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Summary.—Formulae are found for the pressure distribution at supersonic speeds and at zero incidence for certain
symmetrical surfaces of small finite thickness, with swept-back leading edges, the surfaces being set symmetrically to
the wind direction. The solutions are only valid if the surfaces lie wholly within the Mach cone of the apex.

The results are applied to the surfaces
z (x2 - 42 cot? y)1/2
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¢ being the chord in the vertical plane of symmetry, and £, a constant determining thickness.
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Combining these solutions with others already available, the pressure distribution is found for a wing whose equation

is of the form
z £ AR y2)<x2—y2cot2y>1/2
g=(1+ =5 +m) (%)

where a, b, d are constants. Some examples of the pressure distribution for wings of this type have been calculated.

1. Introduction.—In R. & M. 2548', the linearised differential equation of supersonic flow is
solved in a special system of curvilinear co-ordinates, referred to as hyperboloido-conal
co-ordinates; and it is shown that one of the simplest solutions corresponds to the flat delta
wing at incidence. In R. & M. 2549?, further solutions are found, corresponding to the thin
elliptic cone and the elliptic hyper-cone at zero incidence, and the two solutions are combined to
give the flow over a wing-like surface.

In the present report, certain general solutions are discussed, and the results are applied to
the surfaces z/2f, = (x*/c®)[(x* — ¥* cot?y)/c*[*/* and z/2f, = (¥* cot® y/c*)[(x* — »* cot® y)/[c*]' /%,
where x is measured downstream from the apex, y is measured to starboard and z is measured
vertically upwards. The quantity ¢ is the chord in the vertical plane of symmetry, y is the apex
semi-angle in the horizontal plane of symmetry, and 4%, is a constant determining thickness.

* R.A.E. Report Aero. 2312.
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The surfaces are symmetrical with respect.to. the xy and the zx-planes: and they are set
symmetrlcally to the wind difection, with the apex pomtmg against the stream. " The solutions
are only valid;if the surfaces lie Wholly within;the Mach cone of the apex, and therefore the Mach
angle m (= cosec™ M) is greater than the apex semi- angle Y.

The solutions for these two surfaces aré combined with those given in R. & M. 2549% to give
the pressure distribution for wings of small finite thickness placed symmetrically to the wind
direction, with straight leading edges and a hyperbohc or parabohc trailing edge. Some
calculations for wing drag have also been made.

2. Method of Solution.—The method is essentially t’hat-'use"d in R. & M. 2548 and 2549°.
The co-ordinates used are the pseudo-orthogonal co-ordinates introduced in R. & M. 2548,
where :
/)1,/“7) 7(#2 . ]7/2>1/2 (7)2 o kz)l/z B 7,(#2 o k2)1/2 (kz . 7,2)1/2
TR YT MR E AT R R - ()

[J‘ M'2_1::cot2m—k2_]

k = c0t2y, ]z = cot2 v - co’t2 "
It is assumed that the surfaces all lie close to Lhe basm plate whose equation is = £, and that

the induced velocities on the surface are Small and equal to the induced velocities on the plate.
Therefore, the relation between the shape of the body and its induced velocity potential 4 is of

the form
Bx V(az>ﬂ, R PR AR
where V is the free stre'Lm Ve10(:1ty R | ‘
For the linearised the’ory,' th‘e'pfessure difference 4p'and the pressure coefficient C, are given by :
4 Ap - PV( o= B

211]5 2 ‘ SRR
CPZWE-:-—;V 896);} o 8 o ‘,‘ .. .. .. (4)

where p is:the density of the free stream.

The linearised differential equation for the velocity potential ¢, in terms of the co-ordinates
v, u, vist:

(4?2 — »?) a;( ) VI — ) (e *kzja <“‘/[" — ), ]3#>

0 — e —o (VI — B — 2 ) =0 L e

and it has been shown, in Appendix V of R. & M. 2548, that a solution of equation (5) can be

found of the form ¢ = #"f(u, »), where f(u, ») is the product of two Lamé functions of g, »
respectively, of degree #, n bemg a positive mteger

A standard Lamé function of degree n, E,"(x), can be determined in (2n 4 1) different wayvs.
and belongs to one of four claqses K, L, M N (Ref. 3) '
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- Assuming that E”(x) has been determined, there is a second solution of Lamé’s equation
defined by** '

