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Summary.—The general equations of the steady motion of a non-viscous fluid are given in tensor notation. It is then
assumed that one family of co-ordinate surfaces, ¥* = constant, are chaiacteristic surfaces, .., surfaces on which the
transverse derivatives of the flow-variables are not determined by their values on the surface itself. The condition for
this is given by the relation (#%)% = a2 which can be interpreted to give the well-known result that the velocity normal
to the surface is sonic. The relation which must then hold between the variables on the surface itsell is also
determined (characteristic equation).

_ The special cases of axisymmetric and two-dimensional flow are also considered and the results interpreted to give the
well-known relationships. As an example, the flow in a simple wave, 4.¢., a flow in which one family of characteristic
lines are straight, is treated in detail.

While no new results have been obtained, the authors feel that the extra simplicity resulting from the use of quite
general co-ordinates gives a deeper insight into the behaviour of such flows.

Introduction.—In Ref. 1 Dr. Meyer gives a novel method of developing the fundamental
properties of the ‘ characteristics ’ of the equations of motion of a gas in steady two-dimensional
supersonic flow. He refers the equations to general orthogonal co-ordinates, one set of which
are afterwards identified with one system of characteristic lines; he then bases his definition of
a characteristic on the fundamental property that the conditions on the curve fail to determine
the rate of change of velocity and density in passing away from the curve. This property leads
directly to the condition that the component velocity normal to the curve is sonic and also
establishes a differential equation which must be satisfied along a characteristic.

In R. & M. 26152 Mr. C. K. Thornhill develops the theory of the general quasi-linear second
order partial differential equation in three variables and derives the characteristic equations and .
curves, together with the partial differential equations holding on them. These results are then
applied to steady supersonic flow in three dimensions and unsteady flow in two dimensions.

It seemed to the authors that the use of orthogonal co-ordinates was not sufficiently far-reaching,
and that it might be more informative to use quite general curvilinear co-ordinates so that
when one family of characteristics is made a co-ordinate family, the other co-ordinate family is
left to the discretion of the user. The work of Mr. Thornhill encouraged us to apply the results to
three-dimensional flow, and this was done without any serious increase of complexity and with
some refinement of technique. Once the notation of the tensor calculus has been mastered, and
it is hoped that Appendix I may be of some use to this end, then the whole development is very
simple and gives considerable insight into the nature of the flow.

* Published with the permission of the Director, National Physical Laboratory.
1

(52208)



2. Reduction of the Equations.—The reader unfamiliar with tensor notation is referred directly
to Appendix 1 where the notation as used in this paper is explained in as simple a manner as

possible. The majority of the results are there stated without proof. Where proof is necessary
reference should be made to Refs. 3, 4 and 5. :

A distinction is made between Greek and Roman suffixes. Greek suffixes «, # and y are held
to have fixed values, 7.e., they each refer to one of the three co-ordinate families (in three
dimensions) and once they have been assigned to one family their meaning is unaltered. They
do not obey the summation convention (see Appendix 1). Roman suffixes, on the other hand,
are the usual dummy suffixes of tensor notation and obey the summation convention.

The further convention will also be adopted that the suffixes /, m and # refer only to # and v,
and never to «. Thus

Bt = ogth’ + ot

We shall consider steady rotational flow (so that the entropy S may vary from one streamline
to another) but without shock-waves or other discontinuities of the physical variables. The
pressure is assumed to be a known function of the density and entropy, thus ¢ = #(p, S). The
velocity of sound is defined as usual as @, where

op
2 . £
@ =7

We shall assume that all the variables are known on a co-ordinate surface x* = constant, and
hence also their derivatives with respect to #* and x*. We shall then consider the equations of
motion as equations to determine the derivatives with respect to x°.

The equations of motion may be written in terms of co-variant velocity components, as
follows :—
1 9p

M”ua’c—l——pz—};&;:() .. .. .. . .. (1) to (3)

3 .
gb”%b,c—}—;a—xbzo .. . .. .. .. .. (4)

77 =0 e . (5)
and the equation of state is

P = p(p, S)

ap ap 3S
é;b b—}—aéax .. .. .« . (6)

