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SUMMARY 

An analysis is presented of measurements made at RAE in 1957-1959 on a 

series of delta wings. Lift and drag have been measured by strain-gauge 

balance at Mach numbers between 1.4 and 2.8. On some of the wings surface 

pressure distributions have also been measured. This Report deals mainly with 

the zero-lift wave drag, but also gives information on skin friction drag and 

lift-dependent drag. The wave drag has been obtained by integrating the 

pressure distribution. Values of the wave drag have also been derived from 

the measured total drag by subtracting estimated values for the skin-friction 

drag and for the effect of the sting support. The experimental values are 

compared with one another and with the theoretical estimates derived by super- 

sonic area rule. The different experimental values are shown to be self- 

consistent and to lie up to 30% below the theoretical estimates. 
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| INTRODUCTION 

In 1957-59 a number of slender wings of fairly simple shape were tested at 

supersonic speeds in the 8ft × 8ft tunnel at RAE Bedford by A.O. Ormerod. The 

results contributed to the evolution of aerodynamic shapes suitable for applica- 

tion to supersonic transport aircraft, but the work was not reported in detail 

at the time. The opportunity has now been taken to examine the results more 

clearly, in particular those for a series of delta wings with rhombic cross 

sections. 

Obvious difficulties arise in the analysis of measurements made more than 

15 years ago, partly because certain details were not thought significant at the 

time and now cannot be recalled, partly because the techniques then used now 

appear somewhat unrefined. Nonetheless, some analysis still appears to be 

worthwhile. 

This Report is primarily concerned with the zero-lift wave drag. For one 

wing, which had a biconvex centre section, detailed measurements of surface 

pressure were made in addition to the usual three-component balance measurements. 

The analysis of the results for this particular wing is dealt with in section 2. 

For two series of delta wings with the so-called Lord V area distribution 

(see Ref.l) and varying aspect ratio and volume, balance measurements and some 

pressure distributions are available. The analysis of these results is discussed 

in section 3. 

Some further tests were made on delta wings with different types of cross 

sections and on a wing of a different planform. 

is discussed in sections 4 and 5. 

2.1 

The analysis of these results 

(= 1.524m) and semispan s = 20in (= 0.508m), so the aspect ratio was 4/3. 

centre section was given by 

DELTA WING WITH BICONVEX CENTRE SECTION 

Description of the model and the tests 

The model, model 229 of Table I, was a delta wing of length c o = 60in 

The 

z 
m 

c o 

where axes are chosen with x measured along the centre line from the apex, 



y to starboard and z upwards. This corresponds to a parabolic biconvex 

centre section with a thickness-to-chord ratio of 9%° The basic cross sections 

of the wing were diamond-shaped, but to provide sufficient strength the wing was 

thickened near the tips. Thickness was added outboard of the straight lines 

joining the points on the leading edges at XLE/C 0 = 0°9 to the points on the 

trailing edge where lYTE/S] = 0°65 , as shown in Fig.]. Outboard of each of 

these lines the wing shape was conical, with vertex at the tip. 

For the pressure measurements the wing was strut-mounted from below, in 

such a way that the upper surface was free of interference at the Hach numbers 

of the tests. For the balance measurements the model was supported by a sting 

with a symmetrical shroud in the form of a circular cylinder of diameter 2.5in 

(63o5r~m) running forward from the base until it merged into the wing thickness. 

Along the leading edge on each surface was a transition strip of width 

0o25in (6o4mm) consisting of 100 grade carborundum grit embedded in aluminium 

paint. The tests analysed in this Report were made at a Reynolds number based 

on the wing chord, c o , of Rc0 = 107 at Mach numbers up to 2.4 and of 

Rc0 = 7.5 × 106 at Mach numbers of 2.6 and 2°8° Experience suggests that for 

Rc 0 = 107 the strips would cause boundary-layer transition for free-stream 

Mach numbers up to 2.0, but that for higher Mach numbers they might become 

progressively less effective° 

The surface pressure was measured at holes of diameter 0.8mm drilled 

normal to the surface and connected to weighbeam capsule manometers. The posi- 

tions of the holes are shown in Fig.1. 

The balance measurements were reduced to coefficient form at the time of 

the tests. The usual corrections were applied; in particular, the axial force 

coefficient was adjusted to correspond to free-stream static pressure within 

the sting shroud. 

When the coefficients of drag and normal force were plotted against the 

angle of incidence, ~ , it was found that the curves were not exactly symmetri- 

cal or antisymmetrical about ~ = 0 This error, which occurred at all Mach 

numbers, but with somewhat varying magnitude, may be attributed to flow mis- 

alignment, to instrument errors or to asymmetry of the model. Since the error 

was less than 0.1 °, it seems justifiable to ignore its effect on the pressure 

distribution and the normal pressure drag at zero nominal incidence. With 

respect to the results from the balance tests, an attempt is made to take 

account of the asymmetry of the CD(C L) curves , as described in Appendix C. 
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It has been estimated (see Appendix C) that the accuracy of the measured 

drag coefficients is about ±0.0002 at Mach numbers from 1.4 to 2.4 and ±0.0003 

at Mach numbers of 2.6 and 2.8. 

2.2 Derivation of the pressure drag from the measured pressure distribution 

Though the number of pressure holes was fairly large (53 on the upper 

surface of the wing) for a model of such simple geometry, it is still difficult 

to specify the accuracy with which the overall forces can be determined by inte- 

grating the pressure distribution. This is a result of lack of informatio$ in 

particular, close to the leading edge. Further, the pressure coefficients, 

c (x,y) , measured at a spanwise station y , when plotted against the chordwise 
P 

coordinate x , do not all lie on smooth curves; this could be due to defects in 

the pressure holes. To derive a plausible pressure distribution for the whole 

wing, it is necessary to draw smooth curves through the measured values of c 
P 

and to extrapolate the curves to the leading and trailing edges. 

The available theoretical results are based on thin-wing theory or on 

slender-body theory. Thin-wing theory produces perturbation velocities which 

tend to infinity at the leading edge; therefore thin-wing theory cannot be used 

as a guide to extrapolating the experimental values of the pressure coefficient 

towards the leading edge. For the lowest Mach number of the tests, M = 1.6 , 

the slenderness parameter Bs/c 0 is larger than 0.4; it was therefore not 

considered to be worth the effort to compute the pressure distribution by slender- 

body theory. (The angle, 6 , at which the upper and lower surfaces meet along 

the leading edge of the delta wing discussed here is given by 

= tan-l(0.54(! - x/c0) ) • 

This rises to 30 ° near the apex. Britton 2 has measured pressure distributions 

on a cone with rhombic cross-sections for which ~ = 30 ° and found that, even 

for Bs/c 0 as small as 0.2, the experimental values of c did not agree at all 
P 

closely with those calculated by slender-body theory.) 

An approximate pressure distribution has therefore been derived by graphical 

means. For each free-stream Mach number the values of Cp(X,y) measured for 

constant values of y have been plotted as functions of x . c was also 
P 

plotted against y for constant values of x ; on this diagram curves have been 

drawn through the values of c (x,y) for points (x,y) which have the same 
P 

distance from the leading edge, that is, y/c 0 = (x/3c0) - constant. By trans- 

ferring information from one plot to another, a plausible smooth pressure 
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distribution for the whole wing up to the leading and trailing edges was 

derived. From these plots values of c were tabulated for the spanwise 
P 

stations y/s = 0, 0.05, 0.225, 0.4, 0.55, 0.75 (except for y = 0 , these are 

the spanwise stations at which c values were measured). This procedure has 
P 

been carried out for the free-stream Mach numbers 1.6, 2.0, 2.4, 2.8. 

