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Summary.--The present paper advances a formula which can be used as a criterion for the degree of mass-balance 
. necessary for the avoidance of spring-tab flutter. The formula shows that  if the tab is of sufficiently light construction, 

mass-balance may  not be required at all ; on the other hand, the usual static balance may be inadequate for a tab of 
high inertia. The criterion comprehends within itself the requirement (given elsewhere) limiting the length of a mass- 
balance arm. While the formula is based on theoretical considerations (which are set out in the Appendix) the numerical 
values for the quantities to be used have been deduced from flight experience, which shows excellent correlation with 
the theory. Two forms for the criterion are given : a simple form suitable for general application, and a slightly elabor- 
ated form intended for application to unusually large tabs. 

The Appendix, besides containing the main analysis, also gives consideration to certain factors which for simplicity 
are omitted in the main text. In particular it is shown that  the ' limiting length ' for a balance arm may  be generalised 
to a ' limiting circle ' for the position of the balance mass : the circle can often be found from simple geometrical 
'considerations. 

1. introduction.--The problem of flutter of spring-tab systems has received considerable 
attention at various times 1 ~° 6, but no adequate general rule has emerged for the degree of mass- 
balance necessary for flutter prevention. An early research 1, which examined an actual  case of 
rudder-tab flutter, showed that, with a balance mass arbitrarily (and, as it happened, correctly) 
disposed, flutter would not have occurred. There followed a general experimental research 2, but 
this led to the conclusion that  no general rule could be given for mass-balancing, since in some 
cases flutter was promoted by the addition of a balance mass. The considerable research of 
Frazer and Jones a, and some consequent parallel investigations 4,5, showed that  if mass-balance 
is to be attempted, the balance mass must be disposed within a certain limiting distance from 
the tab hinge. This restflt was shown 6 to be derivable irom simple considerations relating to 
elastic and inertia, couplings only ; it was also shown that  all the previous investigations, when 
viewed in the light of this limiting distance, became parts of the same consistent story. 

As a result, recommendations specifying the limiting distance for tab mass-balance were 
officially issued 7 ; the degree of mass-balance called for was based on the special cases previously 
dealt with, in which static balance--applied empirically, as was habi tual - -had proved adequate. 
In the present paper a formula will be developed which provides a simple criterion for the degree 
of mass-balance required in the general case. The criterion comprehends within itself the 
' limiting length '  requirement for a balance arm, and therefore supersedes the earlier recommenda- 
tionT: it shows moreover that  static balance may in some cases be an unnecessarily severe 
requirement and in other cases may not be sufficient to prevent flutter. 

The account given in the following paragraphs has been kept as far as possible free f rom 
mathematical  analysis ; the derivation of the formulae is given in the Appendix. The main text 
is in two Parts. In Part I an especially simple form of the criterion is derived ; it is based on an 
examination of actual systems which have flown. In Part II the criterion is elaborated somewhat, 
to take some account Of the geometry of the tab system : the elaboration is based on a theoretical 
investigation, but comparisons with actual  systems are again made. 

* R.A.E. Reports S.M.E. 3346 and 3378. 
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PART I 

The  S i m p l e  Cri terion 

2. Choice o f  Co-ordinates to E l i m i n a t e  Elas t ic  C o u p l i n g . - - I t  has been shown 1, ° that,  if control 
surface angle and tab angle as usually defined are chosen as co-ordinates specifying the displace- 
ment of the system, there is a considerable elastic coupling; this coupling can promote flutter 
when the tab is statically balanced or even over-balanced. Analysis employing the usual 
co-ordinates does not suggest any sohltion of this difficulty ; it is, therefore, necessary to choose 
new co-ordinates ±or which the elastic couplin.g is absent, and to vary the inertia coupling for 
these new co-ordinates. 

Fig. l(a) shows a simplified system which covers in principle all spring tab systems as used at 
present. For simplicity, the masses constituting the control surface and tab are regarded as 
lying in a single plane in the neutral position, and only small displacements from the plane are 
examined (see Fig. 1 (b)). AB represents part of the main surface; BC is the control surface and 
CD the tab. At the control surface and tab hinges B and C are two swinging levers BE and CF ; 
a rod E F  completes a four-bar mechanism. CF has length L and BE has length N L ,  where N is 
the ' follow-up ra t io '  of the system.* 

The lever CF is connected to the tab through a spring G (normally a torque bar or tube).9 
There is also a spring H constraining the four-bar mechanism BCFE:  it is shown in the angle 
CBE, but may equally well be in the angle BCF (H is also usually a torque tube). Finally, the 
point E is connected to the control circait, which is also regarded as a spring, J. 

The displacements of the system may be defined by the control surface ang.le ~, the tab angle/~, 
and the rotation 0 of CF from the normal to BC. In this general displacement it is clear tha t  the 
relative angular movement of CF and CD is (3 -- 0) ; tha t  the relative angular movement between 
BE and BC is O/N;  and finally that  the linear displacement of E is N L ( ~  - -  O/N). Accordingly 
the potential energy V of the system may be written as 

2 V  = CI(~V~ - -  O) ~ + C~O ~ + C~(~ - O) ~, . . . . . . . .  (2) 

where C~, C~ and C3 are appropriate stiffnesses, corresponding to the springs J, H, and G 
respectively. 

There are three co=ordinates in equation (2) ; however, we can eliminate one of these. For the 
inertia of the lever CF is in practice negligibly small ; it is, therefore, subjected neither to inertia 
nor aerodynamic forces, but  is in equilibrium under the elastic forces only. We may, therefore, 
use the condition 

~V - - 0 "  
80 

and if for simplicity we write 
= r e .  - -  s Q ,  

we have in place oI equation (1) 
2V/C~ = (N~ - -  O) ~ + rO 2 + s(fl - -  0) 2 , . . . . . .  (2) 

* To find the follow-up ratio, imagine the point  E to be fixed in space, and let BC be, displaced througfi $. Then  
the  tab  will move,  in the anti-balance sense, through N$. 

t G is sometimes called the ' b low-off '  or ' b l o w - b a c k '  spring. I t  is often absent,  and CF is directly connected to 
CD : this case is covered if G is regarded as infinitely stiff. 
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and the equilibrium condition thelefore gives 

o -  1 ~ v  _ ( N ~  - -  o) + rO - -  s ( ~  - -  o) . . . . . . .  (a) 
C1 ~0 

Substitution for 0 from equation (3) in equation (2) yields, after a little reduction 

2(1 + r + s) V r N2 ~  (4) 
s c l  - (8  - N ~ )  ~ + r~  a -~ s . . . . . . . . . . . .  

