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Summary.--The diffusion of stress in the .neighbourhood of chordwise gaps in the wing surface is an important 
structural design problem. Such gaps occur at wing joints and at undercarriage and bomb-bay cut-outs, and can involve 
local stress concentrations which require to be estimated. This report gives, subject to certain simplifications (including 
representation of the stringers by an equivalent sheet, carrying direct end load only), a theoretical analysis of the 
problem, and derives formulae for the stress distribution. Approximate formulae are found for (i) the direct stress in 
the flanges and (ii) the shear stress in the skin at the flanges and at the chordwise gap. These approximate formulae, 
applicable with negligible error when chordwise gaps are not closer than about one and a half times the inter-spar distance, 
enable a rapid estimate to be made of the stress concentration. A numerical example to illustrate the application to 
design is given, and shows that the maximum additional skin shear stress can be as much as two to three times the 
maximum additional flange direct stress. Although various factors (for example, flexibility of riveted joints between 
the spar flanges and the skin, local buckling and plastic flow) are likely to reduce the stress concentration if present 
calculations predict it to be high, some reinforcement of the skin is likely to be necessary. 

1. Introduction.--The diffusion of stress in the neighbourhood of chordwise gaps in the wing 
surface is an important  structural design problem. Such gaps occur at wing joints and at under- 
carriage and bomb-bay cut-outs, and can involve local stress concentrations which require to be 
estimated. This report gives, subject to certain simplifications, described and discussed in 
section 2, a theoretical analysis of the problem, the mathematical  details of which are set out in 
the Appendix. The notation is given in section 3. Approximate formulae are given for (i) the 
direct stress in the flanges (section 4.1) and (ii) the shear stress in the skin at the flanges (section 
4.2) and at the chordwise gap (section 4.3). These approximate formulae, applicable with 
negligible error when chordwise gaps are not closer than about one and a half times the inter- 
spar distance, enable a rapid estimate to be made of the stress concentration. A numerical 
example to illustrate application to design is given in section 5. The conclusions of the 
investigation are given in section 6. 

e 

2. Statement of Problen¢ and Method of Solution.--The problem investigated is the diffusion 
of stress in a flat, or slightly cambered, symmetrical wing surface near chordwise gaps in the 

' inter-spar skin and stringers ; such gaps occur where the spar flanges alone are fixed, for example, 
at a wing joint, and at undercarriage and bomb-bay cut-outs. 

I t  is assumed that  the front and rear spars are equal in depth, and then, on the basis 
of Engineering (Simple Beam) Theory, there is no chordwise variation of direct stress across a 
section (say AA' in Fig. 1) not near a chordwise gap. 

*R.A.E. Report No. S.M.E. 3208, received 13th J r ly ,  1942. 
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FIG. 1. Dist r ibut ion of direct stress across section A A '  not 
near  ~ chordwise gap 

If now the wing surface is imagined cut between the spars at the section AA', the direct end load 
originally carried by the inter-spar skin ~:nd stringers (as shown in Fig. 1) is now necessarily 
carried by the spar flanges, and its magnitude is easily calculated in any particular case. The 
distribution of stress across the section AA' is now as shown in Fig. 2; in practice, the section 
AA' would have some spanwise stiffening from a rib, and then there would still be some direct 
end load applied to the inter-spar skin and stringers at the section AA', its magnitude being 
dependent upon the spanwise bending stiffness of the rib flange but  in-any event this direct end 
load would have been greatly reduced by the chordwise cut. 
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FIG. 2. Distr[  >ution of direct stress across section AA' at a 
chordwise gap 

The new stress distribution (Fig. 2) is obtained by the super-position of the original stress 
distribution (Fig..1) and that  produced by the self-equilibrating system of direct end load applied 
at the section AA' shown in Fig. 3. 
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FIG. 3. Self-equilibrating system of direct end load at section AA' 