Using the smoothed values of 

sectional drag coefficient CD(Y) 

ordinate z(x,y): 

c (x,y) , one can derive values for the 
P 

by plotting Cp(X;y) against the local wing 

CD (y) = D (y) 
, 2  poVocCy) 

I 

c(y)/c0 Cp(X;y) az(x;Y)ax d x 

Y 

2 f (z(x;y)) 
- y/s Cp(X;y)d c0 

where c(y) is the local chord of the wing. 

The coefficient of the total normal pressure drag, 

mined from the relation 

D w , can be deter- 

D 
w 

CD0w ½P0V~sc 0 

I 

f2co y, c o 
0 

= 2 2 Cp ~z (x,y) x ~x d d • 

0 y 

(1) 

The following results have been obtained: 



M K 0 
CD0w 

1.6 0.01012 0.828 

2.0 0.00821 0.672 

2.4 0.00738 0.604 

2.8 0.00647 0.529 

It is helpful to compare the wave drag of a configuration with that of the 

Sears-Haack body of the same length and the same volume. (This is the body of 

revolution with zero nose and base areas which, according to slender-body theory, 

has the lowest wave drag for a prescribed length and volume.) The theoretical 

value for the wave drag of a Sears-Haack body of length c o is 

2 
D 
w S-H _ 128 v__~l 

22  poVoCo \Co / 

The zero-lift wave-drag factor, K 0 , is &efined as the ratio of the wave drag 

of the given configuration to that of the Sears-Haack body of the same length and 

volume: 

D D 
w " ~ w 1 (2) 

K 0 = = 
D 128 i .2 2 iv 3]2 
w S-H ~P0v0c0 ol/c 0 

3 0.01 The delta wing discussed here had the non-dimensional volume: volc O = 

(The thickening of the wing tips increases the volume by a negligibly small 

amount, namely 0.0004 times the volume of the basic wing.) The quoted K 0 

values are therefore derived from the relation 

sc 0 1 

K0 = 128 CD0w c 2 0.012 

100CD0 w (3) 3 x 1.28 

The procedure by which we have determined the wave drag from the measured 

pressure coefficients produces values which may be in error by I-2%. This 
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uncertainty is mainly a consequence of the fact that it was necessary to smooth 

the pressure distributions and in particular that it was necessary to extrapo- 

late the pressure coefficients to the leading edge (where the slope ~z/~x is 

fairly large). The estimate for the possible error was derived by plotting and 

interpolating a second time the values of Cp(X,y) and determining CD(Y ) and 

CDo w We may also mention that in the past others have integrated some of the 

pressure distributions; they have obtained values for the pressure drag which 

differ from those quoted above by not more than 3%. 

One may expect that the graphical procedure for deriving the drag from a 

known pressure distribution introduces an error of less than I%. To confirm 

this estimate, the procedure has been checked in the following way. The theo- 

retical pressure distribution given by linear theory has been computed for 

M = 2 . For the wing without tip modification an analytic expression for Cp~ 

is known, see e.g. Refo3. Using the computed pressure distribution at the same 

spanwise stations as for the experimental pressure distribution, the theoretical 

wave drag has been determined by the same graphical procedure as was used for 

the experimental value. To overcome the graphical difficulty introduced by the 

infinite theoretical pressure coefficient at the leading edge, the term 

0.18/6 I - 3y/c 0 
Cps - 3~ (I - 3y/c0) log I - 3y/x 

was subtracted from the linear theory value, Cp~ , and the integral 

1 

Y 

was determined graphically. In this way we obtained a value for the wave drag 

factor, according to linear theory, K0% = 0.792. 

The wave drag, according to linear theory, can also be derived by the 

supersonic area rule. By the numerical method described in Appendix A, we have 

obtained, for M = 2 , the value K0~ = 0.789 which is about 0.5% less than 

the value above. The area rule involves the evaluation of a triple integral, 

see equation (A-3), which cannot be performed analytically. To derive values 

for the inner double integral, equation (A-13), we have applied Eminton's 
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technique , using values of the oblique cross-sectional area at 40 chordwise 

points. Eminton's method gives for the double integral the minimum value for 

the family of possible area distributions which have the prescribed values at 

the 40 points. (We note that if the triple integral were evaluated exactly and 

the pressure distribution were integrated exactly, the resulting drag values 

would agree exactly; there is no higher order difference.) The difference of 

about 0.5% between the two values for KO~ may therefore overestimate the error 

involved in the graphical procedure used for deriving the wave drag from a known 

pressure distribution. 

We have mentioned that the wing has been thickened near the tips. For 

B = ~  - 1 > 1.2 (i.e. M > 1.56), according to linear theory the tip modifica- 

tion can alter the pressure distribution on the wing only in the region where 

the tip is modified. The pressure coefficient has been measured at only one 

point in the area of the tip modification. We have computed by supersonic area 

rule the wave drag of the wing with and without tip modification; it is found 

that, for 1.6 ~ M ~ 2.8 , the tip modification increases the drag by less than 

0.25%, (ADw~ mod/Dw~ < 0.0025). We may therefore assume that the lack of 

details of the pressure distribution over the modified tips is not important. 

(The tip modification has only a very small effect on the wave drag because the 

outboard part of the wing makes only a small contribution; the spanwise integral 

of the sectional drag over the part of the wing outboard of the stations 

ly/s I = 0.65 contributes less than 3% to the wave drag of the wing.) 

The speed in the empty tunnel is not precisely uniform. This speed varia- 

tion affects the measured pressure distribution and might therefore entail a 

correction to the normal pressure drag. The original analysis of the data was 

based on calibrations of the flow in the tunnel made in 1957-58. More compre- 

hensive calibrations were undertaken in 1961 and the results from these calibra- 

tions have been used in re-assessing the analysis, though it should be noted that 

some changes had been made between the two calibrations to the working-section 

flexible-wall system. In the later calibration the Mach number and flow direction 

were measured in horizontal and vertical planes through the tunnel axis. The 

results of the measurements in the horizontal plane were very nearly independent 

of spanwise position, and so we have taken the correction to the static pressure 

appropriate to the axis of the tunnel to apply over the span of the wing. By 

integrating this correction to c over the wing, see equation (I), ~e obtain a 
P 

correction to CDo w . For the Mach numbers M = 1.6, 2.0, 2.4 and 2.8, the 
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correction is not larger than about ±0.0001. Since the correction is small (and 

because we do not have the information relevant to the period of the tests), we 

ignore the term in the following analysis. 

One would also like to know how much the boundary layer affects the 

pressure distribution and the normal pressure drag at zero lift. To obtain an 

estimate of this effect, J.H.B. Smith (RAE unpublished) has determined the dis- 

placement thickness, using the method suggested by Cooke 5" By linear theory, 

he computed the pressure distribution due to the boundary layer displacement 

thickness for M = 2 and the spanwise stations y/s = 0.05, 0.225, 0.4 . The 

calculations have been done for zero pressure gradient, with and without allow- 

ance for streamline convergence on the centre line. Integration of the pressure 

distribution obtained without allowance for streamline convergence produces an 

increase of the pressure drag coefficient of about 0.00006, i.e. less than I%. 

The pressure distribution calculated with allowance for the streamline converg- 

ence produces at the station y/s = 0.05 a reduction in the local pressure 

drag, CD(Y ) , and at the stations y/s = 0.225 and 0.4 an increase. These 

values suggest that the boundary layer changes the pressure drag of the whole 

wing by a negligible amount. Consequently, in what follows we shall neglect 

the form drag, i.e. the pressure drag due to viscosity, and regard the drag as 

the sum of the inviscid pressure drag and the friction drag. 

