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SUMMARY

A perturbation method of solving the problem of stability in an
unlimiied field of flow is developed and used to investigate the stability
of the laminar vake formed by a flat plate.

The invisoid problem of the wake formed by a flat plate is
investigated, and the eigen-valus of a for the neutral disturbance is
found to be oy = L.0.

A detailed account is given of the perturbation method ithach is
develeped. The necessaxy and sufficient condition that an integral of the
anall disturbance equation should satisfy the boundary conditions for the
viake is established. This condition is found to lead to a simple
determination of the (ao,R) curve, and this curve is found for the neutral
disturbanoces.

The method faile to predict a minimum critical Reynolds nuuber,

only because the approximations made in the above conditions are only
valid for large Reynolds numbers.,

1. Introductiom

Laminar {lor is regarded as stable if all velooity disturbances,
caused accidentally in the fluid, tend ultimately to vanish and as unstable
if any disturbanoe persists in time or tends to increase. The problem is
to ascertain whether conditions exist under which any disturbance persists
or tends to increase and, if so, to determine the characteristics of such
disturbances for any gaven regime of flaow,

Lord Reyleigh!s?, firet propounded the theory of stability based
on infinitesimal disturbances, solving the inviscid problem for several
types of velocity profile in a charmel with parallel walls. The modern
theory vas  instigated by Heisenberg) s who showed that the fourth-order
differential equation governing the dasturbances had two slowly-varying
integrals, sengible across the whole channel and unaffected by viscosity;
and two rapidly varying integrals sensible only near the walls and very
sengitive to the effects of viscosity. The first type are lmom as
invascid integrals, and are functicns of the velooity profile. The
second type are termed visoous integrals and do not vary appreciably with
the velocity profile.

Mathemetically/

*This paper is an abridged version of the authorts thesis at the
University of Londen, It has been edited in the Aerodynamics Davision
of the National Fhysical Laburatorye.
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Mathematically a basic flow
u = Uy, v = 0 vee(1.1)
is considered and a small disturbance
u' = out(xtyyt,t'), v! = vi(x',y',t') ere(1a2)

is mmposed on this,

The equation of' continuity is

aul  agv?
—— e e = O, Il.(1 05)
ax' oy!

and upon eliminating the pressure the Navier-3tokes equations lead to

83yt 3yt 3?0 Bt 3% vt
------ VAR | JUPREI L SR | S
dytott ax'oy! By ox'at? dx1?
ra®ut ®ut % 2 vt 1
S Y mmmnnn d - - e——— . —a——— . Iy’ (1 .L]-)

lox™ayt  ay®  ax®  ox'ay®

Equation (1.3) is formally satisfied by expressing u' and v' in terms
of a stream function y. Hence

oy gy .
ut = ey, v e L] 0(1 .5)
oy ! ox!
Assume ¢ +to be of ihe form
v o= (yt) elel(x!=o't!) ces(1.6)

Substituting from (1.5) and (1.6} into (1.4)

v

(U-ct)(¢" = a®g) =U" ¢ = -== (¢"" = 20%¢" + a¥g) . ...(1.7)

ot

Converting to the dimensionless co-ordinates y = y!/§ the following
18 obtained:~

i
(= 0)(g" = aB®¢) = W' = = o= (¢"" = 2c2¢" + atp) , eee(1.8)
R
where/
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where

w o= U/U0 s “}1
|

a = Cbia 9 !> oou(1 -9)
Ugd i
B = Ra B e—— I
v |
J

Equation (1,8) is the non~dimensional form of the small disturbance
ecuation. The integralsof (1.8), an conjunction wath the boundery
cenditions amposed by physical considerations determine the eigen-values
of a, R; co The wvaluss of a and R mast be real; but ¢ may be
complex. The dasturbance is termed amplified, neutral or damped
according as the imaginary part of ¢ 1s positive, zerc or negative.

