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The linesrued theories of osclllntlry vr~ngs In subsonic cszd 
supersonic flow are formally dw2ussed. The computability of the 
suhsoru.c problem is considered whenMach number, frequency and aspect 
ratio are arbitrary and 111so when any one of these parsmeters takes 
extreme values. Methods of treating aerod..ynwc flutter problems care 
briefly outlmned. The most general subsouc problem for a rectangular 
~JlM, already solved numerically on a desk machine, should now be 
examined v%th a view to mochsnized computation. Specml theories, 
particularly suited to hzgh-speed computation, should, If possible, be 
extended to srbltrary frequency and Xach number. 
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1. Introduction 

In considcrmg the perturbation of a dorm stream of velocity 
U due to an oscillating iving, it is usual to neglect the squares of 
increments III velocity, of wing thickness and amplitude of oscillation. 
Viscous effects are also ignored, so that the problem is specified by the 
planform of the wing, the mode of oscillation, the non-dimensional 
frequency and M, the Mach number of the stream. It is required to 
evaluate the locsl phase and amplitude of the aerodynamic loading. 
According to the linearised Meory the perturbation velocity potential, 
Q, satiifies the equation (Ref. <, p.326) 

and the pressure at any point is given by 

P -p 2 
00 

-p, (y?J. . ..(z) 

a% aP aa* hIa a% 
--- - --- ---_ - -- --- = 0 
a2 ua ata ' 

. ..(I) 
u axat 

When the stream is sonic (M = 1) the differential enuation (1) 
simplifies snd certain analytical solutions exist2 (Mangler, 1552). In 
supersonic flow (M > I), uhen the differential eauation becomes 
hyperbolic, there is a class of solutions in closed form (8.4). NO 
general solution of the problem exrsts when the flow is subsonic: even 
when M = 0, (1) reduces to Laplace's equation, but remains intractable. 

An important feature of current theoretical research on subsonic 
oscillatory flow is the diversity of methods applicable to a given problem. 
The choice of method. will depend on individual exporiencc, facilities for 
computation, the required accuracy and the intended application. The 
various methods all involve further assumptions or approximations, so that 
(I) 1s never solved sxactly for &I < 1. Several sim$ifying assw@ions 
are considcrcd in 3.2; the various numerical processes and approximations 
me discussed in 8.3. Most methods use collocation, conditions of 
tangential flow being satisfied at, say, n positions on the ruing. This 
involves arbitrary choice of the n positions ati of n complex functions 
to represent the phase and amplitude of the pressure. The main ci';ort 
of computation lies in expressing t&se boundary conditions as a set Of n 
complex linear swltaneous equations, vi-u& are then solved by routine 
methods for the unknown coefficients of the prcssurc distribution. 

The precise nature of the oscillatory motion of tic ~klg 1s 
notimportant. Whether the problem to be solved is that of a pitching 
wing or an oscillating partial-span control, the matrix of the 
sismltsncous equations is usually the same. Moreover, it IS not highly 
significant vjhether the 
antisymnetrical (rolling P 

roblcm is symmetrical (pitching) or 
. 

2. General Eouations in Subsonic Flow 

2.1 Differential Swation and Rouddary Conditions 

The differential equation for the perturbation velocity 
potential, @ , is given in equation (I), and is subject to the following 
four boundary conditions: 

( a) On the planform S in the plane s = 0 

am az(x, Y, t) azb, Y, t) -c = ---..------- , u ______---_- 
as at ax ' 

where z = z(x, y, t) represents the surface of the tin&. 

. . . (3) 

b)/ 
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(b) In the wakr 

am/at + uaa/ax = 0. . . . O+) 

This expressrs the fact that the prea 
and. follow from eqwtmn (2) 

-wre is contmmus across the wake, 
cou led \mth the observation that 

m(x, y, z, t) = - m(x, 3‘, -z, t . P 

(0) xt the trallmg cd&e the veloczty is fll?lte. 

(a) Itimltely f,v from the mng and i~a!ce the dmturlmmz tends to 
r.0??0; @ IS such t&t It represents an outgow d~turb,,mce [see footnote 
to equntmn (7)]. 

