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Swummary.—The present paper advances a formula which can be used as a criterion for the degree of mass-balance
. necessary for the avoidance of spring-tab flutter. The formula shows that if the tab is of sufficiently light construction,
mass-balance may not be required at all; on the other hand, the usual static balance may be inadequate for a tab of
high inertia. The criterion comprehends within itself the requirement (given elsewhere) limiting the length of a mass-
balance arm. While the formula is based on theoretical considerations (which are set out in the Appendix) the numerical
values for the quantities to be used have been deduced from flight experience, which shows excellent correlation with
the theory. Two forms for the criterion are given : a simple form suitable for general application, and a slightly elabor-
ated form intended for application to unusually large tabs.

The Appendix, besides containing the main analysis, also gives consideration to certain factors which for simplicity
are omitted in the main text. In particular it is shown that the ‘ limiting length ’ for a balance arm may be generalised
to a ‘limiting circle ’ for the position of the balance mass: the circle can often be found from simple geometrical
‘considerations.

1. Introduction—The problem of flutter of spring-tab systems has received considerable
attention at various times'*%, but no adequate general rule has emerged for the degree of mass-
balance necessary for flutter prevention. An early research?, which examined an actual case of
rudder-tab flutter, showed that, with a balance mass arbitrarily (and, as it happened, correctly)
disposed, flutter would not have occurred. There followed a general experimental research?, but
this led to the conclusion that no general rule could be given for mass-balancing, since in some
cases flutter was promoted by the addition of a balance mass. The considerable research of
Frazer and Jones®, and some consequent parallel investigations®®, showed that if mass-balance
is to be attempted, the balance mass must be disposed within a certain limiting distance from
the tab hinge. This result was shown® to be derivable from simple considerations relating to
elastic and inertia couplings only ; it was also shown that all the previous investigations, when
viewed in the light of this limiting distance, became parts of the same consistent story.

As a result, recommendations specifying the limiting distance for tab mass-balance were
officially issued’; the degree of mass-balance called for was based on the special cases previously
dealt with, in which static balance—applied empirically, as was habitual-—had proved adequate.
In the present paper a formula will be developed which provides a simple criterion for the degree
of mass-balance required in the general case. The criterion comprehends within itself the
‘limiting length’ requirement for a balance arm, and therefore supersedes the earlier recommenda-
tion’: it shows moreover that static balance may in some cases be an unnecessarily severe
requirement and in other cases may not be sufficient to prevent flutter.

The account given in the following paragraphs has been kept as far as possible free -from
mathematical analysis; the derivation of the formulae is given in the Appendix. The main text
is in two Parts. In Part I an especially simple form of the criterion is derived ; it is based on an
examination of actual systems which have flown. In Part II the criterion is elaborated somewhat,
to take some account of the geometry of the tab system: the elaboration is based on a theoretical
investigation, but comparisons with actual systems are again made. :

* R.AE. Reports S.M.E. 3346 and 3378.
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PART 1
The Simple Criterion

2. Choice of Co-ordinates to Eliminate Elastic Coupling—It has been shown®® that, if control
surface angle and tab angle as usually defined are chosen as co-ordinates specifying the displace-
ment ot the system, there is a considerable elastic coupling; this coupling can promote flutter
when the tab is statically balanced or even over-balanced. Analysis employing the usual
co-ordinates does not suggest any solution of this difficulty ; it is, therefore, necessary to choose
new co-ordinates tor which the elastic coupling is absent, and to vary the inertia coupling for
these new co-ordinates. ! -

Fig. 1(a) shows a simplified system which covers in principle all spring tab systems as used at
present. For simplicity, the masses constituting the control surface and tab are regarded as
lying in a single plane in the neutral position, and only small displacements from the plane are
examined (see Fig. 1(b)). AB represents part of the main surface; BC is the control surface and
CD the tab. At the control surface and tab hinges B and C are two swinging levers BE and CF;
a rod EF completes a four-bar mechanism. CF has length L and BE has length NL, where N is
the  follow-up ratio’ of the system.*

The lever CF is connected to the tab through a spring G (normally a torque bar or tube).}
There is also a spring H constraining the four-bar mechanism BCFE: it is shown in the angle
CBE, but may equally well be in the angle BCF (H is also usually a torque tube). Finally, the
point E is connected to the control circuit, which is also regarded as a spring, J.

The displacements of the system may be defined by the control surface angle £, the tab angle 8,
and the rotation 6 of CF from the normal to BC. In this general displacement it is clear that the
relative angular movement of CF and CD is ( — 6) ; that the relative angular movement between
BE and BC is /N ; and finally that the linear displacement of E is NL(¢ — 6/N). Accordingly
the potential energy V of the system may be written as

o = CNE— 0+ Cob® + Co(p — 0%, .. .. .. .. (1)

where C,;, C, and C, are appropriate stiffnesses, corresponding to the springs J, H, and G
respectively.

