ~ s m ~  + cos ~ sinh ~r 

For a particle of mass M carried at the middle of the beam the frequency equation becomes 

( 1  + c o s h ~ c o s  ~ )  1 

/~l /~l /~l /~I + - - 0  . (5.12) 
2 ~ E I  (cosh ~- sin ~ + cos ~- sinh ~ )  M°~ . . . .  

Example 3. Cantilever with angular yield at the root. 

I t  is known 4 that  the frequency equation for a uniform cantilever having elastic angular 
yield at the root is, in the present notation, 

EI~  
1 + cosh ~l cos $l + - - ~  (sinh $l cos/31 --  sin/31 cosh/~l) ---- 0 . . . . .  (5.13) 

Since the angular admittance of the support, which is supposed to have no inertia, is I/s, it 
follows on comparison with (5, 4) that  the angular direct admittance of a simply supported- 
free beam for couples applied at its simply supported end is 

1 + cosh ~l cos ~l 
~c~ ---- E I $  (sinh $1 cos/~l --  sin ~l cosh ~l) . . . . . . . .  (5.14) 

and it is easy to verify this by direct calculation. If now we replace the elastic support by 
a pivoted flywheel of moment of inertia J to which the beam is at tached at its root, the 
frequency equation is obtained fl-om (5.13) on substituting --  o~"J for s. 

LIST OF SYMBOLS 

Note" The three quantities 
jC, m E I  and m E I  
7 '  sM 

are non-dimensional. They all have the value unity for the related systems discussed in Sections 
3 and 4. 

The Greek symbols are listed after the Roman. 

C Torsional stiffness of unit length of shaft 

C ,  Cz Values of C to right and left of a discontinuity respectively 

d 
D Operator ~-~ 

D1, D2 Partial  differential operators with respect to xl, x~ respectively 

E Young's modulus 

f(D) A linear differential operator 
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I 

J 
Y 
l 

M 

Q, 
q~ 

S 

X 

Y 

Y,, Y~ 
Z 

O~rr 

~rs, O~sr 

o 

0~, Ot 

# 

ff 

¢ 

¢(D) 
(D 

LIST OF SYMBOLS- -con t inued  

Second moment of section of beam 

Moment of inertia of a flywheel 

Moment of inertia of unit  length of shaft 

Length of shaft or beam 

Mass of particle 

Mass of unit length of beam 

Generalised force corresponding to co-ordinate qr 

r-th generalised co-ordinate 

Stiffness of elastic coupling or hinge (moment per radian) 

Displacements in a pure oscillatory mode 

Abscissa, measured along shaft or beam 

Deflexion of beam 

Values of y to right and left, respectively, of a discontinuity 

Deflexion of beam 

Values of z to right and left, respectively, of a discontinuity 

An admittance 

Admittances of bodies 1, 2, 3 ,  respectively 

Direct admittance for co-ordinate qr 

Equal cross admittances 

Angular displacement of shaft 

Values of 0 to right and left, respectively, of a discontinuity 

Linear stiffness of flexible support 

Angular displacement of shaft 

Values of ¢ to right and left, respectively, of a discontinuity 

A linear differential operator 

2~ times frequency 

No. Author 
1 W.J. Duncan . . . .  

2 W.J. Duncan . . . .  

3 Lord Rayleigh . . . .  
4 W.J. Duncan . . . .  
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