The equation (4) contains a term in the product fl~, and accordingly there is all elastic coupling 
present foI the co-ordinates /~, ~. This is, of course, physically obvious: if ~ is constrained to 
be zero and a tab angle fi is imposed, the control circuit is extended and in consequence a moment 
about the main hinge develops. 

We must therefore choose new co-ordinates in which there is no such product term s . The 
choice for general values of the spring stiffnesses is dealt with in the Appendix; for the  moment, 
however, we shall simplify equation (4) very considerably by regarding r as negligibly small. 
In practice, the spring stiffness Ca is always small compared with C1; and Naylor and Pellew 4 
have showI1 tha t  the flutter characteristics of spring-tab systems are in practical cases almost 
independent of the spring stiffness Ca: a conclusion which has been reinforced by another 
investigation s. I t  may be noted that  if the spring H giving rise to the term in C~ is actually 
absent, the system becomes a pure aerodynamic servo ; and such systems are, therefore, included 
in tile present investigation. 

With r = 0, equation (4) reduces to 

2(1 + s) V 
s c~ - ( ~  - N ~ ) ~ '  . . . . . . . . . . . . . .  (5) 

s o  that  in this case the only effect of the blow-off spring G giving rise to the term in C3 is to 
modify the spring stiffness Cz: we can regaid G as infinitely stiff, so that  the lever FC is rigidly 
at tached to the tab CD, the spring stiffness C~ being reduced in the ratio s/(1 + s). If we write 
this reduced stiffness as C we have finally 

2 v  = c ( ~  ; -  N ~ )  ~ . . . . . . . . . . . . . . .  (6) 

We now choose as new co-ordinates the angles ~, /~ such that  
- %  

. . . . . . . . . . . . . . .  (7) 
~ =  a - - N ~  J 

Physically, this means that  ~ is as before the control surface angle, and ~ (with FC rigidly at tached 
to CD) is proportional to the angular rotation of the lever BE. In terms of the new co-ordinates, 
equation (6) becomes 

2 v  = c p  a . . . . . . . . . . . . . . . . .  (8) 

Since this contains no product terms, there is no elastic coupling. 

3. The New Inertias.--To find the inertias appropriate to ally co-ordinate, system we write the 
kinetic energy in terms of the velocities in those co-ordinates. From Fig. 1, if the control surface 
has angular velocity 6 and the tab has angular velocity /~, we see that  any element o~ mass dm 
has the linear velocity 6x,, where x~ is its distance aft of the control surface hinge. If dm lies on 
the tab it has the additional velocity ¢ixt, where x~ is the distance aft of the tab hinge. The 
kinetic energy T is thus given by 
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From this expression, the control surface moment of inertia !o (including tab), the product of 
inertia P, and the tab moment of inertia L are given by 

I~ -~ f~+,, x~dm, 

I = ft x'2dm' 

where in the expression for P we have written the distance between the hinges (assumed parallel) 
as do. Equations (10) give the inertias appropriate to the co-ordinates ~, ft. 

However, we require to know the new inertias appropriate to the co-ordinates $, ft. Substitu- 
tion from equation (7) for ~, ~ in equation (9) yields 

2T---- ~L+-'2 2~if i '+ N~)P + (fi'+ N¢i% 

---- ~ (I~ + 2NP + N~L) + 2~fi'(P + NI,) + fi'~L, .. .. (11) 

and accordingly the new inertias are 

1~ = L + 2NP 4- N2L,  

P = P + N L  -~ do ft xtdm + (N + 1)I~ 

J 
(12) 

I t  is these inertias which are appropriate to the co-ordinates for which there is no elastic coupling. 

4. The Stability Boundary.--I t  is shown in the Appendix that  the condition for an infinitesimally 
small flutter speed range defines a relation between the inertias P and I0 only. If P and Ic 
are regarded as Cartesian co-ordinates in a plane, the relation is a hyperbola. This hyperbola, 
for a different set of co-ordinates, has been discussed by Fraser", who has shown that  only one 
branch is significant as a stability boundary. Fig. 2 shows a typical hyperbola, which has been 
drawn for the rudder-tab system examined in R. & M. 15271 ; curve A is the boundary between 
stability and instability. If the actual inertias of the system give a point (Ic, P) lying above 
curve A, the system will flutter; if the point plots below curve A, the system is stable. In the 
former case, the problem of flutter prevention can be regarded as that  of reducing P until  the point 
(1o, P) lies in the safe region; while the general design problem is reduced to consideration of P 
in relation to f~ and the relevant hyperbola. I t  may be noted that  alteration of P will usually 
involve alteration of ~c also; however, ill practice the change in I~ is negligibly small. 

5. The Limiting Length.--We may a t  once deduce the formula for the limiting length of balance 
arm from the above considerations. Suppose we require to reduce P, and we effect the reduction 
by adding a balance mass M to the tab, ill the plane of the tab and on an arm of length xt -=-- -- l, 
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where I is positive. 

whence 

The contribution of M to /5  is to be negative, so that  from equations (12) 

do(-- 1)M + (N + 1)l~M < O, 

z < do/(N + 1 ) ,  . . . . . . . . . . . . . .  ( 1 3 )  

which is the usual result. If the balance mass does not lie in the plane of the tab, the appropriate 
formula can be found in the same way. 

6. A Balance Mass or a Tab of Light Construction.--While it is true that  the addition of an 
appropriate balance mass, on all arm of length complying with the inequality (13), will reduce t5 
as required, it is also evident, from equations (12), tha t /5  can be reduced alternatively by reduction 
of the intrinsic masses dm in the formula for t5. Thus, since Fig. 2 shows that  it is not necessary 
to reduce/5 to zero to avoid flutter, replacement of a heavy tab by one of lighter construction is 
an a l te rnat ivemand obviously a desirable alternative to the addition of a balance mass. I t  is 
only necessary to ensure that  the point (_To, t5) plots in  the safe region. 