There are three co-ordinates in equation (1); however, we can eliminate one of these. For the
inertia of the lever CF is in practice negligibly small; it is, therefore, subjected neither to inertia
nor aerodynamic forces, but is in equilibrium under the elastic forces only. We may, therefore,
use the condition '

oV _ .
35 =0 /
and if for simplicity we write )
C2 —_ 1/61; CS - SC]_ »
we have in place of equation (1) '
2V|C, = (N& — 6)* + 0%+ s(f — 0)*, .. .. . . .. (2)

% To find the follow-up ratio, imagine the point E to be fixed in space, and let BC be: displaced througﬁ & Then
the tab will move, in the anti-balance sense, through N&. '

t G is sometimes called the ‘ blow-off ’ or ‘ blow-back ’ spring. It is often absent, and CF is directly connected to
CD : this case is covered if G is regarded as infinitely stiff.
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and the equilibrium condition therefore gives

_ LoV _ _ T
= (N¢ — 6) + 70 — s(B — 0). SEREEE - (3)
Substitution for # from equation (3) in equation (2) yields, after a little reduction
%(l_JF:_+§lg:(5~N§)Z+752+§N2§2. O -3
1

The equation (4) contains a term in the product ¢, and accordingly there is an elastic coupling
present for the co-ordinates g, & This is, of course, physically obvious: if £ is constrained to
be zero and a tab angle g is imposed, the control circuit is extended and in consequence a moment
about the main hinge develops.

We must therefore choose new co-ordinates in which there is no such product term®. The
choice for general values of the spring stiffnesses is dealt with in the Appendix; for the moment,
however, we shall simplify equation (4) very considerably by regarding # as negligibly small.
In practice, the spring stiffness C, is always small compared with C,; and Naylor and Pellew*
have shown that the flutter characteristics of spring-tab systems are in practical cases almost
independent of the spring stiffness C,: a conclusion which has been reinforced by another
investigation®. It may be noted that if the spring H giving rise to the term in C, is actually
absent, the system becomes a pure aerodynamic servo; and such systems are, therefore, included
in the present investigation.

With » = 0, equation (4) reduces to

20+s)V _ 2

—s—a—-(ﬁ——Nf), .. .. . .. .. SRR (5)
-so that in this case the only effect of the blow-off spring G giving rise to the term in Cj; is to
modify the spring stiffness C,: we can regard G as infinitely stiff, so that the lever FC is rigidly
attached to the tab CD, the spring stiffness C, being reduced in the ratio s/(1 + s). If we write
this reduced stiffness as C we have finally

2V =C(p—N&*?, .. .. .. .. .. .. .. (6)
We now choose as new co-ordinates the angles &, f such that
E=¢,
. . .. .. .. .. .. .. .. (7)
f=p8—N¢

Physically, this means that £ is as before the control surface angle, and § (with FC rigidly attached
to CD) is proportional to the angular rotation of the lever BE. In terms of the new co-ordinates,

. equation (6) becomes
2V = CB*. . . .. .. . . .. .. (8)

Since this contains no product terms, there is no elastic éoupling.

3. The New Inertias—To find the inertias appropriate to any co-ordinate system we write the
kinetic energy in terms of the velocities in those co-ordinates. TFrom Iig. 1, if the control surface
has angular velocity -¢ and the tab has angular velocity g, we see that any element of mass dm
has the linear velocity éx,, where %, is its distance aft of the control surface hinge. If dm lies on
the tab it has the additional velocity B, where x, is the distance aft of the tab hinge. The
kinetic energy 7 is thus given by

~

3
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2T = f (€x,)%dm L (Ex, + Bx)dm

— E'zf x2dm - QE'BJ xxdm - 52[ xtdm = T
et ¢ t

From this expression, the control surface moment of inertia 7, (including tab), the product of
inertia P, and the tab moment of inertia [, are given by

I, = LH x2dm , )

P = f xxdm = j (do + x)xdm = dOJ xdm + 1, "
3 t t

Y

(10)

I = L x2dm , J

where in the expression for P we have written the distance between the hinges (assumed parallel)
as d,. Equations (10) give the inertias appropriate to Ehe co-ordinates &, §.

However, we require to know the new inertias appropriate to the co-ordinates £, §. Substitu-
tion trom equation (7) for &, g in equation (9) yields

2T = E*I, + 2F(B '+ NE)P + (B + NEJI,

— £2 (I, + 2NP + N°I) + 283(P + NI) + BI,, . (1
and accordingly the new inertias are '
I.=1,+2NP 4+ N?I,, - ‘
P=P+NI,:dDjtxtdm+(N—}—1)It , l (12)
1,=1,.

It is these inertias which are appropriate to the co-ordinates for which there is no elastic coupling.

4. The Stability Boundary.—It is shown in the Appendix that the condition for an infinitesimally -
small flutter speed range defines a relation between the inertias P and I, only. If P and I,
are regarded as Cartesian co-ordinates in a plane, the relation is a hyperbola. This hyperbola,
for a different set of co-ordinates, has been discussed by Fraser?, who has shown that only one
branch is significant as a stability boundary. Fig. 2 shows a typical hyperbola, which has been
drawn for the rudder-tab system examined in R. & M. 1527*; curve A is the boundary between
stability and instability. If the actual inertias of the system give a point (£,, P) lying above
curve A, the system will flutter; if the point plots below curve A, the system is stable. In the
former case, the problem of flutter prevention can be regarded as that of reducing P until the point
(I, P) lies in the safe region; while the general design problem is reduced to consideration of P
in relation to I, and the relevant hyperbola. It may be noted that alteration of P will usually
involve alteration of I also; however, in practice the change in I, is negligibly small.

5. The Limiting Length—We may at once deduce the formula for the limiting length of balance
arm from the above considerations. Suppose we require to reduce P, and we effect the reduction
by adding a balance mass M to the tab, in the plane of the tab and on an arm of length x, = — /,

4




where / is positive. The contribution of M to P is to be negative, so that from equations  (12)

do(— M + (N + 1)i*M < 0,
whence :
: L <dyJ(N+1), .. .. .. . .. .. o (18)

which is the usual result. If the balance mass does not lie in the plane of the tab, the appropriate
formula can be found in the same way.

