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SUMMARY

Exact solutions of the.equations of motion are possible for various
types of diffuser. Application is restricted to that part of each difluser
in which the velocity profile has attained a constant shape, The solutions
are expressed in terms of the distrzbution of the mixang length, which
ef'fectavely 1s the length of the mean {ree path of the turbulence,

In particular the solutions yield the value of the craitical angle of
a diffuser for just avording flow separation; this value 1s proportional to
the square of the turbulence level, I on the other hand the critical angle
1s lmown, use of the solutions in reverse allows an accurate assessment of
the bturbulence level, Thus 17 for the cirecular cone diffuser the critical
total angle 1s 10° the turbuleace esiimated would ve 30 per cent greater
tnan thet exzating in the {low through o parallel pipe.

A detail of the solutions as that, af the mixing length close to the
wall increases linearly with y the distance [rom the wall, the velocity pro-
file in the separation condition approaches the form u, o y}.

Even in a flow which 1s daffusing rapidly a narrow wake becones atten~
tuated by the turbulence 1t produces. A lerge central wake, as from the
bullet of a fan or turbine, is attentuated af the flow 1s of moderate diffu-~
sion angle, However the solutions suggest that a central wake, especirally
1f produced by a high turbulence grid, could be used to advantage - Tor
preventing flow sewaration in diffusers of very large angle.

Ir gide jebs are used for flow control at large difluser angles and
if bthe Jets are required to persist a long distance downstream the Jet
velocity at any axial station would need lo exceed twice the mean velocity

for the cross-section.
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PREPACE

Much of the work reported in thas paper was carried oubt in the
Aeronautics Department of Tmperial College.

1.0 Introduction

In the past little attention has been vpaird to the theoretical aero-
dynamics of the fully turbulent flow an diffusers, partly because simple
emparical data - coscerning for example the 6% come - has proved adequate
in many practical apnlications, A fuller understanding of the [low,
however, might lead to suggestions for satisfying more exactaing require-
ments, One theoretical investaigation has been made by Gourzhienko' but.
being restricted to flows of moderate dif{usion rates, this investigation
d1d not approach the condition of separation or stalling of the diffuser,
The preseat paper obtains exact solutions of the equations of motion for
flow whach everywhere is Just at the coadition of separation, Application
is JTamited to that part of a duffuser ia whaich the velocity profile has
reached a co:stant snape.

Standard miznag lengtal theoryg as developed mostly by Prandtl is the
basis of the solutions, The philesophy of this tucory is to explain the
time-mean flow pattern by means of thne mixang length distrabution for the
turbulence, The mixing length is aol fundamental but it does have a
physxcal interpretation, viz. the mean free pain of the turbulent motion,
and thereby 2t can contribute to an understandzng of the flow. Accurate
prediction is possible when the value of the mixing lengtih 1s knowil, and
for parallel flows in papes and ducts this value has beea well establlished,
a single distribution holding wiversally provided the Reynolds number
exceeds a certain minimu:; for daffusing {lows however no standard data is
available and the subgect 1z s$1ll conlroversial, D8ach’ and Nikuradsed
conciluded from analyses of diffuser e:xperimeats that diflusion greatly
1ncreased the maxang length, but, in contrast, Ludweig axd Pillmann® found
no such effect for a boundary layer when the pressurc gradieats were
moderate, On the other hand Squire® shows that, prior to the establishment
of a steady profile shape in a comical aifTuser, the chanze of profile is
such as lto suggest an ilacreasing turbuleace level, tne final level probably
exceediag that of flow an & pipe. As poanted cul by Squaire thas qualitative
result seems rcasoneble, If the turbulence i1s represenled anon-dimensionally
by the ratio of the eddy velociiy to lhe local mainstreom velocity, datiu-
sion will decrease the latter while not initially affecting the former; thus
the ratio increases until, as will be examined in the present paper, a new
equilibrium s established., The policy adopted 1n the preseat paper is
therefore to use the little information which 1s available for the circular
cone diffuser in order to re-estimate the effect of diffusion on the turbu-
lence level, and then to apply the resulis to the asscssment of other con-
figurations,

One detazrled point from the solutions i1s thal in the wvelocity profile
the gradient at the wall 1s infinite even abt the separatioa condition, the
profile asymptoting to the form u,. o y<. This profzle sghape is in contrast
to that for the corresponding laminar {low, where the gradient is zero and
the asymptotic form is u « ¥°, but 2t does nevertheless reflect experimental
experience of turbuleat {low under these conditions, Despite vascosity
havang been neglected the profile as realistic in being able to have a zero
velecity at the wall,

The initial derivation uses a generaliscd Torm of the turbulent stress
but the standard simpler form 1s adopted 1a the main anslysis, Usirg either



form the equatiouns for the lme-mcan moilion reduce bto a sumple differential
equation whicn mn prainciple 1s readily solved,

2.0 The full form flor the siresses in turbulent flow

The formula for shear stress couvenbionally used in maxing length
theory oa the basis of the momentum traasfer hypothesis? 1a

{ du ' Bu
T = gt \ 3% / lbﬁ?i R 29

u
whrch, for nositive values of %#, becomes
L

o ! ou \‘12 -
T = ph \a‘ﬁf/ R 1°)
Waere %% } 1s the transversc gradieat of welscity, p the demsaty, and L a
\

length related 1o the mean frec psth of the turbhulest wotion., It 1s also
agswied conventionalliy tnat the normal prescure Toreces at & point are
independent of direction, i1,e,

Pyyr = Pyy = P cerrienen (2)

The aoove bwo reletions are used Joro all uhe main calculations of
the wresent saper, but 1l may be scea from a consideration of Jigure 1 that
strictly they are not anleraally cons.stent al'ler trancformation of axes,
The stresses at a point 1f transplanted to act on a fanite wedge of Fluid
would have to be in equilibraum; othervase (following the standard proof
used for showing thait the pressure i1n an invascad fluad as the sare an all
darections) for an anfinrtesimal wedge of Iluad the ratio of resulbont
Torce to wedpe nass would be propoviional to

[ 6or
)

G

and henee the rfluid acceleration would tend to anf2aity as the wwedec size

aporoached uzero,

For incompressible flow one system which would be internally con-
sistent as regards transformation of oxes is:
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- o 2
Pyy = P + (L Jem{ \;

. a ) =
pﬂ - p+PL JEYY l l--.-o-o-a-o(}a)
Pyy = Pyy & A7 J ey %

where J, an inveriant in transformation, is '
J o= | de. ? ve  +de ] \% | 3
v S dE e s S |
{ ) s ereeneneeen(30)
- 2 2 V2 |
= I \eXX 8y l{! l J

In these eguations eXX(= "eYI) 1s equal to the difference of the rates of

tensile strain and €.y 28 the sum of the rates of snear strain, 1.e.,

e = 2

Ty Ty 2y
85X T X T oY

d du,, ou, ¢
2 uY u.l Y , - )

eﬂ - -gtf":ué?‘z_—-'??:_em b ...--o--n-t-(Jc
H
i
ou,. o, :
e = & :-a-u}--'i—“"}'} i
)44 X oY aXx !

/ ou,
\-Ejé = e 2;; for an incompressible fluid \
iy a 7

Fquatzon (3) is a generalised crorm of Fguation (1) and represents a
consisteat system Por tae turbuleat or 'Reynolds stresses' provided oaly
that the lengih L 1s taken zs iadepeadeat of the dirsction of the axes.

This zeneralisaizon has bees put forvard by Prandtl and 2s guoted in
Reference 7; 2t seems almost certeanly to be a closer representation of ieal
flow than 1s the conventional form represented by Eguations (1) and (2},
However the conventional form is much suryler and for flows wath high shear,
that is where ]e,fl>>]e {,the aumericel difference as small, Coasequeatly
in the present pé%er vMETeas the Tull form 1s used in deravang the initial
equations an order to show that the resultant {low sti1ll has sinnlar
velocity profiles, thereafter only the simpler form is used, a subsequent
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check being made in order to estumate the magni‘ude of the effects caused
by the simplilication., The main derivation using Lhe simpler form starls,
almost from the beginnming again, in Section 3,0,

2.1 P_‘_EBI‘lVil_‘lE_J:_O_l:lb—uSL"lg the Full {orm for the stresses

ITne equations of motzon for 'steedy' bturhbuleat Hwo-dimensional
incompressible flow mny be writbtea 1n torms of the Reynolds stresses and
the local time-mean velocitiecs as

S S S S S S
Bt T B T RY T 7 hY ¥ !
- i
N e ()
f\ . i
Du”f _ BUY auY ) 1UP1L ’lagvx
Tt O S A A

whale the equation of conlinuity is

au., au_i_
A
-"a':i-. - u—_f- = O -uoo.e-.-coo-(5)

I R N S e By T
T ar T 9y r  pr or fro o px p\;')gé |
|
>.L.(6)
du u, du, uu 1 op 1 alr.n, ) A
U, JR S S e LTG5 U P
T Or r o0 r pr a7 pr ar pr ~¢r
aad
’ 3{r.u) 3u
—L P L
aj_" "+ aff) - O .-¢-..-o-o---(7)

lunsted to pure radaal flov; thus the whir]. velocaty
1s ozero, i,e, e

L1l
W



u, = 0 PPN €3
Equations (7) and (8) gave

a(r.ur)
ar

I
[®)

and therefore (r.ur) 1s a function of ¢ only, given by say

w, = &) ereineena(9)

r

An example of such a flow would ke f£low with samilar velocuty profiles in a
two~dimensicnal daffuser.

With BEquations {8) and (9) Equations (6) reduce to

" _E.).u_l‘. - .La(r'PfF_).+:_apr..j_ \ (2)
r or ~ opr ar pr 98¢ pr P¢¢ e

t

cvensaesa{10)

(
op a(r.p__)

P re
me o * Py eees (D)

J

Equation (3) giving the full form of the turbulent stress tracsiorms 1a full
to

2 1
P + (L GrrJ

]

-p + pLze¢¢J N eereeeeans .(11a)

Pr¢ = p¢r = FlLgeger

with



y L .