@0

. @
F(u) = E,:”(WJ EFOFIE — 7 @ — B

For the solution of problems of the type under consideration, we require that the equation of
the surface found by the integration of equation (3) shall give symmetry with respect to the xy and
zx-planes, and that (x* — y* cot®y)'/* shall appear as a factor. It is easy to verify that the
required solutions are given by combinations of solutions for the potential of the form

nm — C1L1,11Fn7n( /,L) . Enm(v) ,

where E,(s) is a standard Lamé function of degree # of the K class; that is, E,*(u) is of the
form E,"(u) = u* + a,u”* + . . ., the last term being a,/, o1 a,_1y. according as # 1S even or
odd. ¢, also satisfies the condition ¢,” = 0 on the Mach cone of the apex.

The solutions for odd and even values of # will be considered separately.

3. (i) Solutions for n = 2N + 1.—For n = 2N 4- 1, where N is a positive integer, there are
(N + 1) K-functions of the form .

E2N+1m(ﬂ)-: pA Tt - b1,m;“2N~:1 +.oooo+ bN,nuu‘: m=12.... (N + 1) . (6)
Equations satisfied by the coefficients &, ,,, . . . . by, are given in Appendix II.

The second Lamé function is given by

: dt
Foy™(u) = E2N+1m([u)J\[E2N+lm(t):|2 E— B (B — B =Eon ") - Royii™(p) - (7)
u

We consider the solution - , _ _
¢m = CzN+17’2N+1E2N+1m(#)E2N+1m(”)RzN+1m(/‘) . . .. o (8)
At the plate, u — &, and

2 2,2 D22
pr g (x ﬂfy) , Piyp? _ﬁé_ , (9)
and
3y by .
8z ou oz
Hence, it can be shown that, as y — %,
a(ﬁm - C2N+1 1/2NE2N+11”<1’)
i Emi(B) (= i .. .. .. .. .. .. .. .. (10)
. _ C2N+1h xl:thsz + bl,thN—-—2x2N—2(x2 _ ﬁZyZ) + . + bN’m(XZ _ ﬁ2y2)N]
= )82N+1E2N+1m(k) (xz — k2y2)1/2
) 27 52N — 27
_ . CZN+1}I’ x Z (Hr,mx y )
= GVEE,, o TR) 3 — Ry , .. .. .. .. . .. .1
where

H,, = (—1)v-rpa-e [bN_r, A by (N — 1)

wa N —7+ QN —7r+ 1) NI
+ by—riznlt 21 e bm} ’

and b, is taken as 1.
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Integrating the relation (3), it can be shown that, if the integration constant is taken as zero,
z is of the form

2= Doy (6™ + dy (2 4 dy Y — K . (13)
where Doy, di,, . .. Ay, are constants.

Therefore, ¢, m =1, 2, ... (N + 1), gives the indﬁced velocity potentials for the flow past the
(V + 1) different surfaces given by equation (13).

By constructing a potential
N+1

(I)2Nv+1 == Z (lm 1;5m) E) .

m=1 ' C '
where the 1’s are constants to be determined, we can find the solution for any surface of the form
of equation (13), where the coefficients are chosen arbitrarily. The values of 4, are found by

equating corresponding coefficients for z or for 0z/0x, there being, in either case, (N - 1) linear
simultaneous equations.

In practice, it is convenient to construct solutions for surfaces whose equations are-of the form

z xzsyzzv—zs P oL/
270 = o Tt » S

=0,1,...,N, .. .. .. (14

and then to combine these solutions, since for surfaces of the form (14), b1,., ... by, can be
more easily eliminated, and the constant coefficients expressed in terms of % and k.

To find the pressure distribution, we require the value of 896,,,/ ox. Wheny—*£%,

8¢m o C2N+1h E wE R w(f N 9 NH 27 5 2N — 27 : 15
ox fEAT - 2N+1()- 2N+1()Z[(7+ ) nm XY 1, .. ( )

where H, ,, is given by equation (12).

