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General Summary.—The subject of this report is the steady two-dimensional flow of a boundary layer overa permeable
surface through which the fluid is withdrawn at a known rate of suction. This rate of suction is assumed, in accordance
with the hypotheses of the boundary layer, to be small compared with the stream velocity, and of order R2
where R is the Reynolds number. It is supposed here that the suction is relatively large, though still of the same
order, and in these circumstances the three following conditions hold approximately.

(i) The boundary-layer thickness is inversely proportional to the velocity of suction.

(i) The velocity distribution within the boundary layer is the "asymptotic suction profile”
u Ty
ez ] e P

where U is the velocity outside the boundary layer and v, is the suction velocity.
(iif) The skin friction is equal to P Uy, where p is the density of the fluid.

These give the initial approximation to the behaviour of the boundary layer. Using a method of successive approxi=
mation we can then find a series in inverse powers of v, which formally satisfies the boundary layer equations and
represents the solution either exactly or asymptotically for large values of v,. In the terms of this series the effects
of varying stream velocity or suction velocity appear.

Part I deals with the similar solutions of the boundary-layer equations, Part 11 with an arbitrary pressure distribution
but constant suction velocity, and Part ITI with the general problem. Thus the results of Parts I and IT can be obtained
from Part III, but they are of interest in themselves. Attempts are made in both Parts I and IT to find when separation
occurs, but only rough estimates can be made as the series do not converge well. In Part II the theory is applied
to the flow over a porous circular cylinder in a uniform stream, and also to the use of suction round the nose of an

aerofoil to prevent stalling at high incidence.

The only previous work on this approach appears to be a report by Pretsch?, which according to Mangler? contains
a study of the similar profiles on the same lines as Part I. The report by Pretsch has not been examined, and it is
therefore-not known if his results agree with those given here. A special case of Part I is in course of publication®.
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Part I. The Theory of Similar Velocity Distributions.

Summary.—Generalising an earlier report?, we here consider the similar solutions of the boundary-layer equations.
These are found when the external velocity is of the form U = cx and the suction velocity of the form v, == kxitm-1),
in these circumstances the equation of motion can be reduced to an ordinary non-linear equation whose boundary
conditions determine the magnitude of the suction velocity. This non-linear equation was given origindlly by Falkner
and Skan? for v, = 0, and numerical solutions were obtained with the aid of a differential analyser by Hartree5, after
a simple transformation. We take the equation in Hartree’s form and by the method of R. & M. 22983, expand the
solution in an asymptotic series for large suction quantities. The first approximation to the solution gives the velocity
distribution within the boundary layer as that discovered by Griffith and Meredith® and three more terms of the series
have been found. The series for the skin friction, the displacement and momentum thicknesses, and their ratio H are
obtained from the velocity distribution. Numerical results are given in the tables and graphs for various amounts
of suction.

1. Introduction.—The solution of the boundary layer equations without suction when U = ¢cx™
was first given by Falkner and Skan* who reduced the equation of motion to an ordinary third-
order non-linear equation. The velocity distributions at different sections of the boundary
layer are similar, and it was shown by Goldstein’ that except for U == ae™ this is the only such
solution.

These results can be extended to give solutions which involve boundary layer suction through
a permeable surface. This fact is pointed out briefly by Preston® and more fully by Goldstein®
while Thwaites'® has made a more detailed examination of the conditions for similar solutions
with suction. The earliest investigations of these similar solutions were by Mangler'* and
Hoistein'?, referred to by Mangler® in the A.V.A. Monoglaph on boundary layers. Schlichting
and Bussmann'? considered the particular case m = 0, the flat plate with suction proportional
to x'* which was also investigated by Thwaites™.

The equation of motion of the boundary layer is, in the usual notation,

Gy _,% :
" —|»vay = U ) .. . .. .. .. . (1)
and 1 and o are derived from the stream functlon by the equations
o A
Y == ==
By
r (2)
o
V=
When the external velocity distribution is
U == cx . . .. .. .. .. (3)
the partial differential equation (1) is reduced to an ordinary equation by the substitutions
P o= (cv)1/2 glmtD2 fln) = (va)”'zf(n), .. - .. - (4)
U\N'"®
N T A O
Then
w = Uf'(n), . .. .. . . .. (6)
17U» N ,
V== g ";“) [(m + 1).f(’7)+(m — ) nf (’7)], . .- (7)
and equation (1) becomes
mf’® — gm + V) ff'=m 4 f .. ‘e . ‘o . . (8)
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The boundary conditions are obtained by considering # and from equation (6) we have

0) =0
fff(gogzl. O 1)
Also ”
o(x, 0) = — 3(m + 1f(0) (=) .. ..o

so that f{0) determines the magnitude of the suction velocity.

Hartree® made the transformation
1j2

m 4+ 1
F="F% . o
m 4 1\
v=("5) n &
and studied equation (8) in the form
F'"" 4+ FF" + 8(1 — F'*) =0, . .. .- . .. .. {(13)
‘ 2
where ﬁ:—,—n{—%. O 1)
The boundary conditions for equation (13) are
F'(0)=0 '
F[(w)_:l .. .. .. .. .. . (].5)
and if
A F0)=K .. .. .. .. .. . .. (16)
we have :
m - 1\¥2y U 12 .
v(x,O)z-——v(,:—-K( _*2. ) (;) , . .. .. (17)

where v, is the suction velocity.

If ¢ is negative, or m < —1, the analysis must be modified in order.to make the square roots
real, and we find in place of equation (13) the equation

—F"" + FF" + g(1—F"* =0 .. o . .. . . . (18)
with boundary conditions given by equation (15), and we take
F(0) = —K .. . (19)

in order that positive values of K shall give suction. Whenboth¢ < 0,m < — 1 wehave equations
(13) and (16) again. Equation (18) cannot have a solution which satisfies the boundary condition
at_infinity unless # << 0. These further solutions are due to Mangler'!. The two cases m = —1
can be discussed better directly and will not be considered here, though the asymptotic method
can be applied to them. They correspond formally to § = 4 o in equation (13).

It may be observed that when m = 1, § = 1 and v, is constant. This case represents the
flow near the stagnation point of a blunt nosed body and also is a solution of the full viscous
equations when the bounding surface is a plane wall.

As was pointed out above, the velocity distributions in the boundary layer are similar at
different sections also when

U = ae®. 1)

"P:< ng )1/2F(Y) L L 3 (21>
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where

Uk \"
Y._<2v y, S 051
we find
w = UF'(Y) |
O

v = —(FUR)[F(Y)—YF'(Y)] )
so that the equation of motion becomes
F'" + FF" +2(1 — F* =0, .. .. .. . . .. o (24)
which is equation (13) with § = 2. The boundary conditions are those of equations (15) and
(16) with .
v, = K(3Ukv)"2. .. . . .. . (25)
Hence the results which will be obtained for § = 2 can be interpreted to this case. If « or
were negative, we should similarly find equation (18) with g = 2, an impossible case.

We proceed to investigate the asymptotic behaviour of the solution of Hartree’s equation
when f is fixed and K is large.

2. Transformation of the Equation.—When Y is small, and K is large, F == K and I’ is negligible
compared with 1. Hence equation (13) is approximately

. F'" + KF" 4+8=0 .. . . .. . .. .. (26)
This integrates on multiplying by e*¥ to give

F/I - Ae—KY ____E
K )

where A is a constant of integration. If ¥ = O(1/K) and we suppose that 4 is not small, the
second term may be neglected, and on integration we get

F/ —_ % e-l\'Y _+__ B,
where B is a constant. But since F'(0) = 0, B = A/K and
Fr=B(1 —e*). .. .. . . .. (27)

This rather crude argument suggests that in order to make further progress it will be necessary
to take K'Y instead of Y as the independent variable.

Therefore, make the following transformation, which is designed to get K out of the boundary
conditions and into the equation.

Let

c=KY =28
and
|
7o K - A (2). .. .. .. .. .. 29
F oo Kb 400 (29)
Then we have
F'(Y) = ¢'(¢) (30)

and equation (13) becomes
K?qsul —l"' <K+—IK¢>K¢'/ _+_ ﬂ(l ___d)/z) — O.
i&ﬁ”+¢”+%ﬂ@”+ﬂﬂ~¢ﬂ}:0 ey



The boundary conditions are

$(0) = ¢'(0) =0,
¢I(w) — l. .. . . . .. (32)
When we consider equation (18) we write
F:—K+K—1—¢(c) 33

in place of equation (29) and find
P

This is merely equation (31) with the sign of K® changed. We can, therefore, confine our
attention to equation (31) in the subsequent analysis, and the results for equation (34) will then
follow.

When K is large, equation (31) is approximately

"+ =0, .. . .. .. e .. (35)
the solution of which, with the boundary conditions of equation (32), is
$'=1—e""
. .. . . .. (36)
p=0—1-+4e>" '

F=FW =40

—1—ep(22), . @)

which is the velocity distribution first given by Griffith and Meredith®.

‘This argument can be extended to find the correction terms giving the deviation of the velocity
distribution from the Griffith-Meredith profile or, what is exactly equivalent, to find a develop-
ment of the solution as an asymptotic series in inverse powers of K.

3. Asympiotic Servies for the Solution.—To find an dsymptotic series which satisfies equation
(31) formally we assume that

:¢O+%+%+... .. . o .. (38)

Then by substituting in equation (81) and equating to zero the coefficients of the various
powers of K we obtain the following set of differential equations, which may be solved in turn:—

)" + 4, =0, .. .. .. .. (39
951”’ + ¢1” ‘|" 950‘750“ + ﬁ(l - 9{’0/2) == O, .. v .. .. (40)
452”’ ‘}_ ¢'2” ”[" ¢0¢1H + 9{’1‘?50” - 2/3960,951, = O: .. .. .. .. (41)
djca"' + ¢y Fboby F b by — B(dF + 28,'4,7) =0, .. . . - (42)
etc. :
The boundary conditions are
$0(0) = 4,'(0) =0, 1
; (43)
‘1-60'(00) = 1; _J
and forr > 1
$,(0) == ¢,'(0) = ¢,/(0) = 0. .. .. .. .. .. .. .o (44)



The solution of (39) is

¢, = e 3
g =1 —e" l
?50:@—1‘*“3*: J

Now ¢’ is shown by equation (40) to be a linear function of g. In fact, if

b = zc(gm+ )
the equations for ¢,, and ¢,, are
bro” + b1+ dduby” =0,
$u"" Fdn” + 41— 8% = 0.
Equation (47) is
P+ d1 et 0 — 1 et =0,
which integrates on multiplying by ef to give

b0 = — (20% — 4L + A, )e" + de~%
and :
4’10, = Bm + (2‘:2 ‘+‘ Alo)e—: — 2e~%

where 4,, and B, are constants of integration.

The boundary conditions give us B,, = 0 and 4,, = 2. Therefore, we have

b = —(2* — 4 + 2)e " + 4o~ %, }
$1o = (20* + 2)e™F — 2%,
Integrating again, ‘
bro = Cpp — (20° + 4¢ + 6)3‘ + e *
and since ¢,,(0) = 0, C,, = 5. Thus
$ro= 5 — (2‘:2 + 4¢ 6)€~: + e7%,

Similarly equation (48) is
‘1511/” + ‘%”11” + 8e™" —4de " =0
and we obtain on integration
by = — (8 — 10)e~" — 4e~* |
b = (SC — 2)e7t + 2e™* L
by = 7 — (85 -+ 6)6’{ — e~ %,

We see from equation (41) that ¢, is quadratic in g, and on writing
by = %‘(‘7520 I Bbay + /3')2‘1522),

we obtain differential equations for ¢,,, é,,, ¢,, Which give

§b20’ - ( + 60— 2 -+ 184 )e..