- 9 a 4. = ;

J = I( 2‘er:v:a g % Jd | ;
.l.-onolbc!.(11b)

2 8 \F f

= 1'\.err * Cpg ) | }

and

2 du 2u 1 8u u, &u

e =T & .....,é+£\-_£ e (110)

$¢ ~ T 0 T PO or f

:

|

19 au u i

e = . e T ;

re r o¢ ar e !

I

For flow in parallel pipes or ducts 1t is an accepted relation that
the mixong length L 1s proporiional to the duct wadth or diameterS, Thus
in radial flow the mixang lenpth may be cxpected to be proportional to the
local vadth or duiameter of the tlow, and therefore proportional to the
ragdius measured from the apex or 'source'! of the flow., Hence i1t may be
exzressed

L = r. & (¢) e renenes (12)

Equations (11c) wath BEquations (8), (9) aad (12) become

aur 2
S T 2 T T
A S
b9 roox?
t
[ = a = iiti{‘. =] -g-—
r¢ ¢ r 9¢ =~ =
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thus, from (11b),
J *-1-!(4&2+g’2)'%|
= 3

and finally, from (11a),

B = P-E | (g 47| (13a)
2 ] 1
Pgp = P +"§-§2~£ | (4® + g"?)% | e . (13b)
oy s
Py = p¢r=ﬂg~§- | (hg® + g'®)® et (13c)
W.oth BEquation (13¢), Equatzon {10b) simplifies to
‘ap
g8 :
55 O e (14)
which integrates %o
= T ceeeiaiaaaas 15
Pyg = Pyylr) (15)
1.e, p¢¢ 1s a function of r independent of ¢,
Similarly Equation (1Ca) reduces to
3 a ! 5 2.
Eé; = ﬁ%- 33 k g'{Lg® + gt )2]) + g° i ........ ... (16)
which integrates to
B 7
(5,0 = o | & (et + a2} v 2 | (17)
oo P (,?5 g } S .

L L
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where B, is the limiting static pressure as r tends to infinity. Eguataon
(13b) snows that

P =

> Pys o0 AR & £)

Therefore, from Equation (15), P _is a constant, independent of ¢, Now

Equations (17) and (13b) gave

—

21:‘2 » — d 2t Z 12 :’Ig - o 1 x
 xvpy) = | 2EE10E e ) - a2 | 0@ v 80 |
ceaeeens ceee(19)

In this equation the left hand side 1s independent of ¢ and the right hand
side 1s independent of r, IHeace both sades wvust be equal %o a constant,
say B,

Equating the lelt haud side to 3%,

2
- - PB_
P¢¢ POO 21.,3 J L A L ] ..(20)
and therefore, from RBquation (13b),
v o= o - B BREE | g 4 o) | (21)
foe) a.‘z r 11>  F & S )l ® s e s b a s s s e e

Equating the raght hand side to &%,

L -
2

= B ......(22)

-%(Eag'l(lrg"‘ + a'z)ﬁl) r g -4 | (48 + g")

Equation (22) 1s a simple differential eguatzon which, af the maxang length
daistrivpution as represcnted by £ 1s lnown, may be wntegrated for aay
specific boundary coaditzons to give g (¢) and nence the velocity destrabu~
tion, Substilution of the result inio Equations (20) and (21) would yield
the pressure dustribution, Tguabtlion (27) snows tiat the form of the pres-
sure distribution is



p =P - EEE + (function of ¢)

This completes in prainciple the golution for two-dimensional radial
flow using the full turbulent stresses; axi-symmetric three-dimensionsl {low
similarly yzelds a solution. The remainder of the paper w.ll base 1ts cal-
culations on the simpler form for the turbulent stresses, although a check
wall be made on the errors that thas involves,

3,0 The two-damensional and axi-symmetric cone daffusers and {ree two-
dimensional flow

Fcr completeness the solufions will staxrt ara.n almost from the
beginning,

In terms of cylindrical polar cou-ordiaaies the simpler assumpizons
for the turbulent siresses in two-dimeasional flow as quoted 1a Equations
{1b) and (2) become

‘J
/1 oy, ks
2 Z
PI‘¢) = P*;BI" = T = PL -K;—é-g’-/ ......-----.(ZJ)
and
PIT = Pg‘ﬁgﬁ = =p  sasesssesana (2"—1—)
The equations of motiion are
au u, du u,? 1 8(r.x 1 9p 1
TSR - S S R ..__..E?E - -—p
T or r g9 r P or pr o¢ pr “og
au u, du u_u 109 1 a(r. 1
I S e S .___Ms_f_l:xé_),,_mp
r av r 3¢ r pr 3¢ pr or pr “er
-
..... e (B)
and the eguation of continuity is
G} (r.ur) . au¢ o (2)
ar as:j "B NS SR bls



Il all the streamlines are radaial

so that Bquations (7), , and (L),

bis S1Ve

8(r.u )
e = O

or

Thas integrates to gave that tne wmroduct (r.u ) 1s a funciion of ¢ only,
gaven by say *

du, 19p 1 ap,. ‘E
YTa e T T TEr Yo RS |

Y veveenerere(25)

For fully turbuleat flow in a pape or duct of diameter or wadth 2h

. - I
it 1s Xnown® that , above a certain Reynolds aumber, the rotbio ;5’- 1s a specafic
1
' .
function of 'Yﬁ" vihere y' is the distance from the wall, It w1ll be assumed

that the same as true of difiuser flow, y' becoming the distance as measured
aloag an are from the wall., The function will for conveaniciacc be written

L e YL L
T = Kf {\*Ylf—l-;' =K T (y)



yl
and where y o= 5
Ir the difTuser semi-anle 335 a
h = ra i
poTTrrere .-(27)
y'o¢ -8 ’
o)

Hence y and therefore f (y) are {unctrons of $ iadeperdeat of r. Equatioas
(26) and (27) zave the mixang length L in the form:

-

L = rakf (y)
ceeeenre..o(28)
= raXf

.

Vath Bouaticas (28), (23) and (9)bis the snear stress becones

2 2 2 2
@ K7 gt
PI‘gb = P("br = T = .P"-'“ :r:?-. e R R R ] (29)

Substatuting Fquation (29) the Fouations of notaon (25) further reduce to

3 1 2 KE ) o - ) 3
2orim®) = BEE 2@ %) 1 L)
~ PRI R ) co(jo)
i
5]
0 = -—a% J ...... (b)

Since u, — 0 as r » e (see Equation (9)bls) Equation (30a) integrates to

2 4(2 3 s
(p +bpu’ - B) = -S54 (£° 2")
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1,6, from Equation (9)bis

2
.«"%. (B -2 = &+ K %(f? PLL I e (31)

In Equation (31) the left hand side 1s independcut of ¢ since Mouatioa (30b)

%% = 0, while the raight hand side 1s independent of r. Hence both

sides must be equal to a constant, say goa. Thus

gives

POO h P = 2r2 . e (a)
T (32)
r
5 !
&+ af K?-ga (£® g®) = g02 ! ..... . (b)
/

Equation (32b) is a sample differential equation for the velocity proffile,
the latuver beiag represented by g (¢), which is defined in Equation (9)p.s
{preceding EBquation (25)), The solving of this equation reguires that the
mixing lenzth dastrabution L = K h £ shall be known. Eguation (52&3 gives

the form of the wressure distribution, By analogy with Equation (9 Yis
Equation (32a) may be vritten
D + %pUba = P ceeans veens(33)

Equation (32b) 1s convenzently 1ategrated as follows.

The variables are changed from ¢ to y, where, from Equation (27)

B

&8
o]

and from g to ¢, where

i
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Using dashes to denote differentiation with respect to y, the equation
becomes

4 12 2
-a-_y_(fa q ) = %(1 - q_) ....-....-.(36)

The left hand side of this equation has deraived from the tern1§35 while

- ay
PP
the raght hand side represents g%-(P + %Purg) ~asp=F - upl,", ?ﬂd
a N, ' \ ur‘ \
LT Uo2 + urajl is proportional to Q\Uoz - ur? ), or %o (1 - ﬁ;r ;,

1.e. to (1 - %) 1,

R

Now the value of ¢ which has greatest practical interest is tnat for

which the flow is just at the point of separation, 1.e. for vhich the fric-

tion at the wall is (everywhere) juat zero, The boundary condations for the
integration are therefore taken as

- \ . t -
u, = 0 | 7 at NG 0
\ ¢
i
and T, o= o ! and at y' = 2h
1, e,
q = 0 | J at y = 0
.
and £ g® = 0 " and at y = 2
It 15 more convenient, however, to replace the conditions at y' = 2h by Ine

conditions for symmetry about the centre line y' = h. The boundary coadrtaons
then become

q = 0 at ¥y = 0 ]
|
2 q'* = 0 at y = 0O L feeien A(37)
i
£3 q’2 = O at y = 1 &

Of these three boundary conditions two are required because the differential
equation 1s ol the second order, whilst the third is required because the
value of ¢ 1s 1mitaally unknown.



-7 -

Integration of Equatioa (36) belwcen y = O and y = 1 and substitutaon
from Gguations (37) of ihe tio boundary condrlions coacerning shear siress
w1l De seen to give the useful alteraative co.adsiica:-

R 9

e (28)

? A ().

v
R i T v_ PR 4

O» "

(On the basis of the representation following Equation (3€) Equation (38a)
may be rezarded as the overall momentum condition, this taking a particularly

simple form vhen, as here, the skin fraoction is contiauously zcro, Also,
u

r - \ = e
sice ¢ = 7~ ,multaplication of Equation (36b) by 002 shows that U,
o
originally defined by Equatioa (33), 1s the root mean square value [or the
velocily ~rofile;-

U o= | uw’ oy veeneennnes.(38e)

These rclations are invesiisated fwiher in the discussion of Section 5.L4.)