Multiplying equation (6) by #’ and using equation (5), we get

, 9 L 3p

w my = au’ 5o . . .. . . (7)

dp :
Substituting for 57 ey in equation (4), we get

. u 9P ’
azg”u,,,c—k;é?,: . .. .. .. .. .. .. (8)
It should be noted that equatlon (5) determines 0S/ox* in terms of the values of S and its

derivatives in the plane x* = constant, while equation (6) determines 9p/9x* in terms of the
derivatives of » and S.
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We shall now write equations (1) to (3) and (8) as simultaneous linear equations in the four
variables t,, #p, %,,, 0p/0x". Thus

L 1op .
%%a,a‘l“f;ﬁ:—%%a,m .. .. .. .. .. 9
17, 1 ap
%%n,a - —%%n,m '—;a—xn .. .. . .. (10),(11)
aa (14 zia ap 1, %” aP -
%\ 8% My + & Uy } P a*g""u, P .. .. .. (12)

where m, # can only take the values 8 and y. Equations (10), (11) are sufficient to determine
g, and u,, in terms of conditions on the plane provided that #* does not vanish.

Multiplying equations (10) and (11) by a’s"* and equation (12) by #* and subtracting gives
(w)? op

aggaa%q%a,a + T a_x_z = az(ga”%m%n,m_ gbm‘%a%b,m) _{_ (ﬂzgna - %a%n) ;) ox™ .- (13)

Equations (9) and (13) are then sufficient to determine #,, and 9p/3x* unless

either u* =0 .. . .. .. .. .. (14)
or | a’gh = (u)*. .. . . . . . (15)

If neither of these exceptional cases occur, all the transverse derivatives can be determined from
conditions on the surface itself. If equation (14) is true, the surface x* = constant is a stream
surface and this possibility is considered in detail later on. If equation (15) is true, the surface
% = constant is known as a characteristic surface. On such a surface the derivatives of #,,
and p are indeterminate. In this latter case equations (13) and (9) are only consistent if

12p

(%a)zumua’m _I_ ﬂz(ga”%m’l'h,,m o gbmuaub’m) + (azgmz_ %a%n) . a_x” —_ O
or, using equation (15),

109
u(g%u” — g™ uu,,, +(g"u* — g*u”) ; £¢ =0 .. .. .. .. (16)

or

1 9
u*(w'u’,, — wu”,,) + (§"u" — g*u™) - a?i,, = 0, .. .. .. .. (16a)
, | o o
This equation must hold on the characteristic surface and is known as the ‘characteristic
equation ’.

We have now established the following properties of a characteristic surface.

(a) If the surface x* = constant is a characteristic surface then a knowledge of values of the
dependent variables and their # and y derivatives in the surface does not determine the values of
#, p and p on a neighbouring surface and in particular their derivatives may change dis-
continuously at the surface in a manner consistent with the determinate values of u,,, #,,.
Since a discontinuity ot a derivative may be considered as an infinitesimal disturbance in the flow,
this will mean that such disturbances can exist and will be propagated along and only along
characteristic surfaces. :
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(b) (g°)*a = 4-u® . .. ..
at all points of the surface. It is proved in Appendix 2 that this relation is equivalent to
‘vﬂd - i a J ‘

where v,, is the component velocity normal to the surface.

(17)

Tt follows from geometrical considerations that the characteristic surfaces passing through
a given point P, envelope a conical surface (conoid) and in particular that they touch a right-cone
with vertex at P and semi-angle x4 where

sinp = ajw.

af, My, o, ma, a aamla?——-
(c) u(%%,m—%%,m)"l'(g%"g%)ﬁaxﬂ,_—o

at all points of the characteristic surface.

3. Two-dimensional Flows—TFor two-dimensional flow we let 47 = constant be a plane on
which '

8ve = 8oy = 0
and .. - .. . .. (18)

&n =1
u,,u? and all derivatives with respect to x” also vanish.
The equations of motion then have the same form as before, but the suffixes can now only

take one of the two values wor f. It will also be convenient to use the suffixes 7, s and ¢ as holding
over these two values, only, and we shall write

G = Guallts — Gup' -
Then the equations of motion are

, 10p

%us,—i—;axs—_O .. .. . .. .. .. (19, 20)
o %’ 0P

g%s,,+——Pa——xs———O. .. S .. .. . (21)

The equation of state remains

b=f,S). o e e (29

The condition that the curve x* = constant, should be a characteristic curve remains
azgaa — (%a)2 .
or . . . . . (28)
Upe = 1 @
and the characteristic equation becomes