+(4:2+sc+00) S femn .
b, == — (8% 4 6% 4+ 26¢ + 3) ~(42* — 8)e ¥ & 3e=¥,
boo = — (162% 4 240 — 174)e- (165 + 18)e~% - fe= %,

¢, is cubic in g, and by putting

by = Tlé (‘f’so + Bés + ﬂng” + ﬁ%as) |
6

(50)

(53)

(34)



we find from equation (42) that

$oo = (B° -+ 5L 4+ B4C° 4 5430% — 213 + 2535)e™ )
— (42" 4 1683 + 720 + 1560 + 2823)e~*
+ (5¢* + 1332 + 809e~* — 15~ %,

bo = (405 4+ T¢* 4 523C° 4 1112% 4 2033 + 2558)e "
+ (42 — 167® — 480 — 216 — 235%)e ™
— (92* 4 47 4 285)e~* + Bfe~ %, ! (55)

.. = (160% + 56¢° + 1588¢* + 879% — 159Z)e* .

C 4 (320°  480% + 1167 + 1903)e*

1 (427 — 254 — 28L)e % — 2%,

b = (2132° + 112¢° + 1543 — 1815)e~*
1 (64% - 1927 4 1593 )™ -
+ (16¢ + 21%)e=* 4 fe~*. J

* An alternative derivation of the asymptotic series is to expand F in powers of § as
F=F0+.13F1—1—ﬁ2}72‘+ ..... .. .. .. {56)

to obtain the equations giving the functions F, from equation (13) as
FOIII + Fo FOIII — O,
" 4 FF, 4+ F/F, 41— F* =0,

1

L

F,"" + F.F, +F,/'F, + F.F" — 2F/F, = 0. |
etc.

(57)

and then to investigate the asymptotic behaviour of the functions F, by means of equations (57).

The functions é,,, $s0 - - - - which alone are involved when 8 = 0 are identical with those
referred to as é,, ¢,, ... in R. & M. 2298°%, and the series for § = 0 is the same as that given
there, if allowance is made for the different definitions of ¢(¢) and K.

4. Properties of the Boundary Layer.—We are now in a position to obtain series for the skin
friction, the displacement and momentum thicknesses of the boundary layer, and the form
parameter H. We have for the skin friction

v, vy e (BWU)y v 5
U U 8y>y;0 =7 a(voy/v))y:,, g ¢ O (58)
The skin friction is therefore roughly proportional to the suction velocity, and
Ty gt
T =40
14 $10”(0) + B4, (0) 4 B30 (0) + B (0) + 85" (0) +
- 4K° 8K* e
2 4 68 63 - 248 + 214p° | 61§ 4 25558 -+ 34436° | 15757 _

=l e s T ek O 9)

The displacement thickness is
*=[(-5)¥

= [(1- #(2)) e >
7



and so

=1 RE ORE e
L _3ET8 395+ 876 4 51
- 4K* 8K*
52412 1 1 ’
3 18 + 45010816 1}‘6}1{?;93 ﬂ +’ 477108:3 + O(K" ) . . (60)
Similarly the momentum thickness is given by
'1)06 . " ’ ’
e O G
L 34+ 338 n 3034 5748 + 274
2 4K* 8K*
31 94 2 44903
4335 -+ 108653536 I;;}Flsﬂﬁ + 2635558° .—{— O(K~™Y) . .. .. (8l)
These three quantities are connected by the momentum equation
o " al o
U = (5 +20) 5 0, + a;v) (62)

and by using this we obtain a check on the work, and an additional term in the series for ¢” (0)
In fact

T +1+3/3__33—i—12ﬁ+1013
pUv, 2K* 4K*
n 305 + 127338 + 16729/3 + 78:4°
8K
4335 + 204558 + 5453{&}?8 + 2573554 -+ 741548* + O(K-1) (63)
By taking the quotient of the series (60) and (61) we find that
AN 13 +38 155 + 2036 4 238°
H=y =2+ "gg ik
Q0137 3074 _ QY1033
-+ 239555 + 49004058_[?6288 ﬁ + '3054018 - O(K—s) L L. (64)

5. Specal Cases . p = J- 1.—-When § =1, we have m = 1 and the external velocity distri-
bution is U == c¢x, which is appropriate to the flow ne’Lr the stagnation point of a blunt nosed

body. The functions ¢, simplify and the terms in e~ " V= cancel. We have
75() = l — € :} ]
2, = (S + 4)e ,
4, == — (30 + 40° + 1457 4 24¢ + 2)e" + 267 %, . .. (65)
8¢, = (3° —|— 20° + 14¢* + 6630° + 2182 - 358; 4 83%)e~+*

— (4% + 3% -+ Bd)e~ 4 le®,
8



Also

ﬁ%;=u+§%-Kf+£%—-%§§+OMH%.. (66)
by g e
sz+%§:§,+§§§+m ) (69

All of these results can be obtained by a different manner of attack, which will be expounded
in Part II.

Another interesting case is that of § = —1, which corresponds to m = —}. The original
equation (13) can then be integrated immediately twice to give
2F + F* = Y2—|—2CY—|—D‘ .. .. .. (70)

and this equation has been integrated by Thwaites in terms of the error function, giving the
exact values of the skin friction and displacement thickness. This case was first noticed by Mills*®,
who considered ¢ < 0 in equation (3), corresponding to equation (18) in place of equation (13).

Forpg = — 1 -
¢'0’ =1—e" °
%, = (£ — 4 + et — e~ %,
—($8* — 42° 4 8 — 20 — 1)e~ L . (71)
+ (42% — 8¢ + 2)e™* — Fe™ %, T
8, = (M0 —2r% + Tt — Tie? — 5% 4 10)e "
— (4¢* — 18¢® + 20¢* + 8 + 8)e™*
+ (92 — 120 4 2)e~% — 4e~* ]
172
vao_(l K) e e m
& @
A O ¢
v 11
T~‘)+12K2+12K4+288K"+0( -, .. .. .. .. .o (74)
2 193
_2+3K’+9K4+216K6+0( B T .. .. .. .. (75)
6. Numerical Results.—The functions ¢, é,0, .. . ... $4, are tabulated in Table 1, and the

functions ¢,’, ¢,, ¢," are given for p = 41 in Table 2. Table 3 gives the velocity distributions
for K = 2-5 with § = —1 and 0, and for K = 5 and 10 with g = —2, —1, 0, 1, 2. Some of
these velocity distributions are shown in Fig. 1.

we have - Uy \ 2
_ =0 (=) (77)



thus generalising the notation employed by Thwaites'! in the case 7 = 0 to other values of m.
Values of r/pUv,, v6*/r, v,0/» and H have been calculated for o, = 2-5, 5, 10, and for K = 2.5,
5, 10, 20, with a wide range of . They are given in Tables 4 to 7 with the coefficients of the
various powers of K in the series. The results are plotted in Figs. 2 to 5 against g for constant
K and in Figs. 6 to 9 against m tor constant o,.

7. Extrapolation to Separation.—The series obtained do not behave satistactorily when
separation profiles are approached, because of the singularity at separation. This can be seen
readily in the case g —= —1, for which equation (72) shows the behaviour of the skin friction
near K -« 4/2, where it vanishes. To estimate when separation occurs a method of extrapolation
is adopted. Writing

1

7= (78)

the skin friction, given by equation (83), is of the form
J&) =a, +ayz +aL® + ..., .. .. . (79)
and for g - —1 the coefficients a,, a,, . . . are negative. If we cut off the series tor f(z) after the

term in 2" we have a polynomial in z which has one positive zero, z, say. This will be an approxi-
mation to the true zero of f(z), and owing to the singularity it is found that z, can be extrapolated
to n = « either graphically by plotting against 1/# or numerically by assuming for z, a poly-
nomial form in 1/z. This method should give the desired value of z with comparatively little
error, and works well for g == -1 when it can be checked against the exact result. Values
of K and o, calculated in this way are given in Table 8, and are shown in Iigs. 10, 11. They
have been compared with results produced by another method, described in Part II, and agree
well.

8. Convergence of the Servies.—The whole of the argument has been purely formal, and it is
not known whether the series (38) is in fact convergent. If the three differentiations required
to substitute in the equation (31) are permissible, then equation (38) will be the exact solution,
but if not it can only represent the solution asymptotically as K—ow. It was observed that
equation (18) cannot have a solution for g > 0, and hence equation (34) cannot. But the series
solution of equation (34) is obtained from equdtlon (38) by changing the sign of K*, so that
Lqudtlon (38) cannot be convergent if g >>0. It is plausible that the series is convergent if
p <0, for sufficiently large values of K, and that the smallest value of K for which it converges
gives the separation profile.

TABLE 1

- ”'. - E a Nl - :V“m» : ) . ’ ' ‘ ' I3 ’ ’ ’

A ‘ by | $10 | b1 P | s bq b3 b33

0 L0 o o T I \ o 1o | o 0 1 0
0-125 (1175031 0-23497 ‘U 67510 —0- 78342 P 2 82013 e 2-50830 ‘ 7181 + 30:068 | 40-446 @ 18-499
0-25 10-2211992 0-44189 ' 1-21306 '—1-47568  — 5-30948  — 4-71283 1 13-521  56:606 | 76-129 @ 34-812
0-375 0-3127107 | 0 62315 - 163202 '--2-08928 | — 7-50744 | — 6-64392 19-123 80-034 1107-583 | 49-168
05 10:3934693 | () 78057 ‘ 1-94882  — 2-83580 9-44779 -~ 8-31790 |24-082 :100-725 | 135-271 - 61-752
0-75 5276334 ‘ 102989 2-33573 |-—3-56744 — 12 66379 | —10-95439 |32-391 1135-170 | 180-892 = 82-201