Successive integration of Eguation (36) aad incorporation of the
boundary coadations at y = 0, {rom Equalica (37), sives

. J -
i (112 = IE% l-y._ § q_2 d_y_l
kel
¥y .
‘ _ o 1
1 i =
R R ¢ <?LyJ‘d
= &2 ) o 2 . 3
q = IC H f d-y' --n-no--'(.jg)
8]

It is required bto solve Fguation (39) using the (xnatially unknovn) value
of « such that tne resulitant solutioa for g satiuiies Bquation (38). A
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rapidly convergent solution by successive approximation i1s cobbtazined Ty putting
I = %—q Crrereerens . (40)
0z

The value of a 15 given, from Equation (38b), by

4
i 11
_E;— = ‘l\‘ IH dy ...... ()‘]"1)
lO;
while I is gaven by
y «
5 & 1
Doy - dy-if
CoL LN A
I = ‘E; ey - Skl -”f-_.‘mu-‘—-— T‘ &« P + & 30 &3 w9t L] (42)

The n'> approximation to I, from Equation (42), pives the N approxzamation
to «, by subsititution into Equation (hj) ihese values subgtituted into the
right hand rade of Hquation (42) gaves the (n + 1) approximataon to I, A
swatable first approxarmation to I is

i

IJ. = 25;3 ...-q.....-.(}-l-})

which 1s the value obtained by taking only the dermincat terms for small y
oa the right hand side of Bguation (42}, a.e. by omitting the term

and replacing f by y (see Equataon (26)).

The method Just used for findaing the first approximation demonstrates
alsco that the asymptotic behaviour near the wall is

I~ 2y a8y =0  iieiieeens (k)
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The iategration for small values of y as therefore performed algebraically
1n order to avoid numerical work near this singualaraty at y = 0O,

Trom Equalion (/) aad earlicr equatioas the Torm of the velocity
roullie near the wall 15 given b}
g v

-
N

u 202 20 ;¥

7

B
oj=

!
o~ Y = oy A e BSY' o0 L (UB0)

Thus the velocity becomes asymptotically proportional to ihe square root of
the dastance y' from the wall, Prom Equation (45a) ithe dynamic head behaves
linearly with dastance from the wall:-

}-I-'CL p7e |
zow? ~ 3 (2pU°) ( %r } ceves as y' -0 .........(45D)

Thas moy be re-expressed as
2 4
%m&z ~ o Egy' veres as y!' =+ 0 .........(45c)

This expression 1s the same as that obtained in Reference 9 for the turbu-
lent sub-layer of a twrbuleant boundary layer at separatzon, Beth flows
satisfy the asymptotic law

sy R syt a0 L. (5d)

du
Equation (4ba) sliows that the value of ?E%-at vae wall is 1afinite and not

zero, despite the wall shear stress beiag zero. (Ia a configuration for
which the ilow does definitely separate from lhe wall and a part of 1t
reverse, as opposed to there being continuously zero skin fraction as for

the present analysis, there would be a Lendeacy for the value of-g% to

change discontinuously, Trom infinaiby positive to wnfinity negative,
fAissociated with this there would be suddea changes in veleociaity across the
separation position 1a the region cloge to the wall, Sudden changes sucn
as these are a well known feature of turbulent {low sevaration. Ia practace
the discoatinuity would be softensd by the presence of viscous stresses; in
addation, as discussed in Reference 9, a new iype of turbulence appears to
be set up, after the condations represcnled by Eguation (45) have been
reached - but prior to actual separation, and then a zcre value for

\
[ 2a does seem possible, )

\ay i’y:(}
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Before discussing further the results of %ne integralioa, the coire-
sponding equations will be quoted for the axi-syrmetric coase dirfuscr as
there the value of o can readily be compared with experamental results,

Proceeding by the same method as Tor the two-dimensional duiffuser
the axi-symmetric diffuser yields the [folleowang equations,

Corresponding to Equation (32a):

<o
a repetition of Bquation (33):-
p + 3pU7 =

o

corresponding to Equation (36):=
d 2 12 |
— {1 -3y} 7 ! =
dy [( ) % 4

corresponding to Equation (38):-

V(-3 (1~ ) ay

1

(Y

\' (1-y) & ay

’

o}

and, corresponding to Equation (39):-

PE
el creerieeee  (46)
F_ berereee N ¢ )]
%3(1 -y (P~ . . (48}
t
0
g oo n (49)
|
. |
el 1
i
31’
(Y y A
Y ro e
2-c? "y (1=-%)- (-3¢ dy_{
L 8]
— - ~ dy
K £ (1 - y)*



- 24 -

Equatzon (50) is recadaly solved by pucbang

1 = n.,]IE'I:--rL_'- ---a--po--ol(51)

o

2‘_)Cf

so that o 13 given by

K*

T = \ (‘1-y) 13 dy ........-..a(52)

while I 1o gwven by

- . n.
I[yﬁ—g-) ~ g b =) P
b S el Gy e (53)

A}

A suntable [avrst cpproxamstion is again

Feu

and the procedizre of guccencive apiroxtiabion follows as before.

Toe asymmuotic behavions of I accy the +all ag stall

T 2} o roan
I~ 2y voves  AB ¥ Q0

Tims the aprnbolac foim of the velocaty yrofile nenr the wall satisfics
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51
- 8 ) dp { v asas ()1-}

or 2Py, e T |

|
and T ~ y! -g“_-g !

]

Tne above coas.ztubtes a method whereby The limzting coae ansle and
the velocaty profile Jor lae seporation coadition of Lne flov ray be cal-
cu__atc& For auay pives mixing lennbi azstr bution, alternalbively tae solu-
tion ray be used 1n reverse so that if the lumiting value of the difluaer
angle 1s known the level of the turbulence could be calculated, (This
Procedure woulu nave a good uccuracy siace 1n bhe theory tue bhwrbulcace level
varles acceording to only the sguire rogu 01 Lae lumtiig cone angle - ror
exarole Bguatioa (48) shows that K e aZ.)

The first calculation 1s made for the circular cone assumiany thot
the raxang length dasiribulion i1s the sume _as toet characterastic of
parallel flow 1a pipes., “Lhis distrabution®, desoted Ly, and showm in

*

" G
Fisure 2 as cwive (o), faves successive valuss ol e (1n tac clgebratc

process of successive approxamation developed above ) to be 0,375, 0,328,

0,3195 and 0.3175, so thot the end value may be bta'ea as G.317.  with
K =0, +O as for paraliel floir this faves o = 3,040 so (nat tue total cone
angle 2 ¢ is 6,08%, The velocity vrolile is showi na Jwgure 3 as curve (a),

For ceorparison the calqu;a.c:r_cn was I‘E'I)en...uEu. uging the . amang lencth
dastribution sumrested by Ponch’ und Likuradse’s after analyses of eupeTL-
meats on swo-dimensional dilfusers, Tne Jaseribucion has been deacted
Ip, s, and is shown in Mgure 2 as curve (b), It y12lds a total aszle of
15,39 for the curcular cone at separation, The corrcsponding velocity
profale 1s shown 1a Fagure 3 as curve (b).

Now whale 1a practice the total angle suztable Ior providing a staotle
flow not over-seasitave to inlet coaditions is found to be 6°, tae linziing
angle Fcr juat avo.rhn.,_", Llovw separation is mnovn to be at least ‘IOO, ag shown
an Relerence 6. Oince ine lumtang asgle o 3s proporsioaal 1o ¥°, compacisoa
of the expesimoalal 10° resuli, wath the 6,08° resuli obbained above , wndicates
that ihe turbulence level ifor [low 1a the 109 circular cone must be at least
50 per cent higher Lean fou parailel [los, but zerhaps not so high as e
level sur estcd by DBaclh aad Miluradse . Tt would seem tha. clhits iacrease in

‘Mbhoueh the dascriiutien of Wnoa and Niluradse was ovtained from
experiment 1t 1s 20U fadly concliusive as, 1 addition to requaring vhe
ériferentiation of an e}{.'_l..EI‘.J mental velocity rrofile, ilicar acunlysis wnwolves
a szall diflerence of large quantlt;cs. The dafiere.ce is partaculorly small
near the wall where the mixaag le :gsh s nost weportcnt, aad ithe acouracy of
the larpe gurani.lies nzy De u.fJ.. sctoe by the noa-tro-dimenszonality 13 tae

Tlow res ult_:._,n Do the 'end wall!' Doundary layer,
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turbulence level over that of parallel {low can be explained as follows,

In the fully developed Egya;}el Ilow the absoluie value of the
turbulence as represented by (u'v u' ) remains constant, 1ts level being
determined by the equlllbrlum.between the production and the decay of the

turbulence, In the fully developed diffuser flow (u'y u'p)? must decrease

in pronort:on ;o the mainstream speed, represented by say Uy, 1n order
f'T' =

that ---rzeee— shall remain constant and the whole flow display simil-

arity. Thus the rate of decay must exceed the rate of product-on of
turbulence, This disturbing of the previous balance requires the new
steady state to be established at a higher level, as then the higher
turbulence would give an increased decay rate and hence the required excess
of decay over production, Comparison of flow at one particular cross-
section of a daffuser with a parallel flow of the same mean velocity as at
that cross-section should therefore show the diffuscr to have the higher
turbulence®,

As corollaries to the precedang argument it as to be expected {Tirstly
that all daffusing flows would have a somewhat higher turbulence thaan
parallel flow - because the balance between decay and procuciion has been
digturbed - and secondly that the more rapid the diffusion the greater the
increase in the turbuleacc level, Thesc corcllarics are nceded when
assessing the calculatioas in the remaxnder of the paper siunce, in most
instances, use 1s nmade of the known mixing length dastrabulion {or parallel
flow, The practical conclusion is convemiently simple, It will have been
notzced that the limiting angle predicted for the circular cone when using
this distraibution characteristic of parallel flow was equal to the value
found suitable in practice for providing satisfactorily stable dilfusio:n.
This correlatzon - between the theoretical orediction and the practical
requirement - should hold in general for those tyres ol dirfuser where the
dif'fusion rate 1s about equal 1o that for the carcular cone, On the other
hand for configurations achieving very rapid diffusion the predicticn would
be expected to represent only a lower limat to the frue practical
possibilities,

As may have been geen from the Figures the shape of the velocaty
profile predlcted on the basis of L, 1s correct in its general form but it
probably is not very accurate as regaxds detail (the actual experimental
profile is not lknown); for example Ip,y, 1s better in showng the straight
middle portion usually found in experimental profiles for turbulent flows
near seperation, Thus diffusing flow, besides having a hipher general level
of turbulence compared with parallel flow, has also a somewhat modified
shape for its turbulence distribution,

Figure 2 curve (c) represents an additional example for the circular
cone dif'fuser illustrating the influence of the assumption concerning mixing
length, The distribution shown by the curve would lead to a limiting cone
angle of 6° and a velocity profile almost the same as given by In,u.

