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SUMMARY 

The development of a systematic means of interfacing structural and loading 

information in aeroelastic analyses is presented, and a computer implementation, 

with particular application to plate-like structures, is described. Various 

numerical examples of the use of the method are given, and the overall accuracy 

of the procedure advocated is critically examined. 

* Replaces RAE Technical Report 77074 - ARC 37619 
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Introduction 

In seeking to model mathematically an aeroelastic problem of a flight 

vehicle, the aeroelastician has formally to describe the interaction of the 

loading mechanism, be it aerodynamic, propulsive, inertial or gravitational, with 

the deformation of the structure. By virtue of the very nature of both the 

structure and the loading, it is usually only possible to describe either in a 

numerical sense, such a description being basically discrete in character. In 

this Report attention is restricted to those structural models in which the 

elastic characteristics are referred to a discrete set of points° It is likely 

that the loading on and the elastic characteristics of the structure will be 

most readily quantifiable at different sets of points over the structure. The 

analyst therefore must interface various data defined with respect to differing 

sets of points. Some systematic means of bringing about this interface is 

obviously desirable particularly when one realizes that for coverage of a wide 

range of flight conditions, diverse aerodynamic theories may need to be employed, 

each probably yielding data at an especial set of points. 

In a mathematical description of the aeroelastic problem pertinent to the 

continuum, both the structural characteristics and the loading are each every- 

where defined and the problem of interfacing one with the other does not exist. 

However~ in practice, it is necessary to restrict the number of degrees of 

freedom of the structure in order to obtain a solution of the governing equation 

of aeroelastic equilibrium, and an interface problem arises in the reconcilia- 

tion of the discrete representation of the structure with diverse loadings. The 

basis for a general method of effecting the interface is developed in section 1.2 

by considering the evolution of the equation of aeroelastic equilibrium for a 

system with a finite number of degrees of freedom from that appropriate to the 

continuum. A practical form of such an interface is propounded in section 1.3 

which in effect provides a framework within which any particular interface can be 

developed. 

In many aeroelastic investigations it is acceptable to make gross simplify- 

ing assumptions concerning the elastic characteristics of the structure, and the 

nature of the loading. In Part II a common idealisation, namely, a plate-like 

structure subject to transverse loading, is considered. In this instance the 

interface problem is shown to reduce to a transformation of the structural infor- 

mation. Various aspects of the computer program ALFI, developed to implement 

these transformations are described. Some numerical examples are presented, and 

the accuracy of the proposed means of effecting the interface discussed° 



Part I 

A GENERAL METHOD OF EFFECTING THE INTERFACE 



I.] GENERAL NOTATION 

The notation given below is relevant to Part I. Symbols appearing in both 

parts of the Report represent similar physical entities in each, but are 

described below in the general terms appropriate to Part I. The particular 

meanings appropriate to Part II and definitions of other symbols peculiar to 

Part II are given in the List of Symbols on Page 64. 

i 
A 

F 

F 0 

a matrix which when post-multiplied by ~ yields ~i 

a column vector of generalised forces acting at the points of 

a static equilibrium value of F 

Fd 0 

F i 

G i 

H (x) 

I 
n 

that part of the loading F 0 that arises from effects other than 
aerodynamic 

a column vector of the contributions to the generalised forces for the 
degrees of freedom ~z from the region R. 

i 

for some assumed polynomial representation of the state of displacement 

over R.I ' the matrix G i is such that when post-multiplied by a column 

of the constants of the polynomial expression it gives the deformation 
parameters of R i (equation (1-24)) 

a matrix used when expressing the polynomial representations of the 
state of displacement over R i in matrix form (equation (I-2])) 

the unit matrix of order n 

J 

r 

N(x) 

Ni(x) 

Q0 (x) 

adO (x) 

QO (x) 

S 

U i 

Z i 
r 

a column vector of ~ elements each of which is unity 
r 

a matrix which when post-multiplied by ~ gives the displacement of 
the structure (equations (I-28) and (I-29)) 

a matrix which when post-multiplied by ~i 
a point x associated with R. 

I 

gives the displacement at 

a representation of the static equilibrium loading on the deformed 
flight vehicle 

that part of the loading Qo{X) which is independent of the deformation 

a description of the static equilibrium loading for the reduced order 
system 

A flexibility matrix relating deformation parameters and force type 
parameters at the set of points Z] , obtained by some undefined method 

a matrix defined by equation (I-36) 

a column vector of the forces in the 
i 

in F 
Ox r direction that are included 
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i 
a 

i a 

r 

h (x) 
r 

0 
U 

p (x) 

pZ(x) 

q (x) 

qo (x) 

qd0(X) 

qr(x) 

qr(x)o } 

qdo(X) 

q r* (x) 
i 

w 
r 

X 

x(6~) 

a(x ) 

A i (x) 

8 

8 0 

8 i 

a column vector of constants in the polynomial representations of the 
state of displacement over R i (equation (1-21)) 

i being the constants in the polynomial sub-matrix of a i, a r 

expression for A i r 

sub-matrix of H(x) , defined by equation (l-21a) 

a null row vector of u elements 

a description of the loading on the vehicle 

that portion of p(x )  acting over R. 
I 

the deformation of the body 

the static equilibrium value of q (x) 

that part of q0(x) that arises from non-aerodynamic loads 

the deformation of the reduced order system 

are related to qr(x) in the same manner as 

related to q(x) 

qO(x) (X) 
' qdO are 

a virtual displacement of the structure, corresponding to 8* 

a vector of the Zr linear displacements in the direction Ox r , 

that are included in 8 i 

the position vector of a general point with respect to the axis 

system 0xlx2x 3 

the position vector of the point with which ~ is associated 

a vector describing the displacement of the vehicle derived from a 
finite representation of the flexibility characteristics 

a vector describing the state of displacement over R i , derived 

from 8 i 

a column vector of generalised coordinates associated with the points 

of Z 1 

the static equilibrium value of 

a column vector, corresponding to 8 , of virtual displacements in the 
generalised coordinates 

a column vector of generalised coordinates at the n i characteristic 
points of R. z 

the position vector of a general point with respect to the axis system 

0x]x2x 3 



A i 
jk 

OXlX2X 3 

OEXEY E z E 

Q 

Qd 

a general element of A i 

a set of rectangular body attached axes whose origin 0 is a 
definite material point of the body. This axis system is rigorously 
defined in Ref I, Part I, section 2.2 

a set of earth axes 

a general force on the vehicle 

a disturbing force independent of the deformation 

Qd 0 

R 

R,  
1 

i 

k 
r 

r 

n °  
1 

q 

qo 

s 1 

t .  
1 

r(x 

rr(x ;~) 

A~. (x) 

E 
1 

ek'Sk'Yk 

(x') 

3 

<J (x) 

a particular static equilibrium value of Qd 

the number of regions which together comprise the domain over which the 
description of the flexibility characteristics of the structure are 
applicable 

the ith region 

i the kth element of a 

the number of terms in the algebraic expression for A i 
r 

i Z i the number of elements in each of the vectors w and 
r r 

the number of characteristic points of Ro z 

a generalised elastic displacement definable for any part of the 
vehicle 

the static equilibrium value of q 

the order of the matrix 

the number of deformation parameters associated with R. 
l 

a second-order tensor of flexibility influence functions 

the derived structural influence function tensor, appropriate to the 
reduced order system 

the rth component of ~i(x) , detailing the deformation in the 
direction Ox over R. 

r I 

the set of points with respect to which the available flexibility 
data are defined 

powers of x|, x2, x 3 in the algebraic expressions for A i 
r 

(equation (1-20)) 

the Dirac delta function 

the jth component of ~i 

a function which has the value 
with R. , and is otherwise 0 

3 

! if the point x is associated 
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~w 

<9. 
3 

jr (x) 

the number of points in the set Z 
1 

an aerodynamic operator 

a linear operator which when operating on &i gives a continuous 
description, over R i , of the particular deformation parameter~which 

takes the value ~ at the point whose position vector is x(6~) 
J J 

the inertial operator 

the structural stiffness operator 

an exact flexibility matrix for the structure, derived from the 
structural properties of the continuum 

is a matrix of functions describing the nature of the deformation 
of the continuum (equation (I-I0)) under certain loadings 

1.2 A MATHEMATICAL DESCRIPTION OF AEROELASTIC EQUILIBRIUM 

Io2.1 ~tatement of equilibrium in terms of aeroelastic operators 

The total motion of an unrestrained flexible flight vehicle will ultimately 

be referred to a set of earth axes OEXEYEZ E , but it is convenient to refer the 

deformation of the vehicle and the loads arising from that deformation to a set 

of rectangular body-attached axes 0xlx2x 3 whose origin, 0 , is a definite 

material point of the body (see Ref l, Part I, section 2.2). For the flexible 

operator 2 body we define a structural stiffness , ~Y£, such that a general 

distributed force Q is related to the general elastic displacement q by the 

following expression 

Q = .gV(q) . ( I - 1 )  

Both Q and q are referred to the body-attached axes 0XlX2X 3 . 

we may write equation (1-I) in the inverse form as 

Symbolically 

q = 2 -I(Q) . (1-2) 

In an aeroelastic problem the distributed force Q may be compounded from two 

types of loading - one including those aerodynamic and inertial loadings which 

are due to the generalised displacement q , and the other comprising loading 

systems which are independent of the generalised displacement• Hence we may 

write equation (1-I) as 

(q) = Qd +9(q) +~(q) (1-3) 



l! 

and equation (1-2) as 

q = ~-I [Qd + ~ ( q )  + flCq)] (I-4) 

where ~ is an aerodynamic operator and ~(q) represents the continuously 

distributed aerodynamic loading; fl is the inertial operator; and Qd is a 

disturbing force independent of the deformation. 

In static aeroelastic problems, the inertia term J (q) is zero so that 

such problems may be described formally by 

or its inverse 

S~f'(q O) = Qdo + . f l  (qo) (1-5) 

qo = ~-l[Qd 0 +J(qo )] (1-6) 

where the subscript 0 indicates the static equilibrium values. The effects of 

steady acceleration can be included in a quasi-static aeroelastic analysis of a 

steady manoeuvre by adding an inertial term independent of time to Qd 0 in 

equation (I-6). 

The inverse operator may be expressed as a volume integral 

) = f )dV 
V 

so that a deformation vector q0 may be written 

.o( ,)  = fr(x; )%(e)dV 
V 

(1-7) 

where F(x;~) is a second-order influence function tensor, related to the body- 

attached axes system 0xlx2x 3 which describes the deformation of any point in 

the structure in terms of displacements in the coordinate directions due to unit 

forces applied, in turn, in each of the coordinate directions at each point of 

the structure. For an elastic structure, F satisfies the reciprocity condition 

r ( x ; ~ )  = r ( ~ ; x )  
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Q0(~) is the loading on the deformed flexible body and is formally given by 

= edo( 2) + 
(1 -8)  

Equations (I-7) and (I-8) may thus be taken to represent formally quasi- 

static aeroelastic problems in an infinite number of degrees of freedom, ie 

they are equations pertinent to a continuous system. From equations (I-7) and 

(I-8) the equilibrium equation can be w~itten in terms of the deformation q o 

or the load QO ' viz 

qO(x) = qdo(X) + ,/r(x;~)~(qo(~l)dV 
V 

(l-9a) 

or 

Qo(X) = Qdo(X) + £(x;~)Qo(~)d 
(l-9b) 

In the continuum there is no problem of interfacing the loading and the 

description of the flexibility characteristics because each is everywhere defined. 

However, because of the non-uniform character of an aircraft structure and the 

nature of the aerodynamic theories available to predict aerodynamic loading on 

bodies Of arbitrary shape, it will not usually be possible to specify the 

structural characteristics and aerodynamic operator in exact analytical form. 

It is therefore unlikely that an exact solution applicable to the continuous 

system can be found. Instead one must seek to approximate the continuous system 

by a system with a finite number of degrees of freedom and to specify the 

operators in a purely numerical sense. As regards the former, it is instructive 

to consider the specification of such a system in the light of the structural 

properties of the continuum which, for the moment, we shall assume to be known, 

since this provides a basic insight into the way in which a discrete description 

of the flexibility characteristics of a structure can be used to provide, in a 

self consistent manner, deformation data for diverse loadings. 

1.2.2 A description for some semi-rigi d representation of the structure 

The actual structure can respond uniquely to an infinity of loading 

actions but for a finite set of s! distinct loadings the resulting deformation, 

qr(x) , is definable everywhere in terms of s] generalised coordinates, 

, which are associated with 01 points of the structure which comprise the 

set E l Thus for this restricted loading we have 
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qr(x) = Jr (x)8 (I- 10) 

where jr(x) is a matrix of functions describing the relationship between 

qr(x) and 8 . 

The corresponding distributed loading, or(x) , is given via equation (I-|) 

Qr(x) = ~ ( q r ( x ) )  . ( I - I  1) 

We choose s! discrete force-type parameters, F , acting at the points of E| 

and corresponding to 8 such that the work done by Qr(x) during a virtual 

displacement, 8" is given by ~*~ , (the superscript T denotes transpose) i~ 

8*TF = /qr*T(x)or(x)dV 

V 

8*T(x)/rT (x)or (x)dV 

V 

by equation (l-lO). 

