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The linearized theories of oscillating wings in subsonic and
supersonic flow are formally discussed. The computability of the
subsonic problem is considered when Mach number, frequency and aspect
ratio are arbitrary ani also when any one of these parameters takes
extreme values, Methods of treating serodymamic flutier problems are
briefly outlined, The most general subsonic problem for a rectangular
wing, already solved numerically on a desk machine, should now be
examined vith a view to mechanized computation.,  Special theories,
perticularly suited to high-sveed computation, should, 1f possible, be
extended to arbitrary frequency and Mach number.
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1« Introduction

In considering the perturbation of a unaform stream of velocity
U dus to an oscillating wing, it is usual to neglect the squares of
increments in velocity, of wing thickness and amplitude of oscrllataon,
Viscous effects are also ignored, so that the problem 1s specified by the
planform of the wing, the mode of oscillation, the non-dimensional
frequency and M, the Mach number of the strcams It 183 requared to
evaluate the local phase and armplitude of the aerodynamic loading,
According to the linearized theory the perturbation velocity potential,
&, satisfies the cquation (Ref. %, 0.328)

9% 8%@ 9% M7 8% M® 3%
2
(1 = M2) =mm § wrm p e m e e = e e o 0, cer (1)

ax® 3y* 9 oy oxdt U® at?

and the pressure at any point is given by

a& a%
P-DP = -=p (%* L U - ) . ees (2)
o * \at ax
When the stream is sonic (M = 1) the dafferential ecustion (1)

simplifiies and certain analytical solutions ex1st? (Mﬁngler, 1952). In
supersonic flow (M > 1), when the differential ecuation becomes
hyperbolic, there is a class of solutions in closed form (8.4)., Mo
general solution of the problem exists when the flow is subsonic; even
when M = O, (1) reduces to Laplace's eguation, but remains intractable.

An important feature of current theoretical resecarch on subsonic
oscillatory flow 1s the diversaty of methods applicable to a given problem,
The choice of method will depend on indavidual experience, facilitires for
computation, the required accuracy and the anitended application, The
various methods all involve further assumptions or approximations, so that
(1) 1s never solved oxactly for M < 1. Several simplifying assumpiions
are considered in 8.2; the verious numerical proccsses and apoiroximations
are discussed in 8.3, Most methods use collocation, conditions of
tangential flow being satisfied at, say, n positions on the wangs  This
involves arbitrary choice of the n positions and of n complex functrons
to ropresent the phasc and amplitude of the pressuree The main cflort
of computation lies in expressing these boundary conditions as a set of n
complex lincsr simulianeous equations, which are then solved by routine
methods for the unknown coefficients of the pressure daistribution.

The precise nature of the oscillatory motion of the ving i1s
not impertant. Whether the problem to bc solved is that of a pitching
wing or an oscillating partial-span control, the matrix of the
similtancous cquations is usually the same. Moreover, it i1s not highly
significant whether the problem is symmetrical (pitohing) or
antisymretrical (rollingg.

2. General Fouations in Subsonic Flow

2,1 Differential Eguation and Bourndary Conditions

The differential equation for the perturbation velocity
potential, &, iz given in couation (1), anl is subject to the following
four boundary conditions:

(a) On the planform S in the plane z = O
as  o0z{x, y, t)  8z(x, y, t) .
= = memmemmemEm—— 4 U memmmeee——— ’ 000(3)
9z ot ox
where z = Z{x, ¥y, t) represents the surface of the wing.

(b)/



(k) In the wake
28/3t + Udad/ax = O, eeo (8)

This expresses the fact that the pressure is contimuous across the wake,
and follows from equetion (2) coupled with the observation that
&(x, v, 2, t) = -3(x, v, =z, t).

(e) &t the trailinz cdge the velocity is famate.

(@) Infimitely far from the winz and wake the disturbance tends to
nero; @ 28 such that 1t represents an outgoing disturbance [sce footnote

to equation (7)1.

Doqustion {1) may b~ sumolified by the substitution
r 2.