= em am em em s R en e G e AR T M e mr ER e e R e mE G R Em e o MR mm e E ae rm e av e mm e me me e e e

*This does not mean that when fully developed pipe flow enters a
daffuser the absolute value of the turbulence - say (u' u'y)? - ancreases;
(Bt u')z
the non-dimensional value --E%T_EL—~would increase initially due to the
o
decrease 1.1 U,, as pointed out in Refereace 6, and it is presumably in
this way that the newv steady state would be reached.
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Returnang now to the two-dimensiconal diffuser the dlstributlon L,
leads to o = 3.99° giving therefore a limiting total angle of §7; the
velocity profile is shown in Figure 4 as cyrve (a). The value for the total
angle obtained experaimentally by Nikuradse !9 was between 9,6° and 10,29,
Ixact comparison wath experiment would be prevented by effects from the end
well boundery layers, unless special precautions were taken in the experi-
nient,

3.1 A special "exact" solubion

In the method used so far the egquations ol motion have been shown to
transform and reduce exactly to a simple daffersatial egquation, but thas
equation has had to be integrated numerucally, ‘ere the mixing length
distribution a disposable function 1t would be possible to find exact sclu=-
tions to the dafferential equation - merely by postulating the velocity
dustribution 1n some algebraic form and substituting to fiad the mixing
length required to satisfy the equation, It so happens that one of these
mixing length dastributions i1s quate a reascnable approxamataon to the
actual practical one and has a particularly siumple form; it 1s such as to
gave the velocity exactly propori:onal to the square root of the distance
from the wall., This ‘*special' dastributica, dencted Ly, is given by

t oL
= w18 ) |
3 !
1.e, L, = Khy (1 - )" N ierneaeeneas (55)
and £ o=y (-y)E

It 1s shovm 1n Figare 2 as curve (d). The solutions to the differen—
ti1al equations are as follows,

FPor the two-dimensional diffuser

u, 1 2 y' .~
L (= = [ SR,
(9 = @) =+
e eavenesenas (56)
and é%- = %

Using K = 0,408 the daffuser total aagle becomes 2 o = 9,5°, (as compared
with 8,0° obtained from the mixing length distribution for parallel flow).

For the axi-symmetric cone daffuser
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Using K = 0,408 the dif'luser total angle is 2 a = 7.15°,
compared with 6.0° for the parsliel flow dustrabution,

The velocity dastrabutions are showm in Igure 4 as curve (b) and an Fagure
3 as curve (c).

The morn ervor in the form of tnis wmixaing length distrabution is at
the centre of the dufluser; ithis regicn is not wrportant in determining the
limiting diffuser aagle as the stress there falls to zero, The results ave
therefore useful whea sore simple analyiaical representation is reguared for
the flow, and might be considered analogous to the stonderd power law
approximations for the turbulent boundary layer on a flat plate.

3.2 free turbulence in two-dimensional [low

Consideration 13 aow given to a two~dimensional purely radial {low
in whach the velocity s an oscillatory fuaction of the angular position ¢,
ag for exarple in Figure 7a. [here are ao wall boundaries preseant to reguire
a zero velocity or to restrict the turbulence and consequently 1t will be
referred to as 'free-two-dinensional flow!, The curresponding standard
parallel flow is that sometimes called "The burbulent weke behind a row of
paraliel rods"'!, As in the standard theory the mixaing leaglh 18 assumed
proporticnal to the wavelenzth of the veloczty daiscribulicn but independent
of the poesition on the imaveform,

The equations of mobioa are 1dentical with thosc for the two-dimenszonal
diffuser and only the bouadary conditions and the mixing length are changed,
The dafferential equation for the wvelocaty profile, corresponding to
Bauation (36) for the two-dimensional diffuser, is

d A
35'(Q'2) = 5T (1 -4d°) A 15
1
where now y o= %
Zb = the linear vavelength of the velocity profile
and = &
c = 5.

The boundary conditions are
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{
du _ o J when agd = 0 \
3¢ A
i when ¢ = 5
.
i
f‘ \> ..Qﬁt.l..ll.(59)
i.e, ' when = 0
% = 0 ¢ and
. when y = 1

)

The equation could be integrated direct (numerically) but for simplicity it
is linearised. It then becomes similar to The liaearised equation for the
standard parallel flow. Putting

q = (1 +1) erreneeens.(60)

with the maximum value of ¥ equal to ty, antegratioa of the linearised
equation gives that the angular wavelength A is

=
i

23,1 ty o }
} .O.l.n.o-u.l(61)

J )

Details of the mathematics of the linearised sclution and of the
corresponding velocity profile are as for the standard flowlt,

1

o'f

23.1 tM (

or kS

A tentative comparison between the results from the linearased
equation and those which would be obtained from the full eguation is given
in Appendax I, Thas comparison suggests that when the value of t is say
20 per cent, none of the effects of linearisation exceed about 3 per cent,
while 1f suitable mean values are used {e.g, if in Equation (61) the mean
of typx, and (-t)max, is used in place of tya.: ) the effect oa A is less
than 1 per cent when ty is 20 per cent.

The next Sectzon 3,2,1, which considers ihe stabilaty of the periedic
velocity profile, wall consader alzo the value to be expected in practice
for ( %- 5, and will mention an example on thas type ol flow,

The result just obtained for turbulent flow may bhe compared with that
for free two-dimensional laminar flow, which gives, {or the veloccaty profile:-
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+— = sin —_—l
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and therefore, for the wavelength:- W oeeenea. (62)
A =-———%wﬂ—1;7 , (r U, = const, = go)
2xr U 7
o
!

/ Y
3.2.1 (i)  The value of { 2 ;

(22)_ _the stabilaty of the periodic velocity profale

(1) The ahove aaalyszs shows that a daffusing flow 1s possible
having a constant percentapge velocity variatron, of magirtude proportional
to the angular wavelength ol the flow profile, Irom Equation (61) the
amplitude *ty is

PV S
Mo, [ LV
23,1 [ =

\ b )

For the corresponding parallel flow Schlichtiag found the value of
%-to be %-: 0.293, {(Reference 2 bus p.169), On the other hamd a somewhat
similar factor obtained for jget mixaing at G8ttingen has a value 0,096.
(Reference 2 but p,173). For the jet mixing the flow geometry differs from
that for the wakes and a lower value of the factor wouid be cxpected, Ikence
L
5= 0, 20,
(The value in practace would be expected to depend somewhat oa the tetal
numer of wakes as eveatually the wake {low wall be bounded by & low turbu-

{or wake mixing it 1s probably conservative to assume say that

lence mainstream or a solid boundary). Thus using say‘%-: 0,20, ty becomes

tM = 1,08 )

If A is to be expressed ia degrevs, 1t s convemient to write the final
result as

tM = 0,019 A . (degrees “1) Y (53]

(11) Whereas the analysis so far gives the solution for the flow
in which the velocity profile remsins simlar at all cross sections, a {low
for whach the inaitial value of tM differed from that given by Equation (éj)
couvld not maintain a constant iy and 1t mizht be cuest:zoned whether ty:
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would tend towards the steady value or diverge from it, By considerang the
forees on say a half wavelength wadth of fluad for which w. < U, and by
supposing that ty exceeds the value from Equation (63), but taat otherwise
the profile shape 1e similar to that for similar solutions, 1t 1s readily
shown that the value of iy wall feud towards the steady value, In thas
sense, therefore, tne flow 1s stable, It seems likely that the flow 1s
stable more geaerally, so that any two-dimensional radial {low 1o uhich the
velocity 1s a periodic function of the angulaer posibioa will adjust ztself
untal the velocaty variation sazisfieg Equation (63) EOr the coriesponding

equation using the actual values of %).

Example

4 two-dimensional daffuser has boundesry layer control in order to
allow the use of a 40° total angle., It is requared to find the behaviour
of the main flow when this contains wakes of a wavelength equal toe a tenth
of the diffuser wadbh,

O
The value of A is 5?- = }°
ur - Uo
Prom Equaiion (63) the steady velue for tyo = =g 1S
Q
t.. = 0,019 x 4 = 8 per cent

On the argument given above the flow profale as 'stable!, hence
the velocity variatioa would tend to 8 per cent of the
local cross section mean velocaty,

5.2.2 The behavicur of an isolated wake in daffusiyg flew

In the daffuser of a wind tunnel only a sizxgle wake 1s lakely to be
present, This single wake will tend to spread across the flow at the same
time as 1t adjusts 1tself to a certain value for ¢y, Eventually, if the
daffuser were very long, and the wake losses .arge compared with the losses
at the wall, the wake would spread across the diffuser and the {low would
become similar to that allustrated ain Faigure 5b. This flow will be discussed
in Section 4.2, For the early flow, however, while the wake 1s sti1ll remote
from the walls, a1t seems probable that the arguments developed above for the
peraocdac velocity profile would roughly apply. The example just given
therefore shows that even 1f a wind tunnel employed very rapid diffusioan a
narrow wake should still become attemuated by the turbulence it produces,
provided 1t were not sufficiently close to a solid boundary for this turbu-
lence to be impeded.

4,0 Wide angle two-dimensional daffusers with side jets or central wakes

Two types of wade angle daffuser with side jets will be examined,
that when the side jets are intended only to prevenl separation of the flow
from the wall, and that 1n a wind tunnel which ig powcred by 1ajeclion,



- 29 -

The two types of profile are 1llusirated in FiTures ba and Db respeci-vely .
A diffuser iaih a ceatral wale would have bthe lyope of proiale snown 1a
Mipare Db.  Suen a flov would occur dowastiream or tue Thullet! of & fan or
turbvine, and doinstream of a bluff medel in a wi.l tunnel workinp scciion,

As w1ll be sureutbed later 1t could also be made to ocour lutentionally, in
order to stabiiise tne flow in a wide an.le diffuser. Fractical apzlications
would be likely to have axa-symmetrac [lov but for simvlicity the theory wall
he only for 4wo-damensional caffusevs.