Since this latter equation must hold for all such virtual displacements 8* , 

it can be concluded that 

, fS = (x)o r (x) dV 

V 

By virtue of equations (1-11) and (I-I0) we may, for ~( ) 

write 
t r T 

F = ]~Ar (x)Y (jYr (x))dV 

V 

o r  

8 = ~ F  

a linear operator, 

(1-12) 

where ~-I = IjrT (x) ~ (jr (x))dV 
L 

V 

is a constant stiffness matrix. The flexibility matrix, ~ , of equation (I-12) 

describes the flexibility characteristics of a structure with s I degrees of 
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freedom which for loadings that are wholly describable in terms of the distributed 

loads which are the elements of ~(jr(x)) responds as the continuum would to 

that loading. The reduced order system will respond to any general loading 

p(x) , which gives rise to generalised forces in the degrees of freedom of that 

system. How closely the deformation of the reduced order system resembles that 

of the continuum depends upon the particular loading p(x) . In general, for 

any loading p(x) , which would induce in the continuum a deformation which is 

of higher order or of greater complexity than that represented by equation (I-I0), 

the resulting deformations of the reduced order system and the continuum are 

likely to be very different. Therefore in selecting an approximative reduced 

order system in a particular analysis due consideration should be given to the 

loading environment to which the system is to be subjected and whether in those 

circumstances the resulting deformations are likely to be of acceptable accuracy. 

The response of the reduced order system to an arbitrary loading p(x) 

can be found via the functions jr(x) since the generalised forces F in 
P 

these modes resulting from the loading p(x) are, based on the principle of 
-° 

vzrtual work, given by 

T 
Fp = jr (×)p(x)dV . (I=13) 

V 

F represents those components of p(x) which give rise to a deformation, of 
P 

the reduced order system, which is characterised by 

8 = VF . (I-14) 
P P 

The deformation throughout the system is given by 

qp(X) = sr (X)Sp • (1-15) 

Equations (1-13) and (1-15) are termed collectively the interface equations since 

they enable us to find the displacement of the reduced order system, at any point, 

due to an arbitrary loading via the discrete description ~ of the flexibility 

characteristics. Combining equations (1-15), (1-14) and (1-13) we may write 

f T q~(x) = J r  (x)5~JY r (~)p (~)dV 

V 
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On comparison with equation (1-7) we identify a structural influence function 

tensor for the reduced order system as 

T 
rr(x;~) = jr(x)ff~Arr (~)  ( I - 1 6 )  

For the reduced order system equations (l-9a) and (l-9b) take the form 

/ - r(x) = q~o(x) + r r (x ;~)J (q~(~) )av  
q o  " 

g 

and 

(I-17a) 

<xo (/) O 0 do(X) + ~ rr(x,~)Oo(~)dV . (l-17b) 

Equations (I-17a) and (l-|Tb) appear as intractable as did (l-9a) and (l-9b) but 

a solution of the former can be easily obtained via the solution of a set of 

simultaneous equations for esther F 0 or ~n v " The equation in F 0 is found by 

premultiplying (l-l?b) by ~ArrT(x) and integrating over the volume as 

F 0 Fd 0 + /J rT = (x) ~ [.xr(x) ~e o] dV 

V 

(I-17c) 

Premultiplication of (I-]7c) by ~ gives 

T 
gO = 8d 0 + ~fr (x) ~ [Jyr(x)~o]dV . (l-17d) 

V 

If equation (I-17c) is solved for F 0 then 3 0 is found from 

a o = ~ F  o . 

r 
The deformation qO(x) is found via equation (I-I0) 

r j r  
qO(x) = ( x ) ~  0 • 
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The generalised forces F 0 represent those loads, Q~(x) , which occasion 

deformation of the reduced order system. An estimate of the loading on the con- 

tinuum, Q0(x} , is given by Q~{x) plus the loading (Qd0(X| _ Qrd0(X) which does 

no work on the reduced order system, ~e 

QO Ixi = Qdol,i +J(drlxl~O ) 

The precise form of the operator ~ () of equations (1-17) is governed by 

the chosen description of the aerodynamic loading° Aerodynamic theories are 

formulated in terms of incidence distributions over the surface of the body or 

directly in terms of the surface ordinates. In the above development the operand 

of J has been assumed to be q O(X) but other possible operands are readily 

deducible from it since qo(X) is everywhere defined° The particular description 

of the aerodynamic load will likewise depend upon the chosen theory but for the 

purposes of the above development, it has been assumed to be a loading distributed 

throughout the volume and to be everywhere defined° Surface pressure distributions, 

discrete loads etc are merely especial forms of the aforementioned loading 

distribution. 

It is evident from the above that the functions /r(x) afford the realiza- 

tion of a ready interface between an arbitrary loading distribution; a discrete 

description of the flexibility characteristics, V ; and a deformation pattern 

which is everywhere defined. However, for an assumed set of distinct loadings, 

and its associated functions J~r(x) for the reduced order system cannot, in 

general, be obtained precisely via the structural properties of the continuum. 

Nonetheless, a flexibility matrix S is often calculable under certain assump- 

tions about the way in which the structure deforms under load; and for a known 

system of restraints on the idealised structure relates generalised coordinates 

and corresponding generalised forces° If S is to be used in an aeroelastic 

analysis in place of ~ the constrained deformation pattern used in the deriva- 

tion of $ should, logically, be used in the specification of functions akin to 

Jr(x) above° If, for a given matrix S , the compatible deformation pattern is 

unknown, then the aeroelastician must furnish a deformation pattern such that his 

analysis based on S is one of acceptable accuracy. The analyst also finds him- 

self in a similar situation when the given flexibility matrix has been determined 

experimentally. In the next section, consideration will be given to the specifi- 

cation of the constrained deformation pattern in terms of the known flexibility 

characteristics° 
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1.3 THE GENERAL INTERFACE 

1.3.1 Preliminaries 

It is assumed that there exists a symmetric flexibility matrix S 

a known system of restraints* on the structure relates s! generalised 

coordinates, ~ , and corresponding generalised forces F by 

which for 

= $F . (I--I 8) 

Further it is assumed that S is referred to a set of points E l and that an 

appropriate system of constraints is not specified. We assume that there is a 

domain of the original structure for which the displacement of any point in that 

domain, under a concentrated load at any point in that domain, is little different 

from the displacement of the semi-rigid structure under the same loading. This 

domain is in some sense chara~ter~sed by the o] points of E! A constraint 

system can then be formulated solely on the basis of the given information. For 

a number of reasons it was decided to set up the constraint system on a local 

basis - that is the constraints are to be constructed piecemeal throughout the 

structure. This enables the analyst, basic data permitting, to tailor his 

assumed deformation characteristics in a manner appropriate to a given problem. 

A global form of constraint is not thereby excluded since it can be accommodated 

by assuming that the 'localness' extends over the whole structure. However, 

techniques which involve high order polynomial fits to deformation data can lead 

to a rapidly varying deformation pattern between the data points. Within the main 

body of points this effect can be controlled by careful selection of the polynomial 

but the predicted deformation can still exhibit undesirable characteristics in 

areas adjoining but outside the main block of data points. This is particularly 

relevant when only experimentally determined flexibility data is available, since 

it may be difficult to obtain data at the extremities of the structure. Thus by 

adopting a constraint system formulated on a local basis the analyst can exercise 

control over the deformation in such areas. 

1.3.2 Local constraint functions 

Suppose that the domain of ~I is divided into a finite number of regions, 

say R the ith region, R. being characterised by n. (i = 1,2 ..,R) points 
' l l '" 

of Z 1 and the generalised displacements associated with the n. points of R. are 
l 1 

* To avoid ambiguity 'restraints' are those forces and moments that prevent 
movement of the body as a whole, whereas 'constraints' are forces and moments 
that in some sense restrict movement of one point of the structure relative to 
another. 
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by ~ ~ , j = 1, 2, ..., t. i where t. > n. , or in matrix notation ~i . denoted 
l I 

(Note that ~i is a subset of ~ .) It is assumed that the constraints are 

formulated for each region in terms of functions N1(x) such that the state of 

displacement at any point of R. , Ai(x) whose components are the displacements 
i 

in the coordinate directions* may be written in terms of ~i in the matrix form 

Ai(x) = Ni(x)8 i • (1-19) 

In general, Ni(x) is a matrix of order 3 x t i where 3 ~< t i , the elements 

of which are functions of the position vectors of the n. points of the ith 
i 

region in addition to the general position vector, × . 

In general, the particular functions Ni(x) chosen to describe the state 

of displacement over R i will depend upon the number and type of deformation 

parameters associated with that region° Thus in general the particular choice of 

Ni(x) will depend upon the type of flexibility information available and on the 

particular regional structure chosen. 

&i(x) a component of Zi i (x) is given by the inner product of the jth 
] , ' 

row of N1(x) with 8 i and it is assumed that 

k 1 

i ~-m ~k 8k Yk i 
A l(x) = L Xl x2 x3 ak 

k=l 

kl+k 2 
i T =k 8k Yk i 

A2(x ) = ~ Xl x 2 x 3 a k 

k=kl+l 

k1+k2+k 3 

i ~-~ ~k 8k Yk i 
A 3 (x) = L xl x2 x3 ak 

k=kl+k2+l 

(1-20) 

where ~k' Bk and Yk are to be interpreted as the powers of 

, k = I, ..., t i respectively, are constants, 

and k|, k 2, k 3 are integers such that t i = k] + k 2 + k 3 . 

x], x 2 and x 3 , 

* In the following development displacements in all three coordinate directions 
are allowed, and further it is assumed that each ~z contains relevant 
generalised displacements. 
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Collectively we may write the assumptions regarding the form of Ai(x) as 

Ai(x) = H(x)a i (I-21) 

where non-zero elements of H(x) 

x 3 and a i is a vector of t i 

are some polynomial functions of Xl, x 2 and 

elements which are constants as yet unknown. 

Clearly equation (1-2]) can be written in partitioned form, viz: 

Ai3(x) ok] ok 2 h3( . ) /  I " 1 a 

a 

(l-21a) 

where o is a null row vector of u elements 
U 

k. is the number of terms in the algebraic expression for A# , J 
and aT is the vector of constants associated with • 

j J 

The constants a i can be determined from the requirement that the chosen descrip- 

tion of the state of displacement over R. (equation (1-2])) shall yield the 
i 

given ~i at the characteristic points of that region. 

is given by 

= x j (8) 

Now, in general 8T 
J 

(1-22) 

where ~ J is an appropriate linear operator, 

and x(8~) is the position vector of the point with which 8# is associated. 
3 J 

By use of equation (1-2]), equation (1-22) may be written as 

8ij = ~j(M(x)ai)Ix(8~) 

or since ~. is a linear operator 
J 

8i= 
(1-23) 

Expressions for all 8 i j = ] 2, ... t i , typified by equation (1-23) may be 
3 ' ' ' 

written collectively as the matrix equation 

~i = Giai . (1-24) 
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The matrix G i is square and under the assumption that the distribution of the 

points associated with the region and the algebraic expressions describing the 

state of displacement over the region are such that the inverse of G i exists, 

we may write 
.-1 

i G I i 
a = ~ . (1-25) 

From equations (1-2]) and (1-25) we may write 

-! 
f~i(×) = H(x)G i ~i 

Reference to equation (1-]9) shows that 

Ni(x) , ie 

Nz(x) = 

-1 
H(x)G I is to be identified with 

-1 
H(×)G i . (1-26) 

The above procedure is applied to each of the R regions so that the state of 

displacement at all points of the structure is prescribed. 

1.3.3 The global interface 

The global interface is a relationship between the state of displacement 

at any part of the structure, A(~) , and p(x) . This can be written in terms 

of the local quantities of section 1.3.2 as follows. A function Kz(x) is 

defined such that 

~1(x) 
1 if x is associated with region 

[ 0 otherwise 

R, 
i 

whence R 

Z~(~) = ~ Ki(~)~i(~) . (1-27) 

i=I 

Ai (~) 

may be written as 

is given by equation (1-19) wherein since ~i 

A(~ ) 

pR 

Z Ki(~)Ni(~)Ai~ 

i=1 

is a subset of ~ , A(~) 

where A i is a matrix of order (t i x Sl) whose elements are such that if ~k is 

the jth deformation parameter of region R i then A i jk = I , otherwise A ijk = 0 . 



Alternatively, if 

then 

N(~) • Ki(~)Ni(~)A i 

i=! 

A(~) = N(~)a 

(1-28) 

(I-29) 

which is the global equivalent of equation (1-19). 

Following section 1.2 we write 

Fp = / NT(x)p (x)dV 
V 

(i-3o) 

and on combining equations (1-29), (1-18) and (1-30) we have 

A(~) = / N(~)sNT(x)p (x)dV 
V 

(I-31) 

which describes the deformation Of the structure at any point for an arbitrary 

loading via a discrete description S of its flexibility characteristics. 

1.4 CONSEQUENCES OF THE REGIONAL SPECIFICATION OF DEFORMATION 
L , i , ,  

By virtue of the piecewise specification of N(x) , the generalised forces 

appropriate to a general loading are also apportioned on a regional basis. This 

is readily seen by substituting equation (1-28) for N(x) in equation (1-30) 

to give 

/~ .T T 
Fp = A z N i (x)Ki(x)p(x)dV 

V i=! 