1 M w l
I = 4 (}C, v, L) eXp | =w=mmmeme exp(lwt); cr-(5)

(1 - 4%) |

P then satisfies
3%, 8%y MRy 2
hd v
(1 = W3) =t g =k e | e v o= O ees(6)
8x® ay® 0z® UR(1 ~1%)

Fven so, the diffcrential equation does not provide a sclubtion to the
problem specificd above, becauvse of the nature of the boundary conditions,
(b) in particular. Direct numeraical methods, such as rclaxation, do not
appear o have been attompted -,

2.2 Integral Eouations

As shom in Ref. 3, 8.3, the upwash at a point on the wing
may be cxpressed in terms of i, the distrabution of 1lift over the wing,
by the equation®

u(x, y, 0) 1 - | ~iw(x = xt)
---------- = ~ == lim / j 1(x", y')oxp | ===mmmem———] x
U Bz o0 g U
- - . e
Xt 1wE | 8° J1 I wlir | L
[ exp | === | - 1— exp I: ~——-| P dE dx! ay! eee(7)
- 2 a
J =00 Up® 1oz? |r Ug® | |
where

o~
il

(?‘b - Pa_)/éPOOUB ‘l
r? E2 4+ Py ~ y' )P +5"’z°j

Buffices = and b denote values on the upoer and lower surfaces
respectivelys An alternative integral equatiord (¥, P. Jones, 1951)
is

S|

T oo [ i
1 [ f : | [weg| o (1 T
w = - 1im (Il - (:@ Jern | m———- ] —— - pr - - ——— dx| d‘V'
a b h ~ j J o
AT 7> 0 J o LUﬁ" _J az° lE' L UISQ_~
X (8)
whers/

- mm wm e am ba rm am e mE MR ek wm me am g e el me ol el e MR MR MR e R v e e e rE g pw s 4R e em

¥The minus sign in the term expl- wir/UE?] 1s implied by the
boundary conditien {d) din 8.2.1,
THhis approach 18 being @xamincd in the Mathematics Division, N.P.L,
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vhere £ = {x - x') and the integral is now taken over the wake, W
as well as the wang, S,

2

Equation (7) may be writien

w

1
- = = e [s[ x'y v') « K{x - x', y - y'; ve M) dx' dy', ve.(9)
U 8m J

where v = wd/U anl 4 is any convenicnt length. The form of the
kexrnel K defined by cquations (7) and {9) 15 awkward for caleulation
becanse of the infimite range of integratign. This dafficulty has been
eliminated by Watkins, Runyan and Woolstond (4 954), who have shown that

-~

J: -V iz
K(xq, yo) = == exo(- wxg){ ---- Kﬂ_(v|yo|) i [Il (V|y0|) - L:.(Ulyop]
a2 ] ¥o 2 [Yo
wivly, ] + 8 ~iMv | yo |
§ o ——— exp ( -------- >
K353 s
14/3
- Vi v T2 exp(-ivlyolr)dr
[s]
Mxg +V X2 + Oyl iv
S Saieetl xo -~{xg - WxE + Boyd)
Liyd/Xe + Bryo I
’U'- _1
W Xg v
+ === jr exp| —=(» - WA + B y2)| @y, ... (10)
My2d o I
where o = (= - x')/a, -Vo- = (y - )/d, ¥, anmd I, are Bessel

functions, and L, 1s a modified Ztruve function (Ref, 6, De329).

To solve the integral equation (9), 1t 18 necessary to use a
collocavion metheds Then, given M and v, K may be computed for
the appropriate values of x, and y, on a desk machine. Pitching
derivatives for a rectangular wing of aspect ratio A (wing span/mcan
chord) = 4 at M = 0.866 are determined in this way in Ref. 7.
Eight losding functions and eight collocation points are talken on the
hall wang (of chord d): without further rprproximations the equations
have been solved when v = 0, 0.3 and 0.6, The results appear
satirsfactory, but the method of calculation 1s too lengthy for routine
use 1f only desk machines are used.