Pure radiel flow 1s again assumed, so that the velocity profiles are
simxlar at all radii,

L1 Two-dimensional daffusels wita side cels to _preveny flow

v o —— o —— . s ey o B R i [P ———

seDaratLOH

At T g — et

Let the co-ordiaates of the velocity profile sabisly the various

‘

G

= are: o = g at

. r
parameters shown in Figmwe 5a, a,e, the values of q 5

e —

o}

S NS

1
the get peak, which is at a dastaace v = %& = { from the wall and q = Gy

at y = &, winch 18 where the velocaty 1s a mimamun, The three parts of the
velocity profile separated by the lines y = § and y = & wll each be
treated indivicually.

The dilfuser aasle may be related to the parameters quoted above and
the stabality aad power o Lhe ,o3 examained.

4.1,1 The central coie of Llow O, <y € 1.0 -
This nortiea of w:ac flow is remote from the -mlls co.xd the mixang
length will De alnost coastunt acroce it. Thus the [rec turbulence theory
of the previous Scciion 3.2 may he applicd vrovided a suitable value is
chosen Iz the mixing leagth L. The resull of tie linsacised theory of
Sectuion 3,2 1s

¢ LY -
= 25,1 t.1 & | I A DA

A < thig b/ ' ( )uls
anu the maxirum values off ¢ and {~1) fron the lancar lheory are egual,
Heace .

ER - — - !

bM. = "‘_tm"-(‘t qg) o.a........-\U——
Aso, [rom the gecmotry of the flowv

”hgmcanmﬂdIuﬁLtoﬂvzfinemmaveomjyow '11le had

"deterarorated” belfore the Fléw reacncd tue injectroa position, IF the
ingectron arr were~apylwel beﬁore :deterioration of lhe proflie i.e, tmen

the profile cunsls tud ol &, const wat velomaty masuscrcam and Gbhin howiwary

layors, then consideratiods of bouwasary luyer coatrol would bc nore ALDIO-
3 3

priate, rather as considered, for emarple, in Relercaces 1%, 13 and 1.
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and b = (1~ 0y) 0

Thus Equation (61) becomes

234 (1 = qg) {L V2
2a (1 - AU, S L =20
( 62) (1 bl 62}“ 11 ./
l.e' al = -1‘1-:——-—3—?—‘(1-:--‘3‘&2_) (p:v[i \" 'III‘.....‘.(66}
1T - &;}‘ s h r',l

The dif{user angle s therofore debemalied piven 8, and ¢, only, foir a ivea
value of the muxang lengih,

E‘xar“cle

Supoose g = 0.6

e
I
o
&

Tre mixang length distribution for parallel flow shown 1a Fagure 2 curve (a)

L .
suggests a value for = of 0,12, ZEquation (66) thea gaves

1’2- O AL
o = ( (075"75‘& ) (C.12) = 0.359 rad

The corparisoa of Avpeadax I viwch estimates itae effecct of linearisaizon
suggests that the value of o irf calculated watoout linearzsafion would be
withia a few per cent ofs-

¢ = 0,35 vady,= 20.3°%; 1.e. 2 ¢ = 40,6°

This 1s to be comoared with the value of 8° for the siwuple bwo-dimensional
daffuser of Section 3.0. A proportion of the 10,59 1s ococupred by tae Tlov
from the control jet. The proporiion so occupicd is estimeted later to be
Jurt over 5 pexr cent,

L,1.2 The part of the proizle betwesn the get peck and the

ve 'Loc;.t} u.m:mu*'

This region is detined by §; <y s 8. Relacioas are reouired ia
order to determine &, and g giveown O, and g,



-3 -

Since in thas region of the flov the velocity gradient %%-13 negative

the basic equation for shear stress

o au.\ _@E-‘
pL (—é-f j l aY .-.;-to||(1a‘)'bis

&
1]

now beccmes

2 [ Bu YV
T = -pL (ﬁl)’ for(-é?)tzo .......-.(67)

The motion being two-dimensional and radial from the vertex the equations
of motion must reduce to the simple differential equation of Section 3,0,
except for a change of sagn., Thus

FE ") = -F (- e .. (68)

where

and the mixing length is

=
It}

Khf; f=f (y)

In order to be able to obtain a result algebraically it 1s assumed that the
mixing length i1s proportional to the distance from the wall, Then

L = Ky'=Xhy

I

e (69)

¥

|

For convenience the variable y 1is replaced by m gaven by

n = AL ceereennesss {70)



%(nﬁq‘a) = = =pe (0= &) N ¢ )

where q' now represents %%. Since %% is zero at n = %%-and at n = 1 inte-

gration of Equation (71) gives that the overall condition to be satisfied
igg-

1
\‘&} (1_qa)d-n = O e e .--(72)
el
63

The solution to (71) may be found reasonably conveniently as follows:-
Let 4 be the root of the associated equation

‘E%F, (nPy'®) = - 5.1@% (1 - @*) v . (73)

where the variable term ¢° on the right hand side of Bquation (71) has been
replaced by g%, the value at n = 1, Successive iategration between the
lamils n and 1 (these lamits are cihosea as Eguatzoa (73) will not permit

&y veing zZero at m = »i, 1T a real gelutioa 1s postulaled between v = L
d'n 62 E‘

and m = 1 hav1ng-%% =0at nn=1) gaves

Y = q + 9-1-{% (1-%2)]

tal-

AR
w)-

- 1 L R €S

%
1.e.
1 -
a & 1T ‘2 7 |
v = w v | -at) | [2sea™ -2 (1~ w)?
L) * » I.(75)
or, putting g°® = (1 = g?) et (76)
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It may then be shown that the oraginal Equatzon (71) has an apprroximate

golution:
4 = ¥Y+rEe et (7%2)
where e % =-{1+q) Sfﬁ F (n) beereeseses. (780)
and
L1
1 .1_ .1_ -
\ \ [s.ech"1 T e ﬂ)z.J dn
F (’n) = ‘ n o= "1‘“' dn ........(78(4)
: n (1 - )"
o’
e
-Ln e
I ¢ 1 3} —:'— -1, '.:"-
F((n) = 2 l 3« (1-m) +2 log & | = (1 = m)® sech™ 1

...........:(78a)

The differential of thas solution is not sulTiczently accurate for determining
%i, 1.ce the value of m at whicn-%% = 0, but substitution of the Equation

(78) into the integral condition (72) does provide adequate accvracy.

Having thus determined the voalue of 11 = gj, the value of q; at this posaition
15 ootoined, though not so accurately, by dirvect substituiion ante Equation
(78).

Erample

The example taken for the core of the {low is continued through thas
regzon, The data is:

8, = 043 . Ekga = 0.910

- F

Nurerical integration of ¥quation (72), after substatution of the dala into
o - PR

Equatica (78), gf?%a:%i = d.OE&, %;c.’Bl = 0,015, Substatution of
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ne= -8—1— = 0,034 into Bquation (78) gives gq; = 1.9 {wh:x.ch value wzll not be
2

\
8

as accurate as that for ?i- )
o
As %E

&
There 1s a mumimum value of Si?i-for Whlch-SL 15 real, By considering the
]
1

decreases, T decreases to zero and gy increases to infimity,

valuec of j (1 - ¥%) 4 n it may be shown that when gy = 0,6 this mnimum
o

value 1s certainly greater than 0,347 rad; for K = 0,408 the value of (a 83 )
mist therefore exceed 3. 3°.

41,3 Ihe gel "boundary layer" region of the profile,
Osy <

—— - ot et

The simple differeatial equation for the velocity profile is solved
as in the previous section to give:

o b @ X
s mmm (G20 (E)em e (£)

PANEEN

where g

It
[y
o
ct
on
-

e = @ -1 verevesan..{(80a)

3 \
where I { %&—} is the same function, but with (%?-)
1

LY
in place of m, as in Equation (75d),
\
and where T ( %L‘) 18 the brackected function in
0y

Equation (77):-

_— e & |
p (&) - Lsech-i (- (-&) eerrenr. (80D)

If the wall skin fiiclzon 1s posilive the velocity profile must
asymptote at the wall to the semi-empirical form;

u
TR~ WOV P e N €10
qT uT ¥ )
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It 1s found that this condition 1s satisfied provided the following relation
holds between the velocity at the jet pesk and the distance of the jet peak
from the wall,

i i

1 \2 8 12 a &

14+ 2 (1~ log 2) (1—51—2"') (:hi'{ﬁ'%') 4(10&,/_—--(1{3 )
T T =
(1) (-4 (%)
"@mZ /) N K ] T3NTEK
) (2 [ 1 z ) 2 ) }'"
X°R [ a b, l \ a 12 2ad
AR +log | ——a | 5@ ) ) (1_q12)(K2 )"3 eI
cereaeeeaa(82)
h U
where R = 2 Cereraaaeas (82a)
o v
o Oy

Figure 5 expresses this relation as a series of curves of ¢ against w5
for various values of Ry (from 10* to 10°), when o and K are garven the
values 20° and 0,408 respecglvely. Jince ¢ occurs only in the variable

a 8 e

~%z~ and in the parameter — solutaons {or olher values of o may be
obtained from the curves by factoring the wvalue chosen for Ry, The curves
are not exact as graphical ainterpolation has been used in their deravation
from Equation (82).

Tcamole

Further continuing the previcus example, the data is:

K = 0,408 ; o = 20,3° (20°);
a
& = 0,015 ; ""“11"5}‘ = 0.03%;
also the previous solution requared @ = 1.9.

6
I‘:L gure 6 shows that g = 1.9 anc'L = 0,031 are compatible provided the

Reynolds number R, 18 3 x 108, I‘or other Reynolds numbers these values
would be :mcompat:l.ble and. the —nroflle across “the vwnole section would have
to adjust 1’5581{‘ Tuntil a compa.‘clble gystem woere obtarned, Thus 1t 15 not
possible to postulate entlrely arbitraraly the inmitial values say of &,
and qg. - -
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bot.4 The stability of the get

Suppoging the jet sulfers a slapht dasturvance such that ats non-
dimensional velocity q and 1ls aagular width (something greater thaa o &)
are affected, but 1ts volume {low is unaffected, If 1t may be assumed that
the volume fiow is proportional to the product of g and &,, then thisg
product would remain sensibly coastanl, The Jet may be considered as stable
if, afier the disturbance, 1%t teads 1o return to 1is former angular width
and non-dimensional velocity, and unstable zf a1t coatinues to change in the
same sense as the dasturbance., In amalysing the jet stability 1t is assumed
permissible to neglect the change 1n pressure gradient that would resalt
from the jet daisturbance having aivected the main flow, t may then be
argued - at some length ~ that the jet vill be stable only af the position
of operation on tae curve of ¢ against %(S} , Tor the approrriate Reynolds
number, 1s above (1n trhe sense of a larrer value of g) the position vhere

q . 'g‘k'gl" ) 1s a minimum, The locus of poants of miniswm ¢ . -ELK%- 1s

shown in Figare 6 as a broken linc, ilhis represcats the stability limat.