Cqmttlon (1) my h- smpld'~ecl by the substitution 

. ..(5) 

21, then satisflos 

aaf a% ‘r' 8+ rPw= 
(1 - &[a) 2 + --- + --- t __----____ ?i, = 0. 

a2 a+ ha P(l - hIa) 
. ..(6) 

Fk?n so, the d~fferentml equation does not provide R solution to the 
problem specified above, because of the nature of the boundar.~ cordltions, 
(h) ia particular. nlrect numerlcnl nethods, such as relaxation, do not 
appc-x to have been attempted". 

2.2 Intefld Equations 

As shoTa mKef. 3, g.3, the upwnsh at 3 point on the mng 
maybe cxprcssod 11). term of 1, the dmtr>hutlon of ltit over the w"I"P, 
by the equatmn" 

1:(x, y, 0) 
_______--- = 

U 
r- 

. ..(7) 

:* ra = ca + /s” (Y - y’ 1” + Daz ‘j 

suwices a nn3 h dcnotc vnlucs on the upper and lower mrfaccs 
respectlmly. An alternative integral cquatzod+ (‘ii. P. Jones, 1951) 
is 

___-_-______---__-_------------------- 
"The aims sign m the term exp[- wi.~/up"] 1s implied by the 

boundary cond~tlon (a) in 3.2.1. 
'+This approach m bemgC%mmncd m the Nathenntlcs Divlslon, N.P.L. 
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where E; = (x - x') and the mtegml i.s now taken over the w&e, Yl, 
as well as the :"ng, S. 

Equation (7) may bo wvrltten 

where v = d&J anl d is any convenient lenF;th. 
kernel K defined by equations (7) and (9) 

The form of the 
1s mkward for calculation 

because of the inflrute range of mtegratlon. This dlfflculty has been 
elirmnatcd by E'atkzns, Runyan and "oolsto$ (-19x), who have shovm that 

1 
idx,, Y,) = --; exp(- wxo)~ $ Ki(uIyol) 

- yo 
- gi [IJVIY,I) - L,bIY,l)l 

0 

. ..ilO) 

where x0 = (x L xi )/a, yo' = (y - y')jd, K; and k are Pessei 
fun&lots, 31143 L, IS a modlfled itruve functron (Ref. 6, p.329). 

To solve the Integral equattlon (Y), It LS necessary to use a 
collooatlon method. Then, grven 14 and v, K may be computed for 

the approprrate values of x0 and y. on a desk machine. Pitching 
derlvatlves for a rectangula wmg of aspect ratlo A (wmg span/mcCsn 
chord) = 4 at Ifi = 0.866 z-e determined in this way in Ref. 7. 
Eight loading functions and eight collocation pomts are taken on the 
half ivlng (of chord d): without further approximations the equations 
have been solved %!hen v = 0, 0.3 ati 0.6. The results appear 
satisfactory, but the method of calculation 13 too lengthy for routine 
use -Lf only desk machines are used. 

2.3 Apzroximatlons to the Kernel 

Ii, as given by (IO), IS still a rather cumbersome function 
of four variables, so approximate forms of the kernel are sought. These 
are obtained by considerrng extreme values of the parar,eters V, M anil A. 

notation) 
For v small, Lance' (1954.) has show that (111 the present 

Kix 0, Yo) = a; exp( -in,) i 
1 

x0 iv 
i - --- - -------_-__- + __________m 

L- JC yyxo" -1 ,py; Jzg---a--T + P Y. 

v= ” 
- -- log --------(Go + ,py; - x0) 

* 2 2(1 - Id 
R 

va 

! 

ix 1 
- J. + -- - -.. 

( 

X0 
- -- Y 

M 7 - _--------- + O(V3/P6) 
2 7 /s2 YI,? 

)! 
u i p-y," J 

P . . ..(ilj 

The/ 
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The assumption that v=1og v,v=, . . . are negligible leads to the 
OO-C2l led "low-frequency" theory in Ref. 9. ~anco8 has also consiaered 
tne case v ? 00 and gives the equation 

Mpaexp(iv[IvPxo - * 
-- 

K(x,, yo) zz 
Pay//p I) 

- --~-----------------------------’ + o(V-1) . ..,(I.?) 
l/x,” + py$/xqj + pyg - !ko) 

X may sundarly be varied. 
when xo 4 0. 