The stress distribution at any section of the wing not ndar a chordwise gap is calculated with 
sufficient accuracy on the basis of Engineering Theory.* The stress distribution at a section of 
the wing near a chordwise gap is therefore calculable if it is calculable for the case shown in Fig. 3. 
This latter stress distribution is due to a self-equilibrating systemof direct end load. at the section 
AA', and therefore, by Saint-Venant's principle, is largely confined to the immediate neighbour- 
hood of this section. I t  follows that  little loss in accuracy will occur if spanwise variations 
(supposed smooth) in wing structure are neglected. For convenience, the theoretical analysis is 

*This is least accurate near the wing root, bu t  eveI1 there it  will serve to enable a safe estimate to be made of the 
effect of a chordwise gap. 
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of the doubly-symmetrical load distribution problem shown in Fig. 4. If the panel (Fig. 4) is 
long in comparison with its width, then the stress distribution near the section AA' is determined 
mainly by the applied loads at this section only and little influenced by those at the section CC'. 
Experimental and theoretical work show that, in general, if AB/AO > 1.5, then the panel may 
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be regarded as long in this sense with negligible error. 
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FIG. 4. Doubly-symmetrical panel with self-equilibrating systems of 

direct end load at sections AA' and CC' 
The theoretical analysis of the problem shown in Fig. 4 is set out in the Appendix ; it is assumed 

there that (i) the stringers are adequately represented by a uniform sheet, carrying direct end load 
only and (if) the chordwise component of the displacement of the stringer-sheet and skin is 
negligible in comparison with the spanwise component; the first assumption involves little error 
if the stringer pitch is small compared with the inter-spar distance, and the second assumption 
also involves little error because the ratio of chordwise to spanwise stiffness of the rib flanges is 
usually high. (It may be noted that it is straightforward to extend the theoretical analysis to 
include the spanwise bending stiffness of the flange of the rib normally present at the section 
AA'.) As a further simplification it is assumed that the skin thickness, stringer area and stringer 
pitch are constant; this is closely representative of current practice. The theoretical analyms, 
although straightforward, does not lead to expressions for the stresses that are capable of rapid 
computation for the range of cases of practical importance. Further, the analysis predicts an 
infinite shear stress in the skin at the corners of the panel, and this has no physical reality. 
For these reasons simple approximate formulae are found for the stresses of most practical 
importance. The accuracy of the approximate formulae for these stresses is gauged from Figs. 
9 to 11 where, for a particular case, these are compared with the accurate formulae for the 
stresses. The-accuracy is sufficient for practical purposes. 

3. Notation. 
21 length of panel (i.e., AC in Fig. 4) 
2a width of panel (i.e. AA' in Fig. 4) 
t skin thickness 
ts stringer-sheet thickness, viz. (total stringer area and effective skin area) + panel 

width 
E Young's modulus of flanges, skin and stringers 
_F flange area 
G effective shear modulus of skin 
/S flange direct stress at gap 
p, approximate value of flange direct stress at distance x (measured spanwise) from 

gap (see Fig. 4) 
q, approximate value of skin shear stress at flanges at distance x (measured spanwise) 

from gap (see Fig. 4) 
qy approximate value of skin shear stress at gap at distance y (measured ch0rdwise) 

from centre-line between spar flanges (see Fig. 4). 
Note that in the calculation of t, allowance is to be made for the capacity of the skin to carry 

direct stress; of course, on the tension side of the wing the Skin is fully effective (assuming that 
torsional shear stresses have not already caused skin buckling), and on the compression side of 
the wing the effectiveness of the skin depends on the degree of buclding (see Ref. 2). Similar 
remarks apply to the calculation of G, the effective shear modulus of the skin. 
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4. Approximate Formulae for the Stresses.--Approximate formulae are now given for (i)-the 
direct stress in the flanges (section 4.1) and (ii) the shear stress in the skin at the flanges (section 
4.2) a n d  at the chordwise gap (section 4.3). As already stated in section 2, these stresses refer 
to the problem shown in Fig. 3, and must be added to the stresses (calculated on tile basis of 
Engineering Theory) for the problem shown in Fig. 1 to give the stresses for the problem of the 
chordwise gap shown in Fig. 2. The error involved in the use of these approximate formulae, 
in comparison with the accurate formulae, is negligible if the panel is such that  

(a/1) (Et,/Gt) 1/~ < 1.3.  