6. A Balance Mass or a Tab of Light Construction.—While it is true that the addition of an
appropriate balance mass, on an arm of length complying with the inequality (13), will reduce P
as required, it is also evident, from equations (12), that P can be reduced alternatively by reduction
of the intrinsic masses ds in the formula for P. Thus, since Fig. 2 shows that it is not necessary
to reduce P to zero to avoid flutter, replacement of a heavy tab by one of lighter construction is
an alternative—and obviously a desirable alternative—to the addition of a balance mass. It is
only necessary to ensure that the point (7,, P) plots in the safe region.

7.. A Simple Criterion for the Avoidance of Flutter—The general expression for the hyperbolic
boundary, which involves many aerodynamic terms, is too complicated for our present purpose.
However, it is found that in practical cases the relevant branch of the hyperbola lies above and
close to its asymptote in the region of the inertia points, so that it is safe to use the upper
asymptote instead of the hyperbola itself (Fig. 2, line B). It is still safer to use a straight line
through the origin and parallel to the asymptote (Fig. 2, line C). We may, therefore, tentatively
write as a boundary giving a certain margin of safety

P =¢rI,, . . . . o (14)

where %, the slope of the relevant asymptote, depends only on the aerodynamical derivatives of
the system concerned. Various possible forms for %4 are discussed in the Appendix.

Equation (14) has the great advantage that it defines a maximum value of P which is directly
proportional to 7,; in other words, flutter will be avoided provided that

Pl <k,
or, since I, can in practice be replaced without serious error by its major component 7,,

P+ NI, <h
1, '

It remains to consider the value to be assigned to %&; as remarked above, this is a function of the
aerodynamical derivatives in any particular case. This raises a considerable difficulty; for very
little is known of the aerodynamics of an oscillating spring-tab system even in particular cases,
so that to assign a value to %k in the general case is virtually impossible. However, since the
geometry of spring-tab systems does not vary widely (except perhaps in the choice of N) it appears
possible that a uniform value of £ may be assumed without serious error. Moreover, we can
obtain some insight into the value of £ by an examination of the values of P/I, appropriate to
spring-tab systems which have flown and the histories of which are known. Table 1 lists the
values of (P -+ NI,)/I, for twenty-six such systems: it has been compiled from information
supplied by aircraft firms.

(15)

The entries in the Table have been arranged in decreasing order of the value of (P 4+ NI))/1,;
the range in this quantity is very considerable, as indeed are the ranges of the inertias (the ratio

5
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TABLE 1

Spring | Control
I’zab A= I, . P ) 1, . N P4 N, Trouble Mass-
system | aileron slug ft slug ft? shug ft I, ‘ balance

No. etc.)

1 A 0-168 0-00405 0-00405 2-75 0-0905 Flutter Yes

2 R 6-00 0-220 0-037 2-73 0-0535 Flutter No

3 A 1-22 0-00888 0-018 3-00 0-0393 Flutter Yes

4 A 0-904 0-0114 0-0230 1-00 0-0381 Vibration Yes

5 E 22-0 0-143 0-143 3-39 0-0286 Flutter Yes

6 A 0-0856 0-000807 0-000245 4-00 0-0208 " Flutter Yes

7 A 1-49 0-00704 0-0124 1-83 0-0199 Flutter Yes

8 A 1-05 0-00289 0-00487 3-50 0-0189 Flutter Yes

9 R 1-27 0-0109 0-00842 1-52 0-0187 Vibration Yes
10 A 1-40 0-00458 0-00710 300 0-0185 Flutter Yes
11 A 0-231 -0-00280 0-00054 2-51 0-0180 No No
12 A 0-152 —0-00030 0-00149 1-85 0-0162 No Yes
13 A 0-390 0-00039 0-0012 454 0-0149 No Yes
14 R 0-991 0-00914 0-00141 2-66 0-0130 No No
15 R 2-36 0-00017 0-00965 2-90 0-0119 No Yes
16 A 2-72 0-00866 0-00866 - 2-38 0-0108 No Yes
17 E 1-96 0-00224 0-00398 3-55 0-0083 No Yes
18 R 0-991 0-00060 0-00225 2-66 0-0066 No Yes
19 A 1-23 0-00175 0-00175 3-50 0-0064 No Yes
20 A 2-49 0-00318 0-00367 3-33 0-0062 No Yes
21 E 7-15 0-00633 0-00633 3-00 0-0035 No Yes
22 R 4-06 0-00370 0-00370 2-17 0-0029 No Yes
23 E 5-25 0-000612 0-00475 2-00 0-0019 No Yes
24 R 3-07 0-000512 0-00345 1-55 0-0019 No Yes
25 E 5-10 0-00311 0-00311 1-80 0-0017 - No Yes
26 R 1-46 —0-00636 0-00636 1-26 0-0011 No Yes

of the values of I, for systems 5 and 6 is over 250). What is quite remarkable, however, is
that the first ten systems have all suffered from some trouble—eight cases of flutter and two of
vibration—while all the remainder have been trouble-free. Clearly this precise separation is
fortuitous to a certain extent; but it does strongly suggest that we may adopt a uniform value
for % in applying the inequality (15). :