0 .
Wby w,) + (e — gud) 5 oh =0

p 0x*
or
\ U 0
(i — wily) + (87" — g% ;ﬁ—i}%ﬁ =
or
a a N g 0P
u(wﬁu,g—%uﬁ,p)—;@a—x—ﬁZO. - .. .. .. (24)
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It is shown in Appendix 2 that

L
. w sy =G (1Pu y — usd’ p) . (25)
and that when equation (23) holds
%‘32 - gﬂlg(wz - az) . . .. (26)

Thus the characteristic equation becomes
ae gﬂﬁl/z(w2 e aZ)l/Z ap

u“wzw— G B—xﬂZO'
Putting u* = +.(g*)"*a
and remembering that g** = (gs/G)
we get .
(wz _ az)l/z ap B
waxﬁi—Pa—W_ . .. . .. . (27)

This is the well-known form of the characteristic equation.

4. Symmetry about an Axis.—In this case one can take x* to be the angular co- _ordinate about
the axis, so that if 7 is the distance from the axis the fundamental metric becomes

s’ = g, dx’ dx’ + v*(dx")? . . .. o (28)
so that

8er = 8oy =0 | | (29)

G =1 J

As in two-dimensional flow #,, %" and all scalar derivatives with respect to x” are zero. All
covariant derivatives with respect to % are not zero, however, for

ou,
My = 55— To 1t . e .. (30)
8oy | 08ea  08s
Fb Uy == %gbc{ gy"l'— agy‘cy_g%y}%b.
Inspection then shows that
= B |
T ( S /1)
=0
Since g,, = 7*, we may write
‘ 7
LR
0
BZ_W 3

where V is the velocity component normal to the axis.

Thus the equations of motion may be written

u%s,—i— Ib =0 . .. ce e .. (33),(34)

0
gi’s%sr_l_ +1_P—_" . . .. v ° (35)
5




The condition for a characteristic is unaltered, and the characteristic equation becomes

20 | (w* — a®'20p | gultal
wzwi'———“pa 5o —7—20. . . S (36)
Introducing sin z = a/w .. .. .. . .. . . . . (37)
. 0 for two-dimensional flow
and § = . .
1 for axisymmetric flow,

this may be written

00 129 . sin 0 dr

2 o i y A
54 L COt A p 04° +7 singsin(f+p) 7 = 0 " " . (38)

since
got dxf sin (0 + p) = dv .

5. Streamlines.—If u® == 0, so that the surfaces x* = constant are stream surfaces, some
simplification is introduced into the equations of motion. It is more convenient, however, to
deal with streamlines rather than surfaces, and we shall consider the case where the y-lines are
streamlines, so that

u =uf =0
and
w? = gw(%y)z .

We shall also use the convention that the suffixes 7, s and ¢ refer to « and g only. The last two
equations of motion, equations (4) and (5), express the fact that the entropy and the mass-flow.
are constant along stream-tubes and consequently no new information can be expected from
putting u* = #* = 0. The two equations become in fact ‘

oS
M”g;,———o . .. .. e .. (39)
9 1/2
w(pg/%y)zo, .. . .. . .. . (40)

where equation (40) is obtained by expressing equation (4) in its simplest form (Appendix 1).
Equations (1) to (3) may be written |

1090
oY’ ,, - p— 8—5, = 0.

For equation (8), & = y and this becomes

gc,,ww,,,—}—})%%: . .. . .. b (41)
Now .
aéfv) - aa—xy (oot n®) = w0’y + Wik,
= 20,u"u°, .
Since #* = #f = 0, equation (41) becomes
é%ff@%%:o R )

which is Bernouilli’s equatioh for flow along streamlines.
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When b  y, equations (1) and (2) become
19
Lot , + f—)a—‘ﬁ, =0
or

ou’ . 19p ‘
gc,'lfp”{w—}—f’ww’J—{-;éz:O. .. .. SIS .. .. (43)

Now it is shown in Appendix 2 that if R is a vector representing in magnitude and direction the
curvature of the streamline dx* = dx’ = 0,

. 1 o 1/2
then I, = g,R +g L % .. .. .. (44)

so that equation (43) may now be written

, W . 1 2{gy)” 12
8 o5+ &)’ R, + g, (") GI" aw Tpaw =0
or
uw 0 2 19p
(53)1/2 a-x_y { (gw)llz%y } + gw(%y) R” + ,;axy =0. o o (45)

Finally, let K, be the actual component of geodesic curvature of the streamline in the direction,
so that
(8.)"*K, =R .