4.1. Direct Stress in the Flanges.--This is given approximately for the formula 

p. /p = e (0 x < z) . . . . . . . . . . .  ( 1 )  

where KI is found from Fig. 5 after calculation of the non-dimensional parameters F/at, and 
(Ets/Gt)l/L The variation of Px/P with the non-dimensional parameter Klx/a is shown in Fig. 6. 

4.2. Shear Stress in the Sk in  at the Ela~,ges.--This is given approximately by the formula 

qdP ---- -- (K~F/at) e -'~'l~ --  (K~F/at) PdP (0 <~ x < 1) , . .  (2) 

where K~ is defined in section 4.1. (Thus there is a simple relation betweenp~ and q,.) I t  is found 
(see section 5) that  this formula can give large values for the skill shear stress at the corners 
A and A' of the panel (see Fig. 4); in practice, local plastic flow and buckling will afford relief 
of these stresses, and moreover, the flexibility of the riveted joints between the spar flanges and 
the skin should be considered in relation to the stress concentration. 

4.3. Shear Stress i~ the Sk in  at the Gap.--This is given approximately by the formula 

qy/p -= --  (K~F/at sinh K2) sinh (K~y/a) (--  a <~ y <~ a) , . .  (3) 

where K~ is defined in section 4.1, and K~ is found from Fig. 7 after calculation of tile non- 
dimensional parameters F/at, and (a/l) (EtdGt)~/L The variation of -- (at sinh K d K ~ F  ) qy/p 
with K2y/a is shown in Fig. 8. The remarks made at the end of section 4.2 also apply here. 

5. Numerical Example to Illustrate Application to Design. - -A numerical example is now given 
to illustrate the application to design. As a typical case, consider a panel representing tile wing 
surface between an encastr6 wing root and a chordwise gap such tha t :  

2a (inter-spar distance) = 40 in., 
I (distance between encastr6 wing root and gap) = 70 in., 
t (skin thickness) = 0.028 in., 
ts (stringer-sheet tliickness) = 0.056 in., 
F (spar flange area) = 1.12 sq. in~, 
c / E  = 0 . 4 .  

Suppose that,  if there were no gap, the uniform direct stress is p lb. per sq. in. The total  
direct end load carried by the interspar skin and stringers is then ~0 × 0.056p = 2.24p lb. 
The additional direct end load carried by eachspar  flange when there ~s a gap is 1.12p lb. ; the 
additional direct stress is therefore p lb./sq, in. 

(i) Direct stress in the flanges.--Calculation shows that  (EtdGt)~/2= (0.056/0.4 x 0-028) ~/2 
= 2 . 2 4  and F / a t , =  1.12/(20 x 0.056) = 1; therefore, from Fig. 5, 2 . 2 4 K ~ = 2 . 7 3 ,  i.e. 
K~ = 1.22, and then K d a  = 1.22/20 = 0.061. Now,  when K~x/a = 1, x a/K~ = 20/1.22 

16.4, and therefore, in Fig. 6, where the variation of p~/p is shown, the abscissa scale is 1/16.4. 
(ii) Shear stress in the skin at the fla~ges.--Calculation shows that  

K~F/at = (1.22 × 1.12)/(20 × 0.028) = 2.44. 

Therefore this shear stress is -- 2.44 times the flange stress (see (i) above). 
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(iii) Shear stress in the skin at the gap. - -Calcula t ion  shows tha t  

(aft) (EtJGt) ~/~= (20/70) X 2.24 = 0-64;  

also F/at,  = 1, and therefore, from Fig. 7, K~ = 2.26. Now, when K~y/a = 1, 

y = a/Ks = 20/2.26 ----- 8.9, 

and therefore, in Fig. 8, where the  variat ion of q~/p is shown, the abscissa scale is 1/8.9. Now 
sinh 2.26 = 4.74, and hence K~F/at  sinh Ks = 2~44/4.74 = 0 .51 ;  therefore, the  ordinates in 
Fig. 8 are mult ipl ied by 0.51 to give --  qy/p. 