7. A Simple Criterion for the Avoidance of Flutter.--The general expression for the hyperbolic 
boundary, which involves many aerodynamic terms, is too complicated for our present purpose. 
However, it is found that  in practical cases the relevant branch of the hyperbola lies above and 
close to its asymptote in the region of the inertia points, so tha t  it is safe to use the upper 
asymptote instead of the hyperbola itself (Fig. 2, line B). I t  is still safer to use a straight line 
through the origin and parallel to the asymptote (Fig. 2, line C). We may, therefore, tentatively 
write as a boundary giving a certain margin of safety 

P : k L ,  . . . . . . . . . .  (14) 

where k, the slope of the relevant asymptote, depends only on the aerodynamical derivatives of 
the system concerned. Various possible forms for k are discussed in the Appendix. 

Equation (14) has the great advantage that  it defines a maximum value of 15 which is directly 
proportional to I , ;  in other words, flutter will be avoided provided that  

P/L < k, 

or, since -?c can in practice be replaced without serious error by its major component/~, 

P + Nit 
< k . . . . . . . . . . .  ( i s )  

L 

I t  remains to consider the value to be assigned to k ; as remarked above, this is a function of the 
aerodynamical derivatives in any  particular case. Th i s  raises a considerable difficulty; for very 
little is known of the aerodynamics of an oscillating spring-tab system even in particular cases, 
so that  to assign a value to k in the general case is virtually impossible. However, since the 
geometry of spring-tab systems does not vary widely (except perhaps in the choice of N) it appears 
possible that  a uniform value of k may be assumed without serious error. Moreover, we can 
obtain some insight into the value of k by an examination of the values of P/Ic appropriate to 
spring-tab systems which have flown and the histories of which are known. Table 1 lists the 
values of (P + NL)/I~ for twenty-six such systems" it has been compiled from information 
supplied by aircraft firms. 

The entries in the Table have been arranged in decreasing order of the value of (P - / N L ) / L  ; 
the range in this quant i ty  is very considerable, as indeed are the ranges of the inertias (the ratio 
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T A B L E  1 

Spring 
tab 

system 
No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Control 
(A= I~ 

aileron slug ft 2 
etc.) 

A 0.168 
R 6-00 
A 1.22 
A 0-904 
E 22.0 
A 0.0856 
A 1-49 
A 1-05 
R 1.27 
A 1.40 
A 0.231 
A 0"t52 
A 0.390 
R 0.991 
R 2.36 
A 2.72 
E 1.96 
R 0.991 
A 1.23 
A 2.49 
E 7.15 
R 4.06 
E 5.25 
R 3"07 
E 5.10 
R 1'46 

P 
slug ft. 2 

0.00405 
0.220 
0.00888 
0.0114 
0.143 
0.000807 
0.00704 
0.00289 
0"0109 
0.00458 

0.00280 
--0.00030 

0.00039 
0-00914 
0-00017 

0-00866 
0-00224 
0-00060 
0-00175 
0-00318 
0-00633 
0-00370 
0-000612 
0.000512 
0-00311 

--0"00636 

~t 
slug It 2 

0"00405 
0"037 
0.013 
0-0230 
0.143 
0.000245 
0-0124 
O-O0487 
0.00842 
0"00710 
0"00054 
0"00149 
0"0012 
0"00141 
0"00965 
0.00866 
0.00398 
0.00225 
0.00175 
0.00367 
0.00633 
0-00370 
0'00475 
0.00345 
0"00311 
0"00636 

N 

2.75 
2.73 
3.00 
1.00 
3.39 
4.00 
1.83 
3.50 
1.52 
3.00 
2.51 
1.85 
4.54 
2.66 
2.90 
2.38 
3.55 
2.66 
3"50 
3"33 
3.00 
2.17 
2.00 
1-55 
1 "80 
1" 26 

P + Nit 
L 

0"0905 
0"0535 
0"0393 
0"0381 
0"0286 
0"0208 
0-0199 
0-0189 
0-0187 
0-0185 
0-0180 
0-0162 
0.0149 
0.0130 
0-0119 
0.0108 
0.0088 
0.0066 
0.0064 
0.0062 
0.0035 
0.0029 
0.0019 
0.0019 
0.0017 
0.0011 

Trouble 

Flutter 
Flutter 
Flutter 

Vibration 
Flutter 
Flutter 
Flutter 
Flutter 

Vibration 
Flutter 

No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 

i 

Mass- 
balance 

Yes 
No 

,Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
No 
Yes 
Yes 
No 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

of the values of Ic for sys tems 5 and  6 is over 250). W h a t  is quite remarkable ,  however,  is 
t ha t  the  f i r~  ten  systems have all suffered f rom some t roub le - -e igh t  cases of f lut tei  and two of 
v ib ra t ion- -whi le  all the  remainder  have  been trouble-free. Clearly this precise separat ion is 
for tui tous to a cer tain ex t en t ;  bu t  it does strongly suggest t ha t  we m a y  adopt  a uni form value 
for k in applying the  inequal i ty  (15). 