Now corresponding to equation (I-27) we have 

p (x) 

R 
~ Ki(x)pi(x) 
i=] 
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where pi(x) is that portion of p(×) acting over the region 

p~(x) = K~(x)p(x) 

R. , ie 
I 

so that the above expression for F can be written 
P 

R 

Fp = A 1 N 1 (x)pl(×)dV 

i=l R° 
i 

We identify 

F i = / NiT (x )p i (x ) dV (1-32) 

R. 
l 

as contributions, from the region R. , to the generalised forces in the degrees 
i 

of freedom 8 i , a c t i n g  a t  t h e  n i c h a r a c t e r i s t i c  p o i n t s  o f  t he  r e g i o n ,  

By virtue of equation (1-26), equation (1-32) can be written as 

Fi = I GiT-IHT(x)pi(x)dV " (1-33) 

R. 
i 

If, for R° , a displacement in the Ox -direction is among the generalised 
l r 

coordinates, 8 i , by a judicious choice of the functions H(x) it is relatively 

simple to ensure that both F i and pi(x) yield the same total load in the 

coordinate directions. A sufficient condition for equality of loads in the 

-direction from the two loading systems F i and pi(x) is that h (x) shall Ox r r 

contain an element having the value unity. This is easily demonstrated by assum- 

ing, without loss of generality, a particular ordering of the elements of ~i 

and F i viz 

i 
w I 

i 
w 2 

w 3 

i parameters of 
derivative type 

(I-34a) 
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and 

i 
F = i 1 

Z! 

.i 
Z 2 
i 

Z 3 

moments ere } 

(I-34b) 

where w i Z i r' r are vectors having ~ elements of Linear displacements, forces 
r 

in the Ox -direction at g distinct characteristic points of R. . If each 
r r z i 

h (x) has an element unity then for some arrangement of the elements of a r 
it is possible to write H(×) in the partitioned form 

H (x) : [I 3 !. Hl2(X)] (1-35) 

In addition, by virtue of the assumed ordering of 

G i may be partitioned 

o , :  

, (equation (I-34a)) , 

( 1 - 3 6 )  

m 

U i = j T  
] 

o 

o 

i 

where o £2 o o 
3 P 

T 
J ~2 o o ~3 P 

T 
~l  o J ~3 o ~2 P 

with J k defined as a column vector of 

p = t i - ~£j • 
J 

Equation (1-33) can be written as 

k elements each equal to unity and 

GiTF i = / HT(x)pi(x)dV 

R. 
l 

(I-37) 

which by virtue of equations (1-35) and (1-36) yields 

uiFi = f pi(x)dV 

R. 
1 
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which shows that the total loads in the coordinate directions for the loading 

systems F i and pi(x) are the same. In the general three-dimensional case, 

it is not possible to ensure~ for the chosen form of N(x) , by the mere inclusion 

of certain terms in the algebraic expressions for A~(x) , and that the total 

moments about any line of the two loading systems F i and pl(x) are equal• 

However, in problems where loads in one coordinate direction only need be con- 

there exist forms of A~(×) that are sufficient to ensure conservation sidereal, 

of moments for the loading systems J F i and pi(×) This is demonstrated in 

Part II of this Report in which such a problem is considered. 

If the flexibility information and the chosen regional structure are such 

that the above procedure can be followed for all regions then F effectively 
P 

contains a redistribution of the loading p(x) among the set of points E ] 

A direct consequence of this is that the solution of the equation of aeroelastic 

equilibrium written in terms of the generalised forces (equation (I-17c)) yields 

total loading information directly. 

1.5 DISCUSSION 

A systematic method of utilising structural information related to a 

particular set of points to calculate the deformed shape of the structure under 

an arbitrary loading has been formulated. The method involves dividing the 

structure into a number of regions over which the displacement is approximated by 

polynomial functions of position. This method was preferred to the use of a 

high-order polynomial fitted over all the data points since it affords a certain 

freedom for the analyst to tailor the deformation characteristics to suit the 

particular problem. One can also cope (obviously to a limited extent) with the 

prediction of structural information at points which lie outside the main body 

of points with respect to which the available flexibility information is defined, 

in a controlled and readily quantifiable manner. The distributed loading is 

apportioned among the generalised forces of the given flexibility matrix by 

invoking the principle of virtual work. The material in this Report provides the 

basic framework within which any particular interface between structural and 

loading data can be effected. 

The degree of complexity necessary in the regional structure is of course 

problem-dependent. As far as static aeroelastic problems are concerned the 

quality and/or applicability of other data in the whole problem-solving process 

is likely to be such that fairly simple regions and displacement functions can be 

employed with a good expectation of an acceptable result. This is particularly 

so in view of the likely deformed shape under load. In Part II we examine the 
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procedure advocated when particular simplifying assumptions are made with regard 

to the determination of aeroelastic equilbrium. 
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Part II 

THE INTERFACE FOR PLATE-LIKE STRUCTURES SUBJECT TO TRANSVERSE LOAD 

(The precise meaning of the notation of Part I in the context of Part II and the 

definitions of other symbols relevant to this part of the report are given in 

.the List of Symbols on page 64.) 
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11.1 A PARTICULAR SIMPLIFICATION OF THE EQUATION OF AEROELASTIC EQUILIBRIUM 

II.1.I The structural characteristics 

The elastic characteristics of the structure are referred to a rectangular 

body-attached axis system OXlX2X 3 , whose origin 0 is a definite material point 

of the body, and the simplifying assumptions considered here are that the loading 

acts in one direction, say Ox 3 , and that only the deformation in that direction 

need be considered. Further it is assumed that the deformation in the 0x 3 

direction is a function of the (x|,x2) coordinates only. 

This idealised system may be regarded as a plate whose mid-plane, when the" 

plate is unloaded, lies in the 0XlX 2 plane. We postulate that, for a known 

system of restraints on the plate, there exists a flexibility matrix 

(o~ equation (1-18)) which relates the displacement, at a set of points E l of 

the mid-plane of the plate, in the direction 0x 3 , to discrete loads in the same 

direction via the matrix equation* 

w = S L E ( I I - | )  
E 1 11 1 

where w 
E l 

and LEI 

is a column vector of displacements in the Ox 3 direction at Ol 

points of the OXlX 2 plane which constitute the set E l 

is a column vector of discrete loads in the Ox 3 direction applied 

at the points of E 
l 

II.I.2 The aerodynamic loading 

We here consider those descriptions of the aeroelastic problem in which 

the theory used to predict the aerodynamic loading on the vehicle is cast in 

terms of either: 

(i) displacements in the Ox 3 direction at a set of points E 2 , which will 

be denoted wE2 

or 

(ii) spatial derivatives of displacements at a set of points E , which will 
I 2 

be denoted wE2 

* To be consistent with Part I w and L should have a subscript 3, but here 
since only loads and deflections in the Ox 3 direction are considered the sub- 

script can be dropped without ambiguity. It is however convenient to introduce 
a subscript to denote the set of points with respect to which a vector (or 
matrix) is defined. 
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It is further assumed that the loading is described by a set of discrete 

loads, in the direction Ox 3 , applied at a set of points E 3 o For case (i) 

we have, in the notation of Part I, 

~3 

= >~ 6(~ - ~i)Z a z (11-2) 

i=1 

where 

and 

Z a is an element of the vector Z a l Y3 of aerodynamic loads due to the 

deformation w(~) , 

denotes the coordinates (~],~2) of a general point, 

• defines the position of the ith point of Z3 

If the aerodynamic load calculation is described by a process ~ we may 

write symbolically* 

za = ) (II-3) Z 3 ~(wE 2 

11.1.3 The simplified equation of aeroelastic equilibrium 

Under the assumptions made in sections II.I.1 and II.I.2 an equation of 

aeroelastic equilibrium for the idealised structure may be written** 

(c~ equation (I-17a)) 

r r r (x) + /F r Wo(X) = w (x;~)~(Wo(~))dS (11-4) 
d o 

S 

where w 0 (x) 

Fr(x ;~) 

is the total deformation of the plate in the direction Ox 3 at 
the point (x],x2) 

is the derived influence function tensor and is to be calculated 
from S11 in the form (c~ equation (1-3])) 

Fr(× ;~) = N(x)S IINT(~) 

* The equation for case (ii) is similar, with a superscript I attached to wE2 

** The development presented first assumes the aerodynamic load to be a functicn 
of wE2 . The other case is considered later. 
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where N(x) is a matrix of order (I x Ol) , 

and W~o(X) is the deformation due to a non-aerodynamic load Zdo(X) viz 

r f rr(x ;~) (~)dS 
Wdo (x) = Zdo 

S 

= N(x )S l l  UNT(~)Zdo(~)dS 
S 

= N(x)S 1 lZdor. 

1 

(II-5) 

where ZdOzl 

obtain 

is a set of discrete loads acting at the points of Z] , appropriate 

to Zd0(X) . 

Substituting equation (11-2) into equation (11-4) and integrating, we 

r w~ 0 N(x)SlIN31Z0z3 w0(x ) = (x) + T a (II-6) 

where N3! is a matrix whose ith row is the vector N(~) , evaluated at the ith 
point of Z 3 

Using equation (11-3), equation (11-6) may be written in two distinct 

discrete forms, one in terms of the discrete total displacements WoE 2 , and the 

other in terms of woe ] viz: 

w 0 = w d +N21S T ~( TM ) 
E 2 0 Z  2 1 IN31 Oz2 

(II-7a) 

or, by virtue of equation (1-29) 

wOll Oz l 1 31 "~ N2 
I 

(II- 7b) 

which corresponds to equation (l-17d). 

The formulation (ll-7a) is a more attractive form of the aeroelastic 

equilibrium equation since the interface problem is divorced from the aerodynamic 

solution process, whereas in (ll-7b) it is an integral part of the solution. 
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The equation of aeroelastic equilibrium may alternatively be cast in terms 

of discrete forces. Substituting for w0z 2 from equation (II-7a) in equation 

(11-3) gives 

Z a 

OZ 3 
t NT za / = "~ WdoY.2 + N2]S]I 3] OZ3 (II-7c) 

which is a convenient representation if the process ~ is an iterative one. 

The total load on the flexible vehicle is in this case given by 

z o (x) 

~3 

(x) + >i ~(x -x 
a 

Zd 0 =_~ i)Zo. 
i=l z 

From equation (11-5) we may write 

Wd0z 2 = N21S11Zd0T 1 

and substituting this expression in equation (II-7c) 

0E3 = Z d + N31 0~3 Z a ~o N21Sll 0Y.l 

T a 
T , and recognising that Z~Z l N3IZoz 3 Pre-multiplying by N3I = 

s 

Z a T ~IN ( za )) " 
= N31 21S11 Z d + 0Z 

OEI OZ 1 I 

gives 

The discrete forces acting at the points of 

total loading on the body are given by 
E l which are equivalent to the 

= Z + Z a ZOE I doe Or' 1 
and hence we have 
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Z 0 = Z d + T ~( N IIZoz ) 
El OE N31 2iS 1 

1 

(ll-7d) 

which corresponds to equation (l-17c). 

If the aerodynamic load calculation is instead defined in terms of 

equation (11-3) becomes 

za 
~3 @ 2 

I 
wE 2 

(11-s) 

and consequently equation (11-6) takes the form 

0 (x) NT ~ ~I ) Wo(X ) = w d + N(X)Sll 31 Oz2 (i1-9) 

Two alternate discrete forms of equation (11-9) can be written. If ~t is 

evaluated directly at the points of E 2 we have 

= w d 
wOE2 

Oz 2 
+ N21S 1 IN31 

2 
(II-10a) 

which gives the deformation of the structure. If instead equation (11-9) is 

d i f f e r e n t i a t e d  a p p r o p r i a t e l y  and then eva lua ted  a t  the po in t s  of r.. 2 we have 

I I 
w 0 = w d 

E2 Oz 2 
+ NIIS l 1N31 

Z 2 
(£1-10b) 

which allows an iterative solution of the aeroelastic equilibrium equation in 
I 

terms of w 0 . 
E2 

We may also use equation (11-9) and a differentiated form of equation 

(1-29) to write (c~ equation (ll-Tb)) 

w = w d + S ] I N 3 1 ~  

OE I 0~. 1 
(II-I0c) 

As with equations (ll-7a) and (ll-7b) it may be noted that in equation 

(ll-10a) and (ll-10b) the interface may be extracted in the form of a transforma- 

tion of the flexibility information. 
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Manipulation of equations (ll-10a), (ll-]0b) and (II-10c) using 

equations (11-5) and (11-8) leads to two further equations, corresponding to 

(II-7c) and (ll-Td), but with aerodynamic load defined in terms of w~2 viz: 

I IS  T Z a ) (ll-10d) Z a = ~ w~ + N 2 tIN3] 
Oz 3 Oz2 Oz 3 

and 

= Zd + N3I 1 
Zoz I 07. l 

(II-]Oe) 

Again, in (ll-10d) we can identify a transformation of flexibility information 

that represents the interface. 

II.1.4 The form of the interface 

From the development in section 11.|.3 it is evident that the most general 

transformations of flexibility information likely to be encountered take the form 

and 

T 

S23 = N21SllN31 

I = N? I i 1N31 S2 3 1S T 

(II-! ]) 

(11-12) 

I relate certain discrete deformation characteristics - linear dis- 
S23 and $23 
placements in the case of $23 and spatial derivatives in the case of S123 - 

to discrete loads applied at the points of the set Z 3 *. All other forms of 

the interface used in section 11.].3 involve one or more of the constituent 

matrices of the transformations in equations (11-I]) and (II-12). 