2°3 Comparison of the experimental values of the zero-lift wave drag with 
those from the supersonic area rule 

The theoretical estimates for the zero-lift wave drag available at present 

are derived by the supersonic area rule, which is based on linear thin-wing 

theory, or by slender-body theory. In Appendix A (equation (A-3)) we quote a 

formula from which the drag can be derived and we discuss the practical proce- 

dure for the computation. 

The zero-lift wave-drag factor derived from the supersonic area rule, 

K0~ , is plotted in Fig.2. We note that the tip modification increases the 

values of K0~ by only a small amount: at M = 1.6, AK0~ mod = 0.002; at 

M = 2.0, AK0~ mod = 0.0017; at M = 2.6, AK0~ mod = 0.0013 ; so that the curve 

drawn applies to the basic wing and to the wing with modified tips. 

We have also plotted the values of K0s , the zero-lift wave-drag factor 

derived from slender-body theory, equation (A-18)° This equation is derived 

from the linear theory expression, equation (A-17), by neglecting the terms of 
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order 8s log 8s and the terms of order 8s For M = ].6, 8s = 0.416 and 

8s log 8s = -0.365 ; it is therefore not surprising that the result from slender- 

body theory (which is the same as that from slender thin-wing theory) differs 

appreciably from that from the non-slender theory. 

We have plotted the values of slender theory both for the basic wing and 

for the wing with modified tips to demonstrate that results from slender theory 

can be quite useless. The reason for the failure of the slender theory is the 

behaviour of the area distribution S(x) , obtained by cuts x = constant , near 

the trailing edge. For the wing with modified tips, the second derivative S"(x) 

tends logarithmically to infinity at the trailing edge. 

Fig.2 shows that the supersonic area rule gives larger values for the wave 

drag than the experiment" The err°r (K0~- K0 exp)/K0~ increases fr°m about 

0.1 at M = 1.6 to about 0.2 at M = 2.8 . 

To show the origin of the difference between the experimental values for 

the zero-lift wave drag and the values from linear theory, we have plotted in 

Fig.3, for the station y/s = 0.05 and M = 2 , the pressure coefficient c 
P 

against the z-ordinate of the wing. We have plotted the smoothed experimental 

values and the theoretical values Cpz . (As mentioned above, for M = 2 , the 

tip modification does not affect the pressure distribution at y/s = 0.05 .) To 

demonstrate that the discrepancies at this station are typical, we quote that, 

for this station, 

1 

(x,y/s = "0.05) ~x d 

Y 

= 0.00711 

and 

1 

Cp exp(X,y/s = 0.05) ~ d = 0.00595 

0 .837  x 0 . 0 0 7 ] ]  

while, for the whole wing 

CD0w exp/CD0w£ 
= 0.847 
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The figure shows that for the wing considered the difference between the experi- 

mental and the theoretical c -values is larger over the rear of the wing (given 
P 

by the uppem branches of the curves) than over the front, except very close to 

the leading edge. The discrepancy is certainly not confined to the immediate 

neighbourhood of the leading edge, where the theory predicts a singularity. 

2.4 Analysis of the balance measurements 

It has already been stated that, for a wing of the same shape as the 

pressure plotting model, lift, drag and pitching moment were measured by a 

strain gauge balance on a model supported by a sting enclosed in a cylindrical 

shroud. 

As mentioned in section 2.1, the plots of the measured values of C D as 

functions of C L are not strictly sy~netrical about the line C L = 0 . We 

describe in Appendix C how we have derived from the measured C D and C L 

values an approximation to the zero-lift drag of a symmetrical wing in uniform 

flow. Values of CD0 are plotted in Fig.4. The uncertainty is indicated in 

the figure° 

To determine how much of the measured drag is wave drag we need an 

estimate for the drag produced by skin friction, CDF . In Appendix E, we 

describe how we obtain an estimate of CDF . This estimate is also plotted in 

Fig.4. For M ~ 2.4 the tests were done at a Reynolds number based on the 

wing centre-line chord, Rc0 = 107 ; for M > 2.4 the Reynolds number was 

reduced to Rc0 = 0.75 x 107 This change in Reynolds number is the reason 

for the discontinuity in the CDF(M) curve. We have included in the figure 

the drag values for the flat plate delta wing. The difference between this 

value and CDF takes account of the fact that the thick wing has a larger 

wetted area than the thin wing and it includes an estimate for the drag increase 

produced by the transition strips. Fully turbulent flow has been assumed for 

all Mach numbers. 

We have added to CDF the theoretical value of the wave drag, CD0 w , 

for the wing with the sting shroud present. Both the value calculated by the 

supersonic area rule and the value from slender-body theory have been used. 

For the value from slender-body theory we have ignored the tip modification for 

the reason discussed in section 2.3. 

Fig.4 shows that the sum of CDF and CD0w~ , from linear theory, is 

larger than the experimental drag coefficient. 
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The difference between the measured CDo and CDF gives the experimental 

value of the zero-lift wave drag for the configuration with the sting shroud. 

In practice, we are interested in the wave drag of the wing without sting. As 

an estimate of the sting effect, ACD0 w , we take the difference between the 

theoretical values of the wave drag for the wing alone and for the wing 

with the sting shroud, computed by the area rule. ACDo w is positive, which 

means that the presence of the sting shroud lowers the wave drag. Values of 

CD0 - CDF + ACD0 w are plotted in Fig.5, together with the values of CD0 w 

obtained from the measured pressure distributions. 

Fig.5 shows surprisingly close agreement between the two sets of values for 

CD0 w which have been derived from the measurements. This agreement may be some- 

what accidental; we may have used slightly too large values for both CDF and 

ACDo w . To allow some assessment of the magnitude of the possible errors, we 

have plotted in the figure the sting correction ACD0 w and the difference bet- 

ween the estimated values of CDF and the friction drag for a thin flat delta 

wing. This difference takes account only of the difference in wetted area bet- 

ween the thick and the thin wing (and of the drag increase from the transition 

strips) and not of any effects which pressure gradients and streamline converg- 

ence may have on the local skin friction. The agreement between the two sets of 

values for CD0 w supports this method of assessing the skin friction. The fact 

that the agreement between the value of the wave drag obtained from the inte- 

grated pressure distribution and the value derived from the balance test is as 

close at M = 2.8 as at M = 2.0 suggests that the analysis described in 

Appendix C has eliminated the effects of any laminar flow occurring at the higher 

Mach number. In Fig.5, we have also plotted the theoretical zero-lift wave drag 

for the wing without sting shroud. As already shown in Fig.2, the supersonic 

area rule overestimates the wave drag by more than 10%. 

3 DELTA WINGS WITH LORD V AREA DISTRIBUTION 

3.1 Wings with different volume 

Three further delta wings of aspect ratio 4/3 and with rhombic cross 

sections have been tested. Their cross sectional area distribution is the so- 

called Lord V distribution (see Ref.l). The centre section of the wing is 

defined by the equation 

z(x,0) vol 

c o c 3 
x_~ _ x _ 6c0+4 _ 10.5 Co 
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I 0o01 ; 0.0075 and 0.005625 The 
3 

The wings had different volumes: volc O = 

tips were thickened in a conical fashion, as on model 229, but because the basic 

wings were thinner near the tips than the wing with biconvex centre section~ the 

tip modification extended over a larger part of the plan area. Details for the 

three models discussed here, models 233, 234, 240, are quoted in Table I. For 

the balance measurements the wings were supported by the same sting as was used 

with model 229; the same kind of transition strips was used with all the models. 