The invisc1d antegrals described above are solutions of the
equation obtained by neglecting the viscous terms on the right-hand =adc
of (1.8). Hence

("u? - C) (9-')" - 2¢) - 'W'“\_lé = 0 . oa-('loIC)

Equation (1,10} has a singularity at y = yo where w=c = 0, and
can be solved as a power series in (y - y,) by the method of Frobeniue,
The antegrals obtained are

“ .
¢, = z +a,2 +38.72 ... |
|
enailell
W, & ¢ )
g, = 1 +D 3 +'bﬁzg cao + wmwm & Log (-z) f
Wos j
W, .
where
! [ y—yo<0, oae(1=12)
Near o y 1543(};, the ‘term = c)(¢" = o®¢) 1s of the same order of

magnitude .as tis %“e“ﬁnﬁ%nagleé%e'&' on the right>hand side "of equaticn (1.8),

and the above expan"s:f’on&— are’ not* va.l:.é. ind x“ch_lu regu_on. ‘The complste
-4-*-*“ \"L‘?A!&-

equation ma &6 NS refore*”be oonsldvfed Exi- crdar Lo, gis'quglmwe how Lhe

logarathme tem'%lsétranafoxmed titough’ 8" ¢ratical beint ToLlmentt
has shown by appromma‘te mathody that the’ tern whisn . equa._s
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Wy |
—-- ¢, log (=z) for z<0O <
Vgt )
0 i
{
transforms into \f eoe(1.13)
i
w i r
o ) J
===~ ¢, log z + i for z> 0 i
wo! B

The term mi is essentially of positive sLgn because Wo'  is positive
for wakes and boundary layers in y > 0. For a jet the term =i would
be of opposite sign because Wo' a8 negabtave mn y > 0. Tollmients
transformation has also been considered by aiternative methods by Melcsyns .

The methods developed by Tollmiem!r and Heisenbergd for
boundary-layer problems cannot be dirscily applied 4o problems in an
uniumied field ot flow.

Firstly, the occurrence of the rapadly varying vascous integrals
in the solution of the small disturbance equasion is conmected very clcssly
with the presence of boundaries. Foote and Linbd have shown that they do
not enter into the boundary condation equation, but that viscosity as
only effective through the second-order approximations to the “inviscia'
integrals,

Secondly, the veloecity profales a2ll have at least one point of
anflexion. Tollmien/ has shawn that, for the inviscad case s profiles wath
a point of inflexion are mnstable. Thus there is a daisturbance, with non-
Zerc wave number ag, that is unstable for infinite Reynolds number.
Tollmien has also shown that the neutrai solution is that for which the
wave-velocity og dis equal to the velocity at the point of inflexaion of
the profile,

The inviscid problem for the wake formed by a moving body was
investigated by Holl:mgdaleS. Uging various approxmations to the
velocity profile, he obtained walues of a in the region o = L0
when referred to the effective half-width of the wake as unit. He also
investigated expernmentally the wakes formed by a flat plate end an
aerofcal section, He observed a lamnar and an cseillatory wake, and
mzde an estimaiaion of the critical Regynolds rumber below which the wakes
were alweys laminar, This cratical Reynolds number was 600 for the flat
plate and 1000 for the aerolforl sectiocrl.

Savic? solved the invisoid rroblem for the tvo-dimensional Jjet,
determining the neutral wave-length and weve-velocity. He cbtained good
agreement between his results and experimental measurenents on
acoustically sensitive jJebs.

Two attempts have Loen made to solve the problea of stability
in an uvnlimited field of flow wath the effects of vracosity included,
by Chiarul1alO and Lessen!?. In each case the inviscid integrals were
expanded in powers of (aR)™*. Chiarulli put o = ag and then
linearized in (o - og) and (aR)=*. By this means the boundary
condition equation was put 1n a form in which it could be solved for
(c =~ cg) and (aR)~*. The tedious process of solving thas equation
was not attempied. Lessen evaluated numeriacally the first two terms
in the seraes expansion, and then solved the boundary condztaon eguation
by trial and error. This process dud not give a minumm critical Reynolds
mznber, probably because more terms must be retained in the expansions of
the Yinviseid" integrals when oR is small, y

In
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In the present work, starting from the known solution ¢g of
the inviscid problem, having eigen-values ag and oy, the existence
of a neighbouring viscous solution ¢, *is assumed. The necessary and
sufficient condation that ¢, should satisfy the boundary condations
amposed by physical considerations is obtained as an infinite integral
to be zero., This condition determines the eigen-values (a, ¢, R).
Although 1t is not found possible to do this an the general case, a
solution valid for large R 1is obtained by a linear perturbation about
the lnovm inviscid soluticn.

The method is applied to the problem of the wake formed by a
flat plate. No minimum critical Reynolds number is predicted, because
the approximations of linearizing are not valid at small enough Reymolds
numbers. As the method requires the knowledge of the inviscid solution,
the invaiscid problem of the wake of a flat plate is first considered
before the general theory is developed.