The kth row of Nil is given by Ni1(Xk) where x k is the kth point 

of Z. • The derivation of the matrix N(x) was discussed in general terms in 
i 

Part I, section 1.3, and is formally described by equations (1-26) and (1-28). 

In order to write the forms of these equations for the particular idealisation 

under consideration, it is useful to state relevant forms of equations used in 

* Although in section 11.].3 Z 3 was specifically associated with loads of aero- 

dynamic origin, it can in the present context be any set of points with respect 
to which a set of discrete loads is defined. 
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the development of N(x) . The polynomial expression detailing the displacement 

in the Ox 3 direction over region R i is written (o~ equation (1-21)* 

i w (x) = h(x)a . (II-13) 

Since the only deformation parameters involved are linear displacements the 

operator ~ of equation (1-22) is an identity operator and the matrix G i 

equation (1-24) can be written 

of 

and 

. - !  

where N i(x) = h(x)G z . 

Gi = - h ( x ] ) -  

h ( x 2 )  

.h (x ti ) 

N(x) 
R 

~ m j(x)N j(x)A j 

j=1 

Therefore we may write the kth row of Nil as 

(11-14) 

kth row (Ni]) 

R 

~ <J(xk)NJ(×k)A j 

j=1 

(II-15) 

In the following sections we shall concentrate on the forms of the inter- 

face given by equations (11-11) and (11-12) where Nil is evaluated via 

equation (11-15). 

How closely the deformation characteristics of the idealised structure 
I 

are represented by S23 or S23 must be judged in the light of the proposed use 

of the derived information, and is best illustrated numerically• We shall return 

to this point in section 11.5, but we must first devise some suitable means of 

performing the transformation. 

* Strictly h and a i should have a subscript 3 attached to them but following 
the convention adopted elsewhere in this Part of the Report, the subscript is 
dropped. 
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One relevant observation can, however, be made here. The matrix S]l is, 

for a physically realisable structure, symmetric, and either positive definite or 

positive semi-definite. If following equation (II-II) we define a matrix 

T 
$22 = N21811N21 

which purports to relate displacement and load at the set of points E 2 *, it is 

shown in Appendix A that $22 is also either positive semi-definite or positive 

definite, and therefore also relates to some realisable structure, though not 

necessarily the one to which 811 relates. 

11.2 PHILOSOPHY OF COMPUTER I}IPLEMENTATION 

The above transformations involve, for any real problem, a considerable 

effort to effect, and it is desirable that the process should be implemented in 

some way on a digital computer. We must therefore decide how much of the work can 

reasonably be included in a computer program, and how much is best left to the 

analyst, whilst keeping in mind the limitations imposed by program size and 

complexity, ease of use, and particularly the capability to accommodate a wide 

variety of problems. 

Initial examination indicates that implementation of the method can be 

divided into four separate parts: 

I. Division of the domain of E l into smaller regions, each having a set of 

characteristic points and an associated function h(x) . 

2. The association of each point of E 2 (and/or E3) with one of these 

regions° 

3. The determination of the individual Ni(x) and hence the appropriate 
I 

matrices N21, N21 etc. 

4. Matrix multiplication to derive the new flexibility data (equations (11-11), 

(II-12). 

The computer program written in ICL ]900 Fortran to effect the transforma- 

tions of flexibility information described in section II.I.4 has been christened 

ALFI (ALternative Flexibility l__nformation) and the various general aspects of the 

implementation will now be discussed in greater detail. 

* This does not constitute a restriction, since if we consider E 2 to be in fact 

the agglomeration of E 2 and E 3 , the matrix $23 is obtainable from $22 

by deleting various rows and columns. 
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The advent of finite element structural analysis programs has led to the 

development of 'mesh generation' techniques to perform automatically the sub- 

division of an arbitrary shape into smaller regions of specified type. It is 

possible that these could be adapted to perform the first part of the proposed 

implementation° The computer programs currently available tend, however, to be 

fairly large and complex, and the required modifications might well exacerbate 

this. Also this subdivision is an area in which the analyst needs considerable 

freedom of choice, so that, if necessary, especial features of the data can be 

dealt with in an appropriate way. For these reasons, it has been decided to 

leave the subdivision into what will hereafter be called the 'regional structure' 

outside the program. 

We must, however, decide on a suitable framework within which the regional 

structure can be defined. For any region we must specify its extent, number of 

characteristic points, and the function h(x) . These could, in theory, be 

specified by the analyst, but the associated computer implementation would be 

very complex. It is, though, relatively easy to offer the analyst the choice of 

a number of pre-programmed options. This latter course of action has been 

adopted, and will be discussed in section 11.3. 

The association of points with regions is another task that could be left 

outside the program, but it is possible to formulate it in a manner suitable for 

inclusion. To simplify this task we introduce the restriction that the agglomera- 

tion of all regions must form a simply connected domain in the Oxlx 2 plane. 

Any point of the structure must lie within a region or on a region boundary, or 

be external to the regional structure. For simplicity, if a point of E 2 or E 3 

lies on a common boundary between two regions, we will arbitrarily associate it 

with one of them. Anomalies may arise from our arbitrary choice of one region, 

and these aspects will be discussed in more detail in section 11.3 for the options 

currently included in the program. 

The calculation of the individual Ni(x) , and assembly of matrices of the 

type Nil is mainly algebraic manipulation. The form of the matrices N~ l! must 

however be considered. Nominally these are obtained by differentiating the rows 

of N(x) , which effectively means differentiation of the appropriate Ni(x) • 

This could be achieved algebraically, but it is more convenient to employ a finite 

difference approximation. If two sets of points E~ and E~ are defined, each 
i I 

point of E~ and E~ being respectively a distance d either side of the 
l i + 

corresponding point of E and the corresponding matrices Ni! and 
i' ! 

calculated, then the required matrix is given by 
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Ni I 2d l 

The last part of the implementation is simple matrix algebra, and is easily 

included in a computer program. The development described above yields matrices 

N21 etc, that are sparse in character, and use is made of this fact to reduce 

program size and running time. 

11.3 THE REGIONAL STRUCTURE INCORPORATED IN THE COMPUTER PROGRAM ALFI 

11.3.1 Location and extent of a region 

In any reference to a region we have so far only mentioned the points of 

Z I that characterize the region, its spatial position being undefined. From the 

standpoint of computer implementation a simple method of defining the boundary of 

a region is to use a series of straight line segments joining some points of Z 
I 

to form a closed loop; the points so joined for any one region can then be used 

as its characteristic points. Thus in ALFI a region R. having n. characteris- 
l l 

tic points will be specified by n i points of Z] , PI' P2' "''' Phi say; and 

the boundary then taken to be the line segments PIP2' P2P3 ' "''' Pni-|Pni' PniP I " 

Note that the order in which the points are specified is important*. Since the 

coordinates of the points P. are known, the region is located in space and 
3 

defined in extent. For reasons that will be explained later* the individual 

regions must not overlap and the boundary line segments must not cross. 

11.3.2 Choice of displacement approximation 

In the mathematical development of section 11.1.4 the function h(x) is 

used in conjunction with a i to specify the transverse displacement over a 

region R.. It has been assumed (in Part I) that h(x) has exactly n. compo- 
i i 

nents. For a 3-point region we assume that the variation of transverse displace- 

ment over a region is given by 

w(x) = al + a2x I + a3x 2 (11-17) 

so that h(x) is the row vector (I, xl, x2). 

The use over a region of a displacement approximation with more terms in 

h(x) requires more characteristic points for that region. Included in ALFI are 

4- and 6-point regions and for each region the simplest polynomial expressions 

* See section 11.4. 
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with the appropriate number of terms in them are used to approximate the trans- 

verse displacement. Thus we have: 

h (x) (1, x I , x 2) 

(1, x 1, x2, XlX2) 

2 
(1, x l ,  x2, XlX2, x~, x2) 

for the 3-point region ] 

for the 4-point region 

for the 6-point region. 

(11-18) 

They are the only three so far included in the computer program, and will for the 

remainder of this Report be denoted by the identifiers L3, Q4 and P6 

respectively. This choice of h(x) is not entirely arbitrary for it preserves 

total transverse load on the structure and at its moments about Ox I and Ox 2 . 

This follows immediately from the form of equation (1-37) in this particular 

application. The forms of h(x) given in equations (11-18) imply that G i 

(equation (11-14)) and H(x) can be written as 

G i i x2 1 
= X 1 j n i 

where J ~i 

X l 

J 

and C 

and 

is a column vector with n i components, each of which is unity, 

i (Xlk,X2k)i i are the is the column vector (x3],...,Xjni) where 

coordinates of the kth characteristic point of the region R. 
I 

is a sub-matrix of G i and does not exist if n i = 3 , 

H(x) = h(x)  = [| Xl X2 10 c ], 

where c is a sub-matrix of h(x) 

load L 0 a c t i n g  a t  the  p o i n t  x 0 

form 
= 

p" (x) 

whence equation (1-37) yields 

m 

i T 

72 

and does not exist if 

associated with region 

= ~(x - x0)L 0 

= L0 

x I 0L0 I 

x 2 LOJ 
_ 0 2 J  

n i = 3 . For a single 

R. , pi(×) takes the 
i 
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which shows that the total local loads in the Ox3-direction, and moments of those 

loads about Ox I and Ox 2 are the same for the loading systems F i and L 0 • 

The free term in h(x) ensures conservation of total load while the xl and 

x 2 terms ensure conservation of moments o about Ox 2 and Ox! respectively. 

Similarly, inclusion of the x 2 and x~ terms in h(×) for P6 preserves ] 

the second moments about Ox 2 and Ox! . This preservation of load and moment 

is a physically attractive concept, and is the reason for adopting the three 

simple formulae of equation (11-18). 

11.3.3 Continuity of the displacement characteristics across region boundaries 

Ideally the displacement w(x) , and all its derivatives, should be con- 

tinuous across a region boundary, so that if a point ~ of ~2 or E 3 lies on 

the common boundary of two regions R. and R. , then any related function may 
J i wJ(~) ie the point may arbitrarily be be derived from either w (~) or 

associated with one of the two regions. This situation does not, however, 

prevail. 

Since the transformation is developed to calculate only displacement, or a 

spatial derivative of the displacement, a less restrictive requirement than the 

above one is that these two quantities shall be continuous across a region 

boundary° A consequence of using the finite difference formulation, equation 

(11-15), to calculate derivatives is that if the displacement is continuous, so 

is the spatial derivative. Here we require only displacement continuity. 

For the simplest region incorporated in ALFI, the L3 type, we note that 

along any boundary line segment of such a region the variation of transverse 

displacement with distance along that line is linear, and is determined solely 

by its values at the end points. The transverse displacement w(x) is therefore 

continuous across the boundary between any two such regions. 

The other two region types, Q4 and P6, are included in ALFI specifically 

for the case where the points of E] are regularly distributed. (As is likely 

to be the case when using measured structural data) and for these regions dis- 

placement continuity is obtained only in special circumstances. For adjoining 

Q4 regions, the common boundary line must be parallel to Ox] or Ox 2 , and for 

P6 regions, the adjoining regions must have three con~non points which are 

collinear. If for Q4 and P6 regions these restrictions are not satisfied and the 

displacement is discontinuous, the spatial derivative mustbe calculated from one 

region only. 
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In these cases of discontinuity, anomalies arise from the arbitrary 

choice of region with which to associate a point on the boundary, and the 

existence of these must be indicated by the program. It is, however, unlikely 

that the overall result of any one particular transformation will be noticeably 

affected by a few such anomalies. 

11.3.4 Degenerate interpolation 

The discussion in sections 11.1.4 and 11.3.2 left undecided the problem of 

whether or not the matrix G i is non-singular, and therefore invertible. We now 

return to this, for the three region types that are currently included in the 

computer program. G i is obviously singular when there is spatial coincidence of 

two of the points defining the region, since there are then two identical rows in 

the matrix. Another cause of singularity is that which arises from a particular 

geometrical arrangement of the points defining the region. Consider as a simple 

example a region of type L3, defined by the points whose coordinates are 

(Xll,X21), (x12,x22) and (x13,x23). 
and (11-18) 

G i _- 

The matrix G i is, from equations (11-14) 

m u 

1 Xl l  x21 

1 Xl2 x22 

1 x13 x23 
D 

which is singular if the determinant is zero. This is precisely the condition 

that the three points are collinear. Similar cases can be found for the other 

two region types. In general, the failure of the transformation method in these 

circumstances cannot be detected until, as in the example, the determinant is 

calculated. In most cases it can be avoided by changing the regional structure. 

The reader may, however, find it helpful to visualise the physical 

circumstances associated with these singularities. They represent attempts to 

define a surface through a set of points when the disposition of the points 

renders any particular solution non-unique. Referring again to the example above, 

a multiplicity of planes may be defined if the only requirement is that they each 

pass through three collinear points. 

II.4 ASSOCIATION OF POINTS WITH REGIONS IN ALFI 

11.4.1Al$orithm for points interior to re$ions 

The simplest situation is when a point of E 2 or Z3 lies inside a 

particular region. This region is obviously the one with which the point should 
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be associated. 

point is within a region. 

Consider first a triangle PIP2P 3 , of 

area A , and a point, Q0 ' within the triangle. 