The zero-lift drag for the three wings has been derived from the tabulated 

results of the balance tests in the manner described in Appendix C. The values 

are plotted in Figs.6, 7 and 8 together with the estimated values of the skin- 

friction drag CDF derived in Appendix E. The sum of CDF and the theoretical 

value of the wave drag (calculated by the supersonic area rule for the wings 

with sting shroud and modified tips) is also plotted in the figures. 

We note again that the experimental values of the zero-lift drag are 

smaller than the estimated values. 

Since we are mainly interested in the values of the wave drag for the wings 

without sting shroud, we have again derived the values of CD0 - CDF + ACD0w£ , 

~here the values of the sting correction are obtained by the supersonic area 

rule. We may mention that for model 234 pressure measurements have been made 

to determine the increase in wave drag due to removing the sting shroud. At 

M = 2 , the value of the increase in wave drag derived from the measurements is 

ACD0 w = 0.00041 whilst the area rule gives ACD0w~ = 0.00043 . 

The extent of the tip modification was somewhat different on the three 

models. To compare the drag for wings of the same geometry, we have subtracted 

from CD0 - CDF + ACD0w sting the theoretical value, ACDow mod , f o r  t h e  

change in wave drag produced by the tip modification. ACD0w mo d , though larger 

than for model 229, is a small term; at M = 2.0 

Model ADw% mod/Dw~ 

233 0°005 

234 0.013 

240 0.014 

In Fig.9, we have plotted the experimental value of the zero-lift drag factor 

K 0 (derived from CD0 - CDF + ACD0w sting - ACD0w mod and equation (2)) for 

the three wings of different volume. 
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Some pressure distributions have been measured on the three delta wings at 

M = 1.6 and at M = 2.0 . By integrating the pressure distribution on the wing 

3 0 01 we obtain at M = 1.6: = 0.00825 and at M = 2.0: with volc o = . CD0w 

CD0 w = 0.0076 . These values are close to the results obtained from the balance 

tests; at M = 1.6:CD0 - CDF + ACD0 w sting (1.311 - 0.576 + 0.075) x 10 -2 
-2 

= 0.0081; at M = 2.0:CD0 - CDF + ACD0 w sting (1.222 - 0.529 + 0.057) x 10 

= 0.0075 

The determination of CD0 w from the pressure distributions measured on 

3 0.0075 is rather uncertain because the number of points the wing with volc o = 

near the leading edge at which the pressure has been measured is small. Moreover, 

due to the relatively large chordwise slope near the leading edge of the wings 

with Lord V area distribution, the part of the wing near the leading edge makes 

a considerable contribution to the pressure drag. We therefore refrain from 

quoting the drag obtained from the pressure distribution on this wing. 

3 0.005625 , we For the thinnest of the three wings, with volc o = obtain 

at M = 2.0: from the pressure distribution CD0 w = 0.00253 and from the balance 

test: CD0 - ACDF + ACD0w sting (0.731 - 0.515 + 0.032) x 10 -2 0.00248 

We have again subtracted the estimated drag increase due to the tip modifi- 

cation and have determined the experimental values of the zero-lift drag factor 

K 0 . The values are plotted in Fig.9 and are quoted for M = 2.0 in the 

following table: 

vol 
3 

c o 

0.01 
0.0075 
0.00563 

K 0 from 
measured 
pressures 

0.618 

0.643 

K 0 from 
balance 
test 

0.610 
0.622 
0.632 

AK 0 
due to 
!sting 
shroud 

0. 047 
0.063 
0. 083 

AK 0 due 
to tip 

modification 

-0.004 
-0.009 
-0.009 

AK 0 
corresponding 

to excess 
friction drag 

-0.030 
-0.041 

-0. 059 

AK 0 
corresponding 
to ±0.0002 

in C D 

±0.016 
±0.029 

±0.052 

The K0-values from the pressure distributions are again surprisingly close to 

those from the balance tests. To demonstrate how far this agreement may be 

fortuitous, we have included in the table the contributions to K 0 which corres- 

pond to the sting correction, the contribution from the tip modification, the 

equivalent contribution which corresponds to the difference between the estimate 

for the friction drag of the wing with transition strips and the friction drag 

of the smooth flat-plate delta wing with fully turbulent flow, and the uncertainty 
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in K 0 which corresponds to the possible error in the balance measurements. 

Finally, the drag values obtained from the pressure distribution are themselves 

uncertain by about ±2%. 

The theoretical value at M = 2.0 is K0£ = 0.736 . From the numbers in 

the table one might conclude that the percentage error in the prediction of the 

wave drag by linear theory decreases with decreasing wing thickness. However 

when we consider all the experimental K0-values plotted in Fig.9 for the various 

Mach numbers, no such conclusion emerges. We have drawn a mean curve through 

the K0-values for the wing with the largest volume; these K0-values do not 

depart much from the curve. For the thinnest wing, some K0-values lie below 

the curve drawn and some lie above, whilst for the intermediate thickness more 

values lie above than below the curve. We have marked in the figure the 

uncertainty in the K0-values which arises from the uncertainty in the measured 

drag coefficients. In view of the size of this uncertainty, we cannot claim 

that the area rule produces a more accurate estimate of the wave drag for 

thinner wings, for which the small disturbance theory would be expected to be 

more accurate. 

To examine further how the validity of linear theory for wings of similar 

geometry varies with the thickness of the wing, we have examined some of the 

measured pressure distributions. In Fig. J0 we have plotted the value of 

0 . 0 1  
vol/c~ Cp(X,y) , for y = 0.05s and M = 2 , from the measurements on the three 

l v 

wings and from linear theory. The figure shows that for model 234, with 
I 3 

vol~c n = 0.0075 , the values lie between those for the thicker wing, model 233 
r~ 13 

with vol;c 0 = 0.01 , and Cp% . For the thinnest wing, model 240 with 

1 ~ 3 vo ~c 0 = 0.00563 ~ the values over the forward part lie between those for model 

234 and Cp~ , but this is not so at the rear of the wing. A similar pattern 

is found for the spanwise stations further outboard and also for the pressure 

distributions at M = ].6 . Apart from the values at the rear of model 240, 

Figo]0 (and the similar behaviour of c for other values of y and also for 
P 

M = ]°6) would suggest that the percentage error in the pressure distribution 

obtained by linear theory decreases with decreasing thickness. For a two- 

  oen ona aero o  t ew ueo  

linearly with decreasing thickness-to-chord ratio t/c . From the pressure 

distributions measured on the three delta wings we cannot discover how the 

. ..- ICp- Cp~lJ(vol/c~l decreases with decreasing volume; this means difference 

that we are not yet able to say how the value of K0~ - K 0 varies with volume. 
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We note that even for the thinnest wing, model 240 (which has the mean 

thickness t* = volume/(planform area) = 0.01688c 0) , the assumption of the wing 

being thin is not satisfied everywhere. Near the apex the wing is similar to a 

cone of rhombic cross section with the edge angle 2~ = 2 x 35.3 ° . The edge 

angle 26 of sections x = const is given by 

[ ~z(x,7),[ = tan ~ = ~y x + -0.25 0.708 _ x - 1.5 Co 

To improve the accuracy of the pressure distribution derived by linear 

theory, Cooke 6 has developed a 'not-so-thin' theory. However this theory does 

not allow the evaluation of the pressure drag, because the singular behaviour of 

the velocity near the leading edge is not known. 