2.3 Approximations to the Kernel

K, as given by (10), 1s st1ll a rather cumbersome function
of four variables, so approximate forms of the kernel are sought, These
are obtained by considering extreme values of the parameters v, M and A,

For v small, Lance8 (i95)+) has shown that (:Ln the present

notation)
( ) 1 ( ) 1 X iv
K{xg, ¥o! = =~ exp{-iluxgy) = === = ~wmc—es-c—ee 4 mmmmm e
a? E\_ 37'02 y?;\/xé * ;92.?3 \/:c?J + Bgyoa
v? v
- == log =m—=-=-- VxE + By 2 - xg)
- 2 2(1 - M)
o
v im 1 X 3/ m6 N
- =ly =3+ = = "'"(M - --;—'--"-—-:*--) + 0(v3/B% 7 v il (11)
2 2 p° Ve Ty

Tha/
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The assumption that v®log v’uz’ ere are neglipible leads to the
so-called "low-frequency" theory in Ref. 9. Lance8 has also considered
tne case v - o and gives the equation

. Mp%exp(iv[Mix, - Wa3 + Foy2/ 1) -
K\XO’ .YO) BT T e e e e e e e i e e o e + O('U 1) » --0(1"3)
VX8 + (PyaWVxE + pPvE - vxy)

M may sumiiarly be varied. Vhen M - 1, K vanishes
when x5 « O, The general expression for K, when xo > 0, 18
given in Ref, 5, equation {4,7a). The corresponding ex»onsion in Nowers
of v 1s found in Ref. 8, ecuation {(13), Neither of these aporoximations
to the kernel is thought to be of practical use an computation. M = O
gives the case of incompressible flow, The kernel then becomes

Vil

. 1 v 17V
X(x0s Yol = == exp(- 2vxg) 4= ===7 K, wlyo]) - -=--- [, (wlyo | ) - 1, (vl ]}
ik L chl 2] yol
X, iv\/x;g“:-;g
- ——mmm—eoee exp(1vKg) ¢+ =mmmm————— exp(ivxy)
y3/x& + v o
v e '
+ o7 VAR ve exp{vn)a\ 7 . vre{13)
Yo' o

Methods, which have been proposed Lfor dealing with wings for
which the aspect ratio 1s very large or very small, have been reviewed
by Bekhaus10 (195, ), Most of these theorwes on the oscillating finite
wing ere restricted to exrther lifting-line theory, incompressible flow
or ungwepl wings. Apart from the very general treatmeont b fussnertl
(1954), only the slenler-wing theory of Merbt amd Landah112,13 (1953)
and the recently published strip theory by Eckhauslé (1955) need be
mentioncd here.” Both these mothods apply to wings of arbitrery sveep
and taper without restriction on v or scbsonic M. in Ref, 12, A
18 noglected so that the farst term of the differential equation (6)
disappears; this approximation is not thought to be valud vhen A > T
Refe 14, based on two-dimensional theory, would not be expected to
apoly vhen A <« 6 or wvhen VY 15 too 1lov. Thus no reliable routine
method of caleculation exists for wings of present-day aircralt.

3. Comoutational Problems

Z:1 Uge of the Exact' Kernel

Alien?? (1953} has used the exact kernel in ecuation (7) to
reduce the computation required to evaluate the dovmwash so that the
major portion of the work lies in evaluating certain "ainfluence functions',
I, II, J and JJ.

4 dl =1 + cos @
(X, Y, »,) = - (1 e Tetrteirertelewteteiriatetd ~meeme > x
® do V(2X =1 + cos ¢)° + 4Y?

expl - %i?\i\/(?.x =1 + cos $)° + 4Y°1{1 + cos ¥) dB,... (14)

vwhere # 1s the usual angular chordwise co-ordinate,

X = {x ==y NWely), ¥ =pgly-y'1/cly")

erd the frequency paramcter N = e me—ee .
g oa 11/

*See also the slender-wing theory of B. Mazelsby (J. Ac. Sci., July, 1956).
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X in
1I(X, ¥, Aok, VAR f (X, ¥, ?\1) exp | = (Xo - X) | ax
-0 M

- ves (15)

J 1is obtained by replacing the factor (1 + cos ¢) in {14.) by
(cos ¢ + cos 24), and JJ by replacing I by J zn (15). Tms I
and J are functions of three parametcrs, and II and JJ of four.