2. Invaiscid Problem of the Wake Formed by a Flat Flate

Hollingdale® ainvestigated this problem, but an error in his
solution was found during the present investigation. As a knowledge of
the invaiscid solution is essential, the following alternative treatment
is given,

Goldsteint? gives as the fairst approximation to the velocity
profile in the wake formed by a flat plate of length 1,

w = 1-ae")+y2 eee(241)
where y = y'/é :
1
8 = [Bux'/Uy}?
1 . ...(2‘2)
28 ,xY\~7
and a = -—-:(-—)
Vi

The ainvaiscid equation (1.10) cannot conveniently be solved by
using (2.1), therefore the velocaity profile must be approximated. The
most convenient approxamation is

e"lib’n'-*f(y) = A+ Bocos ky 0 <y < 0.5
= D(1 _y)ﬂ 0.5 <y < 1.0 |> ooo(203)
= 0 ¥y > 1.0 J

where A, B, D and k are such that

(1) o~ and £(y) have the same value at y = O.
(341) e~ ana £(y) have the same point of inflexion.

(121) f(y) and f£'(y) are continuous at y = 0.5

f(y) and f£'(y) ave continuous at y = 1 because of the form of the
approximation. With the above conditions y
A
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= 0.5950

A
7T 00 ‘ . eea(2.4)
k = Loih3

D

1.334

H]

e e —

The problem is now to solve the imviscad equation (1.10), where w is
given by (2.1) and (2.3), subject to the boundary condaitions

¢ an even function of 7y, |
} eee(2.5)
or ¢'(0) = 0, !
and ?5 - Q0 as ¥ o= Ca. O‘-(2-6)

Region I 0 <y < 0.5

By using the approximate expression for w, (1.10) 1s reduced to

g" + (¥ - ) = 0 eee(2.7)
the integrals of which are
¢£"’ = @os Wy hL
, eee(2.8)
qbf” = gin wy |
where
W = \/l‘c-a'—:_“ag . 0-0(209)

Regaon IT 0.5 ¢y < 1.0

By using the approximate expression for w, (1.10) is reduced to
(# = K)(p" - a*g) -2 = O, +2(2.10)
where

z = 1 -y and K = O/D . .l-(2011)

By/
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By solving (5.712) by Frobenius® Method the following integruls
are obtainod:=-

¢ﬁ> = coshaz +a z° +a A ...-:
3 4 L ees(2,12)
¢$1¥ = sunh az taz® +ad L., |
where
N
a = -d/6K !
} - --.(2u13)
a = = a3 !
;
& = = u/1588 - o® /30K J

Hegion TIT ¥ » 1,0

By using the spprowiuate expression for w, (1.10) is reduced to

¢" - P = 0, eee(2410)
which has antegrals
-
ay o -
P = e (2.15)
¢{a} ; e(@_ ? L] 4% s +
III :
Thus ¢ dis given by
~
1 = Acoswy +Bemuwy dn O0<y < 0.5 |
¢y = C géII:'[' +D qbﬁ’ m QS ey <t l? . ea(2.16)
J
$ri7 = B oW +F N in y > 1 !

The arbitrary constants are to be chosen so that the boundary conditions
(2.5) are satisfied, and ¢ and ¢' are combinuous at ¥ = 0.5 and
¥y = 1 IOI -

If£ (2.5) is to be satiysfied then
B'= ¥ = 0. oo (2.17)
Ly contanwaty at y = 1.0, d.eey, 2 = 0

(i

Ed
[a)
i
(]
-
e
[l

...(2.18)
- oE =%

J
&

and/



and this may be written

¢ = D
’ L o-o(2019‘)

B

]
Q
o

s
.

Then ty (2.16), (2.17) and (2.19) ¢ is given by

$1 = A cos uwy , 1
¢II = C(ea‘z + aaza + aazs --c) ’ IP 000(2.20)
¢III = 0 eG:Z . _;;

For continuity at y = 0.5

- w A sin w/2 = (95.{1)0-5 y |
or
w tan w2 = = [¢ﬁ/¢II3o-5 . ese(2.22)

Equation (2.22) defanes ag, the eigen-value of o for the neutral
disturbence in the inviseid cose. Substitubing from (2.20)

a/a 3
Qe + aQ + ;‘ ag 'en
W tan w/2 = /B L m——2 .g.(2.23)
(o} 1
= + Zaa + 8-8.8 see

where 28 gaven by (2.9) and a,, &, etce, by (2.13). This equation
can be solved yrephically to give oy = Le0. Then ¢, is given by (2.20),
and the result i1s shown in Table I,