Some information concerning certain of the systems in the table may be useful here. No. 1
was an experimental spring-tab balance for an aileron, in which the tab was statically balanced
by means of weights on two arms inclined at about 50 deg to the plane of the tab; these arms
were much too long, so that the effect of the balance masses was nearly to double the value of
P + NI, appropriate to the bare tab. System No. 2 was the very early aerodynamic servo
discussed in R. & M. 1652* (19383); no mass-balance was fitted to the tab. System No. 3, like
No. 1, was mass-balanced incorrectly ; the balance mass was outside the limiting length and so
increased the value of P 4 NI, instead of decreasing it. System No. 4, though not actually
fluttering, had some vibration trouble; it had an unusually large tab chord. On No. 5 the tab
balance masses were on projecting arms above the plane of the tab, and in consequence the state
of balance was a function of tab angle. Flutter developed during a pull-out, when the tab was
almost certainly down, with its centre of gravity unusually far aft. Systems 6, 7, 8 and 10 were
all mass-balanced within the limiting length, but owing to the relative inertias and follow-up
ratios the values of (P + NI)/I, are fairly high. In all these cases the flutter that occurred was
mild in nature, indicating that they were borderline cases: in fact, on System No. 8 the slight
variations due to production gave mild flutter on one aeroplane while another was immune.
The trouble on System No. 9 was cured by repositioning the rudder balance mass ; 1t seems
probable, however, that the tab was playing a part in the vibration reported.

6




/

The dividing line between those systems which have experienced trouble and those which have
not occurs in Table 1 for a value of (P + NI,)/I, between 0-018 and 0-0185.  Theory, as applied
to System No. 2 in R. & M. 1652%, indicates a rather higher value; so also does the theory of
Part II of the present paper. However, since the aerodynamical derivatives assumed in both
cases are very uncertain, it is clearly better to rely on experience, and to use the information
contained in Table 1. With a suitable safety margin, therefore, we may suggest, in the light of

Table 1, the formula
P+ NI,
I,
as a criterion for the avoidance of spring-tab flutter.

It may be remarked that System No. 14 shows that the criterion (16) can be satisfied in the
absence of any mass-balance, and that such absence does not necessarily result in flutter; System
No. 11, though it does not satisfy the criterion (16), also shows that absence of tab mass-balance is
not necessarily dangerous. Indeed, it seems probable that on many of the Systems lower in the
table than No. 14 the balance masses could be discarded without violating the criterion (16) and,
therefore, without serious risk of promoting flutter.

<0015 .. .. .. .. .. (8

8. Remarks and a Caution—The criterion derived in the foregoing paragraphs depends on
the assumption that the principal dangerous flutter mode is that involving only tab and control
surface movement in the manner dealt with above. While this assumption is probably justified,
it must be remembered that other modes of motion are possible. The control surface itself, for
example, must be mass-balanced in the usual way if flutter involving main surface movement is
to be avoided. One particular caution is necessary: if appreciable backlash is present in the
system, the considerations velating to elastic coupling will not apply within the range of the backlash,
and static balance of the tab may be necessary even though the criterion (16) may be satisfied in the
absence of static balance. Great care should, therefore, be taken in regard to the possible develop-
ment of backlash ; and it is clearly desirable in any case that when a tab is being designed its centre
of gravity should be as near its hinge as possible. This would help, for example, at large tab angles,
when the conclusions of the present report (which are based on a linear theory) would not fully apply.

On the subject of static balance of the tab, we may remark that
P=P+NI,=d | zdm+ N+ 1)L
E. ¢

Now J xdm is the static unbalance of the tab; and it is evidently not significant of itself in the
t

avoidance of flutter. However, if the tab is statically balanced, the criterion (16) reduces to the
very simple form

IJI, < 0-015/(N + 1) . ..

One further point of importance may be noted : it is that for-any given control surface and tab
the value of P may be reduced (very often considerably) by appropriate reduction in the value
of the follow-up ratio IV ; from the flutter viewpoint, the smaller IV, the better. This consideration

may very well conflict with aerodynamic requirements, of course; but in the design of a spring-tab
system it is a point that should be borne in mind.




PART 1I
Consideration of the Effects of Tab Dimensions
9. Reasons for an Elaboration of the Simple Criterion.—In the derivation of the simple criterion
in section 7 it was remarked that the quantity % appearing on the right-hand side of the mequality
(15) was strictly a function of the aerodynamical derivatives appropriate to the particular system
concerned. Since the geometry of spring-tab systems does not in practice vary widely, a uniform
value was suggested; and Table 1 gave support to this. Nevertheless, it may be that tabs of

unusual proportions will be required in the future, and some consideration of this possibility is,
therefore, clearly desirable.

10. General Effects of Tab Dimensions.—Let p be the ratio of tab chord to control surface chord
(both measured from hinge line to trailing edge) and ¢ the ratio of tab span to control surface span.
Since # is usually small, we may make some rough estimates of the way in which certain of the
aerodynamical derivatives depend on p and g. For example, the control surface hinge moment
due to unit tab angle we should expect to be proportional (roughly) to pg; the tab hinge moment
itself to p%. But although this kind of estimated dependence may be included in the theoretical .
estimate of %, it is not possible easily to assess the relative importance of the various terms.

We shall, therefore, assume that the functional dependence of % on p, ¢, may be expressed in
the form ‘ :

k —_ Kjbm qn

where K is a universal constant. To evaluate m and » we shall make a theoretical investigation
in which p and g are varied and % is calculated ; we then write

log & =log K + mlog p + nlog g
and evaluate m and 7 as the average gradients of the curves of log % against log p and log ¢.