We may note that the measured Cp values plotted in Fig.lO differ from 

those plotted in Fig.7 of Ref.6 by 0.008. The values used in Ref.6, as those 

used here, contain a correction for the static pressure variation in the empty 

tunnel. We have made a further correction in that we have taken some account of 

possible effects of humidity on the static pressure, of the viscous effects on 

the pressure indicated by a static hole and of the effect of the boundary-layer 

displacement thickness. At M = 2.0 and R = 2 × 106 per foot, the increase in 

static pressure due to water vapour condensation is up to Ac = 0.0054 ; a mean 
P 

value for the static-hole viscous error is Ac = 0.0008 ; a mean value for the 
P 

change in pressure produced by the displacement thickness is Ac = 0.002 (this 
P 

value has been taken from the unpublished work by Smith, referred to in section 

2.2); we have therefore subtracted 0.008 from the c -values used previously 6. 
P 

This correction has of course no effect on the pressure drag. To demonstrate 

how such a small correction can alter the comparison we have been making we have 

plotted the uncorrected values in Fig.|;. The differences between Figs.t0 and 

11 illustrate that a high degree of experimental accuracy is required to produce 

meaningful comparisons. 

The fact that the K0s values derived by slender-body theory are indepen- 

dent of the volume is not relevant since we are interested in a range of Mach 

numbers for which the assumptions of slender theory do not hold. 

3.2 Winss of different aspect ratio 

Balance measurements were also made on a series of delta wings of different 

aspect ratios: A = 16/9, 4/3, 1.0, 2/3 . The wings had rhombic cross sections 
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and the same section along the centre line, namely the one of model 234, dis- 

cussed in section 3.1. Details of the tip modification are given in Table I. 

Values of CD0 have again been derived in the way discussed in Appendix C. 

The results are plotted in Fig.7 and Figs.12-14. We have again indicated the 

uncertainty in the measured values. It is assumed that the uncertainty in the 

measured drag force is the same for all the tests. Consequently the uncertainty 

in the drag coefficient is twice as large for the wing of aspect ratio 2/3 as 

that for the wings of aspect ratio 4/3, because all the models had the same 

centre-line chord. We have also plotted the estimated skin-friction drag CDF , 

and the sum of CDF and the estimate of the wave drag obtained by the area 

rule for the combination of the modified wing and the sting. 

For the wing of aspect ratio 16/9, model 237, the leading edge becomes 

sonic at M = 2.463 . For the reason discussed in Appendix A, we have computed 

the wave drag of delta wings only for subsonic leading edges; we have calculated 

the drag for 8s ~ 0.9 . 

From the values of CD0 we have again derived values of CDo w (and K 0) 

by subtracting the estimated values of CDF , by adding the sting-shroud 

correction as given by the area rule, and by subtracting the theoretical value 

for the change in wave drag produced by the tip modification. The wave drag 

factor from linear theory depends only on the product 8s and not on 8 and s 

separately. We have therefore plotted in Fig.15 the experimental values of K 0 

against 8s • For aspect ratio 4/3, we have added the mean curve from Fig.9 and 

have plotted the values for model 233, since they show less scatter than those 

for model 234. The figure shows that the experimental values of K 0 , except 

those for the wing of aspect ratio 2/3~also depend solely on the product 8s . 

For the wing of largest aspect ratio at Bs ~ 0.77 , i.e. M ~ 2 , the values 

of K0(Bs) are slightly lower than those of the mean curve. One may argue that 

this indicates that the flow was not fully turbulent. For this wing, the chord- 

wise extent of the roughness band is smaller than on the other models; it is 

therefore possible that transition to fully turbulent flow was not achieved at 

the end of the transition strips, if this were so, then the values of CDF we 

have subtracted would be too large and the values of K 0 obtained would be too 

small. (We note that a 10% reduction in CDF increases K 0 by 0.05.) 

Fig.15 shows that the values of Ko(BS) for the wing of smallest aspect 

ratio are lower, by about 0.2, than those from the mean curve. To examine 
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whether this difference can be explained, we consider in the remainder of this 

section the various terms which contribute to the values of K 0 derived from 

the measurements. 

For M = 2 , we have listed in the following table the numerical values of 

the various contributions to the 'experimental' value for the zero-lift wave- 

drag factor K 0 . The magnitude of the various terms is appreciably larger for 

the wing with aspect ratio 2/3 than for the other wings; this implies a larger 

uncertainty in the 'experimental' values of K 0 . We note that, for the wings 

of smallest aspect ratio, a change in K 0 of 0.2 arises from a change in CD0 w 

of only 0.0007. 

The largest contribution is produced by the skin-friction drag. The table 

shows that, for the wing of smallest aspect ratio, a reduction of the friction 

drag of the flat plate by 10% is equivalent to an increase in K 0 of 0.14. We 

have based the estimate of the skin-friction drag on the local friction 

coefficient of a flat delta wing, which implies that we have ignored the effect 

of pressure gradients and streamline divergence and convergence on the skin 

friction. Smith, Gaudet, Winter 7 have measured the local skin-friction on model 

3 0.0l) the razor-blade technique. We 233 (aspect ratio = 4/3, volc o = using 

cannot make full use of their measured values because the tests were done with 

free transition, so that the flow was laminar in some regions. However, Fig.14a 

of Ref.7 suggests that near the centre line of the wing the local skin friction 

over the rear of the wing is appreciably smaller than on a flat plate. The 

authors attribute this to the fact that the streamlines converge over the rear 

portion of the wing; this would tend to increase the boundary layer thickness 

and decrease the friction drag. 

Contribution of various terms to the 'experimental' value of the zero- 
lift wave drag factor K 0 , for delta wings with Lord V area distribu- 
tion at M = 2.0 

Aspect vol K0 , due to 
Bs 'K 0 Model ratio c30 100 x CDo w KO~ exp sting 

shroud 

237 16/9 0.01 I.O91 0.770 0.734 0.516 0.039 -0.010 

234 4 / 3  0 . 0 0 7 5  1 . 4 5 5  0 . 5 7 7  0 . 7 3 6  0 . 6 2 2  0 . 0 6 3  - 0 . 0 0 9  

239 1 . 0  0 . 0 0 5 6 3  1 .9 4  0 . 4 3 3  0 . 7 6 6  0.581 0 .10 ]  - O . 0 l  ] 

242 2/3 0 .00375 2.91 0 ,289  0 .823 0 .552 0 .180  -O.OlO 

~z0 ZO AKO ~ZO 
corresponding corresponding corresponding 

due to tip 
modification to flat plate to excess skin to uncertainty 

skin friction friction drag in C D 

- 0 . 5 3 7  

- 0 , 7 1 6  

- 0 , 9 5 4  

- 1 . 4 3 1  

- 0 . 0 2 ]  

-0 .041  

- 0 . 0 8 ]  

- 0 , 2 1 5  

zO.OI6 

±0.029 

±0.052 

±0.116 
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There is no reason to expect more laminar flow on the model of smallest 

aspect ratio because the chordwise extent of the roughness bands is largest. 

The table shows that the contribution to K 0 which is related to the 

difference between the skin-friction drag on the thick wing with transition 

strips and the drag of the smooth flat-plate delta wing is fairly large for 

model 242. Sixty per cent of this term arises because the effective wetted 

area (see Appendix E) of the thick wing is about I0% larger than for the corres- 

ponding flat plate. The estimated drag increase caused by the roughness bands 

is AC D = 0.0003 There is of course some uncertainty about this estimate. 

For all models we have taken nearly the same increase in the friction drag, 

AD F i .2 2 200v0c 0 . However, the uncertainty of the value for AD F is more important 

for model 242 than for the other models since the ratio AK0/AD F varies as 

/(v I ol c (for model 242 this ratio is seven times as large as for model 233). 

The sting correction also matters more for model 242 than for the other 

models. The term has been derived by linear theory (for model 242 and M = 2 , 

slender-body theory gives a value which is 5% larger). Values for the 

Vexperimental' K 0 which are too low would have been obtained if linear theory 

underestimated the sting effect, but we cannot produce any argument for expect- 

ing a large underestimate. 