The stresses found above must  be added to the stresses tha t  would be present if there were no 
gap ; as s ta ted  previously, these lat ter  stresses are found with sufficient accuracy from Engineering 
Theory. 

6. Conclus ions . - -The  numerical  example of section 5 Shows tha t  the  addi t ional  shear Stress 
in the skin at  a corner c a n  be two to three t imes the  addit ional  flange direct stress there. The 
example  taken  is representat ive of current  practice, and the  above result therefore shows tha t  some 
reinforcement of the skin is probably necessary at the  corners. However,  various factors are 
likely to reduce the stress concentrat ion if calculations on the present basis predict  it to be high ; 
for example, local plastic flow and buckling will afford relief, and, moreover,  the  flexibility of the 
r iveted joints between the spar flanges and the skin should be considered in relation to the stress 
concentration.  
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A P P E N D I X  

Mathematical  Analys i s  
Addit ional  nota t ion  : 

u component ,  parallel to Ox, of stringer-sheet and skin displacement,  
stringer-sheet and skin direct stress over elements  normal  to Ox, 
skin shear stress, 

uF flange displacement~ 
~p flange direct stress, 
/9 ---- (~F)~= o, ~ flange direct stress at panel  ends, 

- -  Ps = (~), = 0, ~ (constant) stringer-sheet and skin direct stress at pane l  ends, 
k = (EtJGt) 1/2, 
o~ = Flat,, fl = Flit, y = z~ka/21, 

e ~ = c o s h n y ,  s , = s i n h n y ,  t , = t a n h n y  ( n =  1 , 3 , . . . ) .  

t 

This Appendix  gives the  mathemat ica l  analysis of the  problem shown in Fig. 4, subject  to 
certain simplifications described in section 2. 
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Since the  forces applied at  each panel  end are self-equilibrating, 

~ P = P , .  . . . . . . . . . . . . . . . . . . . .  (1) 

The component ,  pa ra lM to Oy, of the  stringer-sheet and skin displacement is assumed negligible 
in comparison with  tha t  parallel  to Ox. Then 

au au 
- -  , • • • • o o = E ~ , ' c = G o y  . . . . . . . .  (2) 

and therefore, from the equat ion of equil ibrium for the stringer-sheet and skin in the x-direction, 

0~ 03 
t , ~  + t ~ = 0 ,  . . . . . . . . . . . . . . . . . . . .  (3) 

u satisfies the second order par t ia l  differential equation, 

a~u i a~u 
ax ~ ]- k~ ay~ --  0 .* . . . . . . . . . . . . . . . . . .  (4) 

The equat ion of equil ibrium of the  spar flanges is 

da~ 
F d-7 = ~= t ( G =  ~ o~, . . . .  

where 

(s) 

ap = E duu 
~ - ,  . . . . . . . . . . . . . . . . . .  (6) 

and then, from equation (2), ~r satisfies the second order ordinary differential equation, 

- ~  - -  ± a \ a y e ,  = ±, " . . . . . . . . . . . . . . .  (7) 

The problem is to solve equations (4) and (7) subject  to the boundary  conditions 

a = E a x _  P s = - - c @ ( x = 0 , 2 / ; - - a ~ < y ~ < a )  , | 

? 
du~ I 

aF = E dx  - -  YS (x = 0, 21) , .j 

. .  (s) 

and  the displacement  compat ib i l i ty  condition, 

(U)y=±~ = u~ (0 ~< x ~< 2l); . . . . . .  . . . . . . . . . .  (9) 

no loss of general i ty  occurs wi th  the  assumption tha t  

( ~ ) , = ± ~  = u~ = o (x = o) . . . . . . . . . . . . . . . . .  (lO) 

Note, from equat ion (8), t ha t  

(;9 Ou va -d-if, (0 <~ x <~ 2/) . . . . . . . . .  y = q - a  

The solution is now constructed and its va l id i ty  is discussed later. 

. .  ( 1 1 )  

*This equation was derived first in R. & M.' 20981. 
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If O~u/~x ~, for fixed y ( - -  a <~ y <~ a), is a continuous function of x in the  range (0 ~< x < 2/) 
' then it may  be expanded  as a half-range Fourier  cosine series* in the  range (0 ~< x ~< 2/), i.e. 