The chael diffrculty here lies in the infanate range of integration in
equation (i5).

fa] L]

Aiternatively, if the form of ¥ in equation (10) is used,

only two functions I and J are recuired, given by the following
equations (Ref., 3)

I = 1 +2 + 1 + l‘\l
: 4 r , ees (16)
Jo= i vt 'j4i
vihere
1 )
g = - ,/ GP(‘I-ECOSr,é)(lgé
m Jo :
? (P = 1, 2: 37 LP), "'(17)
L
dp = - f Gplcos ¢ -~ cos 2¢) ds
n do
’ - i ; ™
vI e(y) vt e(y') m Y e(y') v e{y')
6, - T o (5.0, 2R, 2
g a 8 d 2 5 a g d
/ ¥ ey
~ {2k o == o == +ﬁ>
g oy \ 8 a , W ey
-L1<-—. ---------------------------- eXp| = L = e =7 e TS )
J&f d B J2] I£] d
¥ eyt N N/p v¥ e(y')
G, = (-—-. ----- ) [ V1 o+ 73 exp (- 1 == ===~ v/ dar
£ d /e ] rod . bere (18)
1 (2% - 1 + cos @) | tw oy ) \
G, = =14+ -—o-mommzome- ekt etetentudey EXP | == =es == (2% =1 +cos &
M V(B -1+ cos )04 4% |26° a4 |
-
- MV =1 - cos ¢‘;2+4th
. c ] - ———
S0t cosg) vy IS AP RN
G, = ---| 2a exp | == [t - ¥ t9+\ ----- )Y"‘)dt
Mo 2%\ &
Since G, ard G, are independent of ¢, -
i1 = Gl, ia = GQ’ ji = j:l = On e (/I 9)

i1, and ‘]'4 may be samplified by 1nitegration by parts to
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— N
' iv e(y') T v c(y')
i, = == - 7‘:[ sing exp | === —==—- {(2x -1 + cos ¢)
Mr  d cos™ (1-21) 26 4d
i
- W2 - 1 + cos #)%+ 472 [ dg ~ f (p + sin ¢) sin ¢ x
o
l_:w eyt .
exp | == =-——- {(20 =1+ cos ¢) -MY (2 =1 + cos P 4472 dg >3 .. (20)
|26 a
22w cly') (= w  el(y') .
Jj, = 7 ommme e / (1 + cos ¢) sin®@ exp | —==, ——mm (2% =1 + cos ¢
Mx o N 2p?  a
-MA(20 -1 + cos ¢)3+2,I3}|d¢.

In these equations the infanite range of integration no %onger appears a:r;d
all the integrations are amenable to mumerical treatment/,

Both of the above methods use the exact kernel, so that,
provided enough collocation points are used the integral eguation may be
solved as precisely as required. Fimte integrals, similar to (20)_,
would arisc from equation (13) in the special case M = O¥

3.2 ILow=frequency Theories

With the approximation that v® log v,v?, ... 1n {11) are
negligible, it is possiblec to achieve routine mumerical solutions for
compressible subsonic flow. Two widely-used methods are ]\!11111:]f:\c>pp'.=3.’I
(1950) theory, developed in Ref. ? and Pallmer'st? (197) vortex-lattice
theory, developed by Miss Lehrian 8 (1953).

Multhopn's theory involves the calculation of the influence
functions

Y

1 (2% -1 + cos ¢)

|.-J
]
—
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g
]
I
i
i
1
L]
!
I
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1
1
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1
|
3
;
i
it
1
P
.
+
Q
&
)
=N
R
oy
G-

Z;./ﬂ( (2X-1+cos¢,)

mdo Y(2X -1 + cos ¢ P+ LY? oo (21)

X
id. / i(Xy, ¥) dXg

-0

33

x
] (%o, V%, .

-00
These functions, which depend on X and Y only, have been tabulated by
curtis1”? (1952), If more terms of (11) were inciuded extra functions
would have to be tabulated to account for theme The use of two
collocation points on ecach chordwise section is envasaged, but, if more
were required, further functions k, I, etc. would be introduced by
replacing the factor (1 + cos ¢) or A4(cos ¢ + cos 2¢) wn (21)

- em mm wE tm mm e mm  mm mm e ew WA omm e em e R iy mk mE e gt e pm oM ks A L ER R e &N as e mm oam  ms em

¥This line of approach has been developed in Structurcs Devartment,
R.A.E, Farnborough.
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by (cos 2¢ + cos 3¢), (cos 3¢ + cos 4L¢), etce The possibility of
computing these in the low-frequency case has been considered by Alwa,
(1954.), who has expressed these influence functions in terms of gimple
iterative operations suitable for an electronic digital computer, the
computation time being 1~2 seconds.