It w1ll be seen that for stable operation the peal jel velocity must excesd
approxamately twice the velocity U,, where p + -l_—ong = Z,, almest indepen-
dertly of Reymelds nunber,

4.1.5 The power expended in the jet

Por a wniform velocity jet the power expeanded in the injection ais
equal to the product of the jet'veloexity, the slol width, and the excess of
the jet total head over tne diffuser static vressure at infamity. Ir the
velocerty profile ihat has been calculated above the dastance of the Jet
peak from the wall 1s equaltod;, but thne {full equivalent jet wadth is
geveral times larger than this, as iuch of the {low between O and &, would
be 1ngection air., Suppose that the ecuvalent jet wadth 1s say n h &,

i being curte large when -gl 15 as srell as 0,034 as 1n the exarple calculated,
2

The "power factor of 1aysctioan', 1f btris s delined as the rotio of ithe power
expended on lagection to the powver regained in the diffuser maza flow,
(excludin: 1ajection air) tnen becomes;

@ (0 &) (@ ~1)
o = - —
rovwer FaC‘tOI‘ (1 . (lJ, 61) ....-o----—-(83)

(In deriviag this expression the total volume rlov has been put equal to
2h Ug.)

I

For the velue 1 2.0, the mioamum value for stability,

and for 5,

I

0.015, as 1n ithe examle calculated
above,

Equat.oa (33) gives

9 n

Power PFactor = T"_E-J_.%HO?S“E‘



- 37 -

It is estaimated that n is about four for this value of & » Thus
the power expended oa anjection s aboui 40 per cent of the pover
regained in the moin flow in that leagth of the daffuser between the position
of injection and anfanity,

In practical applications a wade angle diffuser i1s likely to be short,
and it may not be necessary to meantein a stadle jet. If desirable, the
value of g, used for the et velocity could nrorably be much less than the
stabilaty limat of 2.0, (although the jet width would then probably need lo
be larger than 1. the examPLe calculated), Moreover, Equation (83) shows
that the power expended is very sensative to ql. For example the value of
the product ¢ (@” = 1) changes from 6,0 to 1.875 when g changes {rom 2,0
to 1.5, It seems quite likely therefore that a power expenditure on injec-—
tion more an the region of 20 per cent, rather than of LO per cent, of the
power regained in the meain flow of the diffuser, would be sufficient for a
short wide angle daffuser Tor which the wvelocity profile has already
"deteriorated”,

4.2 Two-dimensional daiffusers of wind tunnels powered by injection;
diffusers with central waltes - stabilised diffusers

For this type of difruser bhe velocity profile is of the type shown
in Tagure 5b, with a meocmum at y = O aad a minzmum at the cenbtre at y = 1.

Considering this very briefly, the central region defined by
6 £ ¥y < 1 may be treated by the free iturbuleace theory of Section 3.2, Just
as for the core of the flow in the previous section., Thus, followang
Equation (66),

11.55 (’I - qmln) (
@ = TR

o1
o —
.
o
-P—
S

The region between the wall and the jet peak could be treated
accurately by the method of Bection 3.0, for a given mixing, lengbh distribu~
tion, but for convenience it will be compared with a half of a simple two-
dimensional diffuser. As the jet flow is close to the wall the mixing
length I wall be almost as great as the value L = Ky. Coasequently the
mixing length for a hall of a simple diffuser will underestimete 1, and a1t
will therefore underestimate the 11m1t¢n5 angle, between the wall and the
velocity peak, at which the jet 1s in the separation condition, Since the
simple diffuser semi-angle is 4O the jet will not separate if (a 8) < 4°,
{The "exact" solution of Section 3,1 would probably still underestaimate the
angle so that the jet should not separate 1f (o 8) < 4, 75°.)

The stability craterion of the previous section is not readialy applied
to this type of flow as changes in the jet would be likely to affect the
pressure gradient significantly,

Example

TFor - 5 0.2 and qmlﬂ = 3

= 0,10

SRl

Trgure 2 cuxve (a) suggests

8,6° and (o . &) = 0,86°

{t

Equatzon {84) gives 2¢,



- 38 -

The above analysis applies also to daffusers having central wekes
instead of sade jets, as has been discussed in the first paragraph of Section
4,0, This type of profile would be obtained 1a a diffuser i1f the wake
losses were comparable with the losses at the wall, An apvlicatica of such
a Tlow would we to the stabilising of a very wide angle diffuser by means
of a gauze, or a twbuleace grid, at entry - across only the central portioa
ol the flow. The following esample indicatves lhat this should be more
effective than a gauze across lhe whole cross section.

Erample

In order to stabilise a daffuser in which space is more important
than meximum efficiency a gauze, or grad, 1s placed across the central
portion of the entry flow, The arraangement is such that the characteraistics
of the resulting profile are roughly equivalent to

1
=%

5 = O- 3’

Uan

{
Figure 2 curve (a) suggests &%‘{) = 0,11, Equation (84) then
gives that the total angle Of the daffuscer s (2 o) = 31,29,
The diffusaion is therefore about four times as rapid as for

the simple two-dimensional daffuser,

Sance & = 0.3 the value of (a . 8) 1s 4,7°%; tne flow vhich
passes between the gauze and the wall i1s thus approaching
the separation condition,

Use of a simple central gauze would damp the turbulence below the
value assumed above, On the other hand since the diffusion 1s very rapid
the steady state turbulence level should be very hagh, as discussed in
Section 3.0, Thus af a special high turbulence grid were used in order to
convert main stream velocity in the centrzl portion of the flow anto high
iturbulence, the turbulence would be expected to persist at a high level
and the consequent cone angle could be very large - significaantly larger
than predicted above - provided care could be taken at eatry.

5.0 Dascussion

The discussion is coacerned with certain largely theoretical aspects
ef the subgect,

5.1 The absolute level of turbuleace and its nel rate of decay

Since a knowledge of the mixang length amounts almost to a knowledge
of the turbulence i1t 1s not surprising that the foregoing calculations allow
estimation of the turvulence level in a daffuser, With the relation
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st s —

the valve of u'y, u'y could be caleulated directly by differentiatang the
velocity profile and supstrluling the value of trne mixiag leagth, Under
gome circumstances 11 would he sove accurate however lo i1atesrale the

s ¥ s!

equations ol motion and obtain, for the btwo-dimeasioanl dalluser,

T i

"pa—'ru’»:lﬁer Cw: (1__(13)@ -.-.:.......(86)

)
i]

thus employing aa antegral of the velocauvy profile,  Subseaiution ol

IR I

- + -
o = (2y)2, as obtained 1in Section 3.1, 15 .degante for showrng the rain
wehaviowr, Thas gives

e e "
~u!_ ut = U=~

r g o ov (1 -7) reeeeea. . (87)

—n a2 St

so that the maximmun vailue of |a'r u',y| across ithe sceetbion 1s ot che posaticn
] ]
y =&, vhere

I -1 2 \
EEUA NN I L A e (SB)
or
! Uo \
——— L
\ltr ,gb ‘_7‘ “r = w’zdg'" ............(89)

If, for exmammle, 2q were 89, as obtaaned in Section 3.0 when usiay ihe
nuxing length distrioction Cor parallel flow, Equation (8%) would give

T 4 = i (o0
urugéimax. 0,14 U, . ceeranarees s \90)

For tre ati-symmeiric dilfuser

W utT = 2y ® - 9
u'r u(p ZLO oy (1 =) A XD

ead for 24 = 6° as obtained 1n Section 3,0 (agawn vath the parallel flow
rmixaag lenuth),

5 = 2)
vsl 'ﬂ"a}:. O-’I6UO° -l||v--u'||l(9 /

Thus Tfor both darfuscrs the maxuum velue ol [u'l: u'¢ 2
would be approximately 15 per ceat of rhe vrool rean square velocaty Uy at

that section, Thic would become 20 rer cent zf the actaal eritical angle

at aay sectioa
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1s 100 for the axi-symrebric diffuser, and say 14° Zor the tvo-dimensional

arffuser,

As discussed earl:er notv only the absoluce level of turbulernce but
also the net rate of decay ney be calculated ovce the laimiting core angle
1s Inown, The difrereuce from pave flow s lhet an the lalter tae net rate
of decay for any scction as ¢ whole as Zzero, From the derivaizou above, or

4o

merely by postutatineg similarity betweca the turbalent eddy velociiies and
the main radzal velocaty, the tubulesce level deciresses 11 proportica with

the main radial velocaly. lieace 15 decreases properiionlly to — for the

r
- byl ‘} ~ 1 ral
tio~-dimensional dalTuser and to wy ior tie axrt-syrawelric diliuser. Thus
for any porizon of the fluad predaccion could be nade for t.ac net rate of
ascey of u'n u'¢ either tth respeet to time or vata respect o dastance,

This net rate of decay afiects the balance bebweca the decoy and the
procuction of lurbulence aand hence wnfluences the turbuleacce level in the
steady siale, as discussed in Section 3.0,

5.2 The ragnitude of the errors involved in usiar, che singler foim
Tor the furbulint stiesses

In using the simpler Form foxr the turbulend o 'Reynolds stresses!,

1.2.,
du [ Bu v
TH = PLB l-éir- I k—a-f; looo-ot--(1a)‘bls
and Pey = Pyqv =~ P °""""(2)b13

two changes nave been nave from the provossd more accurate form which was os
foliows: -

Py = — P+ PL7 Je

r
X FIvee

veeeeeaa.(38)

Ll

bas

e e e e ——

Pry T Py TP fyy
J = l(j"*ez+e‘°‘+-f e‘le \
&K XY Yy !
‘ B
(o oo e (g,
= | \®xx  t Sy ) | }
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. =28uX=8uX_auY E

XX 3% T 3% T ey :
3 du, 3 ?
& - 2 LLI: — lij_x:—eq '.._ .-a----‘.(jc)
Yy 3Y © 3% T &% £ O b1s

a
X X Y X

The chaage in the shear stress 1s to replace J by‘%%; the change in the

normel stress is to omit the terms such as pL® eyx J, thereby implying that
the normal stresses are each cqual to minus the static pressurc. The
ou

simplifications amount to assuming that the rates of tensile strain 5%

g
and 57 and the rate of cross shearing straln-?ﬁr, are small compared with

the longitudinal shearing strain 5
Most turbulent flows have become turbulent because of the instabilaty
of a large shearing velocity in the Ilaminar flows from which they derave., A
large shearing velocicy 1s sta1ll present after the transaition has taken
place so that generally turbuleat fiows are {lows with high shear, Since
the axes are conveationally chosea so that the haph shear is represented by
ou
E;%E,(cn*-géi }» this becomes the dominant term and the simplifications are
reasonably justilied, Some of the effects ol the simplification wall be
investigated for the two-damensional daffuser.