!1)-63212()6 1-20085 \2-47795 ~4 33610

—15-12811 | —12-73571 {39-003 | 162:115 |215-595 | 97-140

1

1-25 107134952 | ( 1:30417 2-45621 ‘-—4 98540 = —16-95517 | —13-77810 144-347 | 183-215 | 241-342 1107-330
1-5 [0-7768698 | 1:35077  2-33088 | --5:54043 |--18-22555 — 14-20408 | 48750 | 199-701 |259-621 | 113-427
2 0-8646647 ! 1-31672 ‘ 1-03133 !——6 40494 | —19-34551 | —13-69420 | 55-654 | 222-135 278-125 | 115-749
2-5 0-9179150 ' 1-17676 | 1-49101 | —6-94206 ‘—- 18-05262 | —12-08885 |60-951 |233-782 |277-937 | 108-667
3 0-9502129 :0-99078 |1:10027 ' 7-13720 : —17-50465 | —10-04984 |65-129 |236-708 |264-205 | 96:167
4 0-9816844 | 0 62206 | 0-55014 J‘ 659744 ' —13-10637 | — 615647 |69-951 |221-056 |213-221 | 66-483

|

t
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TABLE 2

B=1 = —1
C Sbll ! ¢2, (ISS, (ﬁl’ (£2, ¢3l
0 0 0 0 0 0 0
0-125 0-22752 —0-76373 6-012 —0-11003 —0-05870 —0-05875
0-25 0-41374 —1-43725 11:317 —0-19279 —0-10988 —0-11054
0-375 0-56379 —2-03008 15-994 —0-25222 —0-15322 —0-15594
05 0-68235 —2-55019 20-114 —0-20206 —0-18824 -—0-19522
0-75 0-84141 —3-39820 26-916 P —0-32646 —0-23226 — 025548
1 0-91970 —4-02499 32-116 —0-31928 024206 | —0-29110
125 0-94010 —4-46483 36-015 —0-28801 —0-22604 | —0-30352
15 092041 —4-74626 38-844 —0-24503 —0:18987 | —0-29724
2 0-81201 —4-93058 41-979 —0-15365 —0-09420 | —0-25658
2:5 0-66694 — 474794 42-584 —0-07856 —0-00979 - 022259
3 0-52276 —4-33646 41-388 —0-02737 +0-03970 --0-22132
4 0-29305 —3-23254 35-670 +0-01798 | 0:04406 —0-27297
TABLE 3
Velocity Distributions in the Boundary Layer
Values of #/U for various §, K and ¢
|
f=—2 g =—1 p= | f=1 B=2
& =5 K=10 [K=25| K=5 |K=10|K lK 5 :-IOJK::B K =10 K::SjK:lO
0 0 0 0 0 0 | 1 0 0 0 0 0
0-125 | 0-105 | 0-11465 | 0-098 | 0-11300 [0-11640 | O- 124 0- 120 011808 © 0-125 | 0-11971 | 01831 = 0-1213
0:25 0-199 | 021611 | 0-187 | 0-21330 |0-21926 | 0-237 { 0-225 022229 | 0-236 | 0-22520 | 0-245 0-2280
0-375 | 0-283 ° 0-30593 0-268 | 0-30237 |0-31017 | 0-335 | 0-319 | 0-31424 ‘ 0-333 | 031816 | 0-345 0-3219
05 0-358  0-38546 ' 0-341 | 0-38147 {0-39053 | 0-421 , 0-401 | 0-39539 | 0-418 = 0-40006 | 0-432 = 0-4045
075 0-486 | 0-51824 & 0468 | 0-51419 |0-52435 | 0-563 | 0-537 ' 0-533017 0-357 | 0-53573 | 0-574 0-5411
1 0-589 | 0-62241 | 0-574 | 0-61894 (0-62890 ' 0-674 ! .0-643 0-63507 ' 0-664 | 064095 | 0-682 | 0-6466
125 0-671 | 0-70413 | 0-660 | 0-70159 |0-71059 ; 0-757 | 0-726 0-71670 0-746 | 072249 | 0-762 | 0-7280
1-5 0-738 | 0-76825 | 0732 | 0-76675 |0-77440 | 0-820 | 0-789 0-78018 , 0-808 | 0-78564 | 0-823 | 0-7908
2 0-834 | 0-85801 | 0-837 | 0-85835 |0-86312 | 0905 | 0-877 & 0-86788 0-892 | 0-87233 | 0-903 | 0-8765
2-5 0-896 | 091817 | 0904 | 091474 |0-91713 | 0:952 | 0:928 ' (-92077 0-939 | 092415 | 0-947 09273
3 0935 | 094703 | 0-946 = 0:94917 10-94994 | 0-977 | 0959 . 0-95260 | 0-966 - 095505 | 0-972 l 0-9573
4 0976 | 0-98042 | 0985 ' 0-98246 |0-08187 | 0-995 | 0987 | 0-98316 | 0:990 | 0-98433 | 0993 ' 0-9854
TABLE 4
| Coefficients of To/PUvg
& A R — RJ
B m K- K-4 K-8 K-8 szz-s’ K=5|K=10|K =20|01=25| oy=5 |gy=10
—18 | —0-9 —26-5 —810-833 | —50702-1 —38994780 I 09277 09433 |0-98654
—10 |—0-833 | —14-5 —237-5 —7845 . —322953 0-96213 094870 | 0-98774
—6 —0-75 —8-5 —78-8333] —1443-14 ' --32354-5 ’ 0905 097823 | 0.78 095531 |0-98925
—4 —0-667 | —55 —31-5 —345.708 | —4540-51 0-89 0:94146 . 098605 | 0-822 096182 | 0-98074
—3 —06 —4 » —15-8333] —116-222 ' —977-725 10-804 0-95829 | 0-98990 | 0-850 096692 | 0-99194
—2 —05 ' —25 —55 -—20-833 . —89-674 0-8896 | 0-97443 | 0-99372 | 0-8896 | 0-97443 | 0-99372
—1-5 | ~0429 ' —1.75 —2:3333 -—4-975 ¢ —12-810 {0-63 0-92591 | 098226 | 0-99561 | 0-91459 | 0-97999 | 0-99498
—1-25 | —0385 | —1:375 —1.25 —1-776 —3:585 {0738  0-94288 | 098612 | 0-99655 | 0-92904 | 0-98288 | 0-99576
—1 —0:333 | —1 —0:5 —0-5 —0-625 [ 0-8247  0-95917 | 098995 | 0-99750 | 0-94516 | 0-98657 | 0-99666
~075 | —0273 | —0-625 —0-0833 —0-225 +0-546 10-8973 | 0-97485 | 099374 |0-99844 :0,96331 ;0-99089 | 099773
—05 | —02 —0-25 0 —0-029 -+0-056 | 0-9599 10~99000 0-99750 | 0-99937 - 0-08399 | 0-99600 | 0-99900
—0:25 | —0-111 +0-125 —0-25 +1:012 i —6-307 {1-014 | 1-00465 | 1-00123 | 1-00031 |1-00783 | 1-00215 | 1-00055
0 0 0-5 —0-8333 3:819 —27-106 {1-:06 11-0188 1-00492 [1-00124 |1-0355 |1-00969 |1-00248
+0:25 ! 4-0-143 0-875 —1-75 9:316 } ~-75-24 11-0326 | 1-00858 |1:00218 | 1-068 1-01918 | 1-00494
05 0-333 1-25 —3 18:424 —167-97 11-0460 [1-01221 }1-00311 1-03147 | 1-00821
075| 06 1-625 —4-5833 32087 | —326-87 11-0589 :1-01582 | 1-00403 '1-0480 1-01272
1 1 2 —65 | 51167 | —577:90 ‘ 1-0714 | 1-01940 |1-00496 1-071 1-01940
1-25 1-667 2-375 —875 | 76-645 -—951-33 1-084 1-02294 | 1-00588 - 1-11 1-03026
1-5 3 276 —11-3333 109-426 l —1481-80 ‘ 1-095 1-02646 | 1-00680 1.0511
2 © 35 | ——1775 200-583 —3174.06 1 1-117 1-03342 | 1-00864
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‘: 1 Coefficients of V0¥ v
i
1 l |
B ‘ " K- K- K-%  K=25 K=5|K =10 K = 20|0,=2'5 ¢, =5 | oy=10
SR ‘
~18 —09 | 3025 |187924 147502 ' 1-000 1069 | 1-01661
—10 —0-833 | 16-25 | 535125 | 220217 1044 1-061 ' 1-01394
— 6 075 925 | 1697361 | 3825-24 1114 1:02425 [ 1-29 1051  {1-01184
— 4 —0-667 | 575 ° 637083 | 847-379 14 |1:065 101479 | 1-22 |1-0415 |1-00976
— 3 —06 | 4 29-8611 261-583 123 |1-043 | 1:01019 [1-17 |1-0343 |1-00812
— 2 —05 225 87917 39-042 1-107 | 10234 | 1-00568 ' 1-107 |1-0234 | 100568
— 15 —0-420 1375 | 30486 8013 [1:33 | 1060 | 1-01406 | 1-00346 | 1:070 | 1-01612 |1-00395
1-25 —~0385 09375  1-375 2764 |1:20 11-040 | 1-00952 |1-00235 |1-050 | 1-01175 | 1-00290
— 1 —0:333 05 0-5 10625 | 1:095 | 1:021 | 1-00505 | 1-00125 | 1-028 |1-00676 | 1-00167
— 075 ~0-273 " +0-0625  0-4236 | —1-201 |1-016 11003 | 1-00067 |1-00016 |1-005 | 1.00100 = 1-00023
— 05 02 0375 11458 | 5514 095 [0-987 |0-99636 |0:99907 |0-979 |0-99427 | 0-99852
— 025 0111 —0-8125 26667 | --15-112 10-88 |0-971 [0-99213 099799 |0-952 |0-98648 | 0-99644
0 0 —125 10861 | —32795 0-8 | 0956 |0-98797 0-99691 |0-915 |0-9767 | 099387
- 025 +0-143 | —1-6875) 81042 | —61-361 0942 (0984  '0-99583 0-87 0-9649 |0-99063
0-5 0-333 1 —2:125 | 12:0208 | --103-609 0-93 |0:980  0-99476 ' 0-950  |0-98634
0-75 06 —2:5625 167361 | —162:338 092 10976 | 099370 0930 | 0-9804
1 1 —3 22:25 | —240-347 | 090 0972 |0-99264 | 1090 09720
1-25 1667 ' —3-4375| 28:5625 | —340-435 ‘ 10-89 10968 | 099158 - 085 10-9589
1-5 3 |—3875| 356736 | —465-400 | 10-88 0964 | 099053 0-933
2 ‘ @ \~4-75 52:2917 | —801-160 } ;0~85 0-957 |0-98844
| |
TABLE 6
Coefficients of vy
| | |
8 m K2 K1 K5 |K=25 K=5 | K= 10| K =20 l6,=25 5,5 | g,=10
s | i
—18 09 | 1566667 |992:694 | 788084 | | 0-547 [0-536 | 0-50809
—10 0833 | 833333 |277-083 | 11415 3 10-523 0-531  |0-50715
— 8 —-075 | 466667 | 849444 ' 1880-62 0-557 051223 1064 0-526 1050597
— 4 —0667 283333 | 30-2917 . 383667 0-3318  0-50728 | 0-605 | 0-5204 | 0-50481
— 3 —06 191667 133194 | 106-488 061  '0-5206  0-50488 | 0-579 | 0-5163  0-50389
— 2 —0-5 1 325  11-590 (0:546 0-51034 0-50252  0-546 |0-5103 | 0-50252
— 15 —0429 | 0-54167 | 0-8038 1580 10614 | 05231 | 0-50550 | 0-50136 | 0-5266/ 0-50630 | 0-50155
— 125 -0385 | 03125 | 02279 0-523 |0-558 10-5129 |0-50315 | 0-50078 |0-5160!0-50388 |0-50096
— 1 0333 | --0-08333 © 0-0833  --0-0382 0-5156 0-5035 '0-50084 0-50021 |0-5047/0-50113  0-50028
— 075 0273 —-0-14583 | 0-3702 | 1421 0-480 |0-4947 - 0-49858 |0-49964 ' -4925 (49796 ' 0-49947
— 05 =02 —03875 10885 --5401 045 0-4864 049635 '0-49907 -0-479 |0-49426 |0-49852
— 025|011 060417 | 22383 13447 041 0479 049417 0-49850 0-464 (-48989 |0-49736
0 0 083333 | 38194 | —27-106 0471049202 | 0-49794 '0-445 | 0-4847 10-49593
4 025 40143 | —10625 | 5-8320 47922 10464 0-48991 |0-49738 0-42 |0-4782 | 0-49411
05 | 0333 |—129167 82760 | —77-442 10-457 | 0-4878  0-49682 0-470  |0-49173
0-75 0-6 | —152083 11-1515 -—117-212 10450 ' 0-4858  0-49627 0459 |0-48849
1 \ 1 —175 | 14-4583 | —168-778 }0-443 104838 |0-49571 0443 04838
125 | 1667 |—197917 | 17-8286 | —233-685 1044 04818 | 049516 | 0-41 0-4762
15 3 —2:20833 | 22-3663 | —313-480 0-43 . 0-4799 | 0-49461 0-462
2 \ w | 266667 | 32 ‘-.523-915 10-41 io-476 0-49353




TABLE 7

[ Coefficients ‘of _ H
! . . ' !