0

The use of a vortex lattice to evaluate w does introduce
some unknown irreducible error, but gives good comparisons with the
results of Multhopp's theory, as shown in Ref., 9. In the special case
of incompressible flow, Miss Lehrian€! (195,) has exteried the
vortex-lattice theory to arbitrary frequency. The most general influence
function 1s the downwash at a poant (x,, yj‘) due to an oscillatory
doublet~strip of width 24 with the mlé.-pomt of its leading edge as
oragin:

wix,, ¥,,v) 1
e R {CE IR AP DS (C X, -1)
Y L
e 0]
+ ivexp(- ivxi)/ exp(- WwX)HC:, ¥, - 1) - H(X, ¥, + 1)}as
-X
eee(22)
with
11 VER Y
H(Xi, Yﬂ.) = i e ’X = x/d.,Y = y/d-c
1 1 i 1
xﬂ. Yi X1Y1

Thas quantity srises from the integral over the wake in equation (8) and
has been tabulated by the Mathematics Division, N.P.L.22 (1952). 4
treatment of the problem for modcrately small values of v, suggested by
W. P. Jonest*, is to approximate to equation (8) by replacing the factor

8% 1 T 1 8® |1
e~ Y= @Xp | = =--- by ===% =7
3z? ir lifey 3z? |r
M3y My
It can be shown that the errvor 1n w is then of order e log ==
p

Subject to this error, results applicable to compressiblc subsonic f low
can be obtained from an equivalent problem in incompressible flow. Recent
caleculations on this basis have been carried out for rectangular w:.ngszz'.
Comparisons with the results in Refs 7 suggest that at hagh M Jones!
approximation 15 only valid for a very restricted range of v, but this
may perhaps be improved by an aterative procedurc. The Structures
Department of R.A.E,, Farnborough have developed a method of handling

the mumerical work on a high-speed computing machine, the influence
function W/U being evaluated from an expansion in v, Thoe possible
usefulness of the vortex-lattice theary as a general routine method should

not be overlooked.

L+ General Equations in Supcrsonic Flow

The integral equation for linearaized supersonic flow analogous
to equation (7) is,



_9_

W 1 f N
-(x, ¥, 0) = ~ - [I(x’, y IR(x - x!, v - yhax'dy',
U Bxd S
wiicre
“1 T~ -
~iw{x - x') pex! = .
k{x =x', y=y') = 21lam exp | ~—-=--—mmm-n Hx S .oo(23)
z >0 U liﬁR ups
o Ny Y
cos(--“\/ia -;9%@)
9? up?
e ettt an,
3z | VAT -

R = \/(y = y')” +z%, B = Vi® -1 amd S as that part of the wing
1aside the forvard Mach cone of (x, y, 0), Watkins and Berman* (1955)
give a gencral treatment of equation (23).

Anothor integral relation which holds for M s 1 1822 (Bvvard,

1950)
™
1 wx', ', L = 1) +wix', ¥, 7 - 7,)
&x, vy 2, ¥) = - --f ------------------------------------- ax'dy’,
sJ V(A-x‘)"-ﬁ( y)’—ﬁzz
(x~x" M Ax -x")2 -6y - y*)2 - g32 E .
where Ta =  memmemeee T A D S e e e » ‘e (214-_
82'103 -‘923-00
(x ~ x' )M \/(X'Y')n'ﬁa(‘f“y)n"ﬁnz
Tp = TTUSSTTTT S mmmmmmssmssssesrosssmessmenooos ’
£ ac B 3200
and 3 hore reprcgents that part of the plane z = 0 intercepted B

by the forward Mach conc. This will give the pressure distraibution in
closcd form in the case of wings with enlirely supersonic elges.

The differentzal cquataon (1) st111 holds, though sinece
M>1 1t 13 now hyperbolic, and the boundary conditions arc slaightly
changed. A treatment gf 50me nroblems using the differentral eguations
is gaven by StewartsonZ® (1950).

The methods adopted for solving such cquations differ widely
and bear little relation to those used in subsonic flow! In many cases,
such as the solutions obtained for vrectangular, delta and arrowhead wings
(Ref's. 27 to 30), the computing consists merely in substituting in
formilse for the required gquantities. The derivatives found in these
papers are given as power Series 1n v; terms containing log V no
longer appear. Indeed analytical treatments of particular planforms
are commoner than general numerical mcthods.