Finally, we consider the effect of the assumption made about the accuracy 

of the balance measurements. The uncertainty in terms of the drag force, AD , 

is assumed to be the same for all models and so the uncertainty in the drag 

factor, K 0 , for model 242 is four times that for model 234. The uncertainties 

for M = 2 are shown in the table, and for the range of test Mach numbers in 

Fig.15. 

As mentioned, the values of K 0 derived from the existing balance measure- 

ments with the wing of aspect ratio 2/3 are appreciably smaller than the values 

derived for the wings with larger aspect ratios. We have shown that the accuracy 

of the measurements and of the analysis is insufficient to conclude that a 

similar behaviour would be found if the zero-lift wave drag were measured more 

accurately. 

4 DELTA WINGS WITH DIFFERENT TYPES OF CROSS SECTION 

Balance measurements were made on two further delta wings, models 230 and 

231 of Table I. Both wings had a biconvex centre section, one wing had elliptic 

cross sections, the other had parabolic cross sections. The aspect ratio and 
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the volume of the two wings were the same as for model 229. In sections 

x = const , the three wings had therefore the same area: S(x) = 0.12x2(! - x) . 

No tip modification was made on the wing with elliptic cross sections. On 

the wing with parabolic cross sections, the tip modification was smaller than on 

the wing with rhombic cross sections. We have seen above that the tip modifica- 

tion on model 229 increases the wave drag by a very small amount 

(ADw£ mod/Dw£ < 0.0025) ; in the following analysis we therefore ignore the tip 

modification of model 231. 

Values of CD0 have again been derived in the way discussed in Appendix C. 

The results are plotted in Figs.16 and ]7 together with the estimated skin- 

friction drag, CDF , and the sum of CDF and the estimate of the wave drag, 

CD0 w , obtained by the area rule for the combination of the wing and the sting. 

From the values of CD0 we have again derived values for the coefficient 

of the wave drag, CD0 w , for the wings without sting shroud, by subtracting the 

estimated values of CDF and by adding the sting-shroud correction as given by 

the area rule. The values of CD0 w derived from the balance measurements for 

the three wings are plotted in Fig.18, together with the values from linear 

theory. For the wing with elliptic cross sections, we have plotted in Fig.]8 the 

theoretical values given by Squire 8 in analytical form. (We note that we have 

compared some of the values with those obtained from the computer program and 

found good agreement.) Fig.18 shows that linear theory predicts at M = 1.6 for 

the wing with rhombic cross sections a wave drag which is about 9% larger than 

for the wing with elliptic cross sections; at M = 2.8 the drag predicted for 

the wing with rhombic cross sections is about 12% smaller than for the wing with 

elliptic cross sections. Fig.18 shows that the measured wave drag depends less on 

the shape of the cross section than linear theory predicts, both for 8s small 

and for Bs approaching I. For M = 2 and 2.2 the measured variation is 

consistent with the predicted variation within the range of uncertainty. 

5 WING WITH GOTHIC PLANFORM 

At the time when the measurements were made on the delta wings, balance 

measurements were also made on one wing with a different planform, model 238. 

The wing had a so-called gothic planform, which is defined by 

I x(2 - x) s(x) = ~ 
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The wing had streamwise tips; its aspect ratio was 1.0o 

the wing was given by the equation 

z(x,0) = 0.105x(l - x)(2 -2x + x 2) 

The centre section of 

The wing had rhombic cross-sections, so that the area distribution of model 238 

was 

S(x) = 2z (x,0)s (x) 

= 0o07X 2(I - x)(4 - 6x + 4x 2 - x 3) 

This is the same Lord V area distribution as for model 233. 

From the balance measurements we have derived values of CD0 and have 

plotted these in Figo|9. We note that measurements were made only for M < 2°4. 

Using these values of CD0 we have again derived values of the zero-lift 

wave drag coefficient, CD0 w , and of the zero-lift drag factor K 0 o These 

values of K 0 are plotted in Fig.20 together with the values from linear theory. 

Since model 238 has the same chordwise area distribution S(x) and cross- 

sectional shape as model 233, we have included in Fig.20 the values of K 0 for 

model 233, derived from the balance measurements and from linear theory. We see 

that linear theory predicts a lower wave drag for the gothic wing than for the 

delta wing (whilst slender-body theory predicts the same wave drag)° The values 

obtained from the balance measurements confirm that the drag of the gothic wing 

is lower than that of the delta wing, though not to the extent predicted by the 

theory° 

6 CONCLUSIONS 

For a series of wings, values of the zero-lift wave drag have been derived 

by integrating measured pressure distributions and from the zero-lift drag 

coefficient obtained from balance measurements. The agreement of the values of 

the wave drag derived by the two sets of measurements gives some confidence in 

the estimates, used with the balance measurements, for the skin-friction drag 

and the sting correction° 

The drag values obtained from the experimental results have been compared 

with those derived by linear theory. It was found that, for all the wings 
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tested, linear theory consistently predicts larger values for the zero-lift wave 

drag than those obtained from the experiments. The relative error is plotted in 

Fig.21. The figure indicates that the error increases with increasing Bs . 

Apart from the flagged symbols, which relate to the wing of particularly low 

aspect ratio discussed in section 3.2, the errors lie within a well-defined 

band. 

For delta wings with the same type of area distribution and cross section 

shape, it was found that the error does not depend on the volume, wlthin the 

range examined: 0.0056 ~ vole 0 ~ 0.01 . For a fixed value of ~s , it was 

also found that the error does not vary systematically with the aspect ratio. 

On the other hand, the error does depend on the area distribution, as shown in 

Fig.22, on the type of cross section, as shown in Fig.23, and on the type of 

planform, as shown in Fig.24. 

As a by-product of the analysis~we have obtained experimental values for 

the lift-dependent drag factor K , at small values of the lift coefficient (see 

Appendix D). For a fixed value of ~s , the lift-dependent drag factor of delta 

wings decreases with increasing aspect ratio, as shown in Fig.27. For wings 

with the same type of cross-section shape, the values of K are independent of 

the thickness of the wing, but there is a small dependence on the type of cross 

section, as shown in Fig.28. At a given Mach number, the drag factor of a 

gothic wing, of aspect ratio A = ] , is about 0.2 lower than for a delta wing 

of the same aspect ratio, as shown in Fig.29. 
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Appendix A 

THE ZERO-LIFT WAVE DRAG ACCORDING TO LINEAR THEORY 

A theoretical estimate for the zero-lift wave drag is usually derived by 

means of the so-called supersonic area rule. The rule is based on linearized 

thin-wing theory. One assumes that the flow is inviscid and isentropic. The 

differential equation for the velocity potential ~ is approximated by the 

linear equation 

(M 2 - I) 82---~ 82~ 82~ 

8x 2 + 8y----~+ 8z-'-" ~ 
= 0 . (A-I) 

The boundary condition that the flow is tangent to the wing surface is approxi- 

mated by neglecting all second and higher order terms and by replacing it by a 

condition in the chordal plane of the wing, z = 0 . Finally, the pressure 

coefficient is derived from the linearized Bernoulli equation 

Vx(X,y,0) 
Cp~(X,y) = - 2 V0 , (A-2) 

where v (x,y,0) is the streamwise component of the perturbation velocity in x 
the plane z = 0 and V 0 is the velocity of the undisturbed main stream. 