B ’ m ] K-? K-t K% |K=25K =35 ‘ K=10|K =20 01:2-5; 0 =5 |0,=10
—18 —09 ’—— 2-16667 |—144-417 \ —11402-7 ’ 1-99350 1-995 1-99888
—10 —0-833 | —0-83333 | —24-1944 | —752-115 ' 1-988 199775 1-59692 - 1-99929
— 6 =075  —0-16667 | +1-25 ‘ +144-662 } 1999 | 199959 ]‘1-998 1-99922 | 1-99979
— 4 —0-667 | +0-16667 5-3056 | 119928 12:023 20023 {2-00045 {2011 [2-00138 :2.00029
— 3 =06 ' 0-33333 51667 | 68-531 124026 2-00392 r 2-00087 |2-018 | 2:00303 | 2-00069
— 2 —0+5 0-5 3-5833 21-306 | 2-027 | 200538 1200127 | 2-027 12:00538 12-00127
— 15 | —0-429 | 0-58333 2:25 6-333 | 2-18 |2-0273 |2:00606 2-00147 ;2:0320 2-00697 ' 200169
- 1:25|—0-385 = 0-625 1-4479 2:244 | 2-147 12:0275 |2-00640 |2:00157 | 2:0346 2-00792 |2-00194
— 1 —0-333 066667 | -+-0-5556 0-8935/2:125 |2:0276 |2-00672 | 2-00167 '2:0373 2-00899 |2-00223
— 075{—0-273 0-70833 | —0-4271 2634 (2113 | 20278 |2-00704 200177 | 2-0403 . 2-01020 | 2-00257

- 05 |—02 | 075 —15 7819 211 ;20281 1200736 | 2:00187 12-:044 |2-01165 |2-00298
- 02510111 0-79167 | —2-6632 | 16:802 | 2:12 |2:0285 '2-00767 |2-:00196 2049 |2-01332  2:00347
0 0 0-83333 | —39167 ' 29938 12:13 1 2:0280 2:00797 | 200206 2056 20153 2-:00407
0-25| +0-143 0-875 — 52604 47-581 120294 . 2-00827 2-00216 2-06 2-0178  2:00483

0-5 0-333 091667 | —6:6944 . 70-083 2-030 12-00856 |2:00225 - 2021 2-00583

0'75i 0-6 0-95833 | —8-21875 97-799 2031 |2-00886 |2-00235 | 1 2-025 2-00719

1 1 1 —9-8333 131-083 2032 12:0091 1200244 ' 2032  2-0091

125|  1-667 1-04167 ' —11-5382 | 170-289 12:034 120094 |2-00253 2-04 20122

-5 38 1-08333 ' —13-3333 | 215769 ! 2-:035 | 20097 200263 206 2018

2 ‘ o] 1-16667 . —17-1944 { 326971 | ‘ 2:04 2:0102 |2-00281 i

| ; [
TABLE 8
Amount of suction for sepavation profiles
B m K 05
—18 —09 10-85 2-427
—10 —0-833 7-815 2-256
—6 — 075 5745 2-031
—4 —0:667 4-392 1-793
- —06 3-563 1-593
—2 —05 2-572 1-286
— 15 —0-429 2-023 1-082
—1-25 —0-385 1767 0-980
—1 —0-333 1-414 0-817
—0-1988 | —0-0904 0 0
0 0 — 0876 —0-619




Part 1I. Flow with Uniform Suction

Summary.—In this part the asymptotic theory is used to study the general two-dimensional houndary-layer flow
over a porous surface through which there is a constant velocity of suction.

After a preliminary transformation (in section 2) we find in section 3 a series for the velocity. From this the series
giving the displacement and momentum thicknesses of the boundary layer and the skin friction are obtained in section 4,
In section 5 an application of the asymptotic theory is made to the general method of expansion in series of powers
of x, and it is found that the functions involved in this method can be expressed as asymptotic series. The case of a
linearly decreasing velocity outside the boundary layer is treated in section 6, with particular reference to the problem
of finding the amount of suction necessary to prevent separation. This has been studied previously by Prandtls,
and by Preston®, using the momentum equation with assumed separation profiles. Tt is shown that it is unlikely
that any suction velocity will suffice to maintain positive skin friction, though this may not imply separation of the
flow. In section 7 the flow past a porous circular cylinder is considered, and section 8 describes how separation calcu-
lations can be made for other velocity distributions. Section 9 shows the effect of suction through a porous leading
edge in preventing separation of the flow over a thin aerofoil at high incidence, the results for an 8:3 per cent thick
symmetrical Joukowski aerofoil being given in Fig. 13. Finally there is a short discussion of some of the singularities
which may. restrict the application of the method.

1. Introduction. -In Part I the boundary-layer flows studied had the property that the
velocity distribution was similar at all sections. Consequently it was sufficient to consider a
single section of the boundary layer and the problems of Part I were therefore effectively
one-dimensional. 'We now pass to strictly two-dimensional problems and shall consider in this
part those in which the suction velocity is constant. After putting the equations of the boundary
layer in non-dimensional form we shall be able to make a transformation analogous to that of
Part 1 and obtain a solution in inverse powers of the suction velocity.

The equation of motion of the boundary layer is

ou ou alu o*u
%ZZ;—{“U—;&}:U%jLV*é-}Tz, (l)
where U is the velocity at the edge of the boundary layer, and
-
oy
(2)
)
ox’
where y is the stream function.  'We assume that the suction velocity v, is large, and then dv/ey ==
- ou/ox is small compared with v, so that to the first approximation v = —v,. The terms
u(oujox) and U(dU/dx) are bounded, whereas v(2u/dy) = —uv,(2u/cy) is large. Hence
v(¢%u/0y?) is also large and equation (1) reduces to
0 0*u ‘
—7)0‘53,:'11'8372. .. . .. .. . .. (3)
The boundary conditions for u are
u= OQaty = 0,
(4)
u="Uaty = o, |
so that equation (3) gives
Z:l——e . R )

Then the displacement thickness is
. "
* o — e
we], (=)

)
14

y
Uy



and the skin friction is

w=u(g),.. }‘ Lo

= PU7)() .

2. The Transformation of the Equation.—Let ¢ be a representative length and U, a representa-
tive velocity, and let R be the Reynolds number.

rR=YC L

v

We now put equation (1) in non-dimensional form by writing

-
f=—, (9)
Ug\'"*
1 =52, (10)
v = (Uuer)'? flE ) .. .. SR .. (11
U= U,F(&), .. . . .. . .o {12)
. , _p .
so that w=="U, b . . . . . o (13)
Up\Y* o
v—-(“ é S ¢ U1
Therefore equation (1) becomes
of &f oY " of |
oy 350n 3¢ F(&F'(&) A iRt - .. . .o (15)

and the boundary conditions are, from equations (4)
~

_f
. (¢,0) =0,

;7 -

For a constant suction velocity v, we must have also

f(g,0) = K&, . e .- . . .o (1)
/2
so that o(E, 0) = — K _({92)1 N
¢
that is % _ epun , o
—(]—0 — . .. . ) .o . .. ( )

To apply the asymptotic method we must first make a preliminary transformatlon taking
as the independent variable

C:Kﬁz%l, O ¢ 1)



and putting

(20)
This gives
o _% 1)
o 24
and equation (15) becomes
% 9% 9’ ¢> , 2 0%
B (kD) ko
or
PR 2 22 ! 2
o’¢ | 9% ¢ op o 0% N c
T art T K( ect 2e AT vkt +FF> =0 (22)
The boundary conditions for ¢ are now independent of K, and are
)
L0 =0,
&
\ 23)
o) r (
a (&, ) = F(¢),
¢ (£,0) =0.
3. The Solution in Asymptotic Series.—-When K is large, equation (22) reduces to
% | 8%
C3 + aul Or (24)
whence
0% -
Pl A&)e
54
,f = B(§) — A(&)e”
s
The boundary conditions (23) indicate that
A(&) = B(§) = F(§)
and so
d¢ ) .
5 = FO1 - e, (25)
Since
% 1 8¢
Gy == e 26
o= R (26)
we have a different derivation of equation (5). Further approximations can be found for large
K by assuming for ¢ a series of the type
D, &,
¢:¢o+fg+f1+--~ (27)

16



By substitution of this series into equation (22) we obtain on equating the coefficients ot suc-
cessive powers of K to zero the following set of equations for the functions @,

v a;q;o %zo @8
aasgura;? _*_a;?;o aggo _ 3;20 g;“;£+pp'=o N )
R ARt
aa*’?s n a;zi“r a;?;, a:;z n a;;l agzl n a;?; 6;20

oD, 62¢>2_ 0P, 82¢1_ 00, 8D,
oc ok or oEOC or oEor
etc.

0 .. .. .. .. (3

The boundary conditions for these functions are that @, must satisfy equation (23), and that
the rest satisfy

0 e -
— g - == . « . “ s P 32
e, 0) = 5 24, 0) = B¢, 0) =0 (32)
The argument given at the beginning of this section shows that
@, = F(£) $(8), .. .. .. .. .. .. (33)
where
q& r? - e.—c .
| qsz,:l_e,;} O )
and since ¢,(0) = 0 we have 5 :
bo=0C—1 e~ .. .. .. .. .. (35)
We can now find @,, @, ... .. in turn from equations (29), (30), etc. On substituting for @,
in (29) we see that
&, = IFF'¢, (&) .. .. .. . .. .. (36)
where
» ¢ ¢ 4 2bpe” — ¢ + D =0. . . . (37)
Inserting the known expressions for ¢,, ¢," and ¢,”, we have ’
: ¢, b)) = —2(0¢ + e~ .. .. .. .. .. (38)

This equation is easily integrated after multiplying by et, and we find
¢ = —(* + 2 + 4,)e7,

and therefore 5
¢ = B, + (£* + 45 + 4 + A )e™"

By the boundary conditions B, == 0 and 4, = — 4 so that
¢, = —(* + 20 — 4)e~"
(39)
¢,/ = (¢* + 4b)e™"
Also J= ) J

¢y = C1 - (CZ + 6: “+ 6)6-::
-and, since ¢,(0) =0, C, = 6.

Therefore b= 6 (24606 .. .. .. .. (40)
17.