5. Aeroelastic Problems

5.1 Subsonic Flow

The aerodynamic loading of ragid lufting surfaces in subsonic
flow is normally solved by a collocation method, which relates certain
loading functions 1 4o downwash functions w by a matrix cquation
with complex coefficients

Vi o= A1, The/ 00-(25)

+
See, however, the work of Richardson, discussed in the Addendunm.
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The downwash is no longer prescribed by equation (3), when the wing is
supposed to deform urder load; structural deformation then gives an
additional term in 9 $/3z, which is linecarly dependent on the aerodynamie
loading and expressible in matrix form as

¥ o= BT, ..s (26)
s0 that instead of couation (25)
Wew' o= AT. eea(27)
Equations (25) and (27) lead to the formal solution
T = (4 -E)rtw, ... (28)

In general, the elements of the matrax A depend on the froguency parameter
V; 1in a flutter problom, separate calculations would be neccssary for
sclected values of ve The task of evaluating the separate matrices A
remains the most formidable part of the computation.

In the specinal case of low frequency, the aerodynamic problem
reduces io that of Multhopp's? theorye A sigmficant advance is made
by Richardson’! (1952,.), who chooses loading functions T at, soy, N
specif'ic chardwise locations instesd of the basic two-damensional load
distributions that lead to the influence coefficients in eguation (21).
The real and imaginary parts of his influence coefficients are linear
Tunctions of 1, j, ctece and i1, jj, etc., respectively. By careful
choice of the chordwisc localions, Richardson arrives at approximate
influence coefficicnts

Xr - X
(Kym) 5 1 4 mmeeemseaee S k
e l(h'r‘ - Xq)’ > (YU - \n)g }% . 00¢(29)
1
(Kyndeq = (& - Xg) + {0 - X + (¥, - ¥n)?}2 r

-—

The accuracy of these approxumate values increases as N  increases and
is stated to appcar reasonable for N = 4.

5e2 Buvpcrsonic FPlow

The theoretical study of aeroelasiic effects in supersonic flow
has mainly led to analytical treatment of particular planforms., For
example, solutions [or rectangulor3? and triangular33 wings are extensions
of those for raigid wings in Refs, 27 and 2%,

A general trecatmsnt of tne flutter problem for wings with
subsonic or supersomic leading edges is proposed by Pines, Dugundji and
Neuringer+ (1955). The wing 1s represented by a grid of squaro
boxcs and the influence of one bux B on another is determined by the
quantity

- N

1 U al r o4 1w |
R-f-lIz""i+"""f = GXp{ = mmemme—e- (x - x'); x

i w gx R? U(MQ - 1)

ol !
A QOB =m—=-==-= gx'dvy!, ...(30)
U(® - 1)
wnerc
R = V(x =x)% -2 -1)(y-5')%.

These/
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These pressure influence coefficients are evaluated by approxaimation to
the exponential and cosine torms, but an oxact expression involving
infanife serics of Bessel functions and arc sines, due to C. E. Watkins,
1s gaiven in Ref. 35. Eruation (30) enly applies when the box lies
completely wrthin the forward Mach cons of the receiving point. When the
leading edge 13 subsonic, Evvard!'s”® method is used to give a correction
terms  The procedure of Ref. 3 18 well suited to high-speed camputing
machinery, but is only valid for M »V 2, Rectangular or diamoni-shaped
boxes arc suggested means of extending the range of Mach number.

6. Concluding Remarks

Practical methods are requared for estimating the forccs on
oscillating wings of the type used on modern high-speed aarcraft, that
1s of medium aspcct ratio and possibly high sicepbacke In supcrsonic .
flow, analytical formulae exist for a wide range of varticular planforms (§.£;.).
In subsonic fiow, practical methods exast only when the frequency parameter
v is small (@.3.25 Extension to higher frequencies 1s theorebdically
possible {8.3.1),

The method described in Refs 3 apperrs bo be the most promising;
1n fact, ecalculations using desk machines hove been carried out for a
rectangular wing of aspect ratio A = L4 at M = 0.866 wath v = 0.3
and 0,6, the computation timc being four months for each frequency. Thas
theory w21l probably cover the practical range of v unless M 1s very
near unity, when the assumptions of linearazed theory are invalid and
accurate solutions arc of doubtful merit., The methed is uneconomic,
unless tho caleculation can be mechanized, particularly the evaluation of
the 1nflucnce functions in emuations {i4) to (20).