~2u - -  Yo(Y) • ~ Y ,  (Y) ('¢~/2/) ~ cos (n~x/21) (0. <~ x <~ 2 1 , -  a < y <~ a) , (12) 
0962 n =  1 

where the Y, , (y) 's  are continuous functions of y only, and the coefficient (n~/2/) ~ is in t roduced 
for convenience. The stress field is symmetr ical  about  the lines y = 0 and x = l; hence, firstly 

Y,, (y) = Y~ ( - - y )  (~ = 0, 1, 2, . . . ) ,  . . . . . . . . . . . .  (131 

0~u (x, y) _ --  ~u  (2 / - -  x, y) which leads to** and secondly 0x ~ 0x ~ 

Y,~ (y) - 0 (~ = 0, 2, 4, . . . )  . . . . . . . . . . . . . . .  (14) 

Therefore, 

O~u _ ~ -Y~ (y) (~/21)  ~ cos (nzx/21) (0 <~ x <~ 21, - -  a <~ y <~ a) . . . (15) 
~ ; g ~  ~ = I, 3 , . . .  

The integrat ion of equat ion (15), with use of equations (8) and (10), gives 

= - ~ {Y,, (y) cos  ( ~ x / 2 z )  - Y,, (~)) - ~ x / E  (o < x < 2z, - ~ < y < ~).  (16) 
l a =  1 , 3 , . . .  

Subst i tute  equat ion (16) in equat ion (4), and carry out the  differentiations of the infinite series 
t e rm-by- te rm;  then  

1 Y , / ' ( y ) } c o s ( n a x / 2 1 ) = O ( O < ~ x < ~ 2 1 , - - a < ~ y < ~ a ) ,  (17) {(,¢~/21)' Y, (y) --  p 

which leads to** 

Y,/ '  (y)  - ~ Y,, (y)  = 0 (~ = 1, 3 , . . . )  ( -  ~ < y < ~ ) ,  . .  . .  (18) 

From equat ions (13) and (18) 

Y,, (y) = A,, Cosh (~Ty/a) (,~ = 1, 3, . . . )  ( - -  a <~ y <~ a) , . . . . . .  (19) 

where the  A,/s  are constants, and therefore equat ion (16) is 

u = --  ~ A,, {cosh (,fry/a) cos (n~x/2/) - -  c,,} - c@x/E (0 <~ x <~ 21, - -  a <~ y <~ a ) .  (20) 
1~= 1 , 3 , . . .  

If d2uF/dx ~ is a continuous function of x in the  range (0 ~< x ~< 2/), then  it may  be expanded  
as a half-range Fourier  cosine series in the range (0 ~< x ~< 2/), i.e. 

d2~F 
dx ~ - -  Ao' + ,~=~ A,, (~ /2 / )  ~ cos (~x /21)  (0 <~ x <~ 2/) . . . . .  (21) 

where the A, / ' s  are constants,  and the  coefficient (~ /2 l )  ~ is in t roduced for convenience. The stress 

distr ibution is symmetr ical  about  the  line x = l" hence d~uF (x) _ - -  d~u~ (2l - -  x) which leads 
, dx ~ dx ~ 

to (see ** footnote below) 

A , / =  0 (~¢ = 0, 2, 4 , . . . )  . . . . . . . . . . . . . . .  (22) 

*Tile relevant properties of Fore'let series are given in : Fourier's Series and Integrals, by H. S. Carslaw (London, 
1921). 

**Multiply the equation by cos (~'=x/21) (=' = 0, 1, 2 . . . .  ) and integrate the infinite series term-by-term with respect 
to x over the range (0 <~ x ~ 2l) ; finally replace n '  by ~*. For conciseness, when this procedure occurs elsewhere, 
reference is made to this footnote. 
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Therefore, 

- cos (0 < < 2z) . . . . . . .  (23) 
d X  2 ~ = 1, a,  . . . 