When we substitute in equation (80) for &, and @,, we find that ®, must be written as the
sum of two terms, namely

b, = HFF"%, + F*F"¢,,), . . .. .. 41

and that the equations for ¢,, and ¢,, are
Por F b A 2o b Hbub — 2406, ) =0, . > x S (42)
bor’ A ba + 2 by — BB = 0. .. . . .. (43

The solution of these equations gives

$oy’ = — (3¢ - 40° 4 1487 4 24¢ + Z)e o 2e7%, .. o (44)
boy’ = — (° + 6% + e * 4 (26 + e~ .. . .. (45)

Similarly @, is the sum of three terms
G, = HFF%,, | F*F'F ¢, + F*F'"¢,,) .. .. .. .. (46)

where
by = ($0° + 20° + 145" -+ 6658° + 218:* + 358; -+ 833)e - .
— (4¢° 4 320 + 84)e ** -+ le ¥, .. .. .. .. (47)
bay’ = (§¢° + 10¢* + 567* + 2255* + 106¢ + 504)e~*
— (42 4 50z® + 256¢ + 503)e~* — e““-, .. . .. (48)
g5 = (3¢ 4+ 54% - 16* + 100 + 365)e~
— (20* 4 200 + 35)e* — (3¢ + 14 ) - ce e .. (49)
The function ¢,, which occurs in
O, = {5 (FF"%,, + FF*F"¢,, + F°F'"%,, + F°F'F"$,, + F'F'""¢,,) (50)
has also been calculated. Its derivative is
$a = —(3:C% 4+ 307 70 4 54380 + 337300 - 151007 + 48953 4 7805%; - 3260L1)e '+
+ (4% 4 6407 4 464C° 4 18087 + 3280)e * —(¢® + 8¢ + 193)e~* 4 Ze~ " (51)
IFrom equation (25) we see that the velocity distribution is given by the series
Fe¢,"  F7%, + FF'$, 4 F7?, + FF'F"¢,) + F'F'"¢,,

(T —A‘#() + ZKZ + 4K4 o SKG ‘
Flg, +......
+ R SHE N (- )

The functions mentioned in equation (52) are tabulated in Table 9.

It may be noticed that there is a formal resemblance between equation (52) and the corres-
ponding expression in the case of the growth of the boundary layer when the motion is started
from rest. The functions which occur in place of ¢/, 6., ¢,,", . . . .. are much more complicated
and their calculation is correspondingly more difficult. Consequently, the present series has been
taken to higher order terms than was possible in the theory of boundary-layer growth.

4. Properties of the Boundary Layer. - We can now find from the series (52) the corresponding
series for the displacement and momentum thicknesses and for the skin friction.

The skin friction is
ou ; 0%
Ty :/4<——a?>y=0 = pU,v, e (£,0), .. .. - . .. (53)
18



using the relations (13) and (21), so that

T, 0P, 1 2%,
onvo - 862 (E 0)

oD,
+Kz 852 ( ) +K4 acz (S»O) +

____F¢0”(0) _*__‘F'Fd)l ( ) + F ¢21 ( )+FF ¢22 (O)

2K K T
_F 4FF’"  26FF® + 7F°F" 4094 FF"® 4 355F°*F'F" - 278F3F”’ n
=0T e iR + 8K | s
.. .. .. .. (54)
The displacement thickness is defined as _

w=] (=g
and hence

=] (-

, 14 1[ F’Z 21/ 1 2'.
SR PR L L ik S T
| F()  Fy() + FF () _

2K*® 4K*

| _ GF | 8OF" 4 90FF" 19223F" + 1886FFF" + 954FF"
oRE T iR 8K° -

. .. . .. (595)
Similarly the momentum thickness is
U u

e ( &)

so that

F’ Fre 1/ FF!I .2/
Rl g )
19y 7 1yt
e B ET Y

To evaluate this it is necessary to integrate term by term after multiplication, using the ex-
pressions given above for ¢,', ¢,’, etc. The result obtained is

0,0 1 33F I 573F'® + 131FF"  13503F" + 10128FF'F" + 695 F""

Y € VG 8K° e
' .. . .. . (56)

From equations (55) and (56) we find by direct division that

. 6*_ 2F' 39%F'* + 15;FF"
H=%=219g K
n 10483 F"° + 1112{;FZ;"F” + 89LF*F" I - L (57)
8K
By using the momentum equation
Ufi_g-r-_ﬂ((s*_*.g@)@.g_v 4t .. .. (58

dx ax * U
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a check is made on the calculations, and an additional term of the skin friction series is obtained.
Equation (58) may be written in the form

T, F [ dvdN | . (v Vo0 } =
O, TR {’o‘z‘g(} )+ E (P 4 22) - 59)
which, with equations (55) and (56), gives
Ty AP 9P L TEFT 00 4 355FFFY 4 QTSR
pUv, ~ TR 4K 8K*
_ 9246F'* - 16949FF°F"" + 20255 F°F""® - 2774 LF*F'F'"" - 139%F°F""
16K*®
T e e

5. dpplications to the Series Method. - One of the principal methods of solving the boundary-
layer equations in particular cases is that of expansion in a power series in x, starting from the
torward stagnation point. This method was devised originally by Blasius'” and was developed
further by Howarth'®. Each of these authors was only interested in the flow without suction,
but the method was used by Bussmann and Ulrich'® for both suction and blowing in an investiga-
tion of the boundary layer on a circular cylinder in a uniform stream. The method requires
the numerical solution of a system of differential equations, but we shall see that for
large suction velocities this can be replaced by asymptotic series.

We suppose that U can be expanded in a polynomial or power series in x, with origin at the
forward stagnation point, and write :
U = wux 4+ ux® + ugx® + ... . .. .. .. (6])

We assume that the stream function has a similar expansion in powers of x, whase coefficients
are functions of v, namely

ypo=IFx + Fx* - Fox® ..., .. .. .. (62)

and from this we find the corresponding series for  and ». By substituting in the equation
of motion (1) and equating coefficients of the several powers of x a set of differential equations
for the F, are obtained. The functions F, can be expressed in terms of universal functions of
the non-dimensional variable

,7:<’§>y O (<)

I (up)'? f,
F, = 3%1—1(%1")1/2%2./%

by means of the relations

Iy = du " ) V2[00, - 12,%R,] (64)
Fooo 5= uw) ™ [u g, + wwaugh, "Ry |
etc.
The functions f,, f,, g,, . . . satisfy the following equations, given by Howarth,
L= =1 R .. (685)
SIS — 2L fif =1 S )

g — 31" — fig = 1 + "

4][1'}”3’ - 3f1”h3 “flh:s” o ; + Ry — g(f.’,~ '_“ fzf:”>
58 —4"g. — fig" — 1 - g - .. (66)
5f1’h4, ‘“ 4f1”h4 o f1h4” = 1 T“ ]2’4”, - %(sz,ga’ - 3f2”g3 " 2fzg3”>
Sf'R, — Af,"ky — fiR)" = k)" — 2(5fhy — 3f, hy — 210"




with the boundary conditions

W =f =g =h'=g =h/ =~k =...=0aty =0, . . .. (67)
A=Lf = é:gsl = }I»g[ = ...
at g = o (68)
hy =h/ =Fk/=...=0
To obtain flow with uniform suction we have the further boundary conditions
fi=K fi=g=h=g, =h=FkFk=....=0atyp=0 .. .. .. (69

Equation (65) is non-linear, but each of equations (66) is linear. These equations have to
be solved numerically for each value of K, where the suction velocity is :

_ v, = K(up)"* .. ce . .. .. .. (70

If we choose U, and ¢ such that \

U, =uc . .. .. . . .o (71)

we can relate the functions f;, f,, g, 4., etc. to the functions ¢,, ¢,, ¢.,, ¢,,, etc. by substituting

(61) into the formulae of section 3. By comparing the coefficients of the constants w, in the

alternative expressions for # we derive the following set of equations, in which the left hand
side is a function of # and the right hand side of ¢ = K#.

fl,'=¢o’+%}%+%+‘%%+1%};8+... . . . o (72)
3y = b+ oy, Ml E 2l Thol B )

dg, = o' + ;ﬁ{ 4 7@{4}6@; | 1084 + g;sg:' + 660’

52, = ¢, + ;ﬁfz n s’ :}{}%22’ L 186y + 13};;5’ + 2 > (73)
5h — %s{] n 22¢21'4—£416¢22’ L5l £ 3323;' + 1880

Sk, = 4%;4;42(;522' 4 20¢31’8—I+<-610¢32’ L

-

These expansions can be checked by obtaining them directly from the differential equations
(65) and (66). In particular if u, = u, = ... = 0 we have

U=ux .. . .. .. . . .. (74)

and u = Uf," .. .. . - . (75)

which gives us the case m = 1(8 = 1) of the flows U = cx™ which were studied in Part I, and the
series (72) is identical with that given in Part I, where the series was obtained from equation (65).

6. The Linearly Decreasing Velocity Distribution.—A particularly simple form for the velocity
outside the boundary layer, and one which is of application to the flow over the rear of an aerofoil
or near the rear stagnation point of a cylinder with a rounded trailing edge, is that of a linear
decrease in U. In this case F’ is a negative constant. Consequently we may write

—F
2= 52T O ()
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and we then have

u P ’ ' ’ 7

(j = ‘150’ - 2‘1’1’ +' Zz‘lsm - Zs‘f”sl + 347541 TToeee ‘e vt . T (/7)
6*

7’—‘;—— 146z - 892 + 192222 + 5243842 + ... , .. .. .. .. (78
6

”"v =1 + 8Lz 575 + 1350%° - 389852Lz" £ ... e (79

H=2— 9% — 391 — 1048%° — 33782282* — ... , S .. (80)

p’(j_v =1 — 4z — 262 — 409%° — 9246%2* — 2608073%2° — ... . .. .. (8l)
0

Equations (78), (79) and (80) contain the additional term arising from ¢,,” not given in equations
(55), (56) and (57), and the last term of equation (81) is obtained from the momentum equation (59),

An approximate calculation of the amount of suction which will prevent separation was made
by Prandtl', who used the momentum equation with Pohlhausen’s separation profile, and ob-
tained the result

aU \"*
w=218(— 22 L 8y
which corresponds to
K = 2:18 (— F')'*. .. .. .. . .. (83)

Preston® made a similar calculation using the separation profile given by Howarth®’, and
obtained

K=1607 (—F)"* .. .. .. .. .. (84

We might expect that a better result would be produced by finding the value of z for which
equation (81) vanishes. This would then give '

K = C (— F)'", .. .. .. .. .. (85
where

C = (2). O 1|

If we assume all the terms not mentioned in equation (81) are negative, we find z < 0-068608,
so that C > 2-75 and the method of extrapolation used in Part I gives

z = 0025, K = 4.5(— F')'" .. .. .. (87

This calculation, however, is very doubtful indeed, since series (77) corresponds to a solution
of equation (34) of Part I with # = 1, in just the same way that the forward stagnation point
flow equation (74) corresponds to equation (31) of Part I with 8 == 1. Since equation (34) of
Part I has no solution for g == 0 this series cannot converge to it, and the series (77) to (81) cannot
represent the flow. It therefore appears that no amount of suction can produce the boundary
layer flow envisaged.