Simplifications result from considering extreme valucs of the
parameters v, A ard M (8.2,3/. TFouation (12) for ¥V = oo probably
only anplies to values of vy outsidec the practical range. .
High-ssnect-ratio theory (& > 6) and low-aspect-ratio theory (& < 3)
are inoprlicable to the type of vings mentioned above. The approximation
to the kernel when M = 1 12 not thought to be of practical usc. The
low-speed case (M = O) appears to be satisfactorily covered by
vortex-lattice theory though 1t could be treated by methods similar to
those of Ref. 3. The possibrlitly of extending vor tex-lattice thcory to
cover the practical range of vM/(1 - L®) remains to be studied (8.3.2).

In many respects wing elasticity does nol affect the basic
serodvnamic computation in subsonic or suprrsonic flow,  Iowever,
ihe low-~frequency subsonic theory of Ref's 3 (§.5.1) and the box-grad
method of Refe % for M » V2 (B.5.2) both appear to load to
calculations vwell suited io programning on compubting machiacrye Though
approximate as desk computations, these methods vhen mechamized should
become accurate within the framework of lincarazed theory.  Extensicns
of Ref. 31 to higher frequencies and of Ref. 34 to Mach numbers below
2 ore among the most imporfant problems in theoretical flutter research.
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ADDENDUM

Three reports (Refs. 36, 37 and 38) have come to the notice of
tie auvthors since the paper was wraitten.

Bunyan and Woolston(36) have applied the form of the kernecl
derwed in Ref. 5 for general frequency parameter, v, and subsonic
Mach number, I, +to wings of arbitrary plan form. This paper appcars
to offer a good chance of providing a practicable routinc method of
calculation hy collocation. The assumed loading involves the replacoment
of a continuous chordwise loading by discrete loads determined similarly
to thosc used in vortex lattice theory (Refs. 21 and 23)., It 1s assumed
that the upwash on the wing 1s represented accurately enough when the
kernel 1s oxpanded and 6th and higher powers of the frequency paranmeter
are neglected, A modifircation of the method to the case ¥ = 1 1s
also given. The results of ealculations on a rectangular wing of aspect
ratio A = 2 are presented for the complete subsonic range and
v = O.44. Calculations by the method of Ref. 7 for the same wing are
boing made al the N.P.L. for M = 0.866 and v = 0.3 and Vv = 0,6,
The mechanization of these calculations i1s being considered by the
Mathematics Division of the N.P.L.

?1t regard to the geheral equations of supersonic flow,
Richardson\37) has rresented a unified approach for both subsonic and
supcrdgonic Mach numbers, In contrast with Refs. 27 to 30 he has suggeated
a collocation method for any plan form in supcersonic flow, Ref. 37 18 an
1mportant step towards the extension of Ref. 31 to higher freguencies.

The c¢valuation of the kernel function ain Appendax I of Ref, 37 1s being
programed for high-speed compuling machinery in the Structures and
Mathematical Scrvices Departmonts of the Royal Aircraft Establishment.

Another important problem in flutter research, the extenilo of
Ref. 34 to Mach numbers below /3, has been carried out by Ta I1a(38),
who i1ncludes the case of a subsonic leading edge. He has obtained highly

salisfectory results for two-dimensional flutier coefficients when
M3 1.1,










Crown copyright reserved

Printed and published by
HeEr MajesTY's STATIONERY OFRICE

To be purchased from
York House, Kingsway, London w ¢ 2
423 Oxford Street, London w.1
P.O Box 569, London s.E.1
134 Castle Street, Edinburgh 2
109 St. Mary Street, Carduff
39 King Street, Manchester 2
Tower Lane, Bristol 1
2 Edmund Street, Birmingham 3
80 Chchester Street, Belfast
or through any bookseller

Prinied 1n Great Britamn

C.P. No. 309
(18,412)
AR C Technical Report

5.0. Code No. 23-%010-9

C.P. No. 309

(18.412)