The integration of equation (23), with use of equations (8) and (10), gives 

u~ = -- ~; A,,' {cos (n~x/21) 1} + 25x/E (0 <~ x <~ 2/) . . . . .  (24) 
, ~  = I j  3~  . . . 

Substi tute equations (20) and (24) in equa.tion (7), and carry out the differentiations of the 
infinite series term-by- term ; then 

(A~s, + A,/o~yn) cos (nux/2l) (0 <~ x <~ 21), -.. .. (25) 
, ~  = I ,  3 ,  . . .  

which leads to (see ** footnote on p. 7) 
A,,s,~ -]- A , / ~ n  = 0 (n = 1, 3, . . .) . . . . . . . . . . . .  (26) 

F rom equations (9), (20) and (24), 

(A,,c,, - -  A, / )  {cos (nazx/21) 1} + (1 + c~) p x / E  = 0 (0 <~ x <~ 2/), . .  . .  (27) 
n = 1 ,  3 ,  , . .  

which leads to (see ** footnote on p. 7) 
~ / ~ , t C l b  ' t - - - -  • • • • • • • • * • • • --A,~ = 8 ( 1  + a )  p l /u%~E(u  1 , 3 , . . )  (28) 

From equations (26) and (28), 
A,, = s ~  (1 + ~) ~,ioz/u (~Tu + t,,) c ,~ 'E , ? 

k 1, 3, ° ~ (29) 
A , /  - -  S (1 + ~) t,~pZ/,, ~ (~r,~ + t,3 = 2 E ,  f 

o o 

and then equations (20) and (24) are 

8~ (1 + ~) ypl  ~ {cosh (nyy/a) cos (nz~x/21) '-- c.}/n(o:yn q- t,,)c,, 
'/6 ~ - -  7C 2 E n = l , a  . . . .  

- -  ~ p x / E  (O <~ x <~ 2Z, - -  a < y <<. a) , . .  (30) 

uF -- 8 (1~2 + c~) pie ,  = Z,, a .... t,, {cos (~zx/21) - -  1}/n ~ (c~yn + t,,) + 15x/E 

respectively. (0 ~< x ~< 2l) ,  . .  (31) 

To prove that  equations (30) and (31) represent the solution of the problem, it is necessary 
to prove that  (i) u and u~ given by  equations (30) and (31) respectively, satisfy (a) equation (4) 
i0 < x < 2l, --  a < y < a) and equation (7) (0 < x < 2l), (b) the boundary  conditions, equation 
(8) and (c) the displacement compatibi l i ty  condition, equation (9), and ( i i ) the solution is unique 
with the assumption, equation (10). The analysis required is s tandard,  and, for this reason, is 
omitted. 

F rom equations (30) and (31), with use of equations (2) and (6), the direct stress in the stringer- 
sheet and skin, the shear stress in the skin and the direct stress in the flanges are given by, 

~//5 4 c~ (1 q- c~) y ~ cosh (nyy/a) sin (n=x/21) 
= ,~ = ~, ~ . . . .  (~rn + t.) c,~ 

~ /p = - -  2 ( 1 - /  c~) fl 

7~ 

k 

(O <~ x <~ 2l, - - a  <<. y <~ a) ,  

sinh (r~yy/a) cos (n~x/2l) 
(~rn + <)c .  

( O ~ < x ~ < 2 / , - - a < ~ y ~ < a ) ,  

respectively. 

m t,~ s i n  z + 1 (0 ~< x ~ 2z), 

J 

8 

(32) 

(33) 

(34) 



In particular, from equation (33), the shear stresses in the skin a£ X = 0, 21 and y ---- 4- a are 
given by 

~/:b = ~ :  2 (1 + ~) 

respectively. 

s i n h  (nry/a) 
,, = , , ~  . . . .  (~r" + t,3 c,, 

t. cos (n=x/2l) 
,, = , , ,  . . . .  ( ~ , n  + t,,) 

( x . = 0 , 2 / ; - - a  ~<y<~a) ,  (35) 

(0 <<. x <~ 21, y = 4- a) ; (36) 

Note, from equation (33) that  13 [-+ o~ as (x -+ 0, 2 / a n d y  -+  ! a), that  is, the analysis predicts 
infinite shear stresses at the corners of the panel. 