Remembering that
A gw(%y)z = w"

and
&
(G~ O P
where vy, is the angle between the a and 3 axes,the equation (45) reduces to
w  ow 1 op
(Z’w)llz 5x7 COS ¥y + 'K, + WZ = 0. .. .. (48)

The first term (which vanishes when the 7-axis is orthogonal to the streamlines) gives the
component of the stream acceleration in the direction of the 7-axis, whilst the second term gives
a measure of the centripetal acceleration.

8. Simple Wave.—As an example of the application of the tensor notation we shall apply it to
the case of a ‘ simple wave ’, in which one family of characteristics are straight lines. This family
will be represented by the g-lines, the streamlines by the a-lines, and we consider the case in which
‘vnﬂ == + a.

It follows from the previous analysis that

w =0 . .- . . .. (47)
(u°)? = g*a® .. .. .. .. . .. (48)

2y T/ L
W P 507 =0 .. . . . o . (49)




‘and the equations of motion are

13(w?) |, 12p
2 ox° +;8x“:0 (50)
10
Bogt™ U’ P_% =0 (51)
9 1/2,,a '
8—xa(pg u®) =0 . - . . .. .. (52)
2S5 : ,
axazo. . . . . . .- (53)

We shall make the further assumption that the total energy and the entropy are the same on all
streamlines and we shall limit the discussion to the case of a perfect gas for which the equation
of state may be written ‘

kel ‘

K = exp (S/c,)

and c, is constant. y is constant throughou’t the fluid, and the same is true ot S and K. From
equations (50) and (54), and writing ‘

where (54) .

y P

E—ptt ] (55)
for the total energy we have :

oE

ax“:O .. .. . .. .. . (56)

along a streamline, and so E is constant throughout the fluid. From the definition of z, the angle
which a characteristic makes with a streamline at any point,

wzsinmz”—f-. O (-7)

Differentiating equations (54) and (57) with respect to %

2 ow op _10p 19p 1
2o T2 = 5o T 5o 55
13p _ v 2,
and ﬁW_Eaxﬁ
Heﬁce, 7
oE ow | 18p
AT A v
10 . du
={1 +3r—1) cosecz,u};gc%— w® cotp 55
=0. .. . . .. .. . (59)
We also note that equation (49) may be written '
19 20 : o
;%:wztanuw. .- . . . .. (60)



Eliminating 95/9x° from equations (59) and (60)

—1 06 )
<1+y 3 coseczpc)a—ﬂ——cotzyé%,:O. .- .. (61)

But since the g characteristic is straight

2
2 (0 —u) =0

or

o8 op
w—a—xﬁzo. .. .. .. .. .. .. .. (62)

Equations (61) and (62) are only compatible if 86/2xf and &u/d4 both vanish, and hence (in
view of equations (49) and (58)) on a straight characteristic
oP
5 =0 . . . . . . . . (63)

for P = p, p, w, a, u and 0, 1.¢., all the flow variables are constant along the characteristic.

Since
80 gl/z-
i e (s — ufup) =0
and «* = 0, it follows that -

Wo=wll=0. .. .. .. .. .. .. (84)

In order to find a relation between 6 and x which holds along the streamlines we shall eliminate
ou®/9x® between the two equations of motion (51) and (52) .

From (51),
a%a a 2]
- gaﬂ ﬁ - - gaﬁFaa%
and from (52)
ou’ 1 %p . j| .
oxe — I:;B_x‘“l_r““ .

For these to be compatible we must have

1ap ’ .
gaﬂ s + 'Z-rua :gﬁaraa

p 0%
or
19p ’
gaﬁf—)é;azgﬁﬁfga .. . .. .. . .. .. .. (65)
using equation (64). Again, equations (25), with « and g interchanged, and (47) give
a9 ‘
e L P )

and since
" Bup = Baa "Gps? COS P
equations (65) and (66) give
123 1- 00
p 8%, sSin u cos p 0x* "




Finally, using equation (56) and differentiating equations (54) and (57) with respect to x°

1op cot u .
poxt = Iy — 1) + sty ox - .. .. .. .. (68)
so that ‘
00 cos® u ou
T T s g . (89)

Integrating we find that the following condition is satisfied along a streamline

0 = — u 4 x/4 + constant .. .. .. .. .. (70)
with

tan g = (1j3) tanp, 2= (y — D/ +1). .. .. .. (7

This is the fundamental equation for a simple wave.