Some informat ion  concerning cer tain of the systems in the table m a y  be useful here. No. 1 
was an  exper imenta l  spring-tab balance for an aileron, in which the  tab was statically balanced 
by means  of weights on two arms inclined at  about  50 deg to the  plane of the  t ab ;  these arms 
were m u c h  too long, so t ha t  the  effect of the  balance masses was near ly to double the value of 
P + NI~ appropr ia te  to the bare  tab. Sys tem No. 2 was the  very early ae rodynamic  servo 
discussed in R. & M. 16522 (1933) ; no mass-balance was f i t ted to the  tab. Sys tem No. 3, like 
No. 1, was m a s s - b a l a E e d  incorrect ly ; the  balance mass was ontside the  limiting length and  so 
increased the  value of P + NL ins tead of decreasing it. Sys tem No. 4, though  not  ac tual ly  
flnttering, had  some vibra t ion t rouble ;  it had  an unusua l ly  large tab  chord. On No. 5 the tab 
balance masses were on project ing a rms  above the  plane of the  tab, and  in consequence the  s ta te  
of balance was a funct ion of tab angle. F lu t t e r  developed during a pull-out, when the  tab  was 
a lmost  certainly down, wi th  its centre of g rav i ty  unusual ly  far aft. Systems 6, 7, 8 and  10 were 
all mass-balanced within  the  limiting length,  bu t  owing to the  relat ive inertias and  follow-up 
ratios the  Values of (P -k NIt)/I~ are fairly high. In all these cases the  f lut ter  t h a t  occurred was 
mild in na ture ,  indicat ing tha t  they  were borderl ine cases: in fact, on Sys tem No. 8 the slight 
var ia t ions due to product ion  gave mild f lut ter  on one aeroplane while ano the r  was immune.  
The t rouble  on Sys tem No. 9 was cured by reposit ioning the  rudder  balance mass ;  it seems 
probable,  however,  t ha t  the  tab  was playing a par t  in the  vibrat ion reported.  
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Tile dividing line between those systems which have experienced trouble and those which have 
not occurs in Table 1 for a value of (P + NL)/Ic between 0.018 and 0.0185. Theory, as applied 
to System No. 2 in R. & ~.  16522, indicates a rather higher value; so also does tile theory of 
Part  II  of the present paper. However, since the aerodynamical derivatives assumed in both 
cases are very uncertain,  it is clearly better to rely on experience, and to rise the information 
contained in Table 1. With a suitable safety margin, therefore, we may suggest, in the light of 
Table 1, the formula 

P + N L  
< 0.015 . . . . . . . . . .  (16) 

L 
as a criterion for the avoidance of spring-tab flutter. 

I t  may be remarked that  System No. 14 shows that  the criterion (16) can be satisfied ill the 
absence of any mass-balance, and that  such absence does not necessarily result in flutter ; System 
No. 11, though it does not satisfy the criterion (16), also shows that  absence of tab mass-balance is 
not necessarily dangerous. Indeed, it seems probable that  on many of the Systems lower in the 
table than No. 14 the balance masses could be discarded without violating the criterion (16) and, 
therefore, without serious risk of promoting flutter. 

8. Remarks and a Caution.--The criterion derived in the foregoing paragraphs depends on 
the assumption that  the principal dangerous flutter mode is that  involving only tab and control 
surface movement ill the manner dealt with above. While this assumption is probably justified, 
it must be remembered that  other modes of motion are possible. The control surface itself, for 
example, must be mass-balanced in the usual way if flutter involving main surface movement is 
to be avoided. One particular caution is necessary: if  a2bflreciable backlash is present in the 
system, the considerations relating to elastic coupling will not apply within the range of the backlash, 
and static balance of the tab may be necessary even though the criterion (16) may be satisfied in the 
absence of static balance. Great care should, therefore, be taken in regard to the possible develop- 
ment of backlash ; and it is clearly desirable in any case that  when a tab is being designed its centre 
of gravity should be as near its hinge as possible. This would help, foI example, at large tab angles, 
when the conclusions of the present report (which are based on a linear theory) would not fully apply. 

On the subject of static balance of the tab, we may remark that  

P = P + NIt = do f~ xflm + (N + 1)I~. 

Now ~ xJm is the static unbalance of the tab;  and it is evidently n o t  significant of itself in the 
3 t 

avoidance of flutter. However, if the tab is statically balanced, tile criterion (16) reduces to the 
very simple form 

L/L < 0.015/(N + 1) . . . . . . . . .  (17) 

One further point of importance may be noted : it is that  for ally given control surface and tab 
the value of f i  may be reduced (very often considerably) by appropriate reduction in the value 
of tile follow-up iatio N;  from the flutter viewpoint, the smaller N, tile better. This consideration 
may very well conflict with aerodynamic requirements, of course ; but in the design of a spring-tab 
system it is a point that  should be borne in mind. 
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P A R T  II  

Co~.sideration of the Effects of Tab Dimensions 

9. Reasons for an Elaboration of the Sim/hle Criterion.--In the  derivat ion of the simple criterion 
in section 7 it was remarked tha t  tile quant i ty  k appearing on the  r ight-hand side of the  inequMity 
(15) was strictly a function of the aerodynamical  derivatives appropriate  to the  particular system 
concerned. Since the geometry of spring-tab systems does not  in practice vary widely, a uniform 
value was suggested;  and Table 1 gave support  to this. Nevertheless, it may be tha t  tabs of 
unnsual  proportions will be required in the  future, and some consideration of this possibility is, 
therefore, clearly desirable. 

10. General Effects of Tab Dimensions . - -Let /5  be the  ratio of tab chord to control surface chord 
(both measured from hinge line to trailing edge) and  q the  ratio of tab span to control surface span. 
Since p is usually small, we may  make some rough estimates of the  way in which certain of the  
aerodynamical  derivatives depend on/5 and  q. For example, the  control surface hinge m o m e n t  
due to unit tab angle we should expect  to be proport ional  (roughly) to pq ; the  tab hinge m o m e n t  
itself to fl2q. But  a l though this k ind of es t imated  dependence may be included in the  theoretical  
es t imate of k, it is not  possible easily to assess the relative importance of the various terms. 

We shall, therefore, assume tha t  the functional  dependence of k on/5, q, may  be expressed in 
the  form 

k = Kp'~q ~ 

where K is a universal  constant.  To evaluate m and n we shall make  a theoretical  invest igat ion 
in which p and  q are varied and k is calculated ; we then write 

log k = log K -t- m log fl + n log q 

and  evaluate m and n as the  averagegrad ien t s  of the curves of log k against  log/5 and log q. 

11. The Theoretical lnvest igat ion.--The system studied theoretically consists of a main  surface 
of constant  chord 8 It (including control)" this surface is fixed. I t  cairies an aileron of chord 
1- 2 ft and  span 9 .4  ft ; the aileron has a tab of chord 1.2/5 ft and  span 9 .4  q ft. A value of 3 is 
assigned to the follow-up ratio of the mechanism ; this is considered to be the best representat ive 
figure than  can be chosen. Three values of/5 (2/15, 4/15, and  6/15), have been used in the calcula- 
tions, and three values of q (1/4, 2/4, and 3/4), giving nine cases in all. To simplify the  calcula- 
tions, and  in view of previous work 4, 8, the spring stiffness C~ has been taken  to be zero, so tha t  (see 
section 2) only one spring, of stiffness C, appears in the analysis. 