In the two-dimens.onal radisld flows considered the static pressure
predicted by the simpler theory has been constant at any given radius, The
result using the more exact theory s that the normal streas pg. 35 constant,
as given by Equation (14). On the latter theory the variation of static
pressure across the section would be, {from Equation (11)),

= - 2 -
§p = 6p¢¢+5(pL ®5 J) cevreensesaa(93)

= o+ & (pL? Y J)

2 2

& (pL e¢¢ e ¢)
i.e. ,
( S w, aur 3

dp % 5\\2 oL —-2-—-5-5-} N -1
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Makang use of the special solution of Section 3.1 the maxomum value of this
static pressure varilation is

a 16K a 1]

(89) ., 2" - T

¢

d }'1"'Iil..(95)
4 2 i
0,007 (%pU,°) |

4k

Thus, for the separation flow, the variatioa of static pressure across any
section 1s gaven as zero by the approximate theory, but as Just under 1 per
cent of the sectrion mean dynamic head by the more accurate theory.

Similarly the ratio of the shear stress, Prgs of the more accurate

theory, to the shear stress 1 of the simpler theory, for a given value of
the mixing length L, 1is

r / Bu \‘2 —Hz

ccccccccccc

At the peaks of velocity this ratio lgocally tends to 2nfinity. ihereas,
using 1, the profile asynptotes to a 3/2 power law alb the peak, using Prg
the asymptotic form 1s a square law (1.e, af {&u,) and (8y) are the
departures from the values et the peak, the profiles correspording to the
two assumplions satisfy respectavely: (dw.) < (8y)3/2, and (&u,) o« (8y)2%).
For free turbulence the mean value of P4 is about 10 per ceat higher than
tnat of 7, This could presumably be absgrbed into the empirical value for

the mixaing length., In diffusers the difference is less than this 10 per
cent,

5.3 Simlarity with viscous and turbulent siresses

If 1a aay 1low the stresses are made up of both burbuleat and viscous
components then for 1t to be possible For the velocity profiles to be
strictly saimilar at say all radzal stations there must be "dimensional cor-
patibility" between the turvuleni and viscous components, In particular the
rati1o of the two components at any point on the profile must be the saxe at
all radial stations, i.e,, the ratro must be independent of the radius, The
diensions of the ratio of the turbulent to the viscous shear stress are
given ny:

2

ou
L° (mr )
turbulent stress _ P oy’
viscous stress ; aur
B ('5}3 )
17 8w
T
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For radaal flow wath similarity

o = 808
e 1l
r
where n = | Por two-damenszonal flow
and n = 2 for axi-symnetric Tlow,
Also
1 3
Y‘=r¢:1-e-af";'a_¢;
and L = Ehf = Xraf
hence
turbuleat strese _ ( X° o £2 g' \ 1.0 .
—-= - -~ = L«-~-—---——-— | r N X,
viscous stress v /

Thus the ratio is indevendent of the radius only if n = 1, 1,e., only for

the vwo-dimensional flow and not for the axi-symmetrac flow, This dafficalty
has not appeared an the preseat paper as in the maln analysis oniy turbulent
stresses have beean considered, a procedure which has been possable vecause
the analysas has becn reastricled to flow at tae separation c¢oaditica, For
that coriitron 1t happens that a realistic solution can be obitained indepen-
deatly of viscosaty, even at the wall, because 1a the repion where viscosity
is usually impcrtant, 1,e, 1n the viscous sub-layer close to the wall, the
slress 13 cither mero ow very saall,

Tor conditions other than with the {low just at seporation the ususl
logarathmic behaviocur would occur at the wall, Derag a funcbion of Reynelds
number this would gave sxmilarity oaly for tio~dameansicnal flow, It is
possible as in Relerence 1 to obtain approximate sirmiaraty in axi-symmetric
Llow 1P the Reynolds number variation is not excessive; the Reynolas nurber
alonz the dilfuser is inversely proportional to the radius,

The ghove suggests that the seperaticn condrtion for the axi-symmetric
cone 1s parlicularly surted to ravestipgations iato turbulent flow, quaite
apart fiom the practical anterest associated with tne limitang rate of flow
daffusion., Tor flows other than at separation ax.-symmetric rlowv does not
have strict sumlaraity and thus analysis is difficuli; for tro-dimeisional
flow the end wall boundary layers would either complicate the experament or
complicate comparison with theory.

5.4 Some limitations on the flow

5.4.1 The pressure gradieanl and the root mea: squore velocity

In the analyses of the precediny sections the velocaty U, has veen
defined by the Bernoulli eguation tyme of relalicnship:



A, 2 _ . - 7
P + $pU ® = consi, -Poo """"'()j)bls

It 15 found {Equatzoa (38¢)) taab for flows at ihe separation condzilon U,
becomes the section root mean sguace velocity,

Frysically the above 1s becavsec at the sejparation coauitica the git
lad

{rction and hence lhe externally avclied sacar rorce 1s Zero, and so the
momentum deravation of the Bernoulla eyuation, 1.8,

dp = =~ pu an

=1

mist avply, not locally, bubt 1f the quanbtzcics are summed across the
section:-

b = - . pu du da B €223

£
[

& A

where dA 1s an element of the sectional area A, Since the pressure 1s con~
stant across the section

Assuming that ithe crder of opuratious may be 1averied, {1ntu1t1vely because
there are similar profiles at all sbauvious),

: ~ o A
do = - = P d{f" Ul" -.'A' ;
A
Cniztegration this becomes
Lo 2z d2 g a
P + Zp A wo o=l B D)
A
Therefore, by comparing mauations (35)1:):1.5 aad (99)
v s dA
HIG | Ll"'d,-::‘" ..-.....-..(100)

e} T £
s
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In addition to being true of diffusecr flow at separation this relation

holds for the flow in any stream tube which represents a surface of zero

shear stress, A further example i1s the {low betveen the positions of

maxamum and minimum velocity 1n the free two-dimensional flow of Sectaon 3.2.
If the skin friclion zs aot zero the final pressure rise 1s reduced

and the value of U, as defined by

D+ %pUb” = const, = P """""(jj)b'

would De less than the root mean square velociiy across the sectioa,

5.4.2 Types of velocgjﬁ;pypfllg

Coaslderation 18 a2p01n given to the value U = Uo defined by
Equation (33):-

i 2 _ -
P+‘:PU0 —-Const. = P .n.-.-an.(}j)bis

o0

and attention 1s sti1ll restricted to radiral flows with saimilar velocity
profiles at all radarar, Most of the arguments are concerned@ with the tfree
two-dimensional flow! of Zection 3, 2.

Ia diffusaing flow che pressure rase cnat v1ll occur between station
r and 1afioty is equal to the valuc of #pU,” at station r, from the above
Dquation {33), aad 1a acceleraiirg C[low the pressure [fall luat has already
taken place between infinaty and station r 13 equal.to %pUOE. Tus fluzc

. . : 01
which has sero net shear Jorce actinyg upoa it (z.e. where 31 18 locally

zero) and which must therefore behave accordiay 1o the Lernoull:r eguation,
i,e, wath constunt total head, must have a wvelocity equal to U,. IHence in
diffusing {lov the net shear lorce on a particle of fluid of velocity greater
than U, must be negative, as 1ts btotal head 1s decreasing, and the local
profile curvature will be concuve dowmwwards, i.e. coacave towards U.. (This
1s assuming that the mixing length as either coastant, or that i1t aoes not
vary sulfaiciently for tne dufferential of shear force to be of daffereny
sign from the second differential of veloecaty; 1t therelore excludes any
region very close to a wall.) Similarly the net shear force on a particle
of fluid of velocity less than U,, bub stall positive, wall be positive, the
velocity profale being concave upwvards and towards Ug. Thus the velocity
profile in diffusang flow must be an oscazllalory function of ¢ oszcillating
ebout the value of U = U,. (Thas is consastent wath the rool mean square
result of the previous Section 5.4,1.)"

In accelerating {low the net shear lorce on a particle of velocaity
pgreater than U, must be positive and the profile concave upwards and auay
from U,. Hence the profile cannot be an oscillacory [function of ¢ but the
velocity must increase coatinuously, to anfinity, or to a bhoundary, on
erther side of a position of minimum velocity, For a particle of velocity
leas than U,, bub still positive, the net shear [orce musi be negative and
the profile concave downwards aad away from U,. Hence the velocity stall
caimot be a (positive) oscillatory function of ¢ but must decrease at least
to zero, or to a boundary, oz either side of a position of maximum velocaty.
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Thus, while d@ffusiag flows have velocity profiles which are oscillaw-
tory functions of ¢, oscillating about the value U,, as in Figure 7a,
accelerating flows have velocity profiles which cannot oscillate af
entirely positave, but must consist either of a semr-infinite loop entirely
above UO, or a loop going lo zerc, or Lo a boundary, entirely below U,, as
in I'igure 7,

Daffusing and accelerating flows combine when ihe amplitude of the
oscillataion in daffusing flow is such that the veloecity locally becomes
negative, and therefore accelerating, or when the arms of the lower loop
of the accelerating flow are coatlimued to become negative, and therefore
diffusing. In the latter flow the negative velocity, now a diffusing flow,
will continue negative until 1t exceeds U,, as only when 1t exceeds U, may
it recch a mumerical maximum (as argued for diffsiag flows above), After
the maximum tne profile velocity will then decrease, nameracally, It has

hus become an osclllatory function and one and ihe sarme thing as the
oscillatory diftfusing flow in which the amplitude 1o such thab the velociby
has locally become negatave. Such a profile 18 1llustrated in Iigure B3a.
If the amplitude of this ilow profile increases further untal the accelera-
ting peak veloclty reaches Uy, and tends to exceed 1%, the accelerating
peak will "burst", since the positive accelerating flow would not be able
to have a maximum sbove U,. Heace the profile will consist of & semi-
infamate loop with the peal as a diffucing velociby sxceeding U, and the
tails beang int'inite and accelercting, as in Figure 8b,

Thus a mixed flow profile can either be an oscillatory function of ¢
with the diffusiag peak velocity exceeding U, and the accelerating peak
velocity mumerically less thaa U, (Fzgure 8a), or a1t caa concist of a semi~
infinite loop crossing both velocities U, and bery: anfinite oa the
accelerating side (Fipgure 8b).