It is shown, in Appendix II, that Rayi"(R) can be evaluated in terms of the cdmplete elliptic
integrals of the first and second kind of modulus /. Hence the pressure coefficient for a surface
of the form (13) or (14) can be evaluated from the formula

—2 a®2N+1 —2 44 [ ’a(ﬁm :|
— A P N A, ( 2P»Y
¢, = 7 (25 )ﬂzk T = . (2 I TP 1)
(i) Solutions for n = 2N.—For n = 2N, there are (N 4 1) K-functions of the form
EZN”L(M) = ‘uzN - al,m[LI,ZN_z + ... -+ AN, m, M = 1, 2, e (N - 1) e . (17)
Using the notation of equation (7), the second Lamé function is given by | ,
Fsz(//') = Esz(‘u) . Rsz(M) , .. . - . - . .. (18)
and we consider the solution , ‘
b = C2N72NE2NM(1“)E2Nm(1})R2Nm(zu) . . o . . < (19)

Using the relation (8), it can be shown that

N,

b Ca 2 ) L m
ox  VBWEum(k) (2 — Ey)iE 0 " o - -
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where H',,, is given by equation (12) if 4 is written for . Hence

— Coy '
Z2 = W—j l:{dl n 2N ! + d2 m 2N 3}/ + e + dN,ml xy2N~—2} (962 - k2y2)1/2
D 2N i_ h . d N2 d ’ ' '
—|— my (xz . k2y2)1/2 3 wiere Lom » W2,m 2 « =+ » dN,m .« A .. (21)
are constants, and
N (2r) : -
D,=> [22,(7,) i, } 2

If we construct a potential

N+1

(I)2N == z_; ()‘mqsm). 3
where the 1’s satisfy the condition

N+1 ]. D ) ) }

> (2 ’”):0, L @

m=1

{
we obtain the solution for a surface whose eqﬁation is
= (™ ™3 4 Ly T (= B, L oo (24)

where ¢;, ¢, . ... cy are constants.

In particular, we can construct the solutions for the N surfaces whose equations are of the form

P x28+1y2N—2S—2 x2 _ k2y2 1/2
o7 — = (=207, L @)

for which the coefficients are more easily evaluated. For example, for » = 2, the condition (23)
gives

o (R — @)W A a(B— 28] an

e (B — a)[FR -+ a(RP— 200 a4
since 3aua, = #*k*.  (See equation (1) in Appendix II.) Therefore, the potential
O, = ¢, /a; — 2/az, Wlth the appropriate value of . Cz, gives the solution for the one surface
z[2, = (x/c)[(x* y®) /c*]*/* . This solution is. glven in R. & M. 2549

Returning to the general case, for n = 2N , When p— k,

'a¢m' — CZN m S Oy yr—1q2N =2
ax - ﬂZN EZN 2N Z I: 7. ¥, %x y ]:

the formula for R,,"(k) being given in Appendix II.  Hence the pressure coefficient C, for any
surface of the form (24) or (25) is given by '

S9Nt

cf,ziv—z[zm aa(@;:k]" o I (26)'

m=1

the 2’s being found as before, by equating the coefficients of z or of 8z/0x .
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By combining the solutions found for the surfaces given by equations (14), (25), it is possible
to find formulae for the velocity distribution and the pressure coefficient for any surface whose
equation is of the form

2= flx, y°) (6" — Ry,

where f(x, %) is a rational algebraic function of # and y* .
4. Examples
) z P kzyz 1/2
(i) The surface % = o ( — )

at zero incidence.

3 2 B2 /&% BEEN\1/2
(ii) The surface 5 = T;: < = k4

For the two surfaces (i), (ii), the solution for # = 3 is taken. We assume
Ep) =p* —a,p, m=1,2. .. .. .. .. .. .. (27
Relation (2) of Appendix IT gives the equation »

Sa,’ — 4(h* 4 ka,, + 3h%: =0,
and therefore,

@ Ay = WP+ R, aa,= 3R, .. . .. . .. .. (28)
We consider the solution
¢m = C37/3E3m(,u)E3m(V)R3m([u) s m = 1, 2 . .. .. .. .o (29)
and it can be shown that, as y — %, : _
aqsm _ C3hx l:hzxz — 17 (xz — ﬂzyzﬂ
Pl REE — o)t — B e .. (30)
and :
0 3
%‘—} Cﬂf’k (B — a,)[8(F* — a,)x* + a,B*v*IR™E) , .. .. (3D
where (see Appendix IT)
o 1 h
ReE) = g = e =y | P — 2 — 295(3)
—(3@,,_}42_2/@2)1{(%)} , 3

K (%) , E <%> being the complete elliptic integrals of the first and second kind respectively.