Two-dimensional  vortex sheet theory  has been used to give the aerodynamical  derivatives, a 
fixed value of the  frequency parameter  (coc/V, based on main  surface chord) of uni ty being assumed; 
no empirical modification to the theoretical  values of the  air forces (such as is often applied) has 
been made  here. I t  is not  considered tha t  this will great ly affect the est imates of the stability 
boundaries ;  and in any case we are mainly  concerned with comparat ive values of k as deduced 
from the  boundaries for different/5, q. 

Some further  details of the  calculations are given in the Appendix ;  the  results, however,  may  
be summarised in tile form given in Table 2. If we write ]c = x, 15 __ y, then  the stabil i ty 
boundary  is a hyperbola  in the  (x, y)-plane. Table 2 gives, for each value of/5, q, the  co-ordinates 
(x0, Yo) of the  centre of the hyperbola,* and the  slope k of the  asympto te  corresponding to the  
significant branch Of the  hyperbola.  

* The coordinates (x o, Yo) of the centre are given as an indication of its position in relation to a typical inertia point,, as 
defined by the actual_ _ values of I,, _P for a practical system. It is clearly necessary for (x o, 3'0) to be close to the origin 0 
compared with (1o, P) if a line through 0 parallel to the asymptote is to be a reasonable substitute for the true boundary. 
Fig. 2 shows_ that,_ for the system considered, the distance from 0 to (x o, 3'0) is only about one-tenth of the distance 
from 0 to (Iq, P). 
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TABLE 2 

P 

-2- 
1 5  

& 
1 5  

1 5  

1 
4 

4 
3 

xo Yo 

× 10 -3 X 10 -a 
4.74 0-222 
4.06 0-218 
3.82 0-214 

25.4 2-23 
20"3 2-15 
18.2 2"07 

64.3 7"39 
47'5 6.53 
38.9 5"66 

× 10 .3 
6.64 
9.41 

10.98 

26" 1 
32"8 
33"3 

54"0 
65"5 
64 "9 

K l = k/~Vl4qll 4 

0.319 
0-381 
0-402 

0-373 
0.395 
0.361 

0.380 
0.387 
0.347 

K o  = k i p  812 

0.136 
0.193 
0.225 

0.190 
0.239 
0.242 

0.214 
0.259 
0.256 

It will be seen from Table 2 that  the range of values of k is from 0.0066 for the smallest to 0.065 
for the largest tab ; and that the ratio of the extreme values of k is about the same as the ratio 
of the areas ot the corresponding tabs. However, when we plot log k against log p for q constant 
and against log q for 15 constant, we deduce as mean values for the indices m and n (see section 10) 
the values 

m = 1.76 
n = 0 .29.  

If we round off these figures we find approximately 
k = K:p '/~ q:/', 

and accordingly we add in Table 2 the values of the quantity 
= kl V, ql/0 . . . . . . .  ( i s )  

The tabulated values of K t  a r e  fairly closely const~int, the mean value being 
K1 = 0.372 

with variations of about ± 10 per cent. 

Since the dependence of k on q is so slight, a simpler form than equation (18) may be found if we 
assume that  in practice the area of a tab is likely to be roughly a constant proportion of the control 
surface area. With ibq constant equation (18) can be written alternatively 

= . . . . . . . . . . .  ( 1 9 )  

Although in Table 2 the range of variation of ~bq is 9" 1, it is of interest to see that  the variation 
in the values of K2 is not excessive : the mean value is 

K2 = 0.217 
with variations of about 4- 25 per cent .  

12. Interpretation in the Light of Practical Experience.--In view of the above considerations, 
it appears that, as an alternative to the criterion (16), we may write 

where K, according to the foregoing theory, would have a value of about 0.2. However, just as 
in Part I the value of k ultimately proposed was derived not from theory but from a study of the 
history of actual systems which have flown, so the value to be assigned to K can be similarly 
found. Table 3 lists the same twenty-six systems as are given in Table 1, with the appropriate 
values of p, q ; using the value of p and the iesults of Table 1, a value of the left-hand side of 
the inequality (20) has been found, and the systems have been arranged in descending order 
of magnitude of this quantity. 
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T A B L E  3 

System 
No. 

2 
1 
3 
5 
6 
9 

11 
16 
8 
7 

4 
10 
14 
12 
19 
17 
13 
15 '  
20 
18 
22 
21 
25 
24 
23 
26 

P q 

0.20 1-00 
0.32 0.31 
O. 23 0.44 
O. 25 O. 26 
0.24 0.80 
0.23 0.54 
0.23 0.22 
O. 17 0.59 
0.27 0.37 
0.30 0.53 
0.48 0.29 
0-30 0.39 
0.24 0.31 
0.31 0.28 
O. 17 0.48 
0.21 0.51 
0.32 0.25 
0-30 0.38 
0.20 0.55 
0-24 0.31 
0-17 0.65 
0-25 0-25 
O. 19 0-74 
0-27 0-41 
0-29 0-40 
0.38 0-32 

P~ 

0-200 
O- 099 
0-101 
0"065 
O" 192 
O" 124 
0"051 
O" 100 
O" 100 
O" 159 
0.139 
0.117 
0"074 
O. 087 
O. 082 
O. 107 
0.080 
0.114 
0.110 
0.074 
0.110 
0"062 
0"140 
0-111 
0-116 
0-122 

0.598 
0.501 
0.356 
0.229 
0.177 
0.170 
0.163 
0.154 
0.135 
0.121 
0.115 
0.113 
0.111 
0.094 
0.091 
0.086 
0.082 
0.072 
0.069 
0-056 
0-041 
0-028 
0.021 
0.014 
0"012 
0.005 

Trouble 

Flutter 
Flutter 
Flutter 
Flutter 
Flutter 

Vibration 
No 
No 

Flutter 
Flutter 

Vibration 
Flutter 

No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 

Table  3 also gives values  of pq; t he  rat io  of ex t r eme  values  is only abou t  3 : 1. 