11. The Theoretical Investigation.—The system studied theoretically consists of a main surface
of constant chord 8 ft (including control): this surface is fixed. It cairies an aileron of chord
1-2ft and span 9-4 {t; the aileron has a tab of chord 1-2 p ft and span 9-4 ¢ ft. A value of 3 is
assigned to the follow-up ratio of the mechanism ; this is considered to be the best representative
figure than can be chosen. Three values of  (2/15, 4/15, and 6/15), have been used in the calcula-
tions, and three values of ¢ (1/4, 2/4, and 3/4), giving nine cases in all. To simplify the calcula-
tions, and in view of previous work**®, the spring stiffness C, has been taken to be zero, so that (see
section 2) only one spring, of stiffness C, appears in the analysis.

Two-dimensional vortex sheet theory has been used to give the aerodynamical derivatives, a
fixed value of the frequency parameter (wc/V, based on main surface chord) of unity being assumed,;
no empirical modification to the theoretical values of the air forces (such as is often applied) has
been made here. It is not considered that this will greatly affect the estimates of the stability
boundaries; and in any case we are mainly concerned with comparative values of % as deduced
from the boundaries for different , ¢.

Some further details of the calculations are given in the Appendix; the results, however, may
be summarised in the form given in Table 2. If we write I, = x, P = y, then the stability
boundary is a hyperbola in the (x, y)-plane. Table 2 gives, for each value of , ¢, the co-ordinates

(o, ) Of the centre of the hyperbola,* and the slope % of the asymptote corresponding to the
significant branch of the hyperbola.

“

* The coordinates (%, o) of the centre are given as an indication of its position in relation to a typical inertia point, as
defined by the actual values of I,, P for a practical system. It is clearly necessary for (%, ¥,) to be close to the origin O
compared with (7, P) if a line through O parailel to the asymptote is to be a reasonable substitute for the true boundary.
Fig. 2 shows that, for the system considered, the distance from Q to (%, ¥, is only about one-tenth of the distance
trom Q to (I,, B),

8



TABLE 2

# g % % B | K =hjpilight| K, = k[p"
% 10-3 % 1073 % 10-3
1 4-74 0-222 6-64 0-319 0-136
= 2 4-06 0-218 9-41 0-381 0-193
3 3-82 0-214 10-98 0-402 0:225
1 25-4 2-23 26-1 0-373 0-190
= 2 20-3 2-15 32-8 0-395 0-239
2 18:2 2-07 33-3 0-361 0-242
1 64-3 7-39 54-0 0-380 0-214
= 2 475 6-53 65-5 0-387 0-259
2 38:9 5-66 64-9 0-347 0-256

It will be seen from Table 2 that the range of values of % is from 0-0066 for the smallest to 0-085
for the largest tab; and that the ratio of the extreme values of £ is about the same as the ratio
of the areas of the corresponding tabs. However, when we plot log % against log p for ¢ constant
and against log ¢ for 4 constant, we deduce as mean values for the indices # and % (see section 10)
the values '

m =176
7 =029,

If we round off these figures we find approximately
k= K p'* gL,
and accordingly we add in Table 2 the values of the quantify

K, = k[pTtq'". . o : . (18)
The tabulated values of K, are fairly closely constant, the mean value being
K, =0-372

with variations of about 4- 10 per cent.

Since the dependence of  on ¢ is so slight, a simpler form than equation (18) may be found if we
assume that in practice the area of a tab is likely to be roughly a constant proportion of the control
surface area. With pg constant equation (18) can be written alternatively

K, = kjp*". O 0 [

Although in Table 2 the range of variation of g is 9: 1, it is of interest to see that the variation
in the values of K, is not excessive: the mean value is :

' K, =0-217
with variations of about - 25 per cent.-

12. Interpretation in the Light of Practical Experience—In view of the above considerations,
it appears that, as an alternative to the criterion (16), we may write

(P_JFTJ‘Qﬁp—m<K.._ .. (20

where K, according to the foregoing theory, would have a value of about 0-2. However, just as
in Part I the value of % ultimately proposed was derived not from theory but from a study of the
history of actual systems which have flown, so the value to be assigned to K can be similarly
found. Table 3 lists the same twenty-six systems as are given in Table 1, with the appropriate
values of p, ¢; using the value of p and the results of Table 1, a value of the left-hand side of
the inequality (20) has been found, and the systems have been arranged in descending order
of magnitude of this quantity.
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TABLE 3

P NIy,
System el NGl W7 Trouble
}&O. ? g pg ( Ic )P
2 0-20 1-00 0-200 . 0-598 Flutter
1 0-32 0-31 0-099 0-501 Flutter
3 0-23 0-44 0-101 0-356 Flutter
5 0-25 0-26 0-065 0-229 Flutter
6 0-24 0-80 0-192 0-177 Flutter
9 0-23 0-54 0-124 0-170 Vibration
11 0-23 0-22 0-051 0-163 No
16 0-17 0-59 0-100 0-154 No
8 0-27 0-37 0-100 0-135 Flutter
7 0-30 0-53 0-159 0-121 Flutter
4 0-48 0-29 0-139 0-115 Vibration
10 0-30 0-39 0-117 0-1138 Flutter
14 0-24 0-31 0-074 0-111 No
12 0-31 0-28 0-087 0-094 No
19 0-17 0-48 0082 0-091 No
17 0-21 0-51 0-107 0-086 No
13 0-32 0-25 0080 0-082 No
15 0-30 0-38 0-114 0-072 No
20 0-20 0-55 0-110 0-069 [ No
18 0-24 0-31 0-074 0-056 No
22 0-17 0-65 0-110 0-041 No
21 0-25 0-25 0-062 0-028 No
25 0-19 0-74 0-140 0-021 No
24 0-27 0-41 0-111 0-014 No
23 0-29 0-40 0-116 0-012 " No
26 0-38 0-32 0-122 0005 No

Table 3 also gives values of pg; the ratio of extreme values is only about 3: 1.