It may be expected that if a boundary layer starts to flow along a region where the stream
velocity falls linearly, the skin friction will always become negative at some point before the
rear stagnation point. This point will depend on the initial velocity profile and the suction
velocity. Since a general velocity distribution will give the series (77) to (81) at the rear stagnation
point we conclude that the same is true for the flow over any cylinder with a rounded trailing
edge. I have suggested elsewhere** that with suction the true separation point is not where
the skin friction vanishes, but is further downstream, or even may be non-existent if it vanishes
close to the rear stagnation point. The effect will depend on the Reynolds number, and the
boundary-layer equations will not be adequate to deal with it. It may be easier to prevent
separation from the rear at low Reynolds numbers than at high ones.
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7. Flow Past a Circular Cylinder.—As an illustration of the general theory, we now consider
a porous circular cylinder placed in a uniform stream with a constant suction velocity over the
surface. This problem was investigated by Bussmann and Ulrich®’, using the method of series
expansion starting at the forward stagnation point. They found that when the velocity of

suction is
U 1/2 .
%=@%), s

where U, is the main stream velocity and 4 the diameter of the cylinder, the separation point
is 120-9 deg from the front stagnation point, whereas the position without suction is 110 deg,
assuming in both cases that the velocity outside the boundary layer is given by the theoretical
potential flow. ‘

The suction velocities considered here are much larger, and separation takes place, if at all,
only close to the rear stagnation point, though for the reasons given in section 6 the skin friction
probably does vanish near the rear of the cylinder. :

Take ¢, the representative length, to be the radius of the cylinder and U, the velocity of the
stream at infinity. Then the velocity outside the boundary layer is

U = 2U, sin (¥/c), .. .. .. . . (89
so that '
F(&) = 2sin & o .. .. .. .. (90)
and
1/2
w=r (2" . . e
Hence we have
y ! ! 9 . 7 22
_%(7 — () + ¢, (C}{fosé +<i>21 (¢) cos EK4¢>22 (¢) sin® &
L e o WO s ity L e
T gy 4cosé  26cos’é — Tsin*¢& n 4093 cos®& — 3828 cosé sin®é£
pUv, K K K¢
4 A g 244 g2 tn2 11 gint
92465 cos' & — 197245 CZ(;‘SS & sin® & + 216555 sin* & o (93)
Do¥ 6 £  89cos*é — 20 sin® 19227 cos® & — 14814 cos & sin® &
)ﬁ 1 (}gf + (:os«EK4 Slﬂf_ 5 COs" & p 55 COS & s1 Lo, (94)
00 1 3fcosé I 57icos’ £ — 184 sin*& 1350} cos® & — 108253 cos & sin® & .95
Pl A ° I K -+ (99)
o 2cos&  39% cos?é — 157 sin® ¢ 10483 cos® & — 12012 in®
H=2+ C[(()zs 39§ cos §K4 5 smn® & T % cos® ¢ = = C0s & sin 54—...(96)

Numerical values are given in Tables 10 and 11 for K = 5, 10, 20, and the skin friction, dis-
placement and momentum thicknesses and H are shown in Figs. 12 to 15. It will be noticed
in Fig. 15 that H, which is greater than 2 at the forward stagnation point, diminishes towards
the rear and becomes less than 2, and by equation (57) a similar phenomenon will happen with
any cylinder. This is in opposition to the usual behaviour of H when there is no suction, as it
normally increases in a region of adverse pressure gradient. It is seen that, when K =35, H
does increase between & = 70 deg and £ = 90 deg, and it may be that when K is further
reduced this becomes more marked, until the onset of separation deprives the later {all of H from
having physical meaning. This hypothesis would.provide a link between the cases of zero
suction and large suction.
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If d = 2c is the diameter of the cylinder, the quantity coefficient is
Ud )‘“‘/2

v

=9 v 5
Co= (g =" U0~nK\/2<

(97)
where @ is the quantity of fluid sucked in unit time through unit span of the cylinder. If K
is given by equation (87) this would be '

C=28(PE)Y™ . e

8. Calculation of Separation for a General Velocity Distribution.—If we consider the skin friction
at a fixed point ¢ for varying values of K, we may find from equation (60) for what K it vanishes,
and so obtain a relation between K and & Then the greatest such value of K will be that re-
quired to maintain positive skin friction over the range of & considered. If this greatest value
occurred at the rear stagnation point, where F = 0, we should have the problem considered in
section 6, and for the reasons there given we must exclude this case. The calculation, if the
relevant derivatives of I' are known, may be made by using a formula due to Whittaker, and
given in ““The Calculus of Observations’ 2.

This states that the smallest root of the equation

0=a,+ a2z + a2 + a2’ +az* + ... .. .. (99)
is y “3'
2 3
a4y Ay sy ay | a4y “?l
L TS e e —_—
a, a, a, a, a, 4, a, a,
a, |a, a, a, a, a, 4, a,
a, a,
a4, dg a,
ay d, Oy
atla, @, a,
_ — . .. .. {100)
wy oty dyl W, a, dy a,
gy @, a, | Ay Ay @y Ay
0 ay a| 0 a, a, a,
al) al

In order to apply this we must first calculate the velocity derivatives F’, F”, etc., and these
can be found accurately only if analytical means are available. Tor aerofoils this requirement
restricts us effectively to those derived from a circle by simple conformal transformations and
those designed by Lighthill’s method*®. In either of these cases the modulus of the transformation
is known and we may calculate the velocity derivatives in the following manner.

We consider the transformation (of unit modulus at infinity) from the aerofoil in the Z-plane
to the unit circle

z = e®. e v .. .. - .. (101)

Then ¢, the chord of the aerofoil, is now a quantity rather less than 4. At incidence x, with the
circulation defined hy the Kutta- Joukowski condition, the velocity at the surface of the aerofoil
is

U 2[sin (6 — «) 4+ sin «f

— = . . . .. .. .. (102)

U, az
az
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Now

az| _ ds
dz| —de ’
where s is the distance round the aerofoil in the direction of increasing . It is most convenient,

however, to have U positive in the direction of increasing x and to have x positive on the upper
surface and zero at the leading edge.

(103)

Hence S
X =8, —S, .. . . . . .. . .. (104)

 where s, is the value of s at the leading edge, and with the sign conventions adopted above for
U we have

FeZisin(0—o +sinal .. . . . . . .. (109

In each of the classes of aerofoils considered s’ is known as an analytical expression in terms
of 6. We also have

£ : S, (106)
Now
, _4F |d§
F =%/
¢ dF
=— 77 .. .. .. .. .. .. .. {(107)
Thus
F:éﬁmm—@+ﬁ§@mw_@+mmy Lo
Similarly
. sin (6 — 3s”’ B2 A A N .
F = 2c¢ [—-—%Tra—) + €08 (6 — o) — <—S,—5— — F) (sin (6 — «) - sin «] } .. (109)
. ’’ 112 1t
F'"" =-—-2c° [E)—S——(e—,z—g) -— 68, sin (0 — o) — Eﬂ - — 74’s7> cos (0 — o)
s s s s
13 7t et 11
4_%7~mw +%[mw—@+mﬂ]u. (110)

The s derivatives are to be obtained analytically from the known expression for s’. As an
example of this method of calculation we shall consider in section 9 the case of a thin Joukowski
aerofoil at a high lift coefficient with suction round the leading edge.

9. Application to Leading Edge Continuous Suction.—The principle of employing suction
through a porous surface to enable an aerofoil to reach a high lift coefficient has been discussed
by Preston® and Thwaites®’. Preston’s calculations are based on the use of equation (85) with
C = 1-607, obtained by assuming Howarth’s?® separation profile. His results should, therefore,
be multiplied by 2-8 to obtain the corresponding ones given by equation (87). Thwaites’ work
assumes that the velocity profile will be similar to that of Blasius, and this is also likely to lead
to an underestimate since it appears from equation (57) that H < 2 in a region of adverse velocity
gradient.

As an application of the asymptotic method calculations have been made for an 8-3 per cent
thick symmetrical Joukowski aerofoil at high incidences. One of the objects of the calculation
was to compare the crude approximation of equation (87) with the more elaborate process of
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section 8. Consequently for the highest incidence (18 deg) the velocity and its first three deriva-
tives were found from cquations (105), (108), (109), (110). F'"” was estimated graphically
where required. The coefficients C,, C,, C,, C, of K2, K~* K~* K~*in equation (60) were then
calculated for some points near the position of maximum velocity gradient. These are all given
in Table 12. At a0 = 6 deg the velocity gradient is very close to its maximum value, but
the influence of the higher derivatives makes C, and C, positive there. At .- 0 = 8 deg the
velocity gradient has fallen, and C, and C, are negative. The effect of the higher derivatives is
still sufficiently pronounced to make C, comparatively small, and the formula (100) gives for
separation
IA() = 0-3593038 - - 0-2567528 - 0-0447351  0-0072263 - ... .

The rest of the series will probably be negligible or positive, and we find

K == 445,
For a - 0 == 12 deg,
1K9 == (-5863177 - 0-4383462 — (-0837023 —- 0-0232541 - - . .. .

The remainder of the series probably lies between 0 and -~ 0-06 and so K Hes between 49-4 and
53-4. Inally at # — 0 - 18 deg. we have K = 39-3. The maximum of K is, therefore, ap-
proximately 52 to 56.

The maximum of - 7 is 158, so that equation (87) gives K = 56:6 Hence the two methods
are in close agreement. Consequently, calculations for the incidences of 12 deg and 15 deg
were made only by the cruder method. For these we find K = 40-4 and K = 48-2 respectively.

The velocity distributions near the leading edge are shown in Fig. 16 and Fig. 17 shows the
variation of K with C,.

10. Conclusion.—The success of the asymptotic method for the solution of the boundary-
layer equations depends on the validity of the expansions employed. Although the series for
the velocity, skin friction etc. have been referred to only as being asymptotic, it seems probable
that they are in fact convergent for large values of K. It is also likely that the singularity
which is expected at the separation point will define the radius of convergence of the series.

There are many other possible singularities where the solution will not hold. Any point
where any of the derivatives of I does not exist is a singularity, but the boundary-layer equations
cannot be expected to cope with such a point. The most important of the singularities are those
which occur when suction starts after the boundary layer has already gone for some distance
from its start, or when the flow does.not resemble equation (74) at the leading edge. In these
cases there will be a region of transition during which the boundary layer accommodates itself
to the suction conditions. The present theory resembles that of boundary-layer growth in that
the velocity distribution at a particular section does not depend on that at other sections, and
is controlled solely by the local values of F and its derivatives, and by the suction velocity.
Hence we may expect the effect of the previous development of the boundary layer to become
progressively less during the transition region. The final condition will never be exactly attained,
bnt will be approached closely within a short distance for large suction velocity.

The simplest example of a transition region is the case of a flat plate in a uniform stream with
constant suction. This problem has been studied extensively by approximate methods, and an
exact numerical solution was obtained by Iglisch®®. At the leading edge the boundary layer is of
zero thickness and has Blasius’ profile, but ultimately it tends to the asymptotic suction profile,
which is approached within a given degree of accuracy in a distance of order Uvv,~%. A similar
problem which has also received attention is that of a flat plate in a stream of falling velocity.
An accurate solution without suction was obtained by Howarth®®, and Thwaites?® made an
investigation by an approximate method of the effect of small suction velocities on the position
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of the separation point. Here also the initial profile is that of Blasius, while the asymptotic
method gives the results of section 6. An accurate investigation of this problem would settle
some of the difficulties noted in section 6, and give some evidence about the flow near the rear
stagnation point.