A l t h o u g h  the  n e w  m e t h o d  of classification produces  a fair a m o u n t  of r e -a r rangement ,  i t  is still 
ma in ly  t rue  t h a t  those  sys t ems  which  have  g iven t rouble  are  at  the  head  of the  table.  The  
pos i t ion  is n o t  qu i te  so clear as in Table  1, since Sys tems  11 a n d  16, which  have  no t  given t rouble ,  
n o w  a p p e a r  above  four  sys t ems  which  have.  On the  o ther  hand ,  S y s t e m  4, which  h a d  n o t  g iven 
serious t rouble ,  b u t  was never the less  h igh  up  in Tab le  1, is in Table  3 b r o u g h t  near  t he  border l ine,  
since it  has  a qui te  unusua l ly  large value  of p.  On the  whole,  therefore,  the re  m a y  be a case for 
us ing the  e labora ted  form of the  cr i ter ion to p rov ide  some concession on the  r equ i r emen t s  of t he  
s imple  cri ter ion (16) for tabs  of h igh  chord  rat io.  A fo rmula  sugges ted  by  Table  3 would  be 

P + N I A  _. L ) P  / < 0 . s 0  . . . . . . . . .  (21) 

I t  m a y  be r e m a r k e d  here  t h a t  in b o t h  Table  1 a n d  Table  3 S y s t e m  No. 10 is a border l ine  case. 
I n  fact ,  t he  t roub le  on S y s t e m  No. 10 was cured  by the  add i t i on  of cord  a t  t he  t ra i l ing edge of the  
tab.  I t  is well k n o w n  t h a t  the  add i t i on  of cord  can p r o d u c e  considerable  changes  in the  h inge  
momeI~t character is t ics  of cont ro l  surfaces a n d  t ab s ;  a n d  in this  case, t he  change  under l ines  t he  
dependence  of k on t he  a e r o d y n a m i c a l  der ivat ives .  Fo r  the  add i t i on  of cord  d e a r l y  increases 
the  va lue  of P + N i t ,  and  m i g h t  on  this  score have  been  expec ted  to m a k e  the  f lu t te r  worse ; t he  
fact  t h a t  it p r o v i d e d  a cure  indicates  t h a t  a g rea te r  change  was p roduced ,  in the  favourab le  sense, 
in the  s tabi l i ty  b o u n d a r y  def ined by the  a e r o d y n a m i c a l  proper t ies .  
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13. The Modified Criterion.--Taking a broad view of the considerations of Parts I and II,  it 
would appear tha t  in general the criterion (16) should be used, but  tha t  for tabs with high values 
of the choid ratio 35, the ciiterion (21) will give some concession ; the theory suggests tha t  such 
a concession can be justified. We may summarise both results by writing finally, as the suggested 
criterion for the avoidance of spring tab flutter in two degrees of freedom, 

P + N L  < 0 "015 or 0" l O p  3/~ , 
I 

• whichever is the greater. 

No. Author 

1 W . J .  Duncan and A. R. Collar .. 

2 W . J .  Duncan, D: L. Ellis and 
A. G. Gadd. 

3 R .A .  Frazer and W. P. Jones .. 

4 G.A.  Naylor and Anne Pellew .. 

5 C. Scruton, J. Williams and C. J. 
Miles. 

6 A . R .  Collar 

7 

8 G .D.  Sharpe 

9 R . A .  Frazer 

m 

R E F E R E N C E S  

Title, etc. 

Binary Servo-Rudder Flutter. R. & M. 1527. 

Experiments on Servo-Rudder Flutter. R. & M. 1652. 

Wing-Aileron-Tab Flutter. A.R.C. 5668, 6290. 

Binary Aileron-Spring Tab Flutter. R.A.E. Report S.~.E. 3209. 
5917. 

Experiments on Binary Aileron-Tab Flutter. A.R.C. 5917. 

A.R.C. 

The Prevention of Flutter of Spring Tabs. R. & IV[. 2034. 

Airworthiness Technical Note No. 149. 

Further Calculations on Binary Servo-Rudder Flutter. R.A.E. Report 
S.M.E. 3338. 

Graphical Treatment of Binary ~ass-Balancing Problems. A.R.C. 6059. 
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A P P E N D I X  

A.1. Derivat ion of  the F o r m  of  the C r i t e r i o n . - - I n  the transformed co-ordinates, the equations 
of motion are 

i- . . . . . .  (A.1) 

A~ = A~ = P . . . . . . . . . .  (A.2) 

and the aerodynamic damping and stiffness telms are written Bq and Cq respectively ; C is the 
single elastic stiffness defined by equation (8). If the usual solutions are taken as proportional 
to exp (ZVt) and if we write 

x = C / V  2 

then th.e determinantal  equation is 

Au,~ 2 + B~lZ + CI1 -J- x, ArA 2 + B~22 + C1~ = 0.  

A~I~ ~ + B~I~ + C.1 , Ay# ~ + B~# + C~ 

On expansion, this becomes 

qo a4 + q~ z3 -¢- (q~ + xAy~) a2 + (q3 + xB~2)a + (q~ + xC22) = 0 ,  . . . . . .  (A.3) 

where 

qo = AliA22 - -  AI~A2I 

ql = A x~B~2 + B n A ~ -  A I ~ B ~ I -  B12A~ 

q2 = AnC~.2 + BnB22 + CnA~2 - -  A12C21 - -  BlyB21 - -  C12A21 . . . .  (A.4) 

q~ = B n C ~  + C l l B ~  - -  BI~C2I - -  C12B~1 

q4 = C11C2~ - -  C1~C~1 • 

The condition that  equation (A.3) has a purely imaginary root - - tha t  is, that  th. critical condition 
when oscillations are not damped has been reached--is 

0 = q~(q,, + zany) (q~ + xB~2) - -  qo(q.~ + xB~)  ~ - -  q?(q~ + xC~) 

which is a quadratic in x. The two roots of this quadratic define critical fluttei speeds, between 
which the system is unstable. Clearly the flutter speed range is unal tered-- that  is, the difference 
between the two roots'in x is the same--if  we add the same quant i ty  to each. Accordingly, to 
study the range of instability, we may make the transformation 

qa + xB~2 = yB22; 

the quadratic then becomes 

The condition that  this quadratic has equal roots- - tha t  is, that  the difference between t-he roots 
either i n y  or x is zero, so that  there is no range of instability in the physical problem--is, of course, 

(q~B~2 - -  q~A~,~ - -  qlC~) ~ - -  4(q0B~ -- q~A2~) (q ,B~ -- q~C~) ---- 0 . . . . . . .  (A.5) 

We now sabsti tute in this condition the values of q~ given by equation (A.4) and the inertias given 
by equation (A.2) ; on expansion equation (A.5) can then be written 

0 = a_?~ ~ + 2h~?P + bP ~ + 2rio + 2 g P  + c . . . . . . . . . . .  (A.6) 
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where 

and 

a 

h 

b 

f 
g 

C 

B ICI ) - -  41BICS , 

= {.B.~,~(C12- C9.1) - -  C 2 2 ( B 1 2 -  B21)} ' ~ -  4 [ B I C ~ ,  ~ 

= --[B[B2~.{B~. .(C12 -t- C~1) - -  C2~(B~ + B2~)} 

I B t = Bl lB22 - -  BI~B~I. 