. Although the new method of classification produces a fair amount of re-arrangement, it is still
mainly true that those systems which have given trouble are at the head of the table. The
position is not quite so clear as in Table 1, since Systems 11 and 16, which have not given trouble,
now appear above four systems which have. On the other hand, System 4, which had not given

‘serious trouble, but was nevertheless high up in Table 1, is in Table 3 brought near the borderline,
since it has a quite unusually large value of . On the whole, therefore, there may be a case for
using the elaborated form of the criterion to provide some concession on the requirements of the

-simple criterion (16) for tabs of high chord ratio. A formula suggested by Table 8 would be

<€i].z_\7_ft $32<0-10. .. .. .21

It may be remarked here that in both Table 1 and Table 3 System No. 10 is a borderline case.
In fact, the trouble on System No. 10 was cured by the addition of cord at the trailing edge of the
tab. It is well known that the addition of cord can produce considerable changes in the hinge
moment characteristics of control surfaces and tabs; and in this case, the change underlines the
~ dependence of & on the aerodynamical derivatives. For the addition of cord clearly increases
the value of P + NJ, and might on this score have been expected to make the flutter worse; the
fact that it provided a cure indicates that a greater change was produced, in the favourable sense,
in the stability boundary defined by the aerodynamical properties.
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13. The Modified Criterion.—Taking a broad view of the considerations of Parts I and II, it
would appear that in general the criterion (16) should be used, but that for tabs with high values
of the chord ratio p, the criterion (21) will give some concession; the theory suggests that such
a concession can be justified. We may summarise both results by writing finally, as the suggested
criterion for the avoidance of spring tab flutter in two degrees of freedom,

P+ NI JF]NL < 0-015 or 0- 105",
whichever is the greater.
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APPENDIX

A.1. Derivation of the Form of the Criterion.—In the transformed co-ordinates, the equations
of motion are

Auf + BuVE + CuV2f 4 C§ + Ay + BuVE 4 CuViE =0

Al
Anf + BaVE + CuV? + Ané + BuVE+ CulV?E =0 -
where
Au = jt A
Ap=Ay =P .. (A.2)
A = 1T, '

and the aerodynamic damping and stiffness terms are written B, and C; respectively; C is the

single elastic stiffness defined by equation (8). If the usual solutions are taken as proportional
to exp (AV#) and if we write

% = C[V?
then the determinantal equation is
A2 4 Bud + Cu 42, ApA* + Bpa +C, | = 0.
Apyd® 4 Byd + Cy , Aped® 4 Byyd 4 Cyy
On expansion, this becomes

God* + ¢u2° + (gz + #Au)A® + (g5 + ¥Bu)d + (g + #Co) =0, .. .. (A3
where ‘
Go = Ay Ao — ApAy : | h
i = AyuBay -+ Byydy — AypBy — By, ‘ 4
e = A1Ca + ByuBay + Cpdy — A1Co — BBy — Ciady S .o (A4
gs = B1,Cas + CiyByy — ByyCoi — CpoBay
gs = C11Crs — CpaCoy . J

The condition that equation (A.3) has a purely imaginary root—that is, that the critical condition
when oscillations are not damped has been reached—is ‘

0= 9,'1(92 + xAzz) (93 + szz) — Qo(q:x + szz)z — {712(94 -+ xcza)

which is a quadratic in x. The two roots of this quadratic define critical flutter speeds, between
which the system is unstable. Clearly the flutter speed range is unaltered—that is, the difference
_between the two roots in x is the same—if we add the same quantity to each. Accordingly, to
study the range of instability, we may make the transformation

gs + xBy = me;
the quadratic then becomes
0= yszzz(%Bzz — 91A22) — Qlszz(%Bzz — 9314-22 — g1C22) -+ 912(Q4B22 — q:;czz) .

The condition that this quadratic has equal roots—that is, that the difference between the roots
either in y or % Is zero, so that there is no range of instability in the physical problem—is, of course,

(92322 — q:sAzz — Q1C22)2 — 4(90822 — %Azz) (94322 “?3622) =0. .. .. .- (AS)

We now suabstitute in this condition the values of ¢; given by equation (A.4) and the inertias given
by equation (A.2); on expansion equation (A.5) can then be written

0= al?+ 2nIP 4 bP* + 2fI, + 29D + ¢, .. .. . . .. (A.8)
12



where
@ = (Blzczl — ByuCr)® — 4|B|C12621

h - (Blzczl - leclz) {BZ2(CIZ - C21) - CZZ(B12 - le)} + ZlBlczzfclz "I“ Czl)
b = {Bzz(cm - Cz1) - sz(Blz - B21)}2 - 4lB‘6222

f = IB [ Bzz{ansz — (BCo + leclz)}
'g = |B|Bzz{B22<C12 + Cm) - sz(Bm -+ Bm)}
¢ = |B|*By’,

and
IBI - BnBzz - B12B21-

Equation (A.6) defines a relation between the quantities I, and P which gives no instability at
any speed. The equation is notable in a number of particulars; first, it is independent of the
inertia term A, (=T,) and of the stiffness term C,;. This result is otherwise obvious, since A;,4*
and C,, are real terms which could be added to x without alteration to the range between the roots
of the quadratic. Thus the tab inertia does mot affect the stability independently, but only
through its appearance in the terms P and 7. Again, the relation between P and 7. defines a
hyperbola; a particular case is shown in Fig. 2. It has been shown by Fraser® that only one
branch (the upper branch in Fig. 2) is significant as a stability boundary ; if for a given value of
I, P lies between zero and the corresponding value on the upper branch of the hyperbola, the
system will not flutter.