Given the magnitude of the areas AI, A2, A 3 

shown in the sketch, the following relationships 

hold: 

A! + A 2 + A 3 = A i f  Q0 i s  i n s i d e  t h e  t r i a n g l e  
o r  on t h e  b o u n d a r y  

A| + A 2 + A 3 > A if Q0 is outside the triangle. P2 P3 

We therefore need a method for determining whether or not a given 

These may be used as a test to determine whether or 

not Q0 is within the triangle PIP2P3 . This 

test may be applied immediately to an L3 region. The extension to Q4 and P6 

regions is achieved by subdividing these more complex shapes into 2 and 4 simple 

triangles respectively (Figs la and Ib). By use of this technique all points of 

E 2 and E 3 , that lie within some region will be associated with that region. 

It does however introduce restrictions on the method of definition of the 

regional structure (section II.3.1). If the interior of a region is to be 

properly defined the lines used to subdivide it must lie within the region. This 

is impossible if the boundary llne segments cross. Also certain geometrical 

arrangements of the characteristic points may lead to a violation of this con- 

dition (Fig 2a). The order in which the characteristic points are given is also 

important, as a different ordering may lead to the specification of a different 

interior (Fig 2b). 

11.4.2 Algorithm for points outside any region 

Occasion may arise when we require flexibility information for a point 

outside the regional structure. This eventuality can be accommodated if the point 

is associated with some region, and the displacement approximation over that 

region used for extrapolation, rather than interpolation as hitherto. The part 

of the structure outside all regions may be subdivided by the internal bisectors 

of the angles between pairs of successive line segments which define part of the 

boundary* of the regional structure (see following sketch). 

* The method used in ALFI to determine which points of E I lie on the outline of 

the regional structure may fail if the regions overlap, and it is only for this 
reason that overlaps are prohibited (section II.3.1). 
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A point Q of either ~2 or E 3 lying between two such bisectors a~d 

external to the regional structure may then be associated with the region that 

has as part of its boundary the line joining the two bisectors. Effectively 

then those regions which may be said to provide a part of the boundary of the 

regional structure are extended towards the extremity of the plate. In certain 

circumstances the variation of transverse displacement across the boundary between 

two such extensions (the dashed lines of the sketch) is continuous but in general 

this is unlikely. 

In principle a point such as Q may be an unlimited distance from the 

region with which it is associated, but intuition suggests that beyond some limit 

the results of the extrapolation might well be of little value. Logically, 

such limits should be linked in some way to the overall dimensions of the particu- 

lar region chosen. This is achieved if the limits are established by examination 

of the numerical values of the elements of the appropriate N i . As an illustra- 

tion we consider the region type L3. 

For any point x associated with such a region we write 
Ni(x) i i i 

= (N|,N2,N 3) and define nma x and nmi n to be the largest and smallest 

of the components of Ni(x) . If the point x is inside, or on the boundary of, 

the region it can be shown that 

and that the equality 

Further if the point 

0 < nmi n, n < | (11-22) max 

n o = 0 applies if the point is on the boundary. mln 

× is one of the three corner points n = ] . If the 
max 
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point (x) is outside the region, the inequality (11-22) no longer holds, 

and n and nmi n increase and decrease respectively as the point is moved 
max 

further away from the region. Numerical examination of the vector Ni(×) 

for the region types Q4 and P6 indicates that similar increase and decrease of 

n and n . occurs*. Fig 3 depicts, for each region type, the limits on 
max mln 
the range of extrapolation that are currently included in ALFI**. 

11.5 EXAMPLETRANSFORMATIONS USING ALFI 

II.5oi General remarks 

The particular transformations discussed in the following sections have 

been effected using ALFI and have been artificially contrived in such a way that 

the accuracy of the transformation process in various circumstances may be 

assessed. We shall consider flexibility matrices appropriate to a flat constant- 

thickness cantilever plate which is skewed or swept at an angle of 45 ° to the 

line of fixing. In contrast to the beam example of a previous Memorandum 3, 

there is no general analytic solution for the transverse displacement of such a 

plate under load and so it is necessary to resort to the use of numerical 

techniques in order to obtain the basic flexibility data. The flexibility 

characteristics of the plate were determined using an available finite element 

program 4, with a fairly large number of elements. The plate together with the 

finite element arrangement used are shown diagrammatically in Fig 4. To avoid 

a proliferation of numerical data we will restrict our attention to transforma- 

T It is convenient to assume that a flexi- tions of the type $22 = N2ISIIN21 ' 

bility matrix relating transverse displacement and load, SH , appropriate to 

the set of 325 points, H , comprised of the vertices of the elemental triangles 

shown in Fig 4, has been calculated. With the fine elemental structure chosen, 

it is likely that the flexibility characteristics so calculated will be very 

close to the exact solution for the set of points ~ and hereafter we will 

assume that the use of SE with a vector of discrete loads at the points 

will yield a 'true' displacement pattern over the plate for that loading. We can 

take as specific examples of original flexibility matrices (e~ S l] of section 

II-2) those appropriate to various subsets h i of ~ , extracting the matrices 

from SE ° 

Here n and n . refer to the largest and smallest components of the 
max . mzn 

a p p r o p r i a t e  N l ( x )  , n o t  t o  t h e  v e c t o r  a p p r o p r i a t e  to  a r e g i o n  o f  t y p e  L3.  

** These limits can, if necessary, be overridden. 
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In any particular application of the transformation process, the flexi- 

bility information contained within the original matrix has to some extent been 

misrepresented in the derived matrix. Whether or not the accuracy of any derived 

flexibility matrix is acceptable can only be judged in the context of the pro- 

posed use of the data. We will examine the displacement pattern obtained from a 

derived matrix for some representative loading. We choose to derive a matrix for 

a subset, Hd ' of ~ so that 8~ may be used in conjunction with that same 

representative loading to calculate a 'true' displacement pattern, thus providing 

a yardstick against which the displacements obtained from our derived flexibility 

data may be judged. The loading, L~L , used is applied at 18 points (which 

collectively must be a subset of Ed ) on the plate whose disposition is shown in 

Fig 4. The loading data are given in Table I. If we regard the plate as some 

idealisation of an aircraft wing, the loading pattern of Table ! is typical of 

that expected in a discrete representation of subsonic aerodynamic load. 

11.5.2 Derived flexibility matrices relating transverse displacement and load 

11.5.2.1 Transformations involving, interpolation only 

From the matrix S~1 appropriate to the 45 points of ~I shown in Fig 5, 

we derive a matrix appropriate to the 36 points of ~d which are also shown in 

Fig 5. The disposition of the points of ~I is typical of that which might be 

used in the calculation of the flexibility characteristics of the structure by 

the finite element method, in that information is available for points at the 

extremities of the structure. In such cases there is likely to be little 

difficulty in defining a regional structure which extends over the whole structure. 

This is indeed possible in our example and two alternative regional structures 

are detailed in Fig 5. Thus the transformation of flexibility data will involve 

interpolation only. 

As regards the points of ~d which lie on the boundaries of regions it 

should be noted that since, in the P6 regional structure (Fig 5), the adjoining 

regions have three common points which are collinear, the assumed variation of 

transverse displacement over each region (equations (11-13) and (11-18)) leads to 

a displacement pattern which is continuous across the region boundaries. There- 

fore it is immaterial with which of the adjoining regions a point on the boundary 

is associated. Matrices appropriate to Nd were derived using the two alterna- 

tive regional structures of Fig 5 and the displacements, at the points of ~d ' 

due to L~L evaluated in each case. These displacements together with the 
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corresponding 'true' displacements are tabulated in Table 2. The displacements 

calculated using the derived flexibility data are in good agreement with the 

'true' displacements. The agreement is especially close when the matrix derived 

from the P6 regional structure is considered° In common with the findings in 

the beam example of Ref 3, such discrepancies as there are are larger in absolute 

terms for points closest to the root area. However as far as the loading L~L 

is concerned either of the derived matrices yields results of acceptable accuracy. 

11.5.2.2 Transformations involving some extrapolation 

Three flexibility matrices appropriate to ~d are derived from a matrix 

$~2 appropriate to the set of points ~2 using the alternative regional 

structures shown in Fig 6° Basically there are 18 points of ~2 (Fig 6) but in 

one instance these are augmented by three points at the station x 2 = 0 to make 

possible a regional structure consisting of P6 regions only. The spatial dis- 

tribution of the points of ~2 is typical of that which might be employed in an 

experimental determination of flexibility data. The regional structures based on 

~2 do not extend over the whole structure and data at points external to the 

regional structure must be produced by extrapolation. Following the ideas of 

section 11o4.2, that part of the plate external to the regional structure has 

been divided to form the extensions to boundary regions illustrated in Fig.6 The 

precise regions with which points of ffd external to the regional structure are 

associated is then obvious from an inspection of that figure. 

The derived matrices appropriate to ~d are used to calculate the trans- 

verse displacements due to the loading LffL and these are given in Table 3. 

As regards the results for the L3 regional structure, the calculated displace- 

ments are again in good agreement with the 'true' solution with the exception of 

that for the point (3,2) labelled Q in Fig 6. This is a direct consequence of 

the point Q having been associated with the region R 2 whereas perhaps an 

association with R| would have been more appropriate since this would have 

involved extrapolation in the OXl direction utilizing displacement data at the 

points PI and P2 (Fig 6). This type of physical argument might well be use- 

ful in the selection of a suitable regional structure for any given problem. 

For instance if we adopt the Q4 regional structure of Fig 6, extrapolation to 

the points external to the regional structure is always in the chordwise sense. 

This is a logical procedure to adopt given our particular arrangement of points 

of ~2 The Q4 regional structure does in fact lead to transverse displacements, 

due to L~L , at points in the root and tip areas, which agree more closely with 

the 'true' results than those obtained using the L3 regional structure (Table 3). 
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As regards the P6 regional structure the displacements, due to hHL (see 

Table 3) are in general very close to the 'true' results. However we note that 

the calculated displacement varies quite rapidly in the vicinity of the points 

external to the regional structure which suggests that when extrapolation is 

involved in the transformation process, the results should be critically examined 

to ensure that the extrapolation has not been carried to extremes. 

11.5.3 Derived flexibility matrices relating spatial derivatives and load 

11.5.3.1 Transformations involving interpo!ation only 

The regional structures based on the set of points HI shown in Fig 5 

have been employed in the derivation, from SKI , of matrices which purport to 

2 (transverse displacement) and transverse load appropriate to the relate ~x I 

I of equation (11-12)). These matrices were used in set of points K d • (c~ $23 

conjunction with the loading LK L and the resulting spatial derivatives may be 

compared with the 'true' results by reference to Table 4. In general there is 

a fair measure of agreement between them, those data obtained via the P6 

regional structure being the closer to the quoted 'true' results. Once again, 

the discrepancies are numerically greatest in the root area. 

As regards data obtained via the L3 regional structure, it can be seen, 

from an inspection of Table 4, that the spatial derivatives at the points (3,2) 

and (5,2) take the same numerical value. (A similar situation exists with regard 

to the points (9,2) and (11,2).) 

placement along the llne x 2 = 2 

tion process. 

This is due to the variation of transverse dis- 

which is implicitly assumed in the transforma- 

From Fig 5 we see that along this line (from x| = 2 to x] = 14) we 

pass alternately through regions with two points and one point fixed. Now the 

transverse displacement over an L3 region having two characteristic points which 

are fixed is constant along lines parallel to the region boundary line joining 

the two fixed points. This accounts for segments such as that marked BC in the 

following sketch. 
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Transverse / 
displacement 
along the M point of Ed 

line x 2 = 2 ~ point of E~ 

~ point of E~ 

3 5 7 9 I 13 
x I along the line x 2 = 2 of the plate 

~le points (3,2) and (5,2) lie on region boundaries (Fig 5) and correspond 

to breakpoints, A and B respectively, of the transverse displacement 

sketched above. In this situation, the procedure adopted for evaluating spatial 

derivatives (equation (11-16)), leads, for sufficiently small d , to identical 

values at the two points in question. Other seemingly equal entries in the Table 

are the result of rounding. 

Turning our attention to the data obtained via the P6 regional structure, it 

should be noted that apart from entries for the pairs of points (3,2), (5,2) 

and (9,2), (I],2) all other occurrences of equal entries in Table 4 are the result 

of rounding. A propo8 the aforementioned pairs of points, we note that each 

pair lies within a P6 region having three collinear fixed characteristic points 

(Fig 5). The state of transverse displacement, equations (11-13) and (11-18), 

in such a situation reduces to 

wi(x) = a3x 2 + a4xlx 2 + a6x ~ 

Thus along any line x 2 = constant of such a region, we have a linear variation 

of transverse displacement along that lineo Therefore points such as (3,2) and 

(5,2) have an identical value of the spatial derivative under consideration. 

11.5.3.2 Transformations involving__~me extrapolation 

The spatial derivatives of Table 5 were produced in an analogous manner to 

those of Table 4, but starting with a flexibility matrix appropriate to S~2 and 

using the regional structures based on H2 which are shown in Fig 6. Equal 

entries in the columns of data from the various derived matrices may be explained 

using similar arguments to those used in section 11.5.3.1 in similar 
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circumstances, the particular region with which any point of ~d is associated 

being determined from Fig 6. 

In judging the results from the derived matrices one must bear in mind the 

paucity of information points in the original flexibility data. The results, 

apart from those in the root area are remarkably good. With regard to the root 

area, it is to be hoped that, in the event of certain features of the local 

deformation pattern being significant in a particular problem, the distribution 

of the points for which the original flexibility matrix is defined would be such 

as to permit an adequate description of that local deformation. 