The other quantities w, » and p may be determined by substitution in equations (54), (55), (57)
in the form '

w = (2E)'/* cos y secp
a = — A?sin® y
f (72)
1 y—1
=Krp v
— pr—l

To complete the geometrical determination of the arbitrary streamline in terms of a standard
streamline it is necessary to derive an equation for the variation of g, along a streamline. Putting
v = p in equation (52), and using (70), (71) and (72) -

1

2s"* = constant/pw sin u

= COl’lSt&l"lt (Sil’l X) 1/22 . .. - .. .. .. (73)
along a streamline. Let dr be the element of length along a straight characteristic, then
d?’ == gﬂﬁ1/2 dxﬁ . '

But #* = constant along a streamline, and so if # is measured from a standard streamline as datum
we have :

7 = constant (sin x)*lﬂz .
Writing |
=0 —u .. .. .. - .. . (74)

for the inclination of the straight characteristic to a fixed direction,  and ¢ may be considered
as quasi-polar co-ordinates of an arbitrary streamline referred to a fixed streamline as datum
and are determined by equations (70), (71) and (74) as functions of the single parameter x4 along
the fixed streamline. Since we have not stipulated the significance of %, and ¢ (= 6 — u) is
constant along the characteristic we might write x* = 4. In the case of a centred simple wave
the datum streamline may be taken as a fixed point (the centre), and » and ¢ become true polar
co-ordinates satisfying the same relations as for the general simple wave.

10



APPENDIX I

Fundamental Results.—TFor simplicity we shall consider only the two-dimensional case. We
use a perfectly arbitrary set of oblique curvilinear co-ordinates x% x*. ILet P be an arbitrary
point (x% %) and let PQ be an arbitrary infinitesimal vector 4. Let the co-ordinate lines through

Frc. 1.

P and Q form the curvilinear quadrilateral PR,QR; (Fig. 1) which is to the first order a
parallelogram and is such that x* has the constant values

x* and x° - dx° = x° - A°

on PR',;and R.Q respectively, while ## has the constant values#® and # 4+ 64* = % - 4° on PR,

and R;Q respectively. A¢and A® will be described as the contra-variant components of the vector
A. . We shall write

PR, = g..'?4", PRP = gy'2A#
and if y is the angle between the co-ordinate lines R,PR, .. . .. (AL1)
8ot = &pa = SuaGas""? cos ¥
where g.., 8., and gy are all functions of position depending only on the co-ordinates, and
completely define the axes of co-ordinates in the neighbourhood of P.
Let N, and N be the feet of the perpendiculars from Q on to PR, and PR, respectively. Then
A, = g.'* PN, and A4;= g, "PN, .. . .. (ALZ2)
will be described as the co-variant components of the vector 4.
The following results help to justify these apparently arbitrary definitions and illustrate further
the necessity for the two types of component of a vector when the co-ordinates are oblique.
[A]* = 8aa(A%)" + 285 A°A" + gy(A?)?
= > g, A°4".
“ 11




By the * summation convention *:—Any Latin suffix repeated in a given term occurs always once

as a lower and once as an upper suffix, and is then understood to be summed for ¢ and g so that
the sign of summation becomes unnecessary. Thus we write

|A|? = gpded® . .. .. .. .. .. .. .. (A1.3)
Again, ‘
Aa = gaaAu + gaﬂAﬁ
- gabAb
and
Ap = ggd’,

where the Latin suffices obey the summation convention. The two equations will be written as
the single equation : . :

A, = g,db. e (ALY

This illustrates the convention that a * floating ’ (unrepeated) Latin suffix must occur in the same
position in every term of an equation and is understood to be replaced by « and  in turn.

We shall write

§= |8  Lop| = 8wl — &% - e .. (AL5)
| Gup 8o | ,
and .
gub = Gab/g » .. .. .« .o . .. .. (AI.G)
where G, is the co-factor of g, in the determinant g. Thus
2 gﬁ, 68 __ gi"f_ d off giﬁ
8 =g 8 T g andg g
Then, :
A = g4, .. .. .. .. .. .. .. (AL7)
and ‘
B |A|? = A%A, = g*4.4,. .. e .. . .. (ALS)