Equation (A.6) might be used as it stands as a criterion for the avoidance of flutter; but it is
clearly too complicated, and depends on too many aerodynamic terms, about which little is
known, for general use. However, we may simplify it greatly if we admit some physical arguments.
Suppose a principal damping (either By, or By) to be reduced until |B| = 0; the system will
presumably be more liable to flutter in this condition. If, therefore, we prevent flatter for
|B| = 0 the actual system should be more stable. Now with |B| = 0 the hyperbola (A.6)
collapses into two coincident straight lines through the origin, each given by

0= fc(Blzczl - B21C1z) + P{Bzz(clz - C21) - sz(Bm - le)}-
A similar result is obtained if B, is reduced to zero; two coincident straight lines through the
origin result, each having the equation
0= jc(312621 + BZIC12) - Pczz(Bm ‘l‘ Bz1) .

While no rigorous justification for these results can be offered, they do suggest that a simple
relation in the form of a straight line through the origin in the I,, P plane may well prove a useful
criterion for the avoidance of flutter. We might adopt either of the lines given above, or, as
suggested in the text, a line parallel to the relevant asymptote. Such a line is given by

E B A ) LAY

2

I, b
‘the greater positive value of the right-hand side being adopted. But whichever of these
alternatives is used, it is necessary to insert the appropriate aerodynamic coefficients, about which
all too little is known. Accordingly it is probably more satisfactory to write !

Pkl .. .. (A

and to find a value for # from flight experience, as was done in the text.
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A.2. The Effect of Geomelry—The theoretical systems discussed in Part II consisted, as has
been said, of a fixed lifting surface of chord 8 ft carrying an aileron of span 9-4 ft and chord 1-2 ft,
with a tab of span 9-4 ¢ ft and chord 1-2 p ft; three values of $ and three of ¢ were used in the
calculations. Aerodynamical derivatives for this system were determined from two-dimensional
vortex sheet theory, a constant value of unity being assigned to the frequency parameter. In
the first instance, the derivatives were obtained in terms of the co-ordinates &, g; they were then
transformed by use of the relation

mz[(l)zﬂm N X )

7

in which NV was given the typical value 3.

The values of the aerodynamical damping -and stiffness derivatives thus obtained are as
follows : they relate to standard density conditions, and are quoted for the specific values of p but
with g general.

Values of Damping Derivatives (slugs ft)

b x 15 By % 108 By, X 108 B,, X 108 B,s % 108
2 0-0918¢ 0-5800¢ 2-655¢. 38-60 - 8-88¢
4 0-9267¢ 4-448¢ 10-715¢ 38-60 -+ 37-14¢
6 2-51005¢ 12-014q 21-804g 38-60 - 78-86¢

Values of Stiffness Derivatives (slugs)

p % 15 Cpy X 108 Co % 10 Cyy % 108 Cao X 108
2 0-2412¢ 0-7932¢ 17-89¢ 13-24 - 53-88¢
4 0-9609¢ 3-2861¢ 23-727 13-24 4 72-38¢
6 2-1533¢ 7-598¢ 28069 13-24 -+ 87-58¢

For each of the nine cases under consideration, the appropriate values of B; and C; have been
employed to determine the coefficients «, b, etc., in equation (A.6). From these coefficients the -
centre of the hyperbola has been determined and also the straight lines through the origin parallel
to the asymptotes, given by equation (A.7). The relevant straight line (that with the greater
positive slope in the 7,, P plane) is given in Table 2 in Part II.

It was remarked above that the derivatives were obtained from two-dimensional theory: that
is, no corrections for aspect ratio were applied. Clearly, this involves some error; and no infor-
mation is available to assess the magnitude of the error. However, if (as is frequently assumed)
the effect of aspect ratio is to reduce all the terms B, C; by some constant factor R, the
coefficients @, b, & in the expression for the hyperbola will all be reduced by the factor R*, and the
slope of the asymptote will accordingly be unaltered. This suggests that the criterion for stability
will-not depend acutely on aspect ratio effects. '

In a similar manner, it may be shown that the criterion is independent of altitude. The terms
B, and C; are both proportional to the relative density ; and this constant factor will not affect
‘the slope of the asymptote.
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A.3. Retention of the Spring Stiffness C,—In section 2 it was shown how to choose new
co-ordinates for which elastic couplings would be absent ; in the actual analysis, however, it was
assumed that the spring stiffness C, (= 7C,) was insignificant and could be neglected. We
now consider the effect of retaining this term. The expression giving the potential energy Vis

(see equation (4))

&L:is—) g Z(ﬁ-N§)2+7ﬁ2+£N2§2. . . . . .. (A.10)
1
In place of equations (7) we now choose co-ordinates &, #, given by '
= (1 g
T+0: A
B=p+ N
or )
E=¢/(1+7)

f=p—N1+7),

which reduce to equations (7) when » = 0. Substitution from equations (A.11) in (A.10) now
removes the product terms; the equation becomes, after a little reduction