11.6 RELATIONSHIP BETWEEN ACCURACY AND LOADING PATTERN 

In section II.5 we used derived flexibility matrices to calculate certain 

features of the deformation pattern due to a particular loading. As regards the 

likely accuracy to be expected from such matrices used in conjunction with other 

loads patterns, we note that the eigenvectors of any flexibility matrix can be 

considered to constitute a basis for any loads pattern which may be used with 

that matrix. Therefore it is pertinent to consider loading patterns in the 

shape of each eigenvector of a derived matrix and to compare the displacements 

obtained via the derived matrix with those of the 'true' solution for the same 

loading. In this way we can determine the character of those loading patterns 

which, when used in conjunction with the derived matrix, give rise to displace- 

ments which are grossly in error. 

We take as a specific example the flexibility matrix (displacement/load) 

derived from $~2 using the Q4 regional structure (section 11.5.2.2) and use 

it to calculate the displacements due to a total load* of four units of force 

distributed in the shape of specific eigenvectors of the derived matrix. The 

results for loadings in the shape of the eigenvectors corresponding to the 

higher eigenvalues or flexibilities, ~I' ~2' "''' ~9 (~I > ~2 > "'" > ~9 )' 

are shown in Figs 7, 8 and 9 as spot heights on the contour plots of the corres- 

ponding 'true' solutions. While there are some local differences between the 

'true' and calculated displacements of Figs 7, 8 and 9, overall, there are no 

major discrepancies. Obviously the detailed agreement between the two sets of 

data deteriorates as modes of lower and lower flexibilities are considered. The 

illustrations corresponding to ~I0' ~II and ~12 (Fig I0) show the emergence 

of an identifiable characteristic, viz that the 'true' displacements towards the 

* The phrase 'total load' is used here to mean the sum of the individual discrete 
loads. 
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free end of the plate are large compared with those calculated via the derived 

matrix. This characteristic persists for loading patterns in the shape of eigen- 

vectors corresponding to eigenvalues which are numerically less than 412 . 

(These displacement patterns are not illustrated because in the broad they are 

similar to that corresponding to 412 .) To understand this trend it is 

necessary to appreciate that when the elastic characteristics of the structure 

are represented by a flexibility matrix, A , say, a loading in the pattern of 

an eigenvector of A gives rise to displacements in the same pattern but when 

that same loading is used in conjunction with another flexibility matrix, B , 

the eigenvectors of B then constitute a basis for the loading and the displace- 

ments calculated via B will have components in the shape of eao~ eigenvector 

of B *. For our problem we identify the derived matrix with A and the matrix 

SN with B . For loadings in the shape of eigenvectors corresponding to 

eigenvalues less than or equal to 412 , the 'true' displacement as calculated 

via SN is, over the outer half of the plate, dominated by component displace- 

ments in the graver modes of S H Thus on the basis of the criterion used 

heretofore to judge accuracy of data obtained via the derived matrix, we must 

regard the displacements from the derived matrix as being incorrect for these 

loadings. In this way, we have a quantitative feel for the type of loadings for 

which the derived matrix will yield incorrect displacements. In any particular 

problem, the precise level at which such effects can be expected to manifest 

themselves is dependent upon the number and distribution of the points of the 

sets with which the original and derived matrices are associated. 

In using the above technique to assess the accuracy of a derived matrix 

with some general loading pattern, it must be borne in mind that the principal 

flexibilities of the higher modes are small in relation to those of the graver 

modes. A displacement calculated via the derived matrix is thus only significantly 

in error if the loading vector corresponds to loads in the modes of the derived 

matrix with relatively small principal flexibilities. 

As an illustration, the composition of the loading LHL in terms of the 

total loads in each of the modes of the derived matrix considered in this section, 

and the flexibilities of these modes are given in Table 6. The errors produced 

by the inclusion of each of the first ]2 modes can then be deduced by examining 

Figs 7 to I0. From Table 6 it is evident that the deformation due to the loading 

The set of points with respect to which A is referred is assumed to be a sub- 
set of that associated with B . 
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L~L consists in the main of contributions from the modes of lower flexibilities 

and the contributions from the higher modes are very small in comparison. 

11.7 CONCLUDING REMARKS 

The equation of aeroelastic equilibrium has been developed from the general 

presentation of Part I when particular simplifying assumptions in respect of both 

the structural characteristics of and the loading on the structure are made. 

The interface between the structural information and the loading data in this 

particular instance is shown to reduce to some transformation of the flexibility 

information, the derived structural information taking the form of discrete 

flexibility information (possibly of a different form to the original) referred 

to a different set of points. 

A Fortran computer program ALFI has been written to implement such trans- 

formations occurring in aeroelastic analyses. The main features of the program 

have been described in this Report. Briefly the user specifies a regional 

structure which is compounded from a number of pre-programmed region types. 

ALFI can then be used, in conjunction with flexibility data of displacement/ 

load form referred to a set of points X l to produce a matrix which purports 

to relate either displacement or a spatial derivative of displacement at a set of 

points X 2 , to loads at a set of points E 3 

The program has been used to calculate flexibility matrices related to one 

set of points for a swept cantilever plate of constant thickness from a number of 

different matrices related to other sets of points using diverse regional 

structures. The derived matrices were used to calculate the displacement of the 

plate under a particular loading which, if the plate were to be regarded as a 

structural idealisation of an aircraft wing, would be typical of that expected in 

a discrete representation of subsonic aerodynamic load. The displacements and 

spatial derivatives so obtained were compared with a 'true' solution obtained 

directly from a structural finite element analysis. In general good agreement 

was obtained which suggests that for this particular loading at least the 

,derived matrices are of an acceptable accuracy. A greater density of information 

points in the original set ~I is reflected in greater accuracy of the deforma- 

tion as calculated from the derived matrices when viewed overall. Flexibility 

matrices derived from one appropriate to a relatively coarse distribution of 

points in E l also gives, for our representative loading, deformation data of 

acceptable accuracy. This, to a certain extent, is a reflection on the nature of 

the 'true' deformation pattern for that loading, in that it can be reasonably 

described by the displacements over a coarse grid of points. 
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With regard to other loading patterns, it was noted that the eigenvectors 

of any flexibility matrix can be considered to constitute a basis for any loads 

pattern used with that matrix. Upon examination of the eigenvectors of a 

derived matrix, it was found that, for transformations involving a comparable 

number of points in each set, about half the eigenvectors of the derived matrix 

are valid in that the derived displacements due to a loading pattern in the 

shape of the eigenvector can be considered accurate. The valid eigenvectors are 

associated with the higher flexibilities and although the remainder are invalid, 

in the sense described above, they are however associated with the lower 

flexibilities. It is concluded that, so long as the displacements, as calcula- 

ted from the derived matrix, do not resemble those of an eigenvector of that 

matrix which is associated with a relatively low flexibility (viewed in relation 

to the number of, and distribution of points in the two sets) then they are 

likely to be of an acceptable accuracy. 
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Appendix A 

ON THE CHARACTERISTICS OF A DERIVED FLEXIBILITY MATRIX 

A square matrix (order s2) , $22 which relates displacements at the set 

of points, E 2 , due to loads at the same set of points can be derived from a 

square matrix (order Sl) , SII defined with respect to a set of points E l , 

via the transformation* 

N T $22 = NS]] (A-l) 

The following discussion will be based on transformations of the type given by 

equation (A-l). This does not represent a restriction on the generality of the 

discussion since, if necessary, we may regard the set here designated 12 as 

the union of the sets E 2 and E 3 of section II.l.4, the particular trans- 

formed matrix of equation (II-I]) being some sub-matrix of that of equation (A-I). 

In addition, we assume that SII is symmetric and can, therefore, be written as 

Sll = VAV T (A-2) 

where A is a diagonal matrix, the diagonal elements of which are the eigen- 
values of Sll and are termed principal flexibilities, 

and V is an orthogonal matrix, the columns of which are the associated 
eigenvectors of Sl] normalised such that their lengths are unity. 

Physically the eigenvectors of a flexibility matrix, $ , may be interpreted as 

follows. When a vector of discrete loads, tile components of which are propor- 

tional to the corresponding components of an eigenvector of S , is used in 

conjunction with S , the resulting displacements are equal to the product of 

the load vector and the corresponding principal flexibility. 

$22 is also symmetric and may in an analogous manner be written as 

S22 = W ~WT (A-3) 

For the matrix $22 

(A-I), the rank of S 
22' 

derived from S]] by the transformation of equation 

R(S22) , satisfies the inequality** 

To be consistent with the notation of Part II, N of equation (A-I) should 
carry the subscript 2] but since attention in this Appendix is restricted to 
this one transformation, the subscript can be dropped. 

** The rank theorems utilised in this Appendix are listed in Appendix B. 
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R(S22) ~< min(R(N), R($11)) . 

In particular R(S22 ) cannot exceed R(Sll ) which means that although the 

transformation process may impose certain additional constraints on the original 

structural model such that some modes of flexibility may be suppressed and others 

misrepresented in the derived matrix $22 , the number of modes of flexibility 

cannot be increased. 

SII is said to be positive definite if and only if all its eigenvalues, 

%''xl ' i = I, 2, ..., s I , satisfy the inequality: %ix'" > 0 . Further Sll is 

positive semi-definite if and only if %.. > 0 and the strict equality holds 
Ii 

for at least one value of i As regards the derived matrix, S22 ' we can 

write in view of equations (A-3), (A-l) and (A-2) 

where B = WrNV 

An element ¢i% 

d p =  B A  B T 

of • is given by 

(A-4) 

~i% 

S I S 
1 

k=l j=l 

where bij is an element of B and %jk is an element of A o 

But %jk = 0 for j ~ k and ~i% = 0 for i # ~ and we can therefore write 

~ii ' an eigenvalue of $22 as 

~ii 

s I 

= Z b'2"%" " 13 3.] 
j=l  

whence we see that for either %.. > 0 , 
3J 

j = ], ..., s 1 , it may be asserted that 

S;| has no negative eigenvalues (ie $11 

definite) the same will be true of $22 . 

Whether $22 

the precise form of 

j = I, ..., s I , or %.. > 0 , JJ 

~ii > 0 , i = I, ..., s 2 • Thus, if 

positive definite or positive semi- 

is positive definite or positive semi-definite depends upon 

N in the particular instance and the orders of the two 
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matrices $22 and SII . Necessary and sufficient conditions for $22 to be 

positive definite given $II positive definite or positive semi-definite can be 

written in terms of N and the characteristics of S . For if S is of 
I1 I I  

rank s R , positive definite (s R = s I) or positive semi-definite (s R < Sl), 

without loss of generality we can write equation (A-4) as 

T 
• = ( A - 5 )  

8 R 

where A~R is a diagonal matrix of the 

$11 and 

s R non-zero eigenvalues of 

= wTNv (A-6) 
BI1  I I  

where VII is a matrix of order s I x s R whose columns are the eigenvectors 
associated with As R . 

Now for $22 to be positive definite we must have 

R($22) = R(~) = s 2 , 

which by virtue of equation (A-5) implies the two necessary conditions, viz 

and 

R(811) i> s 2 (A-7) 

R(ASR)  t> s 2 . (A-S) 

But 811 is of order s 2 x s R and its rank cannot therefore exceed s 2 so that 

the condition expressed by equation (A-7) may be sharpened to 

R(BII) = s 2 (A-9) 

or by virtue of equation (A-6) in which W is a non-singular square matrix 

R(NVII) = s 2 . (A-lO) 

Since A is of order s I and rank s R condition (A-8) may be expressed as 

s 2 ~ s R ~ s 1 . ( A - I I )  
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That conditions (A-|0) and (A-l l) are sufficient to ensure S22 positive definite 

is evident from the following discussion. In the light of the above development 

we may write 

s R 

~ii = L b2"~'" " 1 ]  :13 
j=] 

Therefore #ii is zero if and only if bij , 

define b.z = (bil 'bisR ) ,bi2,... , b. is null. 
I 

Now 

b.  = w~N V 1 
z ! 

j = l, ..., s R , is zero or, if we 

where w. is the ith column of W and is of rank lo 
i 

From theorems listed in Appendix B on the bounds of the rank of product of 

two matrices we have 

and 

R(b i) 

R(b i) 

R(wi) + R(NV]] ) - s 2 

min(R(wi) , R(NVII)) 

and since R(NVII ) = s 2 , we conclude that R(b i) = ] . Therefore b .  is not 
i 

null and ~ii # 0 Therefore the condition R(NVll ) = s 2 is sufficient to 

ensure S22 positive definite given s 2 < SR<S I . An immediate corollary is 

that given $ll positive definite, $22 is positive definite if s 2 < sl and 

R(N) = s 2 . 

Since quantities like R(N) and R(NVll ) clearly depend upon the 

particular transformation being attempted, it is impossible to make further 

general statements about the character of $22 " Among the factors figuring 

prominently in the constitution of the matrices N and NVll we may cite the 

relative numbers of and distribution of information points in the grids concerned; 

the regional structure and the suitability of the chosen functions N . The 

first of these may well be outside the control of the aer6elastician, but among 

the diverse options available in respect of the last two factors there may well 

be an arrangement which leads to compliance with conditions such as R(NVll ) = s 2 o 
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Appendix B 

RANK THEOREMS USED IN APPENDIX A 

. The rank of a product of two matrices is not greater than the rank of 

either factor, ie if AB exists then 

R(AB) < min(R(A), R(B)) . 