TABLE 9
Functions used in Calculating the Velocity Distribution
(: ¢0/ qsll ¢21, ¢22, ¢31’ (?532’ . 4)33’ ¢41,

0 0 0 0 0 0 0 0 0
0-125 | 01175031 0-45504 — 305493 | —0-82245 48-097 414713 3-277 —1086-5
0-25 0-2211992 0-82748 — 574899 | —1-54733 90-534 78:509 6-167 —2045°1
0-375 0-3127107 1-12758 ' — 812032 | —2-18409 127-954 110-936 8712 — 28906
0-5 0-3934693 1-36469 | —10-20075 | —2-74032 160914 139-455 10-946 —3635-8
075 0-5276334 1-68281 —13-59281 | —3-63552 215-327 186-306 14-597 — 48681
1 0-6321206 1-83940 | —16-09996 | —4-27476 256927 221-627 17-307 -—5815-4
1-25 0-7134952 1-88019 —17-85933 | —4-69360 288-120 247-365 19-221 -—6534-1
15 0-7768698 1-84082 | —-1898503 | —4-92503 310750 265-047 20-458 —7067-8
2 0-8646647 162402 —19-72232 | —4-94975 335-832 281031 21-293 —7709-8
2:5 09179150 1-33388 ~ 1899177 | —4-57767 340-669 277-560 20-517 —7937-6
3 0-9502129 1-04553 —17-34585 | —3-99557 331-105 260-881 18719 -—7878:0
4 0-9816844 0-58610 —12:93014 | —2:69890 285-356 207-101 13-857 —7212:2

TABLE 10
Velocity distributions within the boundary layer
Values of u|U for varying £, and K
- E=0 & = 30deg } & = 60 deg
L) | !
K=35 10 20 K=35| 10 20 ‘ K= JI 10 ‘[ 20

0 0 0 0 0 0 0 o 0 | o0
0-125 0-13 0122 0-11862 0-13 0121 0-11848 0-13 0-120 0-11807
025 0-25 0229 0-22323 0-24 0-228 0-22297 0-24 0-225 0-22223
0-375 0-35 0-323 0-31548 0-34 0-322 0-31512 0-33 0-318 031412
05 0-44 0-406 0-39682 0-43 0-405 0-39638 0-42 0-400 0-39517
075 0-58 0-543 0-53176 0-57 0-541 0-53122 0-56 0-536 0-52973

1 0-69 0649 0-63662 0-68 0-647 0-63604 0-66 0-641 063442
125 078 0-731 0-71808 076 0729 071749 075 0-723 0-71584
1-5 0-84 0-794 0-78135 0-83 0-792 078077 0-81 0-786 077916
2 0-92 0-879 0-86860 091 0-877 0-86810 0-89 0-873 0-86669
25 . 0-96 0-930 092113 0-95 0928 0-92072 094 0-924 0-91957
3 0-98 0-959 0-95272 0-97 0958 0-95240 0-96 0-955 0-95151
4 1-00 0-987 0-98307 0-99 0-986 0-98290 0-99 0-984 098241
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TABLE 10— continued

Velocity distributions within the boundary layer

Values of u/U for varving &, & and K

. £ 90 deg | £ — 120 deg £ — 150 deg
K=5 10 | 20 | K=5 10 20 K=5| 10 20
0 0 0o 0 0 0 0 0 o 0
0125 | 012 0118 | 011751 011 0115 011603 0-09 0113 | 011650
025 0-23 0221 (22121 0-21 0-217 022016 018 0-214 021938
0375 1 032 0-313 031272 029 0-307 0-31130 026 0302 | 031023
05 0-40 0-394 0-39349 037 0-387 039176 0-33 0381 | 039047
075 053 0-528 0-52766 050 0519 052552 045 0-512 0-52393
I 064 0-633 063215 060 0623 0-62082 055 0615 0-62807
125 072 0714 071352 068 | 0704 071114 0-62 0-696 070935
15 079 0777 077690 | 074 0768 077456 069 0759 | 077280
2 087 0-865 086470 | 083 0856 | 086263 078 0-849 0-86106
2:5 093 0018 001794 089 0911 | 091624 (-85 0905 (-91495
3 096 0951 (-95024 093 0-945 094890 0-89 0-940 (94787
1 099 0-982 0-98170 } 097 0979 0-98095 095 0976 0-98036
TABLE 11
| | "c ./
, o/ U vod*/v Vo /v H
e _ nirUm o/ |
U K=5 10 20 [K=5 10 | 20 K=5 10 20 |K=3 10 20
0o 0 o 0 0 0779 10-947 1008553 | 0-366 |0-469 |0-49159 [2:08 ' 2:017 |2:00477
10 034730 |0:389 0360 | 0-35067 |0-786 |0-948 |0-98573 |0-371 |0-470 |0-49171 |2:08  2:017 | 2:00470
20 0-68404 |0767 |0-708 |0-69038 |0-805 |0-950 |0-08636 |0-383 |0-471 |0-49207 |2:07 |2:016 | 200450
30 1 1-118 |1-033 |1-00855. |0-828 [0-053 [0-08738 '0-401 | 0-473 |0-49266 |2:05 |2:015 |2:00418
10 1928558 |1-427 |1:323 | 1-29533 [0-861 |0-058 |0-98878 10421 0-476 |0-49347 |2:041 | 2014 | 2:00373
50 1-53209 | 1-680 |1-570 |1-54187 |0-889 |0-964 |0-99052 [0-438 0479 | 0-49447 2029 |2-012 | 2:00317
60 173205 |1-865 |1-766 | 1-74069 |0-912 |0-971 |0-99255 |0-452 0483 049565 |2:023 | 2010 | 200251
70 |1-87939 |1-981 |1-906 | 1-88585 |0-930 |0-979 |0-99483 |0-461 0-488 | 0-49698 | 2022 | 2:007 | 2:00176
S0 196962 |2:028 | 1984 | 197311 |0-947 |0-988 | 099729 |0-468 0-493 |0-49841 [2:024 | 2005 | 200095
D 2011|2001 | 2:00009 | 0-968 |0-098 | 0-99988 |0-478 1-499 |0-49991 |2:025 |2:002 | 200010
00 | 196962 | 1934 | 1957 | 196628 1000 | 1009 | 1-00250 |0-494 |0-505 0-50144 |2:021 | 1-998 | 109922
110 [1:87939 | 1799 | 1-854 | 1:87300 1047 [1:019 ' 100508 |0-522 |0-511 1050295 |2-008 | 1-994 | 1.99835
120 1173205 | 14609 | 1697 | 172338 ' 1-111 {1030 | 100754 |0-561 | 0518 |0-50440 | 1-984 |1:991 | 199752
130153209 |1-363 |1-492 | 1-52218 | 11191 | 1041 | 100980 [0-612 |0-524 |0-50572 | 1949 | 1-987 | 199675
140 128558 | 1-101 | 1245 |1-27563 | 1279 | 1-051 | 101177 |0-669 |0-530 | 0-50688 | 1-906 | 1-983 | 1-09606
150 | 0817 0963 1009123 | 1-369 | 1-059 | 101339 0726 |0-535 |0-50784 |1-86 | 1980 | 1-09550
160 068404 |0-535 0657 067751 |1-44 | 1065 | 101459 |0-775 |0-539 |0-50855 | 1-82 |1-977 | 1-99508
170 084750 0:263 0333 034382 | 149 | 1069 | 101534 081 (0541 1050899 |18 | 1976 | 199483
TABLE 12
] ‘ ‘ | i . | . . I
—_— ol Fr O Fr 100 Frrs10-8 €, Co %107 Cy 3 10790, % 1078
(deg) l | | i
4538977 | 134476 | —23526 | 158201 268952 | 110436 2234 |
6 503506 | 157504 | 169813 | 31795 | —152 315008 | 17621 L2132 183100
8 | 463896 | 139158 838377  0-5085 | 335 | 278316 ; —19-393 | —339-90 6500
12 393528 | 85278 | 564888 | —0-5396 | —0-302 | — 170556 = 8617 | 14499 —3720
18 3-20480l -7—38-9921 171897 f —-0-1300 | --0-187 ~77-9s4i 1952 | —1722 —285
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Part IT1I. Flow with Variation of Suction Velocity

Summary.—The asymptotic theory is here extended to cover general two-dimensional flow with arbitrary distri-
butions both of the main stream velocity and of the velocity of suction. The method follows closely the treatment
used in Part II, except that the suction velocity is now considered as a function of position on the surface. This
increases considerably the number of functions which occur in the results, and hence renders their application more
complicated. The similar velocity distributions examined in Part I are special cases of this general theory, and it has
been verified that the results do reduce to those of Part I for this case. No further applications are made here, but
the theory will probably be needed in considering the actual flow into a constant pressure suction chamber for an
aerofoil, since the variation in external pressure causes a corresponding variation in the velocity of suction. This will
be particularly important for suction over the leading edge of an aerofoil to obtain high lifts.

1. The Transformation.—As in Part II, we take a representative length ¢ and a representative
velocity U, and write R for the Reynolds number

Uy
R==5. (1
The boundary-layer equation is reduced to non-dimensional form by writing
& =xlc, - .. .. . . . (2)
B Uo 12 .
r=(22) "y 8
p = (U,en)'*f(&, n) , .. . .. .. .. (4)
U = U,F(§), . . .. .- .. .. (5)
and becomes of o of o 2%f
with the boundary conditions
e
-:f (5,00 =0 1
(@71
. (7)
of ‘
. (&, 00) = F(§). J
The velocity of suction is -
Ugp\'"? 0 R
vﬂ(é)z——v(E,O):(c") 8—{;(5’0)' .. . . .. . (8)
We therefore put flE, 0) = KG(&) . .. .. . . .. (9)
as an additional boundary condition, and then have
U2 )
| vn::K<C"> G'(e) . o)
Now write oA
» e KRGy = Y
(= KG'n=—=, .. . .. .. . . (1L
and put T
P fem) = KG + &0 . . (1)

This transformation gives

2% | 9% 1 o 2% 9% o GV % | ] :
T b g | e —ma T eta PRR[S0 (1
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and hence
¢0H - e“’_}:

W
{

0’:1_6-:’

by =0 — 14 e~

(26)

The first approximation to the velocity distribution is therefore the familiar asymptotic

suction profile
“

-_U — 1 - e—-v()_vlvl
Substitution in equation (19) gives
83 ' r ’
aij'i + 9&21,+F¢0F¢0”“‘F¢0 Fé'— g'Fé ¢, 4 FF' =0,
so that ’
P, = ‘{T(FFI‘#’I +F2gl751)'
where

$7" b+ 2o — 4, 4 1) =0,
0 208y = 0.
- Similarly we find that
®, = F’2¢11 + FPF"¢y + FPF'g'yo + F'8% 100 + F8"114),
where
¢21”, -+_ ¢’21”

+ ‘750‘751/, - 961950” - 295!.\"751,) = 0: o
‘f’zzl” *‘ ‘1522” +

_+.