In a general change of axes in which the co-ordinates x'*, ' are any functions of 4%, #* the com-
ponents of a vector are transformed according to the relation ‘

ox'® ‘
A"‘za—x,,Ab .. .. .. .. .. .. .. (AL9)
, ox®
Au — a—.x’;Ab

The components of a vector are a special first order case of ‘ tensors ’ which may be of any order.
Thus a tensor T of the second order has contra-variant components 7%, co-variant components
T, or mixed components T4, each of which stands for four numbers obtained by putting « and b
equal to «, #in turn. Such a system of numbers of any order is said to be a tensor if it obeys the

following law of transformation from the set of co-ordinates x, %,, %5 . . . %y to the new set
Too I 3 2y° 0 ox*
Mmoo yu ye_xr i L....n

&, 8% are special cases of tensors of the second order which are functions of the co-ordinate system
only. The mixed tensor ‘

, g = £"8es ‘
is often written ¢; and has the property of changing a suffix, since 62 = 6} — 1 and
85 =d% = 0. For example,

A® = 634° .
12



Derivative of a Scalar.—The change 8¢ in a scalar field corresponding to a small displacement
from a point P to a point Q considered as a vector dx with components §x° is given by the normal
type of formula

0
S —do—dp—h o .. .. . . .. .. (AL

0¢/9x* is the co-variant component of the ‘ gradient ’ of the scalar.

Derivative of a Vector.—If A is a vector field, we require a formula for 64 in terms of the small
displacement éx. In curvilinear co-ordinates it is not true that

0A”
@ b
(SA = axb 5%

and 0A4°%/0x" is not a tensor. It is possible, however, to define a mixed tensor of the second order
whose components are denoted by A4¢, such that

0A° = A=, 6% . .. . .. .. . .. .. (AlL12)
It may be shown that
04"
AYy= =5 + I54°,
where Iy, = g“I';, .. .. .. .. .. . .. (AlL.13)

1 [ 9gs | 08 085
and Toe=915 Tox, " om

. A, is known as the co-variant derivative of the contra-variant component A* of the vector 4.

The co-variant derivative of the co-variant component of 4 may similarly be defined such that

8A, = A8 .. .. .. .. .. .. .. (AL14)
and, ' ,
0A,
A“’b:a—xb——r‘i”A”' .. .« .. . .. .. (A1.15)

Co-variant derivatives of tensors of higher orders may be similarly defined. In particular for
a mixed tensor of second order we have

0A? X .
Ag,czgi—nrgcAg_fgcA;. e .. .. .. .. (Alae)

The derivatives of the fundamental tensors are all zero
Bue=8",=8,=0. .. .. . .. .. .. (A1.17)

The usual distributive law of differentiation is obeyed by the co-variant derivative; for example

0
5 (4°B,) = (4°B,,)

- A“’bBﬂ _l_ AaBa’b . .. .. .. . s .. (A1.18)

In this last equation it has been found convenient to write the co-variant derivative of a scalar
in two forms. Thus :

(‘ﬁ),a: o x° .. . . . . . .. (Allg)
13




Equatz'ons of Motion.—Acceleration.—The contra-variant components f* of the acceleration f

which is the rate of change of the velocity vector # following the motion of the fluid may be
obtained as follows. In time 6¢ the displacement PQ of a particle of fluid is given by

0x" = u® 6t .

The total change of the Velocity u* of the particle of fluid originally at P is

ou
8t = 27 5 04°
ou* -
and so
Du\e _ out :
- 7 t—l—u,,% .. .. .. .. .. (A1.20)
The general formula
DA 9A4°
()= 4 .. . . . a2

will give the rate of change following the motion of the fluid of any vector field 4, while a similar
formula applies to a scalar field :

D _ 26, 2% ,

i + EyY . (Al1.22)

In steady motion the acceleration becomes

fa — %u,b%b
and the rate of change of entropy following the motion of the fluid becomes
,8S
u

The divergence of a vector can, by analogy with the more familiar orthogonal case, be seen to be
Aa

Using these results, a stralghtforward application of the fundamental physical laws yields the
equatlons of motion of a fluid.

For steady, non-viscous flow we have
1. Constant entropy along streamline

oS
ox*

u =0,

2 and 3. Equations of momentum

Qp4C 1 ap
gbcu’u,u paxb
@® op 1o9paS
== ;;—a_xb_;ﬁaxb’ b oor p



4. Equation of continuity
3 a ap a
div (pw) = (pu) s = 0" 52 + ptt’s =
But
0 2 b e 9 a a b
o (PU) A+ pU T = 5 (pu) + putly

0 1 9
= g () + 00 5 5

—1/2

2
= g7 5 (eg™ut) .

o
Thus equation (4) is equivalent to e (pg*?u”) = 0.