Table I./
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Table 1, Inwviscid Solulion

A e o iS4

;

% y $s 3
0.0 1,000 04000
0.1 0.981 ~04370
0.2 04926 -0.726
0.3 0.837 -1.056
0.4 0.716 -1.345
0.5 0,569 =1.585
0.6 0.413 -1.215
0.7 04297 w0 4906
0.8 04209 ~0.661
0.9 0.143 04,80
1.0 0.100 04362

|

3, Stability in Unlimited Faeld of Flow at Fanite Reynolds Nuiber

The basis of the present method is that of a perturbation of
the known inviscid solution. Starting from the knovm inviseid integral
¢y with known e:.gen-values ag and og, the existence of a visoous
antegral ¢,, in the neighbourhood of ¢g, with eigen-values o, and
¢, in the neighbourhood of ag and og, is assumed. From the
equations satisfied by ¢, and ¢g the necessary and sufficient
condition that ¢, should satiesfy the boundary conditions is found. Thia
condation determines the eigen-values of 9y C and R.

The camplete smell disturbance eguation is

’ i
(w = c)(¢" - a¢) - w"$ === (¢"" = 2%¢" + i 4) . eee(301)

In the equation satisfied by gb © all the texrms on the right-hand side
of (3.41) are retained as pertur urbation terns.except the fourth-order term
¢*". The :Lnfluence o:f‘ this term-on the solution will be accounted for
when the comple'be*" fourth-ord.er ‘eduationisdoonsideredy. - As the repidly
varying viscous n.ntegrals Bo*ndt enter intoithe problem;-this 1s a
reasonable approimation to nake. The equation satisfied by ¢, is
therefore

4.
(W= o)(g! =cfg)-w'g = --—(-2d9"+L¢),
oG R
which/



which may be re-~written as

3

. 10y
(w = c, )(8) - :¢1) - <W‘" + -£-> g, = 0, eee(3.2)
where
01 = ¢ + 210..1& . 000(303)

If w-c¢, = 0 at y = y, then y, is a complex point in the
neighbourhood of the point of inflexion but not coincident with it.

Thus (3.2) has a singularity at the critical point y = y,, and so
the integrals of the equation will contain irregular terms which will be
modified in the region of the critical point. Thas modification will
now be discussed.

Equation (3.2) can be solved as a power series in z = ¥ = ¥,
by the Method of Frobenius, The following antegrals are obtained

i") = Z“"ELQZ2 "'a.az.3 “ova -}.
i

S !g o eee(3ek)
¢;9’ = 14bz+ .0+ {-9 + --’-ll\ $it log(- z)
w'! Rw} ,
- Q (o] J

The problem, as before, is to determne the modification of terms of the
form z¥ log(~ z) near the critical point.

The complete small-disturbance equation {3.1) may be written

iad i -
or-c)l - cie) - (et Yg s ot ()
R a.iR

Define

Fy =Yg = €71,
eee(3.6)

1
- {a, Rwl)?® ,

m
1]

where y. and therefore 7 is camplex. Transform {3.5) to the new
varzable 7, and retain only terms in e. Thus

Wg :Lo.i
95:“ +1in ¢: = 1€ (—- + ---) 951 . eee(3e7)

- 1
wg Rwg

Now/
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Now equations (3.4) and (3.7) are similar to those obtained in the work of
w i) W" iﬂ"a
o 0 1
Tollmien¥ and Meksgymd, except that =-—-= ia replaced by (-— + ---) .
Vo' Yo Mg
The detemminztion of the transformation through the cratical point is

therefore exactly similar to the work of Tollmien and Meksyn. Hence

1 (13

WO L A

(-—— + --——) ¢, log (- z) for y < R(Yo)

]
W, R
transforma into

wh ic@

(.... + ---) #, flog z + xi] for y > R{yy) - eee(3:8)
w{‘) Ruré

L. Conditions Consequent upon Boundary Conditions

In this sectlion the necessary and sufficient condition that
¢, , an integral of (3.2), should satisfy the boundary conditions for
& wake is egtablished., These boundary conditlons are

$t(0) = 0o 1
? * 000(1}11)

¢ > 0 as y - ca |

-

It is more convenient, however, to have the condation at infinity in an
equivalent form at a finite valus of y and then proceed to the limit.
Taks the width of the wake as ¢, so that for y> o w = 1 and

¢ = Ae™ W, If ¢ and ¢' are continuous at y = o, then
$(c) = 4@
$'c) = -—ade®

and hence Rt B ’