Then 111 -> 1, K vanishes 
The general expression for K, when x0 > 0, is 

given inRef. 5, equation (47a). 
of v 

The correspondir~ exlmnsion in Rowrs 
1s found in Ref. 0, ecuation (13). Neither of these ap~xYximat10~ 

to the kernel is thought to be of prxtioal use in computation. M = 0 
elves the case of mcomprossible flow. The kernel then becomes5 

X(X ", Yoo) = ;; exp(- lVXo 1 J- -_"_- 1:,b IYO I) - ;T;+ (v lye / ) - L, (v IYo) )3 
L lYol 0 

_-- 
x0 iM/xa 

- __--______ 
Y&'Xo" + Ycy 

cxp(1ux,) k 
0 - Yo" ---------- 
sa 

exp(ivx,) 
0 . 

+ v_“_ 
i^ 

\ 
. ..(I31 

Y: 0 
exp(lvh)&~ . 

-- 1 
Methods, whxh have been proposed for dealing with wngs for 

whrch the aspect ratio is very large or very small, have been revie~cc? 
by EcHmus'~ (19-q). Host of these theories on the oscillatmg fum.te 
wing we restrlctecl to either lifting-lme theory, incompressible flow 
or unpept mmg:;. Apad from the very gcnrrjl treatmnt b:r ikissnerll 
(1954.1, only the slerdcrwlng theory of Xerbt and La&ihl'2,13 (1353) 
end the recently published strip theory by E&ham14 (1955) reed bo 
mentloncd hem.' Beth those mcthods ap$y to wiugs of acbitmzy svce$ 
and taper without restriction on v or subsonic IV:,:. In Ref. I?, A 
'is ncglectcd so that the first term of the differential equation (6) 
dlSappW?S; this approximation is not thou&t to be valid vhen A > 4. 
Ref. I)+, basod on two-dmcnsional thcnry, xould not be expected to 
apply who?1 A c 6 or when v 1s too hi. Thus no rclmble routine 
method of calculation exists for wmgs of present-day aircraft. 

3. C!om~&~tional Problem 

3.1 Use 0,:' the Exac<Kernel 

Allon' (1953) has used the exact kernel in enuatmn (?) to 
reduce tho computation requrred to evaluate the dovMwash so that the 
major portion of the work lies in evaluating certain "mf'luence functions". 
I, II, J and JJ. 

1 r>.- L- 
1(x, Y, a,) = - 

l-7 

- 1 + cos $4 
, ,. ---~ ---.._--__________-- ): 

dGJ: - 
--- 

x 0 1 + co9 $)" + 4Y= ) 

fxp[- $4.X,* - 1 + cos +)" + 4Ya](l + cos $) &,...(I41 

where P 1s the usual angular chordmse co-ordinate, 

x = lx - X~(Y')j/C(Y'), y = pls - Y'l/C!Y') 

anal the frequency R.mmcter 
vii c(y’ ) 

a = -- ----- . 
I. P d II/ 

+Sea also the slmder-wng theory of D. Idaceleby (J. AC. Sol., July, 1956). 



-6- 

X 
11(x, Y, h$,X/L) = 

i 
1(x,, y, Xl) exp 

-ci3 
[ 

T 

2; (x0 -xl a, . 
M 

-. . ..(15) 

J is obtained by replacing t!x factor (1 + cos $) m (11 ) by 
(COS $ + CDS 2 $), and JJ by replacing I bjr J m (15,. t Th.x I 
and J are functmns of three paxmetcrs, and II and JJ of four. 
The chmf dlffxulty here lx s 
equatmn (33). 

m the infmte range of lntegratmn m 

Aiternatlvely, if the form of E in equntmn (-10) is used, 
only 'cdo functions I and J are roqared., given by the follming 
equations (ilef. 3) 

I = ii+1 +z +I a 3 4-l 
J = t, ji+j,+j,!-j,i 

. . . (16) 

-\ 

Gp(l i cos 9) d$ 
I (P = 1, 2, 3, d, . ..(17) 

G = 1 

UY 
IL . -- 

C(Y~ 1 

dY 4Y' \ p *--a--+P > , Ih UY C(Y’) 
-L --. I---- 

( Y 

- ___-___--__________--- e;rO 
t 

- 1 - . -- . ----- 
1P d 

/ 
rilp PP d _. 