We construct a potential

q):;:ll(]s]_—}"lgfﬁg, .. . e . . .. .. .. (33)
where 1;, 4, are constants to be determined after using relation (3).

¥ (x — Ry

. 2 /2 .
(i) The surface 57 = 2 P > at zero incidence.
0
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If @, is the induced velocity potential for flow past surface (i), it can be shown, after some
snnphﬁcatlon that

b (5a— )
22 5@1 - h/z :

Therefore, the induced velocity potential can be taken as |
5
O; = VE (@sps — aubs) — (b1 — ¢s) . o o " - (39

By comparing coefficients, it is found that this requires

2, VR

ngm. .. .. .. .. .. .. .. (35)

Hence, by using relation (4), and eliminating a,, @, by means of relations (28), it can be shown
that the pressure coefficient C, is given by

covtar =1y =# [, (2) 4 . (})]

%[ #F, (tany>+y oty ( any)]’ oo 9

tan m tan m

2

) tan?
since 73 = 1 — L

tan?m
2

Writing 7= ®*,

1 — %
EEZ/L = ’\4(2—6") [(3* T #  8)K(x) — (6x° + 5" + 8)E(x)] 1
(37)
EZE; ? \/(IT,;%—) (" — 9%* + 8)K(x) + (" + 5#* — 8) E(+]], ]

Where K(x), E(x) are the complete eHiptre integrals of the first and second kind respectively,
with modulus ». :

tan ¥

The functions F,, F, are finite and continuous for O < I < 1, thatisfor 1 > |»| = 0.

It can be verified that when » — 0, F, — 2-798 and F, —0-4416 .

N x2 _ kZ 1/2 . .
(ii) The surface = > < 3 R4 > at zero incidence .
2, c c

If ®, is the induced velocity poterrtial for surface (ii), it can be shown that

A (R — a)(B* — a,) (8h°R* — Sa, it — Sa.k?)

e T B —a) —a) " T SR — Sa it — 5a

Therefore, we construct the potential .

' B2 V ,
0, = 8kz(¢1 — ‘752) —5 ]%2 (“1¢1 — “z‘l’z) — 5(“2‘751 — “1‘}52> . e .. (38)

7




It is found that in this case

— 25, VR ,
632563[)’}1/3(&1—@2) . .- .. e - E .. . (39)
Hence it can be shown that the pressure coefficient C, is given by
4¢ h h
coviar — ) =2 6, (8) + ke (4]
' 4 tan y ' tan ¢\ .
= 6—30 I:szs m) + 3 CotzyF4 (m ] . . . . (40y

2

Writing =,

F (B2 ) = Gy = Y= s 59K () — (8 — »E)]

an m
(41)
tan 1 — %
F, <WZ) = Gy(#) = \/—(—2%6—%2 (8 — 15x* 4 7« K(x) — (8 — 11w 4 2x") E(x)] .
The functions Fy, F, are finite and continuous for 0 < :EZE;; % < 1, thatis, for 1 = [x| =0.

It can be verified that when » — 0, Fy;— 0-1472 and F, — 0-4416.

The values of F,, F,, F, F, are tabulated in Appendix I, and are shown graphically in
Fig. 1. ‘
2 2 2 a2 12 L/2 o

g — %2 + 2%2) (%) , at zero incidence.~—By combining
the solutions found in section 4 and the solutions given in R. & M. 2549?, a formula can be found
for the pressure coefficient for a wing of small finite thickness, with straight leading edges and
a hyperbolic (or parabolic) trailing edge. If the constants are chosen so that 4/b > tan m, the
whole of the surface will lie outside the Mach cones of points on the trailing edge. If this condition

is not satisfied, there will be small corrections to be made for the portions of the wing within these
Mach cones.

b4
5. The sutface 5 = (1 -f

The pressure coefficients for the surfaces

2 L 42 k2y2 1/2 2 % Y- kzyz 1/2
o, ( c? ) and %y E( c? )
are given by

Covir — 1y =" (2

tanm (42)

Con/(br — 1) = o, 227y, (43)
respectively, where

AR VU gy B .. (4

fo 22,;) = V(le ) [(#2 4 2K (%) — 2(x* + 1) E(x)] Lo (45)

/1 fo are tabulated in R. & M. 2549? and are repeated in Appendix"f to this report.
3 .