H]

p'{c) + ad(o) 0. eeo(ke2)

(442) will be taken-as the boundary condition at the edge of the wake.
Then there exists an inviscid integral §gy  with eigen-values ag, og,
satisfying ) X

1
r

K

{w = cg)(pg = c:?sqbs); W'y = 0, ero{le3)

and/
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and with boundary conditions

)
5 eoe(loly)
¢i(o) +ag dlo) = 0 I‘

Assume the exdstence of a neaighbourang viscous integral gb‘_ satiafying

3, = 0 eee(Ba5)

1

(w-c Mg - o) - (‘”" * i;)

and with boundary conditions

$!(0) = 0. 1
} cor(aB)
oo + 44, = 0.

Then (§, = ¢g) satisfies the equation

W“
(¢, = ¢s)" = o(p, - ¢a) = ——— (g -¢a) = & eee(be?)
W = Og
where
wh
& = ;.' - dy $ - ¢, o
vo- 05
Substitute for ¢ fram (L.5); then
be, w" i 4
g = : B, + AR G 4 mem mmmmem EAR:)
(w =0, )(w = o) R w=o

Here

8 o .8
4!\(1.1 = U‘:. o'y
. .--(l{..9)
ac, = ©, =2 ]
Define the operator
d.ﬂ W"
L = b aﬂ - mleswmmemes 000(4.10)
d.‘!a W = Cg

Then,/
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Then

L(¢1 - ¢'S) = g
eoa(helt)
L{¢g) = O

I

do Py L{f ~ ds) - (8 - ¢s) L(9’55) da(p, = )" = (f, = $a)ps"

d
= wefpa(f, = 65) = (8, = BI04}
dy

d
= "{¢s ¢f - ¢1¢ég . eeo(li12)

av

Integratang (4.12)

o
r {¢SL(¢1 - ¢s) - (¢i = ¢5)L(¢S)} dy = [¢5Q; - ¢a¢éjg . 0"(4115)

b

Then, using (L), (4.6) and (4e11), (4.13) becones

f"g b &7 = (0g = a) 6 (6) $5(0) BROR

which 18 a necessary condition that ¢, should satisfy the boundary
condations,

It must now be demonstrated that (4.14) 1s also a sufficient

conditien that ¢, should satisfy the boundary conditions. Let
$, = ¢s = Ly then (4.7) beccmes

. w
£ - (“QS A ) r o= g. eee(let5)

But ¢y and say ¢. are two complementary functions of (415). Ilence 1%
follows that ) . .o

Pve ¢ L wgs$
£ o= ¢S[ ——— dy = ¢ [ -—;-S- dy E] a-e(ll-'16)
A Jooa
where
b = oL =3 by . vee(ha17)

Now
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Then from (4.22) and (4.23)

( ) = e D1 e e Tadar + 22 0, )
6+ a8 ). = (P4 + aghy \1+-fg¢dy+ ------ X
1 LRENL oy 8 ste/g L A A 1 o‘J
= 0 by (hek). eool(la2ly)

Hence 1t follows that (L.14) is also a sufficient condition that
$1(c) + o, ¢, () = 0. Then by lelting o => o0 n (L.IL)

’

c2
/ & ("SS dy = Q ™ nol(l-]..25)
o

5. Solution of Boundary Condition Equation

The determination of the eigen-values by solutzon of (L4.25) is
as follows. Substitute in (4.25) the expression (4.8) for g. Then

%) w" ) 20d wod, ¢y
2 L =
Acg_ """""""""""""" = 951 955 dy + Aq-_g, f ¢1 ¢s dy + """[ """"" &y =0

o (70 )(w = og) o k

Now the integrands of the farst and third integral are ainfinite at the
craitical point y = y,, therefore the modificaviong near to tins point
must be considered carefully. Consider an integration aleng the nositive
real axis of y and splat up the range of uintegration i1nto three parss,
80 that

¢1 ¢S d{Y = + -o-(SeZ)
o Riyo)=K  R{yo)+K

f o) w /‘ R(Yo)‘” /’ R(yo)*L  fes

(w = ¢, Jw - eg)

The first and thard of these inlegrals are regular, and so can be
evaluatsd, In the second integral moke the approximations

w'(y) = w'(y,) = wy -]

w—-csr-ci-c.szmi !
Lo eee(523)

weo, = Wiy =¥, ’

fts = (f96)0 |

Then,/
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Then
.R(yo)+K wh b Gy = wg (¢1¢s)o./'R(yo)+K dy
R(y,)-K (w = cg)(w = e, ) e wd Ao, R(yo)-K-y Yo
we (¢ #g) R(yo)+K
= 2 2222 [10gly - yo)leong .
wh Ao, ©
-00(50)4-)

Then, using the transformation (3.8) of the logarathmic torms, (5.4)

become s approximately

(]

Ry +K) 4

n
w

(8,85)0

Q

(7o) -K (w = cg)(w -

J

R

Q

¢, bs A

= — -

1!
'rO

eee(545)

i m .