G, = - 

/* 
dt 

Since G, and G, are mnd~pendent of $, .4, 

ii 
= GI, ia : G2, j = j = 0. 

1 a . . . (I 9) 

. . (ID) 
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iv c(y') 
ia = --- 

c i 

x IV c(v') 
----- 71. 

cos-i (I -2x) 
sln$ exp --- 

2M.x d I 
--=-- I (2x - 1 + co9 6) 

w a 

-lvd@- 1 + co9 gQ?l 
_I I 

d$ - * (# + sin p) sin qi x 
0 

r 

J 

iv c(ylj 
exp G;; --;-- [(2x - , + COS 6) - M q~----------‘- - 1 + cos $)" +&Yaj $3 

11 
2ru c(y) ?r w J4 = - ---. ----- i (1 + oar $) slna$ 

C(Y’ 1 
exp i ---. -----)(2X - 1 + cos 6; 

M.lx a 0 2p= a 

In these equations the infinite r-&c of integration no anger appears & 
all the integrations are amenable to numerical treabnent + . 

:...(20) 

Both of the above methods use the exact kernel, so that, 
provided enough collocation points are used the integral equation may be 
solved as precisely as required. Finite integrals, simlar to (201, 
would amso from equation (13) in the special case M = O? 

3.2 Low-frequency Theories 

Vita the a2)proximation that ualog u,u", . . . in (11) nre 
negligible, it is possible to achieve routine numerical solutions for 
compressible subsonic flow. Two widely-used mctl~cds are Multhopp s t 16 

(1950) theory, developed in Ref. ?a and Fal!ffler's17 (19!J) vortex-lattice 
theory, developed. by Miss Lehrmn (1953). 

Multhopp's theory involves the calculation of the influence 
functions -. 

1 71 

J 

(2x - 1 + cos $) 
i = 1 + - ----- -_--- ---_-_ -------- __.___ -_-.--__ - (1 + cos&3# 

7c 0 4(2x - 1 + co9 $1' + LJa 

(2x-l +.os$$) 
--.-e7-------------------- (,o,$b + cos 2$)d$ ' 
q2x - 1 + co9 $i"+ !&YB 

i 
. ..(21) 

i 

x 
$3 = -mj(Xo, y)=o * 

-.I 
These functions, 
Curtis1g (1952). 

tihich depend on X and Y only, have been tabulated by 
If more terms of (II) were include4 extra functions 

would have to be tabulated to account for them. The use of two 
collooation points on each chor&?ise section is onvissged, but, if more 
were requrred, furthor functions k, 1, etc. nould bc introduced by 
replacmg the factor (1 + cos 9) or ~(COS 6 + cos 26) zn (21) 

_____________-___---____________________- 

*This line of approach has been developed. in Structures Department, 
R.A.E, Farnborough. 
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by (cos 2$ + cos 3$), (00s 3$ + cos l&), etc. The possibzlity of 
computing these in the low-frequency case has been considered byAlwaJj!O 
(19541, who has expressed these influence functions in terms of simple 
itc??ative operations sultablc for an electronic digital computer, the 
computation time being 1-2 seconds. 

The use of a vortex lattice to evaluate w does introduce 
some unknown rrreducible error, but gives good comparisons with the 
results of Multhopp's theory, as shown inRef. 9. In the spscaal case 
of incompressible flow, Miss Lehrian21 (lgfd+) has extended the 
vortex-lattice theory to arbitrary frequency. The most general itiluence 
function 1s the downwash at a point (x , yJ,) due to an oscdlatory 
doublet-strip of width 2d with the rm -pomt of its leading: edge as a 
ongin: 

w&, Yi, VI 1 
- -___- - ----- = -- ( - X 

U 4-x 
1’ Yi + I) -H(-X$,Y -1) 1 

+ iuexp(- .ivX,) exp(- iyX)IH(::, Y - 1) - H(X, Y$ + I 

with 

H(XI, Y1) = -', 
I KP 

+ -- - -L-L 
x Yi XY 

,x1 = x,/cl, Yt = Yi/d. 
1 i 1 

Thzs quantity arises from the integral over the wake in equation (8) ‘and 
has br:en tabulated by tho Nathematlcs Division, N.P.L.22 (1952). +4 
treatment of the problem for mcdorately smallvsJ.ues of V, suggested by 
W. P. Jonesb, is to appoximate to equation (8) by replacing the factor 