It can be shown (see e.g. Ref.9) that the drag derived by integrating the 

pressure coefficient Cp% can also be obtained from the relation: 

.,,{, 
I 2 = W de - 2~- 2 , 2 
.°oVo o 

x x t 1 

For wings and for given B and 6, S*(x,6 0) is the projection into the plane 

x = constant of the cross sectional area intercepted by the plane through the 

point (x,0,0) which is normal to the chordal plane of the wing and which makes 

with the free stream direction the angle cot-l(B cos 6) , see Fig.25. ~(B,6) 

is the interval of x over which the cross sectional area varies. 
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I Fig.25 applies to wings with subsonic leading edges, for which 

ds (x) I < 1 , I B " ; IYl = s(x) describes the planform and (ds(x)/dX)ma x is the 

maximum value of ds(x)/dx . For subsonic leading edges S*(x,B,8) is zero in 

front of the apex, i.e. for x < 0 ; but when B(ds(x)/dX)ma x > I the projected 

area may be non-zero for negative values of x , see Fig.26o With supersonic 

leading edges the position of the most forward point for which S*(x,B,0) ~ 0 

depends on the planform and on the value of Bs cos e o 

To simplify some formulae, we restrict the discussion at first to wings 

with subsonic leading edges. At the end of this Appendix we state which 

formulae have to be modified to deal with supersonic leading edges. 

We note that using the supersonic area rule for wing-body combinations 

implies the assumption that the interference velocity is negligible, i.e. one 

assumes that the perturbation velocity is equal to the sum of the velocity of 

the isolated exposed wing and the perturbation velocity of the isolated body. 

In the following, we describe how the triple integral has been evaluated. 

We consider only configurations with unswept trailing edges. All lengths are 

made non-dimensional by taking the wing chord c O as unity. The notation 

b = ~s cos O (A-4) 

is introduced, where s is the semispan of the wing at the trailing edge; then 

= z(S,o) = I + b . (A-5) 

Instead of x we use the coordinate 

x x (A-6) 
~ = ~--~-~ = I + b ' 

and we introduce the notation 

S(~,b) = S(~,B,0) - S*[x = ~(I + b),B,0] (A-7) 
~ 2 ( S , o  ) " 

To determine S(~,B,e) for given B and e we integrate the local thickness 

of the configuration along the straight line 
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y, x - x'  x - x' 
= B cos 0 = s b " (A-8) 

The projection of this area into a plane normal to the x-axis is then given by 

Yl 

S*(x,8,0) = 2 [ z(x',y')dy' , (A-9) 

Y2 

where 
x - x I 

(A-10) Yl = S(Xl) = s b 

and 

for x < I - b : Y2 = - s (x 2) = - s 

x 2 - x 

b 

for I -b < x : x 2 = I , Y2 = - s b 
1 - x 

(A-. 11) 

For a wing with a cylindrical sting of radius R(= R/c 0 ) , we write this 

relation in the form 

S*(x,B,0) = - 2 

x i j  x 2 

f z(x"Y') d-zi dx' - 2 f z(x''y') dy' dx' dx' dx' 

x I x2j 

+ 2  

Y2J 

- dy I 

YlJ 

Xlj  
= ~ ~ 2s 2s J z ( x ' , y ' ) d x '  + 

b 
x 1 

x 2 

f z(x',y')dx' + 2 

x2j 

Y2J 

f ~ R2 - y'2 dy' 

YlJ 

...... (A-12) 

s 

(Xlj,yij) and (x2j,y2j) are the points where the line y' = ~ (x - x') 

crosses the j u n c t i o n  between s t i n g  and wing; forward of the  s t i n g  
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Xlj = x2j = x, YlJ = Y2J = 0 . To determine values for Xlj and x2j as 

functions of x and b , one has to solve implicit equations, which can be 

done by iteration. 

For delta wings with rhombic cross-sections, where the centre section is 

Xlj 

given by a polynomial in x , the integral / 

x 1 

by polynomials in x I and Xlj ; the limits x I and x 2 have the values 

z(x',y')dx' can be expressed 

1 - b  
0 < E < 1 + - - - - - E :  x I = 

l+b 
x2 = I -b ~ 

1 - b  
l + b <  ~ <  1 : x I = 

x 2 : 1 o 

When the tips are modified such that they are of conical shape, then it is also 

possible to express the integral /z(x',y~)dx ' in analytical form. For the 

wings of non-rhombic cross section, we have determined values of S*(x,B,e) by 

numerical integration. 

For b ~ 0 , values of the double integral 

1 1 
1 ff S"(E,b)S"(E',b) log ]~ - ~']dSd$' (A-13) F (b) = - 2-7 

00 

with S"(~,b) = ~2~t~ ~ ~  can be calculated by EmintonVs technique 4. We have 
d~2 

applied the method using the values of S(~,b) at the 40 equidistant positions 

Ei = i/40, i = I, 2, o.. 40 . 

The function F(b) tends to infinity when b tends to zero, i.e. when 

e tends to 90 °. It has been shown in Ref. 10 that for delta wings for which the 

thickness distributions behave near the trailing edge like 

N w--'~ [" ll'~ 

& . . . ~  L . . . J  

n=O 
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the function F(b) behaves for small values of b as 

F (b) 

I 1 

fj _ 1 S"(x,b = 0)S"(x') log Ix- x']dxdx' 
2~ 

00 

1 
1 S' / S" 1 2 + --~ (I) (x) log (I - x)dx - ~ [S'(1)] [log b + 2 - k] 

# 

0 

+ O(b l o g  b )  + O(b)  (A- 15) 

S(x) is the area distribution in sections normal to the stream, S'(1) is the 

first derivative of S(x) at the trailing edge, and k is a constant which 

depends on the geometry near the trailing edge, see Ref. ll and Appendix B. 

Using equations (A-3), (A-15) and the relation 

7r12 

.f 71" 
0 

log cos 0 dO = - log 2 , (A-16) 

we obtain for small values of Bs , i.e. small values of b for all values of 

0: 

D (B) 
w% 

! 2 
2PoV 0 

! 1 

- -L f f s"(x)S"(x') log ]x - x' [dxdx' 2~ 

0 0 

1 

1 S ' ( 1 )  f S" (1 - 1 --~ J (x) log x)dx + ~ [S'(l)j2Lkm r - log Bs] + 

0 

+ 0(Bs log Bs) + 0(Bs) (A-17) 

This equation agrees for Bs ÷ 0 with the drag from slender-body theory: 
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D (8) 
W 
S 

2 
½p0v0 

l 1 

-1-" f/2~ S"(x)S"(x') l°g Ix - x~Idxdx' 

0 

1 

1 S' [ S" 1 + --z (1) J (x) log (I - x)dx + ~ [S'(I)]2[k - log 8s] 

0 

(A- | 8) 

1 2 
Since F(b) tends to infinity as - 2~ [SW(1)] log b when b tends to zero, 

we have, using equation (A-16), written equation (A-3) in the form 

D (B) ~12 

w~ 2 [ H(b)d0  + 1 - ~ J ~ [S'(l)j2Llogl [ 2 - log 8s] 
2 

~ o o V o  0 

, (A-|9) 

where for b ~ 0 

1 1 

÷ 
H(b)  . . . .  -2~r ,~ 

0 0  

and for b = 0 

H(b) 

1 1 1 

- --I f [ S" (x) S" (x' ) l°g 'x - x'Idxdx' + 1-- S'(1) f S"(x) l°g (]- x ) d x 2 ~  . 

00 0 

1 + ~ [S'(I)]2[k - log 2] . (A-21) 

Eminton's technique for evaluating the double integral is applicable when 

SV(~ = l,b) = 0 . Since S'(x = I, b = 0) ~ 0 we have used the extension of 

Eminton's technique given in Refo12. 