Ac,

L)

Similarly the other 'singular! integral of (5.1) may be dealt with, and

80 {5.1) becomes

Wi a 7
- %i(8, 5o = ~== (4, 85) + A
we Rw}
" fR =X
+ Ac, {f (yO)
o
Lo f [R(-Vo)'K
R |

Equation (5.6) cannot be solved as it stands,

obtaincd by taking ¢,

bar_

Adc, and 1/R. Hence 1f Yo
o, w(yg)

or &yg

o3
[ 4.6s a5
5
Fo !t
+ b, b dy}
JR(YO)‘*K (w = o ) (w = cg)
0 b, B

-

+f eos(546)

R(yo)+K ¥ = %4

An approximate solution is

end hy linearasing in the small quantaitics

Vg + 8yg, then

]

w(yg + 8yg)
w(yg) + 8y, W)

og + 8yg wi

vs0(5:7)

Also/
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LHCy
4lso Wy = W' (yg + 8yg) & == wi!
W‘
s 5 N CR:)
and 'Wé = W' (yS + 5ys) . Wé
et
Then (5.6) reduces to
Wit g Ac? ca
Aoy Pl - et ";l""' / #3 dy
Vs Ry (68)s %
io®
*4o B +-—F =0 eee(5:9)
R
where
-
1 yooK W 0 w" .
= =“;“ff -------- ; ¢w+f -------- ;¢:,ay'\,
(¢S)S LIO (v = cq) . Ygth (w = cg)

il

(¢8)s

o]

But for neutral disturbances

Q
]

_se b,

Substitute fram (5,11) into
to zeroc, - SR

wi't 27;0,1: *oaf

)
B8 e R
- —— e = aewe Acr
13 .. "Rwl
Ws ) R'T:_":»_,‘Ee RE{S .
23‘3‘1‘,:
L
,;-;-;:;,@c
A

1 [1Ys "R &% = %
S .

Lk E RS oo o we
o R R

& (5.10)

o + 2iq, /R

i

op + 2iq, /R

eea(5411)

I |}

oy + 2io, /R .
(5.9), and equate real and imaginary perts

-

1 o0
E1+A0.:E;;Tf ¢gdy=0
s/s

(¢] |

Loy ae(5412)

AT — | T

20 B, iy - '
13 "agﬁ?‘hgﬂ Ao, g™ — .
- Sptieda = 0
I‘.: “.'z e M

1t

—

Using w and ¢ as defined in Seotion 2 the various terms have been
evaluated by numerical integration for the wake formed by a flat plate.
Then solving (5.12) for Aoy and Ac,

be,./



-18 -

a, ai
Ao, = 1,901 == = 0.04486 ~-
R R :
} ) vee(5a13)
o A
a Aag = = 160.1 ~= + L4235 == |
R R |

J

Here M"a" is as defined in (2.2), If, instead of expressing R in

terms of &, Ry = ===, 1t is expressed in temms of the length 1 of
v
Ul
the plate, R = --- , then the equations (5.13) can easaily be writien
v
as

-1 3 % &
e"Z - e™l¥0 = 1,270 -% ~ 0.0299 % cee(5a14)
RZ RZ
1 1
o, @
AR = - 107.0 — + 2.95 = e+(5415)
RE Rz
1 1
(5415) is the eguation of the (a, R) ourve, and may be written as
1Q7.0 Q - 2.95 CL
Rl = —— k " ..o(5016)
a2 - 16 J

1

The (e, R;) curve (Fag. 1) gives no indication of a
mnimum oritical Reynolds nuetber below whioh all dasturbances are
stable, probably because the method of solving the boundary condation
equation 1s not valid for small walues of R;. The curve is dotted

below R; = 600, the critical Reynolds number obtained experimentally
by Hollingdale.

Thus the perturbation method leads to a sunple deter.unation
of the (a, R) ourve, valid for large values of R.
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