_+-

(
($1b0”” — bo'h’) = 0 e
(Boxs” — 319" + 2y1y” — dubi”" — 3by'1," + 244'4,) = 0,
( S
(

2

2

inm -+ Zn 2

Xzem + Zzz

1t ”L‘ n ’

X23 T Xa3
and

D, = ”tli( FF3y + F*F'F''¢gy + FF"'¢yy +F2F'2g/e.1 +F3F/gX3z

+ FFg% 5y + F'¢ 150 + FFE 555 + F'g'8 105 + I8 151),

— 2 3/1560” ’1’ Sboxl " — 2¢0’Z1,) == (),
21be’ — by’ %y ) = {);

s

[Ce]

where

Y b b A b b 2 b — 6%) =0,
d‘) 1 + ¢; T 2‘
¢ rrr + ¢]{,, + ‘)

(

(

( — &, ‘75221) =0,
TS S 2(

2 ¢’07z1 — 3p:8" + 2 A+ by 5P+ Qb bada”
— By 70 + 207 — 3b, 7, + 4y ¢s) = 0, .. .. ..
Yaa A xe A 2(‘?51%1” — Bdgdy’ - a1’ — Gobae” — ¢ 1"+ Add boy’ — ¢’ollzll) == 0,
Zas A e 2boxa” — 3nad"" — b+ 2 — Bz’ + Bxadba” — borar”

— Adogae’ +Ab xS — 200 A ) =0,
2o g — 2800+ Sxaab” A dezey” — 200 — 4dy i) = 0, =
Zss | odss 2(950%23” + 118" A 220B” A Sxusdy” — 4o gan’ — b1t — ‘/’n’}le’) =0,
Yaw | x| + 2(%1%1” + 2nabe” — Sxagby’ — baxas’ — 20F — 2oz’ + 4¢0’Z~13l) =0,
vt e A 2(0esbe’ — $o'22s’) = 0. - . . .. . e
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(27)
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Thg: functions ¢ are the same as those occurring in Part I, and values of their derivatives ¢’
are given there. The new functions y which occur in the terms involving g are calculated by

precisely the same process as that employed for the ¢ functions, and the following results are
obtained:

7, = (0 Ded 4 e e
g = (E0 R BEY 230 4 120 + 42)e T — (20 + 18F + 42)e- %, N
Joo = (30T T T L 4 17he " 1 (200 F 8 L 18)e ¥ —ke T, .. . (50
Tew = (0% L 20 0 4 4he T — (2 + 4e T — e ¥ L. L. (

P’ = (500 6% - 481L 4 228:° L 828¢2 + 6547 + 18253)e~"

(207 4 3627 - 2720 4 1064¢ -+ 1826)e~% — le=¥, . .. .. .. (52)
T o (300 4 9ICY - BALY - 2072° 4 72 + 553Z%)eC
- (336° - 8207 + 2960 4 554)e " — (3 4 Lye~ . .. .. L (5Y)

|_
2w = (0% - 5307 4 44307 + 201387 + 78147 + 373: + 22427)eF
42" 4 560° + 3660° + 13247 + 22720 4 (15¢% 4 133 + 29H)e=%, .. (54)

I

(
(20 4 1850° |- 1126 + 3780 + 642)e % — (132° -+ 637 - 143 % | 3% (55)

o = = (R0 1420 4 T1E + 47° 4 19132° + 633 + 6275)e
Zss o — (300 + T3 4 46327 4 15646 + 11132 + 378%)e *

(4% - 480% - 2247 4 368)e - (422 + 43¢ + 10L)e ¥, S
yao T=(50° + 550" + 335° + 1183% + 573 + 337%)e " — (547 + 4602 + 198¢ -+ 3343)e~2" -
(B 1R+ Be T e, L L. o N €< 74!

e = o GO 2800 4 900 550 + 21R)e T 4 (200 4 120 4 21)e®
4+ Be® b Lot L .. e . . . .. (58)

These functions are tabulated at the end of the report, and are needed for calculating the
velocity distribution in the boundary layer, since

u N 1 I ' !
(7:‘-75.» +W(F¢l + Flgxy)
1 7 i ’ 11 j 14 7 ! 4 2 72 14 p 1 !
o+ ‘ZKT"“GEF(F 29{’21 + FF bo, + FF g + Fﬂg “os b Fag Zes)
1 7 { / 4 2’ g ’ rr /7 ! 3 ’ 3 o AW 4
T W(F 3‘7531 +FFF ¢'3~3 “{‘“ FzF 9633 +F 2g X3 '11“ F“}' .&'Zs‘: _
-+ FZF’g,2233’ +F3g’3)(34’ + FQF’g”Z:;s, + Fag’guxsul -+ F‘"’g'”xm')"i“ ----- . (59>
It may be noted that this is a power series in
1 Uy
R = h e (60

and that when v, varies with x, so does ¢ == v,y/v for fixed y.

3. Properties of the Boundary Layer.—As in Part II, we find that the skin friction is given by
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vao - F( 2? >C:0

1 ' ’ ’ | s W) ' 2 n
=14 W<4F —Fg')— W (26F"* - TFF" — 36FF'g’ + 10F%' —3}4F*g")

+ gigicys (A093F™  8SSEF'E" 1 ZTSF*F" — IS{FF" — 300FF"g’
1T — 3053 2 1 198Fe” — 155F) — ... . (6])

For the displacement thickness 6* we have
&
Uy 0% (1 . __) dc

X 1 ’ ’ ! 1 ’ 7 Wi ’ IRE PN Es
= 1 — g (BF — 26Fg) + [ (89F" + 20FF” — 134FF'g’ 4 411" — 101F*¢")
-g%é,—s (19221F"® + 1386LFF'F" + 95LF*F'"" — 64851FF'%’ — 1299LF°F"g’
- 58801F F'g - 14618F%"% — 10784FF'g” + 817\8F%s" — 544F%"™) + ...  (62)

Similarly for the momentum thickness 6,

20

1

=4 — SR (3%F" — 13F¢’)
_I" 4K}G'4 (575};/2 _|__ 1317FFH . 94.5FF/gr _+_ 30§F2 /é _ 7§§6F2gn)
SK:};G/G (13502F,3 "l— 1012;31‘1:,}7” —-f— 693;F2F”' 4803;FF’2g’ . 975;2F2F1’g'
- 44928 F*F'g"* — 113813F%"® — 8045F*F'g” 4 682335 F°g's” — 40iF%"") + . . . (63)
Taking the quotient of the series (62) and (63),
8% 1 , ,
— i BOF" + ISJFF” — 93FFg’ + 34" — 9iFg")
+ ggags (10483 + 11125FF'F" + 8OUIF'" — 4880,FF"*g’ — 1205,™F"
+ 52045 F'g” — 1418Z8F°" — 9625F*F'g” + 80083F gy
—53%‘)173(&3'")“--'. . ce e - .. . .. (64)

- 4. Case of Stmilar Velocity Profiles.—In Part 1 the flows were considered for which
U=Fkx", .. .. .. .. .. . .. (85)

’vo_K<m+1>1/2< N ()
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We therefore have ’ ‘
F(g) =&, .. - . . - .. .. (87)

/2
0@:@%i>wwzﬂq R 1.7
, m — 1 ‘

and it follows that the relation between ¢(&, ¢) and the function ¢(¢) of Part I is
$(£,0) = £79(2). Y ¢ (1)

Putting this in equation (13) we see that the equation satisfied by 4(¢) is

B T A= =0, . 7))
where , '
2m

thus agreeing with equation (31) of Part I. The solution of this equation was obtained in Part I
in the form '

HE) = bo + g i + Bbu¥)  gralbee® BB+ B .. L (73)

where stars have been added to distinguish the ¢,, etc. of Part I from the functions bearing the
same suffices of Parts IT and ITI. If we substitute in the solution (15) of Part III we find that

$(0) = do + m%@+w%§ﬁi+“”.. R )

jautl
2 m+1 m—1
26" )
and by comparing equations (73) and (74) we see that

me, + %(m — 1)%1

o %k L —
¢10 +ﬁ¢11 _2 %(m"{—l)

etc.

and by expressing the right hand side in terms of 8 we obtain the foﬂowing relations giving the
functions of Part I in terms of those of Part III. '

T O 25
$.* = 24, + 2., (76)
boo® = 25y + 42 .. .. (77)
oy ¥ = — oy — 255, — 4%0s — B%sa, .. .. .. .. . .. (78)
boo® = 2dyy + 4bon + 2x0n -+ 2000 + 2205, .. .. . .. .. o (79)
bao® = — 2yay — 4546 — 16134, .. .. . .. (80)
bar* = 1665, + 47ae + 2235 + 625y + A2as + 1075, + 324, = (81)
boo® = — ddyy — 28¢yy — 2y — 8Byay — 4xas — 6xa30 — 6325 — 8y — 20%,,, (82)
bao® = 2y + dby + 1264, + 200 + Aae + 200 + 2s0 A 205 + 2tos + dter (83)
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These relations provide a valuable check on the differential equations for the functions y as
well as for the functions themselves. Similar relations enable the expressions (61) to (64) for
7,, 0%, 8 and H to be checked. All the formulae have in fact been checked in this manner.

5. Note on Practical Applications.—When suction is applied through a porous aerofoil surface,
the pressure at the inner side of the porous material will be nearly constant, but that at the outer
surface will vary with the external velocity, by Bernoulli’s theorem. Since the velocity of suction
is proportional to the pressure difference if the thickness and porosity of the surface are constant,
the greatest value of the suction velocity will coincide with the least value of the external velocity.
In fact v, will be of the form

T2
v, = a — bU?,

where 4 and b depend on the porosity of the surface and the internal pressure. To calculate the
boundary layer then involves IF = U/U,,

L Uy ¢ dv,  2FF bU,

KG? ¢’ and ¢ (¢) = v dy  FBU — &

0 0

The amount of suction needed to prevent separation can be found by the method indicated in
Part II, section 8. It is evident that the decision whether or not to take into account this
variation of suction velocity depends on the magnitude of (p, — p,)/3pU,*, where (p, — p,) is the
pressure difference between the flow at infinity and the interior of the aerofoil, and U, is the main
stream velocity. If this quantity is large the suction will be effectively uniform, but if it
becomes comparable with (U/U,)* then the variation will have to be taken into consideration. In
particular we see that for a case such as suction at the nose of an aerofoil at high incidence,
where large local velocities occur, this criterion may be of importance. :

TABLE 13
Table of the functions yx'
- 1 . . ] ot . . . - . .
5 y 4! | X21 Xez A23 p &) X3z £33 34 A35 i X3s i X7
I
0 ( 0 0 0 (U 0 0 0 0 0 0 0
0-125 —0-11749 | 4-23005 | —1-17503 ' 0-39166 | —166-303 | —38-671 149-827 | —35903 | —31-960 | 23337 | 1795
0-25 —0-22095 | 796212 | —2.21194 1 073705 | —313-032 | —72-786 | 282023  —67-583 | —60-153 | 43925 | —3-378
0-375 —0-31157 | 11-25223 | —3-12674 | 1-04105 | —442-408 | —102-853 | 398-595 , —-95-522 | --84997 | 62.073 | -4.773
0-5 —0-39028 ! 14-14804 {'--3-93330 | 1-30770 | —556-351 | —129-306 | 501-277 | —120-140 | —106-848 | 78:043 | --5-998
0-75 —0-51494 | 1891233 |"—5.26762 | 1-74195 | —744-357 | —172-800 | 670-780 | —160-817 ; —142-746 | 104-329 ° —8-005
1 —0-60042 |22-51108 | —6-29087 {2-06141 | —887-876 | —205-662 | 800-306 | —191-980 | —169-825 | 124-252 1 —-9:503
1-25 —0-65208 [25-13299 | —7-05832 |2.28281 | —995-143 | —229-700 | 897270 | —215.423 | —189-592 | 138924 | —10-575
1.5 —(-67539 |26-92343 | — 761056 |2-42017 | —1072-474 | —246-320 | 967-341 | —232.513 | —203-231 |149-210 | —11-285
2 —0-65836 | 28-46930 | —8.18667 | 2-49210 | —1156-306 | —261-691 |1043-831 | —251-713 | —215-818 | 159-273 | —11-833
2-5 | —0-58838 | 2794133 | —8-20626 |2-36761 | —1168-919 | —259-037 | 1056-260 | —255-855 | —213-679 158734 | —11-511
3 1 —0-49539 |26-00501 | —7-81727 |2-12433 | —1131-087 | —244-039 | 1023-239 | 249260 | —201-502 ; 150-833 | —10-621
4 —0-31103 | 20-06155 | —6-32495 | 1-51311 | —964-261 | —194.606 | 874730 | —-216:102 | —161-310 {122-823 l -8:067
. |

\
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