_2_ _.T{ — —S—_ p2
1+7 C, 14+7+s 2
which reduces to equation (8) when » vanishes. Since equation (A.12) contains no product terms

there is no elastic coupling; but we now have two direct stiffnesses instead of one. However, in
practice the presence of the second stiffness does not materially alter the conclusions of section

Al
We may, however, make some usefal deductions from a study of the new inertias. Substitution
from equations (A.11) in (9) yields a new expression for the kinetic energy which is an extension
of equation (11) and which gives in place of equation (12)
I,=(1+7?L+ 21+ 7 NP+ NI,
P={(1+7nP+ NI cel .. (A.13)
T § — I i 5
When consideration is given to the relative importance of the quantities determining I, Pin
equations (A.18) it is seen that the inclusion of # (which is always positive) increases /, relatively
more than P; we may conclude that introduction of the spring stiffness C, is likely to have a
slightly beneficial effect on the flutter characteristics. Moreover, if it is necessary in a particular
case to reduce P by the addition of a balance mass, the spring stiffness C, gives a slight extension
of the limiting length. For if the mass is M on an arm of length — 7 (! positive) a diminution
in P implies

FANRE L. L. L . (A2

(1 4 #)(MI* — M) + NMP* <0
do
N_,
L+ 147
which is slightly greater than the value forz = 0.

or
I <

A4, The Effect of Offset Masses : a * Limiting Circle’—In the main text the analysis was
simplified by the assumption that all masses lie in the plane containing the two hinge lines. In
fact, the deviations from this assumption are usually quite small; it is, however, a simple matter
to derive the appropriate formulae when some parts of the system or some balance masses are

offset from the plane of the hinges.
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In Fig. 8, B is the control surface hinge and C the tab hinge. Consider a mass dm disposed as
shown, at a distance #, aft of the hinge B, and a distance y from the plane of the hinges. When
the control surface has angular velocity £, the components of velocity of dm normal and parallel
to the plane containing BC are clearly £x, and £y respectively. If the mass dm is attached to the
tab it will have additional components fx; and fy; hence the total kinetic energy T is given by

27T = L (£ + E%%)dm + L {(e_.?'xc + Ba) + (& + 5)23,2\ dm

— g LH (%2 + y3)dm -+ 248 L (%2 + y5)dm + p* L (x> + y%)dm
.. (A.15)

which is the generalisation of equation (9). The coefficients of £2 and #* are, however, still the |
moments of inertia 7, and 7;; while if we write as before

X, = d() + X »
then

P= | (d+ 52+ ydm = do | mdm + 1., .. (A18)

where 7, is the true moment of inertia of the tab. Thus all the results of the main text, deduced
for masses lying in the plane of the hinge lines, are still correct if the inertias are regarded as the
complete moments of inertia and if P is interpreted as the sum of the tab moment of inertia-and
the product of d, and the static unbalance of the tab.

The question of offset balance masses is covered by the foregoing analysis. Suppose the
appropriate value of P + N, is to be achieved by the addition of a balance mass M on an arm of
length I (radial from the tab hinge) in a direction making an angle 6 with the plane of the hinges
(Fig. 4). Its contribution to P 4 NI, is, by equation (A.16) '

— dyMlcos6 + (N + 1)MP* = MI{(N + 1) — d,cos 6}. . .. (A17)
If this is to be negative we must have 4

dy COS B
f < 220 .. .. .. .. .. (A.18

an inequality which is the generalisation of the inequality (13).
We may make some further deductions of interest.

It
Z:g{’r_‘ﬁi%, O T 1)

the contribution of the mass M to P -+ NJ, is, by equation (A.17), zero. Now the relation
(A.19) between / and 6 defines a circle on QC as diameter (see Fig. 4) where C is the tab hinge and
Q lies on BC at a distance d,/(IV + 1) forward of C. Accordingly, if a balance mass is disposed
on this circle its contribution to P -+ NT, is nil and it is useless as a flutter preventive. If the
mass is disposed anywhere within the circle it will reduce P + N/, .; outside the circle its effect
is to increase P -~ N7, It is readily shown that the expression (A.17) for the contribution of
the mass M to P 4+ NI can be reduced to '

(N + )M{r* — R%
where 7 is the radial distance of M from the centre of the circle and
R = d,/2(N 4+ 1)
16




is the radius of the circle. Thus a given mass has its optimum effect at the centre of the circle,
and the effect falls off parabolically with #; it is zero for » = R, and for » > R the adverse effect
rapidly increases with 7. We see, therefore, that we have a limiting circle as a generalisation of
the idea of a limiting length for the ‘position of a balance mass; the limiting length is the
diameter of the circle when the balance mass lies in the plane of the tab.

For a simple mechanism such as that shown in Figs. 1 and 4, the intersection of the circle with
BC at Q is readily found without computation. For since Q lies at a distance d,/(N -+ 1) from C,
it divides BC in the ratio N: 1. But this is the ratio of the lengths of the swinging levers BE
and CF; accordingly Q lies at the interseéction of the straight lines BC and EF. Thus the limiting
circle is at once defined by the geometry of the system.

17
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F1c. 1 (a). Typical Spring-Tab System.

Fi16. 1 (b). General Displacement.
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Fi1c. 3. Motion of an Offset Mass.
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