Hence, combining the formulae (42), (43), (36), (40), the pressure coefficient for the surface
z ;_U_gf _’}/2‘ %% — y*cot?y 12
ig{; = (1 + a bz + C—Z—2><—_7———> 15 . .. .« (46)

4, 1 1 1 g
G — 1) =" f 42 f— L wF 4 BR) + g R Ry Fy|.. @)

The induced drag coefficient is D = D, 4+ D,, where D, is the pressure drag and D, is the
drag due to the high pressure at the rounded leading edges of the wing*.

As an example, the drag has been calculated for the surface

for different values of y. ¢ is the maximum chord in the vertical plane of symmetry, T, is the
maximum thickness and the thickness ratio 7/c is taken as 0-10. It can be shown that the
pressure coefficient C, is given by

Cp/(M? — 1) = 0-189 [0-6303 + 1'5038%6 — 4.911 iiz 4 0.723%]

The pressure drag is found by integrating the component pressure along the wind direction
over the planform. Therefore, the pressure drag coefficient C,, , is given by

Cp , X (area of planform) = + 2 f f C, Z—i dx dy, integrated over the planform.
z is zero on the leading and trailing edges, therefore, integrating by parts,
Cp,» X (area of planform) = —ZJIZ%P dx dy . .. . .. .. .. (48)
Hence

~ ' F
Cp,p v/ (M* — 1) = 0-035857 [0-0490]; +0-1479 F, — 0-0185 F} _

R. T. Jones’ formula for the force per unit length normal to the leading edge at any point is*

pV? sin® y
Fn:mf? (1 = M= sin? )" .. .. .. .. .. .. (49)

where 7 is the radius of curvature of the leading edge and the other symbols are as defined in the
report. This leads to the additional drag which is given by

' tan y tan® p\'2 (17 9 , 1 . |
Copu/ (M — 1) = 0-0176722 ;o2 0 (1 — 25 1) {% + 4 (tan®y — 8) - gg (tanty —8)*| -

The total induced drag coefficient is C, = Cp, , + Cp . -

The drag coefficient Cj, based on the area of the wing, is plotted against M in Fig. 3. The strip-
theory values for the centre section are also shown.
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As examples of the pressure distribution, some calculations have been made for

T 242 2
(a) the surface z = 0-94 ~C—°< 1+ g — C_f- }1% >(xz By vy

for M = 1-118;

T x 2
(b) the surface z = 2 ?O <1 - + %)(xz — 3y,

for M = 1-442;

c [#

2 2
(c) the surface z = 0-6095 % (1 4 v%yz— )(xz — ¥

for M = 1-118:

2T, 142
(d) the surface z = —C—O (1 — j:ﬁ + -2%)(962 — Y2,

for M = 1-118;

. s o .
(e) the surface z = 3-375 %’(1 — 2x -+ iiz —_— 3% )(xz — 3y,

c [

for M = 1-442;

oo Lo 3x  1x2 1y°
(f) the surface z = 2-5987 (l — % -

gc 4/ — I

for M = 1-709 . | f

In each case, ¢ is the chord in the vertical plane of symmetry, and T\, is the maximum thickness
in this plane. The thickness ratio T/cis taken as 0-10. The pressure distributions and the shapes
of surfaces (a), (b), (c), (d), (e), (f) are shown in Figs. 2, 4, 5, 6, 7, 8 respectively.

It is easy to show that for any surface of the form given by equation (46), if 4* > 0, the
maximum thickness in the vertical plane of symmetry is at x = x,, where ¢/2 < x, < 2¢/3,
¢ being the chord in this plane, and also that the leading edges are slightly rounded, except at the
apex. Ifb* <0, as in surfaces (e), (f), ¢[3 < », < ¢/2.

For surface (a), it can be shown that, for M = 1118,

2 2
C, = 0-378 [0-6303 +1-50387 — 4-9115 + 0-723%—2} ,
for all points on the surface. ‘
For surface (b), for M = 1-442,
' 2 2
C, = 0-3849 [0-6740 — 15838 2 1 0-0702 5, + 0-2949%} ,
for all points on the surface ahead of the Mach cones of points M, N on the trailing edges (Fig. 4).
For surface (c), for M = 1-118,
x ‘ K2 yz
C, = 0-2438 [0-6303 +4-514- —9-0244  + 2-3232°5 | ,

for all points on the surface ahead of the Mach cones of points M, N on the trailing edge (Fig. §5).
10



For surface (d), for M = 1-118,
x x* y?
C,=0-8]0-6303 — 1-5038 -+ 0-1139 7 + 0- 1253 % |,

for all points on the surface ahead of the Mach cones of the points M, C on the trailing edge (Fig. 6).