;e;kexp[- $,) by ;;;{$} , 

lPua Mu 
It can bo shown that the error 111 w is then of order ---- log -- , 

P4 P' 
Subjeot to this error, results applloable to compressible subsonic flow 
can be obtain& from an equivalent problem in lncompresszble flow. Recent 
calculations on this basis have been carried out for rectangular Vrmgs23. 

Comparisons with the results in Ref. 7 suggest that at tigh M Jones' 
approximation 1s only val3.d for a very restricted range of Y, but +&ls 
may perhaps be improved by an Lteratrve procedure. The Structures 
Department of R.A.E., Farnboroughhave developed amethod of hancllmg 
the numerical lvork on a high-speed computing machine, the influence 
function V/U being evaluated from an expansion in V. The possiblo 
usefulness of the vortex-lattice theory as a general routine method should 
not be overlooked. 

4. Genre-al Equations in Supersonic Flow 

The integral equntion for linear35303 supersonic flow analogous 
to equation (7) is, 

TJ 

-I U 
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N 
4X ,YtO) = - '- f /1(x', y'iK(x - x', y - y')&'dy', 
u t?xJ si 

ihxe 

Y;(x-x',y-y') = 211m exp 
Z90 

- 
R = J:y - 3")' + za, j3 = v'?-=? and S 1s that part of ti;e wing 
XISI~C the forlJcwd Mach cone of' (x, y, 0). 
g3.w a general treatment of equation (23j. 

Watkins and Berman2'!+ (1955) 

Another Integral relation which holds for M > 1 1s 
1950) 

25 @ward, 

Q( x, y, z, t) = - J- 
idu',-y', t - Ta) + w(x', Y', T - Tb) 

--------------------------_--- iQayl, 
2X s SJ VqT - xoa - p"(y - y'ja - fizza 

1 

whore 
(s - ;:’ )M 

- ---_ -- --- 
&c - x’ )ap(y - ,i,,- @,a 

1 , 

Ta = --------- * ------___---------------------- 
p aa, 

, . ..(&I 
P& 

(x - x')M LG-Tv= p"(y - y'j' -/P-2 
Tb = _------_- - -----__-_-__________----------- , 

62 aal P a%a I -1 
an'3 S horc rcpxscnts that part of the plnno z = 0 mtorceptcd 
by the forwsrd Mach cor10. This ml1 give the pessure dlstrlbutlon in 
closed form ln the case of vung s wLth e~lircly nupersoluc edges. 

The d~fforentlal cqustlon (1) still holds, though sinoe 

M > 1 It LS now h.yperbolic, snd the boundary conditions are slightly 
chang& A treatment f some woblems using the differantuil equuatlons 
is gwon by Stewartson 28 (1950): 

The methods adopted for solving such oquatlons differ widely 
zuxl bear little relation to those use3 in subsonlo flow? In many cases, 
such 3s the solutions obtalned for rectangular, delta ad arrowhead wings 
(Refs. 27 to 3O),'tho computing consists merely in substxtuting in 
forrrmlae for the requued quantltles. The derwatlves found In these 
papors sre given as power series In V; terms contalrdng log v no 
longer appear. Indeed analytical treatments of -pwt1cu1er planforms 
are commoner than general numerical methods. 