Ref 5, Theorem 5.6.2 

. The rank of a matrix remains unchanged if the matrix is premultiplied or 

postmultiplied by a non-singular square matrix. 

Ref 5, Theorem 5.6.3 

3. If the product &B exists, then 

R(AB) > R(A) + R(B) - n 

where n is the number of columns in A (and of rows in B). 

Ref 5, Theorem 5.6.5 
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T a b l e  1 

THE LOADING, L~I L , USED IN THE ASSESSMENT OF 

DERIVED FLEXIBILITY DATA 

Coordinates of the 
points of E L 

(units of length) 

x 2 x 1 

2 3 
7 

11 
6 7 

11 
15 

10 11 
15 
19 

14 15 
19 
23 

18 19 
23 
27 

22 23 
27 
31 

The components of 
the loading L 

(units of force) 

0. 4362 
0.2109 
0 ° 1204 
0.4922 
0.2068 
0.1058 
0.5155 
0.2058 
0 . 1 0 1 0  
0 . 5 2 1 7  
0 . 1 9 9 8  
0 . 0 9 2 8  
0.5084 
0 . 1 7 8 1  
0 . 0 7 2 0  
0 . 4 4 4 3  
0 .  1082 
0 . 0 3 3 6  



59 

Table 2 

TRANSVERSE DISPLACEMENTS AT THE POINTS OF H d DUE TO LHL : 

THE TRANSFORMATION OF FLEXIBILITY DATA INVOLVING INTERPOLATION ONLY 

(Reference to Fig 5 may be advantageous) 

Coordinates of the 

points of Hd 

Displacements due to LHL as 

calculated by matrices derived 

'True' 
displacements 

from $Hl using a regional 

structure comprising: 

due to 

x 2 x I L3 regions P6 regions 

2 3 1.7 x 10 -4 0.4 x 10 -4 I.I x 10 -4 

6 

10 

14 

18 

22 

5 
7 
9 

I1 
13 

7 
9 

11 
13 
15 
17 
11 
13 
15 
17 
19 
21 
15 
17 
19 
21 
23 
25 
19 
21 
23 
25 
27 
29 
23 
25 
27 
29 
31 
33 

4.1 
5.9 
7.7 
13.7 
18.5 
29.3 
40.0 
53.6 
68.7 
85.4 
104.8 
119.6 
143.5 
166.0 
192.2 
218.8 
244.8 
256.8 
287.6 
317.1 
347.0 
378.2 
408.8 
420.9 
453.1 
485.2 
517.2 
549.2 
581 .3  
594.7 
627.1 
659.4 
691.6 
723.8 

2.1 
3.0 
5.6 
9.6 

14.7 
28.8  
40.0 
53.0 
68.1 
85. I 

104.0 
116.8 
140.5 
164.6 
189.7 
216.4 
243.4 
255.6 
285.2 
315.5 
345.6 
376.0 
406.9 
419.4 
451.5 
483.3 
515.1 
546.8 
578.6 
592.2 
624.4 
656.4 
686.3 
720.3 

755.9 x 10 -4 752.2 x 10 -4 

2.1 
3.5 
5.4 
8.3 
13.5 
28.8 
40.0 
53.0 
68.0 
85.2 
104.1 
117.3 
140.6 
164.9 
190.2 
216.5 
243.7 
255.5 
285.3 
315.4 
345.6 
376.1 
406.9 
419.5 
451.5 
483.4 
515.2 
547.0 
578.8 
592.5 
624.6 
656.6 
688.6 
720.5 
752.4 x 10 -4  
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Table 3 

TRANSVERSE DISPLACEMENTS AT THE POINTS OF ~d DUE TO LNL : 

THE TRANSFORMATION OF FLEXIBILITY DATA INVOLVING SOME EXTRAPOLATION 

(Reference to Fig 6 may be advantageous) 

Coordinates of the 
points of Ed 

Displacements due to LEL as 

calculated by matrices derived 
from $~2 using regional 

structure comprising: 

x 2 x I L3 regions Q4 regions P6 regions 

2 (E) -4.9 x 10-4 0.9 x 10-4 2.2 x 10 -4 

6 

I0 

14 

18 

3 
5 
7 
9 

11 
13 (E) 

7 (E) 
9 
II 
13 
15 
17 (E) 
I 1 (E) 
13 
15 
17 
19 
21 (E) 
15 (E) 
17 
19 
21 
23 
25 (E) 
19 (E) 
21 
23 
25 
27 
29 (E) 
23 (E) 
25 
27 
29 
31 
33 (E) 

22 

2 .3  
3 .7  
5 .9  
9 .0  

12.1 
27.9  
40 .7  
53.6  
68 .5  
85 .4  

102.3 
116.6 
140.7 
164.8 
189.9 
215 .9  
241.9 
254.9 
284.6 
314.4 
344.4 
374.6 
404.7 
418.6 
450.2 
481 ,7  
513.1 
544.5 
575,9 
591.0 
622.6  
654.1 
685.6 
717.1 

2 . 3  
3 .7  
5 .9  
9 .0  

12.2 
27 .8  
40 .8  
53 .8  
68 .8  
85 .8  

102.8 
116.8 
141.0 
165.3 
190.4 
216 .6  
242.7 
255.5 
285,4 
315.2 
345.3 
375.6 
405.9 
419.6 
451,3 
482.9 
514.5 
546.0 
577,5 
592.4 
624.1 
655.7 
687.4 
719.0 

748,6 x 10 -4 750.6 x 10 -4  

1.5 
2 .9  
5 .9  
9 .0  

12.2 
29 .0  
40 .0  
53 .0  
68 .0  
85.1 

104.3 
116.9 
140.9 
165.3 
189.9 
216.1 
244°5 
255.7 
285.4 
315.4 
345.6 
376.2 
407. l 
419.8 
451.6 
483.5 
515.2 
547.0 
579.1 
592.9 
624.7 
656.7 
688.7 
720.7 
753.5 x 10 -4 

'True' 
displacements 

due to 

Lg L 

I.I x 10-4 
2,1 
3.5 
5.4 
8.3 
13.5 
28.8 
40.0 
53.0 
68.0 
85.2 

104.1 
117.3 
140.6 
164.9 
190.2 
216 .5  
243.7  
255.5 
285.3 
315.4 
345.6 
376. I 
406.9 
419.5 
451.5 
483.4 
515.2 
547.0 
578.8 
592.5 
624.6 
656.6 
688.6 
720,5 
752.4 x 10 -4 

NOTE: (E) in the x I coordinate column indicates that the point is external to 

the regional structure. 
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Table 4 

SPATIAL DERIVATIVES IN THE Ox I DIRECTION OF THE TRANSVERSE. 

DISPLACEMENT AT THE POINTS OF ~d DUE TO LKL : THE TRANSFORMATION 

OF FLEXIBILITY DATA INVOLVING INTERPOLATION ONLY 

Coordinates of the 
points of ~d 

~x13 (transverse displacement) due to L~L 

Calculated via S~2 (Fig 5) 

'True ' 
values 

x 2 x I L3 regions P6 regions 

2 3 0.61 x 10 -4 0.81 x 10 -4 

10 

14 

18 

5 
7 
9 

11 
13 

7 
9 

11 
13 
15 
17 
II 
13 
15 
17 
19 
21 
15 
17 
19 
21 
23 
25 
19 
21 
23 
25 
27 
29 
23 
25 
27 
29 
31 
33 

0 .61  
1.79 
1.51 
1.51 
4 . 7 7  
5 . 3 7  
6 . 0 8  
6 . 7 8  
8 .35  
9 . 0 3  
9 .71  

10 .25  
12 .44  
12 .64  
12 .16  
13 .72  
13 .92  
14.51 
14.71 
15.47 
15.02 
15.23 
15.74 
16.10 
16.06 
16.03 
16.01 
16.02 
16.03 
16.24 
16.15 
16.12 
16.09 
16.09 
16.09 x 10-4 

0.81 
0.37 
2.00 
2.00 
3.32 
5.17 
6.06 
6.96 
8.07 
8.98 
9.89 

11.56 
l l  .92 
12 .19  
13.15 
13.36  
13 .62  
14.69 
14.95 
15.21 
15.06 
15 .32  
15.54 
16.07 
15 .98  
15 .88  
15 .88  
15.89 
15.91 
16.15 
16 .02  
15 .98  
15 .98  
15.98 
15.96 x I0-4 

22 

0.44 x lO -4 
0.59 
0.78 
I.I0 
1.93 
3.03 
5.18 
6.00 
7.01 
8.07 
9.03 
9.89 

11 .38  
11.91 
12 .43  
12.91 
13 .37  
13 .80  
14.87 
14.96 
15 .08  
15 .20  
15 .33  
15 .47  
16.06 
15.96 
15.92 
15.89 
15.90 
15.92 
16.11 
16 .02  
15 .98  
15 .97  
15.96 
15.96 x lO - 4  
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Table 5 

SPATIAL DERIVATIVES IN THE Ox I DIRECTION OF THE TRANSVERSE 

DISPLACEMENT AT THE POINTS OF ~d DUE TO L~L : THE TRANSFORMATION 

OF FLEXIBILITY DATA INVOLVING SOME EXTRAPOLATION 

NOTE: 

a (transverse displacement) due to 
ax I L~ L Coordinates of the 

points of H d 

Calculated via (Fig 6) 
$II 2 

' True ' 
values 

x 2 x I L3 regions Q4 regions P6 regions 

3 (E) 6.44 x 10 -4 -4 0 .70  x 10 -0.85 x 10 -4 0.44 x 10 -4  
0.59 
0 .78 
I . I 0  
I .93 
3.03 
5.18 
6.00 
7.01 
8.07 
9 .03 
9.89  

11.38 
11.91 
12.43 
12.91 
13.37 
13.80 
14.87 
14.96 
15.08 
15.20 
15.33 
15.47 
16.06 
15.96 
15.92 
15.89 
15.90 
15.92 
16.11 
16.02 
15,98 
15.97 
15.96 

x 10-4 15.96 x 10-4 

the point is external 

6 

I0 

14 

18 

22 

5 
7 
9 

I I  
13 (E) 

7 (E) 
9 
11 
13 
15 
17 (E) 
11 (E) 
13 
15 
17 
19 
21 (E) 
15 (E) 
17 
19 
21 
23 
25 (E) 
19 (E) 
21 
23 
25 
27 
29 (E) 
23 (E) 
25 
27 
29 
31 
33 (E) 

0.70 
0.70 
1.55 
1.55 
I .55 
6.44 
6.44 
6.44 
8.45 
8.45 
8.45 
12.06 
12.06 
12.06 
13.00 
13.00 
13.00 
14.87 
14.87 
14.87 
15.09 
15.09 
15o09 
15.76 
15.76 
15.76 
15.69 
15.69 
15.69 
15.78 
15.78 
15.78 
15.74 
I-5.74 
15o69 x 10-4 

O. 70 
0 .70  
1 . 5 6  
I . 5 6  
1 . 5 6  
6.50  
6 .50  
6 .50  
8.51 
8.51 
8.51 

12.12 
12.12 
12.12 
13.06 
13.06 
13.06 
14.94 
14.94 
14.94 
15.15 
15.15 
15.15 
15.82 
15.82 
15.82 
15.75 
15.75 
15.75 
15.84 
15.84 
15.84 
15.80 
15.80 
15.80 x 10-4 

0.18 
1.21 
1.56 
1.56 
1.56 
4.95 
5.98 
7.01 
8.04 
9.08 

10.11 
11.94 
12.09 
12.23 
12.61 
13.64 
14.66 
14.77 
14.92 
15.06 
15.21 
15.35 
15.50 
15.88 
15.92 
15.95 
15.82 
15.97 
16.12 
15.91 
15.95 
15.98 
16.02 
16.05 
16.73 

(E) in the x I coordinate column indicates 

the regional structure 
that to 
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Table 6 

COMPOSITION OF THE LOADING L IN TERMS OF TOTAL LOADS 

IN THE PATTERN OF THE EIGENVECTORS OF THE MATRIX DERIVED 
FROM $~2 USING Q4 REGIONS 

Mode 
number 

i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

l l  

12 

13 

14 

15 

16 

17 

18 

Eigenvalue 

5.1334 x I0-I 

1.6706 x 10-2 

6.6936 x 10-3 

2.1750 x 10-3 

7.1895 x 10-4 

6.1439 x 10 -4 

2.5547 x I0-4 

2.1790 x 10-4 

1.3448 x 10-4 

9.7778 x 10-5 

6.2652 x 10 -5 

4.8832 x I0 -5 

3.5973 x 10-5 

3.5152 x 10-5 

3. 2376 x 10 -5 

3.0135 x 10-5 

2.2829 x 10 -5 

1.2971 x 10-5 

Total load 
in that 

mode 

1.994159 

1.567728 

-0.312103 

0.496509 

-0.031265 

0.173855 

0.140891 

0.021525 

0.068650 

-0.009129 

0.001296 

-0.033165 

-0.094590 

0.533708 

0.032124 

-0.000401 

0,032100 

-0 .028636 

Running 
total 
load 

1.994159 

3.561887 

3.249784 

3.746293 

3.715028 

3.888883 

4.029774 

4.051299 

4.119949 

4.110820 

4.112116 

4.078951 

3.984361 

4.518069 

4.550193 

4.549792 

4.581892 

4.553256 

Displacements 
at point 
(33,22) 

795.7 

749.7 

748.1 

750.7 

750.8 

750.5 

750.6 

750.6 

750.6 

750.6 

750.6 

750.6 

750.6 

750.6 

750.6 

750.6 

750.6 

750.6 

× 104 
at point 
(21,10)  

237.4 

251.3 

243.5 

243.2 

242.6 

242.5 

242.7 

242.6 

242.7 

242.7 

242.7 

242.7 

242.7 

242.7 

242.7 

242.7 

242.7 

242.7 
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A i 

B 

B 
11 

C 

F i 

G i 

I 
n 

J n i 

LE i 

L~ L 

N 

N(x) 

Ni(x) 

Nk 1 

I N21 

N21 ' N21 

O° 
1,j 

S 

LIST OF SYMBOLS 

a matrix which when post-multiplied by WE! yields the transverse 

displacements at the n. characteristic points of R. 
l I 

the matrix product 

the matrix product 

a sub-matrix of G i 

wTN V (Appendix A) 

wTN VII (Appendix A) 

a vector of forces acting at the n. z 
and equivalent to the single load L 0 at x 0 

an assembly of particular vectors of the type h(x) , defined by 
equation (11-14) 

the unit matrix of order n 

characteristic points of R. , 
i 

a column matrix of n. elements, each of which is unity 
i 

a column vector of discrete loads in the Ox 3 direction acting at the 
set of points E. 