Equation (A.6) defines a relation between the quantities ic and/5  which gives no instability at 
an 2 speed. The equation is notable in a number of particulars; first, it is independent of the 
inertia term Al1(= L) and of the stiffness term Cll. This result is otherwise obvious, since An ~= 
and C1, are real terms which could be added to x without, alteration to the range between the roots 
of the quadratic. Thus the tab inertia does not affect the stability independently, but  only 
through its appearance in the terms/5  and f0. Again, the relation between/5 and ]c defines a 
hyperbola;  a particular case is shown in Fig. 2. I t  has been shown by Fraser 9 t ha t  only one 
branch (the upper branch in Fig. 2) is significant as a stability boundary;  if for a given value of 
Ic, P lies between zero and the corresponding value on the upper branch of the hyperbola, the 

system wi]l not flutter. 
Equation (A.6) might be used as it stands as a criterion for the avoidance of flutter; but  it is 

clearly too complicated, and depends on too m a n y  aerodynamic terms, about which little is 
known, for general use. However, we may simplify it greatly if we admit some physical arguments. 
Suppose a principal damping (either Bu or B.,2) to be reduced until [B[ = 0; the system will 
presumably be more liable to flutter in this condition. If, therefore, we prevent flutter for 
[BI = 0 the actual system should be more stable. Now with I BI = 0 the hyperbola (A.6) 
collapses into two coincident straight lines through the origin, each given by 

o = L(BI C I - B,Cl ) +/5{B  ICl  - -  - -  C2 (B1  - -  

A similar result is obtained if B22 is reduced to zero ; two coincident straight lines through the 
origin result, each having the equation 

o = L(BS   + + • 

While no rigorous justification for these results can be offered, they do suggest that  a simple 
relation in the form of a straight line through the origin in the I~, P plane may well prove a useful 
criterion for the avoidance of flutter. We might adopt either of the lines given above, or, as 
suggested in the text, a line parallel to the relevant asymptote. Such a line is given by 

/5 --  h ± x/(h ~ -  ab) (A.7) 
i~ b 

t h e  greater positive value of the right-hand side being adopted. But whichever of these 
alternatives is used, it is necessary to insert the appropriate aerodynamic coefficients, about which 
all too little is known. Accordingly it is probably more satisfactory to write 

/5 = k_r~ . . . . . . . . . . . . . . . .  (a.8) 

and to find a value for k from flight experience, as was done in the text. 
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A.2. The Effect of Geometry.--The theoretical systems discussed in Part  II  consisted, as has 
been said, of a fixed lifting surface of chord 8 ft carrying an aileron of span 9.4 ft and chord 1.2 ft, 
with a tab of span 9.4 q ft and chord 1.2 p ft ;  three values of p and three of q we, e used in the 
calculations. Aerodynamical derivatives for this system were determined from two-dimensional 
vortex sheet theory, a constant value of unity being assigned to the frequency parameter. In 
the first instance, the derivatives wele obtained in terms of the co-ordinates ~, fl ; they were then 
transformed by use of the relation 

in which N was given the typical value 3. 

E0 : . . . . . .  
d 

. .  (A.9) 

The values of the aerodynamical damping a n d  stiffness derivatives thus obtained are as 
follows" they relate to standard density conditions, and are quoted for the specific values of fl but 
with q general. 

Values of Damping Derivatives (slugs p) 

p x a 5  Bal × lO s 

0.0918q 
0.9267q 
2.51005q 

BI~ X lO s 

0.5800q 
4.446q 

12.014q 

Bm× lO s 

2"655q_ 
10"715q 
21"804q 

B~. X 108 

38 .60+ 8"88q 
38-60+37-14q 
38.60+78.86q 

Values of Stiffness Derivatives (slugs) 

p X 15 Cll × 10 a C~2 ×-10 a Co, × 10 a C22 × l0 s 

2 
4 
6 

0.2412q 
0.9609q 
2.1533q 

0-7932q 
3-2861q 
7-598q 

17.89q 
23.72q 
28-06q 

13.24 + 53"88q 
13.24+72"38q 
13-24+87-58q 

For each of the nine cases under consideration, the appropriate values of Bii and Cij have been 
employed to determine the coefficients a, b, etc., in equation (A.6). From these coefficients the 
centre of the hyperbola has been determined and also the straight lines through the origin parallel 
to the asymptotes, given by equation (A.7). The relevant straight line (that with the greater 
positive slope in t h e / ,  P plane) is given in Table 2 in Part  II. 

I t  was remarked above that  the derivatives were obtained from two-dimensional theory : that  
is, no corrections for aspect ratio were applied. Clearly, this involves some error ; and no infor- 
marion is available to assess the magnitude of the error. However; if (as is frequently assumed) 
the effect of aspect ratio is to reduce all the terms Bi~, Cii by some constant iactor R, the 
coefficients a, b, h in the expression for the hyperbola will all be reduced by the factor R ~, and the 
slope of the asymptote will adcoidingly be unaltered. This suggests tha t  the criterion for stability 
will not depend acutely on aspect ratio effects. 