5. Aeroelastic 3robluns 

5.1 Subsonic Flow 

T]I~ ct~octpmic loading of rigid 1Lftlng surfaces zn subsonic 
fla< is normally solved by a collocatxon methp_d, which relates certain 
loading functions 1 to dowwash functions w by a awtrix equation 
With complex coefficients 

iT = r,i. The/ . ..(25) 
~F-------'------------------------~-------------------------". 
See, however, the work of iilohardson, dwzussed in the Addendum. 
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The dowwash is no longs prescribed by equation (31, when the wing is 
supposed to deform under IDaad; 
additional term 111 a *p/az, 

structural deformation then gives sn 
which is llncarly dependent on the aerodynsmic 

loFadlz?g and expressible 1.n ma&.x form as 

5 = ET, . ..(26) 

so that instead of couation (25) 

w + 7 = n-i. 

Equations (26) ad (27) lead to the formal solution 

. ..(27) 

T = (A - E)-' F . . ..(28) 

In general, the elsmonts of the matr~ A depend on the froquenq parameter 
u; m a flutter problem, separate cdculatlons would be neccbsary for 
salccted values of u, The task of evaluating the separate matrices A 
rammains the most formidable part of the computation. 

In the spccwZt case of low frequency, the aerodynamic problem 
reduces to that of Multhopp'sY theory. 
by Richardson3' (19s.) 

A slgluflcant advance is mdc 
who chooses loakng functions T at, sv, N 

spectiic chardwlse loc:tions instead of the basic two-dlmensronal load 
dlstrlbutions thzt lead to the influence coefflclcnts in equation (21). 
Tho real sn3. imaginary parts of his ird'lucnce coefficients are linear 
functions of 1, j, etc. and il, jj, etc., rzspeck.vely. By careful 
choice of the chordw~sc locations, R~cbardson wrivcs at approximate 
influence ooefflclcnts 

The accuracy of these amoxhmatc values increases ~3 N increases and 
is stated ko appear reasonable for N = I+. 

5.2 Suoorsonic Flow 

The theoretuxl study of aeroelastlc effect3 In supersonic flow 
has madly ld. to andyt~al treatment of particular planforms. l?or 
eXZJllple, solutions i'or rectwular32 ard trmnguLsr33 wings are extensions 
of those for rlgd wngs in Refs. 27 ad 2Y. 

A gcnsral treatment of tne flutter problem for wmgs with 
subsonlo or supersoluc led- edges is proposal by Plncs, Cuandji snd 
Nmrq-ers (1955). The wing LS represented by a grid. of square 
boxes ad the lnfluencc of one bux B on another is detormaned by the 
quantity 

R-11 = 

. ..(30) 

R' = J(x - xl)" - (Ma - I)(, - 9'11. 

These/ 
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These pressure influence coef'f'iclents are evaluated bY a?proxlmatlon to 
the exponential ‘and. cosine terms, but an Axact expression lnvolv~ng 
mf'm%te ser~cs of Bessel functions and arc sines, due to C. E. Vatkins, 
1s given zn Ref. 35. E?uatlon (30) only agplles when the box 1~s 
COmpletCly w%th%n the forvrard Nach cone of the recelvlny poltit. When the 
leading edge IS subsomc, lSv~ard's~5 method is used to gjlve a correction 
term. The procedure of Ref. 3!t. 1s well, suted to high-speed computmg 
maoinnery, but ~.s only valid for M >d2. Rectangular or dumorul-shaped 
boxes arc sugecsted means of extendin& the range of Siach numba. 

6. Conclud;mR l7ew.rks 

Fractwal methods are requrred for estimating the forces on 
oscll1ati.q wings oE the type used on modern high-speed -craft, that 
1s of medium aspct ratlo and posszbly high sncepback. In su~erson~ 
flow, snalytrcal formlao exist for a wade range of particular planforms (§.&j. 
In subsonic flow, yract-ical methods exxlst only when the frequency pzameter 
u is sm,&Ll (B. j.25. 
possible (g.3.1 . 

Extanslon to higher frequencies 1s thcoretlcally 

Tho method described in Ref. 3 appe<szs to bo the most prormsz.ng; 
Ln fact, calculations usrng desk machmes have been carrwd out for a 
rectangular wing of aspect ratlo A = 4 at M = 0.866 u&th v = 0.3 
and 0.6, the computation tlmo bcug four months for each frequency. Thus 
thcory7zll probably cover the praotzcal range of LJ unless &i IS very 
near unity, when the assumptrons of lmnearucil theory are invalid and 
accurate solutions arc of doubtful merit. The method is uneconomic, 
unless tho calculation can be mecharucad ?artvzularlythe evaluation of 
the mf'luonce functions in ewatlone (141 $0 (20). 