The above coaclusions may be coafarred from the simple differentzal

equation for the free two-~dimensional {low of Seciicn 3.2, Taking diffusing
velocities as positive the diflerential equation is

d. 2 _ _“?Lﬁ o
o (@) = 5 (1 - &) e (5814

Putting, without linearisation,

a = (1+1%) ceeneene.(60)

the equation becomes

2 tr

1]

._-:..2-2‘? (2t+t2) --cll'.ll-l(1o1)

Multaplying by t!' and integrating,

261% A (2 2
=% =~ % +'7T + constant ....,..(102)



- 47 -

Therefore points of maximum and minimum velocity satiafy the cubic equation:

t3+3‘t2+azo ..... -o---o(103

£ (%) =
Sinee

£ () = 32 4 6% cevraeaeaa(100)

£t () = O either when t = 0 |

or when 1t = ~2 !
alse £ (t) = a when t = O ':
. (See Figare 9)

and f (t) = L+a when t = =2 r ....... ...(105)
while f — ~ oo when tﬂ-ool
and £ =+ o0 when t = + J'

The equation 1s simplest when o = o, There 1s then a double root
at t = o0, 1.6, at u. = Uy. This correspoads to a daffusing flow of uniform
velocaty, and =t also rerresents the laimat of the oscillatory mrofile where
the amplatude of the oscillation has become zero. The large negative root,
when a = o, coriesponds to tne peak of a semi-infinite accelerating loop.
The remainder of the characteristics meantioned above may readily be obtained
by tracing the behaviour of the roots of the equaticn from Iagure 9 as the
parameter fa' is varied. The two larger roots, when real, nust cepresent
the peaks of an oscillatory profile (by an argument of 'coatanuaty' from
a=0); a value for t > - 1 covresponds to Uy > 0 and therefore to Llocally
dafifusing radial flow, while t < - 1 corresponds to w. < o and o locally
accelerating radial flow,

6.0  Conclusions
(1) Exact solutioas of the equation of motion are possible for

various types of diffuser, Application is restricted to that part of each
diffuser in which the velocaty profile has attained a constaat shape,

(2) It 1s possible to predact the critical angle of a diffuser
for just avoarding flow separation provided the mixing leagth dastribution
is known; the value of the critical angle 2s proportional to the sguare of
the maxing length,

(3) It is deduced that the circular cone diffuser just at
separation hes a turbulence level at least 30 per cent higher than that of
flow in a parallel pape, Ilows having more rapid drffusion than the simple
circular cone would bhe expected to reach an even higher turbulence level,
while slower diffusion would correspoadingly give a smaller increase in

@' ut)e
turbulence, The uaxaimum value oi‘-—E%rquu‘for the circular cone diffuser
(8] +
at separation is at least 20 per cent,
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(&) If the mixing leagth close to the wall increases lanearly wath
¥y the distance from the wall, the,velocity profile in the separation con-
dation approaches the form u,. « y=.

(5) The solutions suggest that, as an alternative to side jets, a
central wake may be used for increasing the mazamum rate of diffusion, Tor
a two-damensional diffuser a total angle considerably in excess of 30°
should be atiainable by either means without flow separation - provided
precautions can be talen abt the diffuser entry.

(6) For a side jet to persist a long distance dowastream its
veloeity at any axial stetion must excced twice the mean velocity at that
station, The relative power requared for the jet as hagh, being about 40
per cent of the power an the main part of the flow - this applies to a
diffuser which has a fully developed profile at eatry, I the diffuser 1s
short so that persistence of the jet 1s not so important the power required
for the jet should be much lessa,

(7) Even in e flow which 1s diffusing rapidly a narrow wake vwould
be attenuated by 1ts own turbulence, BSimilarly a large ceatral wake, as
from the bullet of a fan or turbine, 13 attenuated 1f the flow 1s of moderate
diffusion angle, However, as mentaoned an (5) sbove, a central wake,
especrally 1f produced by a high {turbuleace grad, could probably be used Lo
advantage ~ for preventing flow separation ia dalfusers of very larze angle,

(8) A two-dimensional radial flow wath "free turbulence™ has
certain limitations on the shape of its velocity vrofile. As an example the
profile cennot be periodic 1f the maxamum diffusing velocity exceeds 20,
where U, 1s defined by p + $pU,° = const,

(9) Although the sirple form for the tuwwrbulent shear stregs as
conventionally ascumed in mixilag lenzth theory, 1.e. © = pL® %% , is
not consistent on traasformation of axes, the errors compared wath a more
general form are small, In principle the latter form s$1ll permats solutions
of the ecuations of motion, but the solutions using the sampler form are much

more tractable,
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LIGT OF SYM3OL3

2 ¢ = diaffuser teotal anzle

2h = duffuser tosal widsh aleng an arc, or sec.xon dianeter along
an arc for the axl~-syrmetric doffuser

y! =  distasce alons an aic excher from the wall or from bae

minanum poant on ¢ velocity wraflile

] t
vy = Y/, orY /b
X Y = cortesian co-ordinatec
r, § = polar co-ordimates; r = distance from dilfuser vertex or

from ceatre of radral [low

L = qnixing length

. T

& o=

§ r

w . 1 2L ) lhe waluc uscd an most of the calculations

e =L m, L] ~ Vg
Y a‘)r ! 1 13 K—. - O.LLOE.)

y poard
T L
~  kh
Zb = lincar “wavelesgin', along an arc, of a velocity profile ia

free two-dirensional flow

A = angular wavelepgth (2 b = r A)
L

C = %'

Uy, aY;I velocity components 1:1 directicas X, ¥, r and ¢. The
w,s u¢ . componeat u, 15 mero for oll the [lows consicered
! P
p = static pressure
plJ = stress in direction J on swface vhose normal is 1ia direction

L
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static pressure at aalinaty

shear siress, sxmpler form

~ Y, L 2:_-;3
the velocity such that p + 3PU0 .

r u, or U, accordiag as to whether the flow s bio-
dimengional or axi-symmetyric

drffereatial of g with respect to the appropriate independeat
variaeble, ¢, ¥', ¥ or 7

r U, or r® U, as for g
/g, = /U,

(¢ = 1)

moximum value of %
mnimm value of t, 1,e. (%, ) 2s the maxamum value of (~t)

value of y at che poirut of .ecauk velocity in the jet, for the
daffuser which has siac Jets foi preveataing flow separation

value of y at the point of mianimum velocity between the et
and the main [low, for the dil{fuser vhich has sade jeus lor
preventing {low separaiion

value of y ab the pount of peak velocaty in lhe jet, far the
dafiussr powered by in ascllon

T/
fluad deasaty
fluid viscosity

fluid kinematic viscosity = H/p
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Jy € = Cymbols defined by Equations (3) and (11) and the corresponding
ete text
B = constant defaned by Equation (20)
I = parameter defined by Equation (40)
R dy
Yy = function defaned by Bguation (73); y' = en

¢ = dafference defined by Equation (78a)
G, @ = values of gqat y =3, and y = &,

W, % = quantaties defined by Equations (76) aad /80)

n = factor such that (n h §,) = equivalent jet width
u'r u'95 = mean value of the product u'r u'¢ vmere u'l 15 the eddy

velocity an darection i

A = cross sectional area of the flow
g T maximm value of g

&, = minirum value of g

G = .%I.“:_-%.z}.
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ATTENDTR L

A tentative estimate of the ef’ect of lirearisation on

the resulis for two—-cllmcmwlml I‘c_).ul"\.l 110‘r wilh free t.lrbu" ence

The derivation witnout lincarisabion resulis 1a the Houation (102) of
Section 5.42,

13 3
2t R {ta + 2 ) + const,

3 207 5
ceeeeea (102),

1.e,
at = l—-—j-?-\- {‘tz +£\’ + const :'j
dy T Le® . ’

t =t
max,
! .
at 1
' = (B [0
S
\\ tconst - it +-3~’
-
T Uman
and thersefore
{ t =t 3
! o max.
! \ i
s [
I S s
2 \ ( a5 |
! \ cost, - 47 +~~ §J |
) 7 -
=t t
\ mii, !
\
/

The value of the constani in Iquation (106) is such that the deacminalor
becomes wero at the maximum and manamum values of %', as shown by fiquation
(102) and the subsequent discussion of Section 5.4.2.

i 3
When the equatzon 1s linearaised the 53 term 13 cmatted from the deaomt-

nator of Equataon (106). Some ientative resulis for the non-llnoarlsed
theory suggested by a laboucred estimate of the eflecta of the J%— term are as

follows. The results are piven in terms of thz fuwiction 's' dofined by

o)
R R RN P

o
f
=3
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Let the meximum and minimum values of g be &y and &, respectively,
Defining 'G' by

¢ = X5 eeeeneeel (107)

&y * Ep
the value suggested for the angular waveleagih of the velocily profile as

2
At 25,1 ( VG (1 + 0,12 GF)

\

o't

wnile the root mean square velue of g, i,e, Eqs which defines the pressure
rige, may be found as

+
g, # E@Lguﬁﬂ (1 +0,17 &)

The maximum and minumum values of t, 1,e,, the values def.ned by

and t

0
'
=
]

e

become

ot
!

-
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