Since the notation of the tensor calculus remains unaltered however many variables are
involved, all results in this appendix that are expressed purely in tensor notation will be found to
apply equally well to three dimensions as in two. Such results are the expression for the square
of the interval ds, the co-variant derivative and all the equations of motion (1) to (4).
these and the foregoing results can be found in Refs. 3, 4 and 5 or are immediate results of work

found there.
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APPENDIX II
Proof of Some Results used in the Text
A2.1. v, — uf(g=) .

Write Wt = g%,
= g*u,* + 2g%uu; + 2g;‘yuauy + g™,
1
| g
where % is a tensor derived from g, and /, m = «.

(@) + Bty

Let, now U component of velocity normal to the g, y-plane,
V component of velocity parallel to the g, y-plane

so that
wt = U? 4+ 148

Ve =0, hence u* = U*“,
Up=U,=0hencewuy; =V,, u,=V

4 e

Thus we may write equation (A2.1)

wz — g__](;; (Ua)z _[__ hlmVle .

We obtain v,, the normal component of w, by putting ¥ == 0 in equation (A2.2), whence

vnaz — _%_a (Ua)z _ (%“)2 ‘
g gaa

An alternative, more geometrical proof of this, is as follows.

() Y (b)
F1G. 2.

(A2.1)

(A2.2)

(All dimensions in Fig. 2 may be considered as infinitesimal and so all lines and surfaces may

be considered as straight lines and planes.)
16



Let PQ (Fig. 2a) be the vector velocity #, let PM, be its projection on the normal to the a-surface
and let the a-surface through Q cut the «-line at R,. Then

PM, = v,
and if PM, is considered as a vector A4,
PR, = (g..)"u* |
= (guea |
Since 4 is normal to the -surface
A,=4,=0

and so .
A= g«A4,. .. .. .. .. .. .. .. (2)

If ;. is the angle R,PM, and N, is the foot of the perpendicular from M, on PR,, (Fig. 2),
A PNa = (gaa>—1/2Aa

= PM, cos g,
: — PRecos? 4,
and so by equation (2)
S€C” 2o = Zuul™

thence

vna - (gaa)uz%u Ccos XU
— (gaa) ~1/2y0

00 . . .
A22. wog= G (ulue,; — u'e,g), (in two dimensions) .

Let p and g be any two vectors, then it may be shown that (p°g* — pf) is an invariant with
respect to different sets of axes. Ii we take axes along p, ¢ so that * = ¢ = 0, then

CEpig—pe) = — Gy
G2
= gangE 1l 4l
— — |p| |g]sin®’
where 6’ is the angle between the two vectors.
Now, let
P — M[:
and

g = u* + ou’ = u" + u’, ox°
so that ¢ is the velocity vector at a point displaced a distance éx°.  If 6 is the stream direction,

. 00
' = 66 and sin 6’ = PP éx*. Then

G2 (PP — pogf) = G, — u ) 0

6
= —-wza—xb o’

and
1/2(,.8,,a @y 2 00
G'P*ufuy — usy) = w R
17
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A28, u =gy (W' — a*), along a characteristic line in two dimensions

A24. I, = gch + &

ug = Lo’ ()" + 285a8pstt W + g (u")?
= o { Lo W)* + 28, "0’ - Zaal8)} + (8a® — Buass)(1°)*
= gpo® — G(u®)*

= gy(w® — a?) since G(u%)? = gia.

1 9(gy)”
(8n)'""* o

“The geodesic curvature of a curve is given in magnitude and direction by the relation

or

8 /dx’
R=5 (%)
R — a*(x?) ax® dx*

b -
ds? + I ds ds °

Thus the geodesic curvature of the line dx* = da® = 0 will be given by

whence
No. Author
1 R. E. Meyer

2 C. K. Thornhill ..

C. N. H. Lock
A. J. McConnell
T. Levi-Civita ..

= W

91

(52208) Wt.15/8680 K.9. 1/54 Hw.

1 @ 1 1 .,
— — e
(&) /% 02 (gw)”z> +gw i

: 1 a(g,)"” .
Fsv :gwa —i—gi (gT)l/Z _—81/916”— .

R =g
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