In a similar manner, it may be shown that  the criterion is independent of altitude. The terms 
B~j and C~j are both proportional to the relative density ; and this constant factor wi l lnot  affect 
the  slope of the asymptote. 
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A.3. Retention of the S2bring Stiffness C~.--fn section 2 it was shown how to choose new 
co-ordinates for which elastic couplings would be absent ; in the actual analysis, however, it was 
assumed that  the spring stiffness Ca (~-rC1) was insignificant and could be neglected. We 
now consider the effect of retaining this term. The expression giving the potential energy V is 
(see equation (4)) 

2 ( l + r + s )  V _ ( 8 _ N Q  ~ + r ~  ~ + r N ~  . . . . . . . . . . .  (A.10) 
S C1 s 

In place of equations (7) we now choose co-ordinates ~, fi, given by 

= (1 + r)~ (A.11) 
. o • • • ° . . . . . .  • • 

~ =  ~ + N ~  
o r  

-- + r) 

which reduce to equations (7) when r = 0. Substitution from equations (A.II) in (A.10) now 
removes the product terms; the equation becomes, after a little reduction 

2 V s 
_ fi2 ÷ r N ~ , .  . . . . . . . . . . .  (A.12) 

l + r  C1 1 + r ÷ s  

which reduces to equation (8) when r vanishes. Since equation (A.12) contains no product terms 
there is no elastic coupling ; but  we now have two direct stiffnesses instead of one. However, in 
practice the presence of the second stiffness does not materially altei the conclusions of section 
A.1. 

We may, however, make some useful deductions from a study of the new inertias. Substitution 
from equations (A.11) in (9) .yields a new expression for the kinetic energy which is all extension 
of equation (11) and which gives in place of equation (12) 

I-~ = (1 + r)~Ic + 2(1 + r ) N P  ÷ N~I, 

P = (1 + r )P + N I  . . . . . .  (A.13) 

L - -  I, 

When consideration is given to the relative importance of the quantities determining It, P in 
equations (A. 13) it is seen that  the inclusion of r (which is always positive) increases io relatively 
more than P ;  we may conclude that  introduction of the spring stiffness Ca is likely to have a 
slightly beneficial effect on the flutter characteristics. Moreover, if it is necessary in a particular 
case to reduce P by the addition of a balance mass, the spring stiffness C~ gives a slight extension 
of the limiting length. For if the mass is M on an arm of length -- 1 (1 positive) a diminution 
in /5  implies 

(1 + r)(Ml ~ -  dolM) + N M P  < 0 
o r  

do l <  
N 1 +  

l + r  

which is slightly greater than the value f o r r  -- 0. 

A.4. The Effect of Offset Masses : a ' Limiting Circle ' . - - In  the main text the analysis was 
simplified by the assumption that  all masses lie in the plane containing the two hinge lines. In 
fact, the deviations from this assumption are usually quite small; it is, however, a simple matter  
to derive the appropriate formulae when some parts of the system or some balance masses are 
offset from the plane of the hinges. 
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In Fig. 3, B is the control surface hinge and C the tab hinge. Consider a mass dm disposed as 
shown, at a distance & aft of the hinge B, and a distance y from the plane of the hinges. When 
the control surface has angular velocity 8, the components of velocity of dm noirnal and paiallel 
to the plane containing BC are clearly $xc and @ respectively. If the mass dm is attached to the 
tab it will have additional components fix, and fy ; hence the total kinetic energy T is given by 

. . . .  (A.lS) 
which is the generalisation of equation (9). The coefficients of ~ and f3 are, however, still the 
moments of inertia L and It; while if we write as befdre 

xc = do + x~ , 
then 

P = f (dox, + x? + 9 )d in  = do Jt x, dm -t- L ,  . .  . .  (A.16) 
t 

where It is the true moment  of inertia of the tab. Thus all the results of the main text, deduced 
for masses lying in the plane of the hinge lines, are still correct if the inertias are regarded as the 
complete moments of inertia and if P is interpreted as the sum of the tab moment  of inert ia  and 
the product of do and the static unbalance of the tab. 

The question of offset balance masses is covered by the foregoing analysis. Suppose the 
appropriate Value of P -}- N i t  is to be achieved by the addition of a balance mass M on an arm of 
length 1 (radial from the tab hinge) in a direction making an angle 0 with the plane of the hinges 
(Fig. 4). Its contribution to P + N i t  is, by equation (A.16) 

--  doMl cos 0 + (N + 1)M/2 ---- M I { ( N  + 1)/- -  do cos 0} . . . . .  (A.17) 

If this is to be negative we must have 

l < do cos 0 . . . . . . . . . .  (A.18) 
N + I '  

all inequality which is the generalisation of the inequality (13). 

We may make some further deductions of interest. 

If 
1 --- .do cos 0 

(N + 1 ) '  " . . . . . . . . .  (A.19) 

the contribution of the mass M to P + N L  is, by equation (A.17), zero. Now the relation 
(A.19) between I and 0 defines a circle on QC as diameter (see Fig. 4) where C is the tab hinge and 
Q lies on BC at a distance do/(N + 1) forward of C. Accordingly, if a balance mass is disposed 
on this circle its contribution to P + N L  is nil and it is useless as a itutte~ preventive. If the 
mass is disposed anywhere within the circle it will reduce P + N L ' ;  outside the circle its effect 
is to increase P + N L .  It  is readily shown that  the expression (A.17) fox the contribution of 
the mass M to P + N I  Call be reduced to 

(N + 1)M{r ~ -  R 2} 

where r is the radial distance of M from the centre of the circle and 

R = do/2(N + 1) 
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is the radius of the circle. Thus a given mass has its optimum effect at the centre of the circle, 
and tile effect falls off parabolically with r ;  it is zero for r = R, and for r > R the adverse effect 
rapidly increases with r. We see, therefore, that  we have a limiting circle as a generalisation of 
the idea of a limiting length for the 'position of a balance mass; the limiting length is the 
diameter of the circle when the balance mass lies in the plane of the tab. 

For a simple mechanism such as that  shown in Figs. 1 and 4, the intersection of the circle with 
BC at Q is readily found without computation. For since Q lies at a distance do/(N + 1) from C, 
it divides BC in tile ratio N :  1. But this is the ratio of the lengths of the swinging levers BE 
and CF; accordingly Q lies at the intersection of tile straight lines BC and EF. Thus the limiting 
circle is at once defined by the geometry of the system. 
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FIG.I (a). Typical Spring-Tab System. 
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FIG. 1 (b). General Displacement. 
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FIG. 3. gfotion of an Offset Mass. 
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