I 

a particular column vector of discrete loads in the Ox 3 direction 
applied at the points of HL 

a particular Nk£ (Appendix A) 

a matrix, which when post-multiplied by the column vector of displace- 
ments at the set of points E! gives the displacement in the Ox 3 
direction at the point x 

a row vector which when post-multiplied by a column vector of the 
displacements at the n. characteristic points of R. , gives the 

I i 

displacement in the Ox 3 direction at a point x associated with R i 

a matrix whose jth row is N(xj) , where x. is the jth point of 
3 

E k , and which when post-multiplied by a column vector of the dis- 

placements at E! gives a column vector of displacements at the 

points of E k 

a matrix relating a spatial derivative of the displacement at the 
set of points E 2 to the displacement in the Ox 3 direction at the 

points of E! 

particular forms of Nk! , relating to the sets of points E2, 

respectively 

a zero matrix of order (i × j) 

a general flexibility matrix 
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LIST OF SYMBOLS (continued) 

Sk£ 

I 
S23 

$ 
]1 

V 

Vll 

w 

Z a 
r. 3 

Z a 

Y'I 

Z a 

0Z i 

ZOz1 

Zdozl 

a flexibility matrix relating displacements at the set of points Zk 
to loads applied at the points of the set Z£ 

a matrix relating a spatial derivative of the displacement at the set 
of points Z 2 to loads applied at the set of points ~3 

a flexibility matrix relating ioad and displacement at the set of 
points 

an orthogonal matrix whose columns are the suitably normalised 
eigenvectors of $]] (Appendix A) 

a sub-matrix of V whose columns are those eigenvectors of S 
which are associated with non-zero eigenvalues (Appendix A) 

II 

an orthogonal matrix whose columns are the suitably normalised eigen- 
vectors of S22 (Appendix A) 

a column vector of discrete loads in the Ox 3 direction acting at the 

set of points Z3 which represent the aerodynamic loading on the 
plate 

a column vector of forces acting at the set of points 

equivalent to Z a 
Z 3 

a particular static equilibrium value of Z a 
Z i 

Z , which are 
I 

a column vector of discrete forces acting at the points of 
are equivalent to the total load on the plate 

Z which ! 

that part of Z0z I that is non-aerodynamic 

b , 

3. 

h (x) 

W, 
l 

wz i 

w0z i 

a column vector of constants used in the representation of the state 
of displacement over a region 

ith row of B11 

a sub-matrix of h(x0) 

a row vector used in the representation of the state of displacement 
over a region 

the ith column of W 

a column vector of displacements in the Ox 3 direction at the set of 
points Z. 

1 

a particular static equilibrium value of wzi 
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I 
wE 2 

I 
w012 

WdoE. 
1 

x 
0 

x 
k 
i 

x 
r 

LIST OF SYMBOLS (continued) 

a column vector of spatial derivatives of displacement evaluated at 
the set of points 12 

the particular static equilibrium value of I 
wE 2 

that part of w0E i attributable to non-aerodynamic loads 

the coordinate pair (Xl,X2) 

a particular point at whihh the load L 0 is applied 

the position of the kth point of the appropriate set 

i a column vector whose jth element is x 
r. 
3 

A 

%R 

a diagonal matrix of the eigenvalues of S 
II 

a diagonal matrix of the non-zero eigenvalues of 

a diagonal matrix of the eigenvalues of S 
22 

S 
11 

the coordinate pair (~1,~2), corresponding to (Xl,X2) 

L o 

3 

Ox I x2x3 

R° 
1 

z a 
1 

Z a O. 
1 

z 0 (x) 

Zd0 (x) 

asingle discrete load in the Ox 3 direction acting at x 

the jth element of Ni(x) 

a rectangular body attached axis system whose origin 0 
definite material point of the body 

the ith region 

an element of Z a 
~3 

an element of Z a 
0Z 3 

is a 

the total static equilibrium load on the flexible vehicle 

the non-aerodynamic part of Z0(x ) 

ao 
l 

b° ° 
13 

d 

the ith element of a 

an element of 8 

the interpolation distance used in the finite difference calculation 
of the spatial derivative of the displacement (equation (II-|6)~ 
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LIST OF SYMBOLS (continued) 

no 
l 

nmax' nmi n 

s], s 2 

s R 

w(x) 

wi(x) 

w~(x) 

r 

Wdo(X ) 
i 

x 
r .  

3 
rr(x;~) 

° 

i 

~d 

+ 

~d' Yd 

E L 

2 ] 

72 

the number of characteristic points of R. 
i 

the largest and smallest values respectively of the individual compo- 

nents of a particular Ni(×) as the point x moves within a defined 
limit 

the orders of the matrices S]l' S22 respectively 

the number of non-zero eigenvalues of $]I 

the displacement of the plate in the direction Ox 3 

the displacement of the plate in the direction Ox 3 at the point x 
associated with R. 

i 

the static equilibrium deflection in the direction Ox 3 of the 
constrained plate 

r 
the non-aerodynamic part of Wo(X ) 

the x coordinate of the jth point of R. 
r i 

the flexibility influence function tensor for the constrained plate 

a set of points in the Ox]x 2 plane used to calculate the matrix $E 

for the plate considered in the example. The points lie at the 
vertices of the triangles shown in Fig 4 

a subset of ~ for which a particular matrix SEi ' of the form of 
Sl] ' is calculated 

a subset of ~ at which the displacement of the plate considered in 
the example is calculated 

sets of points related to ~d in a manner similar to the relation of 

+ 2; to 22 22 , 

a subset of ~ , defined in Fig 4, at which the representative loading 
hKL is applied to the plate used as am example 

a set of points in the OXlX 2 plane for which flexibility data are 
available. 

a set of points in the OXlX 2 plane at which either displacements, 

or spatial derivatives of displacements are required 

23 a set of points at which the plate will be loaded 
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÷ ~2 Z 2 , 

K j (X) 

Xjk 

0".  
1 

LIST OF SYMBOLS (concluded) 

two sets of points which are a distance d either side of the points 

+ (or E2) being of Z 2 , in a specified direction, all points of ~2 

on the same relative side of Z 2 

a function which has the value ! if the point x is associated with 
the region R. , and the value 0 otherwise 

l 

an element of A 

the ith eigenvalue of a particular derived matrix 

an element of 

the number of points in the set Z. 
l 

an aerodynamic operator 

a formal representation of the aerodynamic solution process, defined 
by equation (11-3) 
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Figs la  &b 

P2 

P 

P3 

P4 

Characteristic points specified in the order P1P2P3P4 

The boundary of the region is defined by the line segments 
P1P2'P2P3'P3P4'P4P1 

The interior of Q4 is the 2 simple triangles 
1 P1P2P 3 

2 P3P4P1 

Fig la Decomposition of (}4 region into simple triangles 

1 Characteristic points specified in the order P1P2P3P4P5P6 
/ ~ The boundary of the region is defined by the line segments 

/ ~ P1P2'P2P3'P3P4'P4P5'P5P6'P6P 1 

f ~ The interior of P6 is the 4 simple triangles 
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/ \ 2 P2P3P4 
P~ . . . . .  - ~ 2  3 P4P5P6 ~ '\',\ 4////i/1¢ ~ 4 P2P4p6 

P5 ~ / P3 
P4 

Fig lb Decomposition of P6 region into simple triangles 



P1 

e4 

Figs 2 a & b  

e2 
( i )  Q 4  Characteristic points specified in the order 

P1P2P3P4 ' For the arrangement shown 
P1P2P3 and P3P4P1 do not correspond to 
the region interior. Also the boundary lines 
P1P4 and P2P3 cross 

P 
~ " ~ " ~ / ~ " ~ , , - ~ . .  ~ .  - ~  . . .  - .  ( i i )  P 6  

• P 4  o 

P1 

P5 

P6 

Characteristic points specified in the order 
P1P2P3P4P5P6 o The triangle P2P3P4 is 
assumed to be part of the interior, but for 
this arrangement of points should not be so 

Fig 2a Examples of non-correspondence of the interior of a region 
with assumed simple triangles 

P3 

P4 

P2 

P P5 

(i) Order of points P1P2P3P4P5P 6 

P3 

P1 
P6 P5 

(ii) Order of points P3P2P4P5P6P 1 

Fig 2b Difference in region interior due to different ordering of 
the same characteristic points 



Area allowed for extrapolation as determined by the inequality nmi n ~< N! ~< j nmax 

~==.==..===~ Limit imposed by nma x 

Limit imposed by nmi n 

"11 
m,  

4 
/ ! 

, I  
/ I 

I 

1 

i 1 

J 
r /  
J 

Region type L3 
nma x = 2 

nmi n = -1  

Region type (24 
nma x = 2 

nmi n = -1 

Region type P6 
nma x = 4 

nmi n = - 6  

Fig 3 Areas externa l  to  a region w i t h i n  wh ich ,  in A L F I ,  ex t rapo la t ion  is deemed acceptable 
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Plate thickness = 0.2 units of length / / L /  
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/ V b  
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~ / 1 A / V V  
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/ I A A A / V  
A A / I A /  

I A / i /  
A /  
/ .  

O Point at which a component of the 
representative loading of Table 1 
is applied L~L 

x 1 

Fig 4 General arrangement of plate and the finite-element structure used to calculate S]-[ 
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4=, 



F ig5  

Point of 1-11 (24,24) (36,24) 
u 

X Point of £[d / X 

Region boundary line -- , 
i 

i 

~ / Regional structure 
I i ~' X" employing L3 regions 

# 

' ~  (24,24) 4 

(o,o) (12,0) 

x x I ~ / x  ~ ! ~ /  .egiona,.,ructure 
employing P6 regions 

X X X X 

x x ! x / x  x 

(o,0) (12,0) 

Fig 5 Alternative regional structures utilizing the 45 points of ][1 



Fig 6 
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Point of [1[ 2 

Point of H d 

Region boundary line 

(24,24) 
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I ~ - ~ ' ~  

(36,24) 

Boundary line between 
extensions of regions 

Regional structure 
employing L3 regions 

(24,24) (36,24) 
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(0,0) 
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(12,0) 

(24,24) (36,24) 

x x 

Regional structure 
employing P6 regions. 
(The points of H 2 have been 
augmented by three points 
at the root) 

Regional structure 
employing Q4 regions 

x x ~  × x 

(0,0) (12,0) 

P1 P21 
Fig 6 Al ternat ive regional structures ut i l iz ing the points of  1-[ 2 

(0,0) (12,0) 



The displacements calculated via th4e 
derived matr ix,  and mul t ip l ied x l O  , are 
shown as spot heights 
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Fig 7 Contour plots of the "true' transverse displacement xlO 4 of the plate under four units of total 
load distributed in the shape of the eigenvectors corresponding to the eigenvalues ¢1, ¢2 and 
¢3 of a particular derived matrix 



The displacements calculated via the 5 
derived matrix, and multipl ied by 10 , 
are shown as spot heights 
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Fig 8 Contour plots of the "true' transverse displacement xlO 5 of the plate under four units of total 
load distributed in the shape of the eigenvectors corresponding to the eigenvalues of q~4, q~5 
and ~6 of a particular derived matrix 

"11 m .  

¢0 



The displacements calculated via the 6 
d e r i v e d  mat r i x ,  and mul t ip l ied  by 10 , 
are shown as spot h e i g h t s  

q~7 = 2.5547 X 10-4 
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Fig 9 Contour plots of the 'true" transverse displacement xlO 6 of the plate under four units of total 
load distributed in the shape of the eigenvectors corresponding to the eigenvalues of ¢7, ¢8 
and ¢9 of a par'dcular derived matrix 



The displacements calculated via the 7 
derived matrix, and multiplied by 10 , 
are shown as spot heights 
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Fig 10 Contour plots of the "true" transverse displacement xlO 7 of the plate under four units of total 
load distributed in the shape of the eigenvectors corresponding to the eigenvalues of ¢10, ¢1 1 
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