Simp1Lfication.e. result from c>nsidermg extreme values of the 
parameters u, A ard 1.1 (5.2.3;. Equation (12) for u -> OQ probably 
only a:7plics to values of v outsldo the practical rarye. 
High-as?ect-ratlo theorjr (A > 6) an?l low-aspect-ratio theDry (A < 4) 
we uw.ppllcablc to the t.Ype of vings mentioned abovc. The approxxlmatlon 
to the kernel when &I = 1 LS not thought to be of practical Use. The 
low-speed case (14 = 0) appears to bz sntlsfactorily covered by 
vortex-llttrcc theory though It could be treated by methods slrmlar to 
those a? Ref. 3. The possiblllty of extending vortex-lattice theory to 
cover the practroal range of UN/(1 - X2) remains to be studled ($3.2). 

In many respects lfr~ng elastlczty does not affect the basic 
aerodynxnic computa*t+on 111 subsonic or su>rrsonlc flo%V. 1:owever, 
the low-frequency subsonic theory qf Rcff. 31 (B.5.1) and the box-yrld 
method of Ref. & for M 3 6 (b.5.2) both appear to lcad to 
calculations veil sultcd to programning on computing WcblerY. Though 
appronmate as desk computatrons, these methods :ihen mecharuzed Sh3uld 

become accurate v&thin the fromovork of lincar~ed theory. Exte:slons 
of Ref. 31 to h+-er frequencLes and of Ref. 3!+ to Eiach embers bcluw 

v? we among the most import.mt problems 113 thcorctlcal flutter research. 
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ADDEVDUM --- 

Three reFOI'tS (Refs. 36, 37 and 38) have como to the notlce of 
the authors su-~ce the paper was wItten. 

Runysn and Woolston(36) have applied the form of the kernel 
derived 1n Xof. 5 for general frequency parameter, V) and subsonlo 
Xach number, I!$? to wmgs of arbitrary plan form. This paper appcc\rs 
to offer a good chance of prolldmg a practloablc routux method of 
calcu1at1on by c0110cat10n. The assumed loading uwolves the replacement 
of a contrnuous ohordwlse loading by dlsorete loads determined sunllarly 
to thoso used xn vortex lattice theory (Refs. 21 and 23). It 1s assumed 
that the upwash on the wing 1s represented accurately enough when the 
kernel 1s oxpandcd and 6th and higher powers of the frequency parsmeter 
are neglected. A modlflcatlon of the method to the case M = 1 1s 
also glvon. Tho results of calculations on a rectangular l~lng of aspect 
rat10 A = 2 are presented for the complete subsonlc range and 
V = o.l&L+. Cdlculatlons by the method of Ref. 7 for the ssme wng arc 
bolng made at tho N.P.L. for M = 0.866 and IJ = 0.3 and U = 0.6. 
The mechanlzatlon of these calculations 1s being consulered by tho 
Mathcmatrcs Dlvlslon of the N.P.L. 

w 
regard to the general eqdatlons of suporsonlc flow, 

Hlohsrdson 37 has presented a unlfled approach for both subsonlo and 
"Uuporsonlo Mach numbers. In contrast with Rofs. 27 to 30 he has suggcstod 
a collocation method for any plan form 111 suporson flow. Ref. 37 1s an 
Important step towards the extenslon of Ref. 31 to hlghcr frcqucnolos. 
The cvaluatlon of tho kernel function 111 Appendu I of Ref. 37 1s being 
programmed for high-speed computing machuxry 111 the Structures and 
Mathcmstlcal Sorvxcs Departments of the Royal Axcraft EstabllshJncnt. 

Another lnportant problem z.n flutter research, the extcn-lo of 
Ref. 34 to Mach numbers below J?, has been carried out by Ta L1736T, 
who lnoludos the case of a subsonx leading edge. He has obtalnod hlzhly 
callsfactory results for two-dunenxonal flutter cocfflclents when 
M & 1.1. 
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