For surface (e), for M = 1-442,
' ' 2

v ) 2
C, = 0-6495 [0-6740 — 31676+ 23785 — 1.9725%} ,

for all points ahead of the line MPN (Fig. 7).
For surface (f), for M = 1-709,

2 V 2
C, = 0-3749 [0-7393 — 2:5390 > 13458 5 — 0-7068%} ,
for all points on the surface.
6. Conclusion.—Similar calculations could be made for surfaces formed by including solutions

for higher values of ». But for » greater than 3, the work involved in obtaining the formulae, in
a form suitable for computation, would be considerably longer.*

* Calculations have since been made for » = 4, 5, 6. The results will be published in R. & M. 2865.
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LIST OF SYMBOLS

¢ Chord in the vertical plane of symmetry
f,  Constant determining thickness
y  Apex semi-angle
T, Maximum thickness of wing in the vertical plane of symmetry
%  Chordwise co-ordinate (measured downstream from the apex)
y  Spanwise co-ordinate (posi‘tii’ze to starboard) J
z  Normal co-ordinate (positive upwards)

¢f. equations (1), (2)

m  Mach angle
M Mach number
o (MP=1)'7
k coty
h (cot®y — cot®m)'/®
¢, ®  Induced velocity potential
V' Free-stream velocity
p  Free-stream density
44 Pressure difference
E,(n)  Standard Lamé function of degree »
F,(u)  Lamé function of the second kind
Rin)  Fou)/E,u)
% bR
K(») Complete elliptic integral of the first kind, with modulus »
E(»x)  Complete elliptic integral of the second kind, with modulus »
Cp  Drag coefficient, based on the area of the wing
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3 Hobson ..
4 R.T. Jones

Cambridge University Press.

Leading-edge Singularities in Thin-airfoil Theory. Journal of the Aeronautical
Sciences, Vol. 175. May, 1950.
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" Values of the functions fi, fo, Fy; Fz,’Fg, F,

APPENDIX I

@—}—J 0-1 02 0-3 0-4 0-5 0-6 0-7 08 0-9 1-0
tan m i ‘ )

2[R

— 0:99 096 0-91 0-84 0-75 0-64 0-51 0-36 0-19 0

fi 0-2707 0-4095 0-5048 0-5755 0:6303 0-6740 '0 -7097 0-7393 0 : 7642 0-7854
s 0-7148 1-0438 1 -2528 1-3979 1-5038 1-5838 1 76458 16927 1-7347 1-7672
F 1-286 1-821 2-132 2-342 2-484 2-587 2659 2-720 2-760 2-798
— F, 0-0950 01745 0-2385 0-2895 03302 03626 0-3893 0-4088 0-4260 0-4416
FSV 0-2139 '0'2550 0'25727 0-2452 1 0-2279 0-2105 0-1916 0:1770 0-1610 0-1472
F, 0-0507 ' 0-1026 0-1539 0-2036 0-2506 0-2949 0-3321 0-3746 0-4100 0-4416
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APPENDIX II
Evaluation of the Second Lamé Function F,(k)
The second Lamé function F,(x) is given by :

Fn(,u) = En(ﬂ) J\ [En(t)]z(tz — 22)1/2 (tz _ kz)l/z = En(f“)Rn(:”') p

where E,(r) is a standard Lamé function of degree n. The class of Lamé function considered
here is the K class of functions®; that is E,(z) is of the form u” + au™ 2 + au"*+ . )
wherea, , a,, . . ... are constants, and the last term is of the form a,, or a,,_ . accordmg as 7 is
even or odd. ' P IR o

It is shown in Ref. 3 that the roots of the equation E,(u) = 0 are all real and unequal, and not
equal to' 4 % or 4 k. Therefore, if % is even and equal to 2N, we can express E,(x) in the form
Eoy(p) = (u* — c1)(u® — 02) .. (M — Cy), Where ¢y, ¢, . . cN are real positive and unequal.