The above analysis involves the term-by-term differentiation of infinite series and this procedure 
requires justification. The validity of the term-by-term differentiations of infinite series involved 
in the solution of elastic problems has often not been justified by writers. The present l•ethod 
of overcoming this difficulty (see the analysis immediately following equations (12) and (21)). 
is an indirect one ; a direct method is given by S. Goldstein, Proc. Cambridge Phil Soc., 32 (1936) 
40 and 33 (1937) 41. 

The analysis of the problem, although straightforward, does not lead to expressions for the 
stresses that  are capable of rapid computation for the range of cases of practical importance. 
Further, the infinite shear stress predicted at the corners of the panel has no ph57sical reality: 
.For these reasons, simple approximate formulae are now derived for the stresses of most practical 
importance, viz. (i) the direct stress in the flanges and (ii) the shear stress in the skin at tile flanges 
and at the panel ends. Attention is confined to the case in which 1/a is not small 

The forces applied at either end of the panel form a self-equilibrating system, and therefore, 
from Saint-Venant's principle, tile stresses are small when x/a is large.. I t  is reasonable to suppose 
that  there is an exponential decay of stress along the flanges from either end, i.e. 

av/p ~ p, /p = L e-'<'(2,-*)/~ (1 ~< x ~< 2/), j . . . . . . . . .  ,. (37) 

where K1 (> 0) is a constant determined from the condition that  the areas under the curves for 
~ and t5) are equal, i.e. 

f' (o~ - ~ . )  & = 0 ,  • . . . . . . . . . . . . . . . . .  (38) 
0 

which leads to 

1/K1 = (Z/a) S (~, r ) ,  . . . . . . . . . . . . . . . .  (39) 
where 

8 ~ (ray t,,)/n ~ (nr + t, Jo~) . . . . . .  (40) S (o : ,  ~ , )  - ~= - . .  . .  
~ = 1 )  3 ,  . . .  

after neglect of a term e-*~,;/~ which is small. From physical considerations, K, tends to a definite 
limit as l / a - + m ;  therefore, from equation (39), for sufficiently small ~,, S (~, ~)/~ is sensibly 
independent of r.  Computation shows that  the relation 

S (~, y) = ~S (~, l)  . . . . . . . . . . . . . . . . . .  (41) 

in the range (½ ~< c~ ~< 2), involves negligible error for y ~< 1, and errors not exceeding + 3½ per 
cent. and + 11 per cent. in the worst case of c~ = 2 for y = 1½ and 2, respectively. Therefore, 

KI = 2/:~kS (~, 1) . . . . . . . . . . . . . .  . .  (42) 

approximately. The function kK~ is plotted as a function of c~ (½ ~< ~ ~< 2) in Fig. 5. 

9 



From the equat ion of  equil ibrium of the flanges, equat ion (5) with use of equat ion (37), 

(~),=±~lp _ , ,_qjp= ( T  (F/at) K~e-~,~ I~ (O <~ x <~ cl) , ) .. 
T (F/at) K~ e -K~I2~-')t~ (l <~ x <~ 21). 

( 4 3 )  

I t  is also reasonable to suppose tha t  

(3) =o,2JP -"- q,/P = :K (F/at) K1 sinh (K~y/a) (-- a <~ y <~ a) . . . . . .  (44) 
sinh K~ ' 

whlch is consistent wi th  equat ion (43) (x = 0, 21) when y = ~ a, where Ks (> 0) is a cons tant  
determined from the  condit ion tha t  the areas under  the  curves for (,).~ = 0 and qy are equal, i.e 

F { ( ~ L = o -  f ,}~y = o ,  . . . .  
0 

which leads to 

1 t anh  (½Ks) --  2 (1 -}- oc) S (ct, 7) 
Ks 7 

. . . . . . . . . .  . . . .  ( 4 s )  

. .  - ( 4 6 )  

The funct ion Ks is p lot ted  as a funct ion of c~ (½- ~< x ~< 2) for various values of the parameter  
ka/l in Fig. 7. 
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