Substltutmg for £ in Lamé’s equation
2

&E
(w* — P)(p* — #) 77 + p(26® — e — k"’ + {(B* + Ep — n(n + BE =0,

and. substituting the value u* = ¢,, we obtain, after some mmphﬁc:ition ‘the relation

<3+ k2+ k,z k2)+2(cri‘ol‘ + c,—l-cz*,",': Cr —10N> =0,
. | : (1)

yr=1,2,...N, s =vr.

| Similaﬂy, if # is odd and equél to 2N ‘—|— 1, E,(u) can be eXpressed:in the form
E2N+1(,u) - M(Mz - dl)(ﬂz - dz) ce (Mz - dN) ’
where dj, d,, . .. dy are real, positive and unequal, and it can be shown that

2d(5+dk2h2+d >+2(d d+d——d2+ +d —z t- +d—dN>"0

(2)

r=1,2...N, s #7.

To evaluate

i it
RzN(k) = J(tz — 01)2 (tz _ 62)2; - (Zf2 - cN)z (t2 - ],Lz)l/z (t2 — k2)1/2 ’

&
put? = ksnu, and write A*/A* = »*, ¢, /® =% v =1,2,... N, snu being a Jacobian elliptic
function of modulus #.

Hence
K(3)

1 sn® u du
Rzzv(k) = k4N+1J 2 o2

(1 —o®sn®u)® (1 — a’sn®*u)?. .. (1 — ay®sn’u)®’
[}

K(») being the complete elliptic integral of the first kind, with modulus ».
14



Similarly, it can be shown that

K@)
sn*V+2 y du

RWMM:kwﬂjﬂ—ﬁﬁmWﬂl—m%ﬁ@?“ﬂ—ﬁfmmf’

o}

where d,/R* = %, r=1,2, ... N.

sn® 2y
— o ®sn?u)(l — o’ sn®u) ... (1 — oy® sSn® %)

By expressing a in partial fractions, we obtain,

after some further simplification,

Roy(k) =

k4N+1 2 [ T (T — ) (= ) (o — o) {fu s

K (%)
. 1 1 1 1 sn®u '
T Z(ocf'#o'cf ™ i B + SR a,Z—och>J 1 _“fzsnzud%ﬂ
o . 0

and
R2N+1(k) =

K(3) R
1. sn® u

1 & - L
w2 [ e | J = grsorup

. ) K(x)
of 0 Lo 1] 1 sn* # H
_2-<'ﬁﬁ Ry Ry R R L WLI — 57 s
‘ o s =7,
It has been shown in the Appendix of R. & M. 2549* that

K{3)

K(x)
sn* u (1 — K () — E(x) 1 5 1 sn®u
J (1 — oczsnzu)ad% T 2% — o) (1 — &) _Zo_oc2<3 R —— TET 1) 1 — oczsnzud%’
¢ 0

where K(x), E(x) are the complete elliptic integrals of the first and second kind, with modulus .

It can also be shown that

Y w82 28 — (38— 2 — #K()
= F o 2F (7 — FI(1 — F)

0

R
1 ( 2? 1 ) sntu
_2—-‘82 5+ﬂ2_%2+ﬂ2_1 Jol—ﬂzsnzﬂd%.
Therefore, using relations (1) and (2), it is seen that the coefficients of
’ K(x) K(x)
_ sn*u sn* u du
—ocr sn% ’ l~—/3725n2u

in the expressions for Ryy(%), 2N+1(k) respectlvely, vanish.
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Hence, (s ¢ 7),
Rzzv(k) - L . ;
1 ﬁ [ . 1 (1 — a)K(x) — E(x) ]
AW = | (o, — o) (o, — o). (o — o) oL (o — o) 200%(x2 — 0B (1 — o,?)
Royia(k) =
1 & 1

i [(ﬁrz — B (B — B (B — B (B — B

(86, = 2= 2)E(:) — (38,2 — w* — 2)K(u)} |
2825 — B,5)(1 — B,

4N 43
RANHS <

Therefore, substituting, for =, a,, B,,

FzN(k): .

e
-k 2N( );:i (Cr——01)2(07—02)2-"(0;—_03)2"'(0’_CN)‘ 2 (h -6 (k —C
F2N+1(k):

1, : |
k 2N+1 Z [ d - dl)2 (dr - d2)2 e (dr '_“dS)z‘ x (df— dN)Z

(34, — 2% — UAE (Z’)— (3d, — 1 — 2k2)K(]]—:) ] .
2 — ) — d)
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