To perform the integration of H(b = 8s cos e) with respect to 0 , we 

have introduced the variable 

b 
Q T = cos 9 = Bs (A-22) 
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Equation (A-19) can then be written in the form 

D (~) 1 w~ @ 

£ 
/ [H(b = BsT) - H(b = 6s)] 

d~' 

~PoVo 0 T 2 

l 
+ H(b = 6s) + T~ [s'(1)]2[iog 2 - log 6s] 

The integrand is everywhere finite since 

(A-23) 

lim H(b = 6sT) - H(b = 6s) = 0 

T÷I ~ _ T2 

Equation (A-23) shows that for wings of different aspect ratio but with the same 

type of thickness distribution the drag is a function of the product ~s only. 

However, if a sting with the same diameter 2R/c 0 is added to wings of different 

span then the drag is a function of both B and s/c 0 . 

For the delta wings without tip modification, the thickness distributions 

are of the type given by equation (A-14); but for the delta wings with modified 

tips the second derivative S"(x) tends logarithmically to infinity when x 

tends to I. The singularity of S"(x ÷ I) is related to the fact that the 

second derivative ~2z(x,y)/~x2 is finite for [y[ < sx but behaves like 

I/(I - x) for y = sx . For wings with streamwise tips and tip modifications 

similar to the type used for the delta wings, the second derivative S"(x = I) 

is finite. 

It is not yet known whether, for wings for which S"(x ÷ I) tends to 

infinity, the function F(b) behaves for small values of b as given by 

equation (A-15). We have nevertheless computed values of H(b) as defined by 

equations (A-20), (A-21). For determining the double integral in equation (A-21), 

we have again used the extension of Eminton's technique given in Ref.12, but we 

have not examined the accuracy of the results for cases where S"(x ÷ I) tends 

to infinity. To evaluate the single integral in equation (A-21) we have somewhat 

modified the method of Ref. 12 by, subtracting from S(x) a term whose second 

derivative has the known singular behaviour of S"(x ÷ I) . 

For the delta wings with modified tips, it was found that the values of 

H(b) computed for b = 0 differ appreciably from those computed for small but 
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non-zero values of b , in contrast to the results for the wings without tip 

modification. However, when the computed values of H(b) are plotted against 

b log b , it is found that the values vary nearly linearly. This numerical 

result has been interpreted as implying that equations (A-15) and (A-17) still 

apply when S"(x ÷ I) tends logarithmically to infinity. 

When slender-body theory is used to estimate the wave drag for non-zero 

values of Bs , the tacit assumption is made that in equation (A-17) the term 

which behaves like Bs log Bs is small. When this assumption does not hold, 

as for the delta wings with modified tips, then slender-body theory is of no 

use even for values of ~s which would usually be considered small, say 

Bs < 0.2 o As stated above, we do not expect a similar difficulty to arise for 

wings with streamwise tips. 

To evaluate the effect of the tip modification on the wave drag, we have 

not used equation (A-23) for the wings with modified tips, but have evaluated 

the change in drag ADw~ from the relation 

AD ~/2 
w~ = ! f 

2 J 
~P0V0 0 

£2(b)AF(b = Bs cos 0)d0 , (A-24) 

where AF is the difference between the values of F(b) computed for the 

configurations with modified wing tips and those computed for the basic wings. 

The values of AF(b) are small except for small values of b . For the 

computation of ADw~ we have written equation (A-24) in the form: 

AD 
w~ 

~0v~ 

~12 
2 f ~2(b)AF(b = Bs cos 0)d0 + 2 f ~  

0 

2 [S'(1)]2mod - [S'(1)]2as Ii 2 ) 

AH(b = 8s cos e)de 

log Bs + _ log cos 0 d , 

...... (A-25) 

where S'(1)mod and St(1)ba s are the derivatives of the area distributions 

for the configurations with and without modified wing tips and ~ is chosen 

close to ~/2 . 



Appendix A 33 

The integrals have been obtained graphically except the integral 

~/2 

f O dO for which numerical values are given in Table I of Ref. 13. log COS 

In addition to the computed values of H(b) we have, for small values of b , 

interpolated some further values by plotting the computed values of H(b) 

against b log b and against b . 

We also need to evaluate the drag from equation (A-3) for wings with 
1 

supersonic leading edges. For model 238, where s(x) = ~ x(2 - x) i.e. 

(ds(x)/dX)ma x = 2/3, the leading edge is supersonic at the apex for B > 3/2 , 

i.e. M > 1.80 . 

When for some negative values of x the area S*(-[x],b) ~ 0 , then we 

have to modify equations (A-5) and (A-6). We denote by x = -x*(b) the 

coordinate of the most forward point for which S* ~ 0 ; then 

£(b) = I + b + x*(b) (A-Sa) 

and 

= x + x* (b) (A-6a) 
£(b) 

Equation (A-7) is therefore to be modified to 

S(~,b) = S*(x = E~(b) - x*(b);b) (A-7a) 
~2(b) 

For -x* < x < 0 , equation (A-I0) has to be modified to 

x- x I 
YI = - s(x I) = s b ; (A-lOa) 

equation (A-11) applies to the interval -x* < x < I - b . 

For model 238 and b > 0.5 , 

x* = (2b- I) 2 
4b 

I + 8b 2 
(b) = 

4b 
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2 
( 2 b -  1) < x <  0 

4b 

O< x< I +b 

x I = -~- b- 

x I 

(2b - l) 2 
4b < x < l - b : x 2 

] 

1 - ~(2b- I) 2 + 4bx A 

2b b + 1 - 1) 2 4b 

2b b- I + 2b - I)2 + 4b 

For delta wings, the area distribution S($,b= I), i.e. the area distribu- 

tion generated by cuts parallel to one of the leading edges, has the special 

feature that the first derivative is finite at the apex, S'(~ = 0, b = I) ~ 0 . 

We have not yet extended Eminton's technique for evaluating F(b), equation 

(A-13), to cases for which SV(0) ~ 0 , so that we cannot evaluate F(b = I) 

nor Dw~ for values of ~s ~ 1 ° For a delta wing of simple geometry 9 e.g. 

with double wedge sections, the pressure distribution according to linear theory 

can be determined analytically~ see e.g. Refs.14 and 15. The integrated pressure 

drag is finite at ~s = I , but the curve of CD0 w against Bs has a dis- 

continuous slope at Bs = 1 . This discontinuity is a consequence of the 

assumption made in linear theory that all disturbances of the flow are 
-I 

propagated within cones of the same Mach angle ~ = tan B ° In reality the 

local Mach number is not constant and therefore the drag computed by a non- 

linear theory and the experimental drag vary smoothly near Bs = I . 

For wings with curved planforms, where S'($ = 0, b = I) = 0 , the evalua- 

tion of F(b = 1) and therefore of Dw~(Bs ~ I) does not cause any difficulty. 
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EVALUATION OF THE CONSTANT k IN EQUATION (A-15) 

The constant k in equation (A-15) depends on the geometry of the configu- 

ration at the trailing edge. For the case of a wing with an unswept trailing 
II 

edge attached to a circular cylindrical body in a midwing position, Lighthill 

has shown, see also Ref. 16, that k can be determined from the relation 

e(y)e(y') log ~ -  + log dyVdy 
R R s y2y, (B- I ) 

k = log 2 - 2 

where R is the radius of the body and 

L ax Jx=l 

is the slope of the upper surface of the wing at the trailing edge. With the 

notation 

= 
S - R 

R 

s - R 

equation (B-l) can be written in the form 

k = log 2 + log (I + ~) 

0 0 (T+~) 2 (~ ,+~) 

li ~ (T)d~ 

...... (B-2) 



In order to evaluate k numerically, it is advisable to extract the singular part of the integrand. Since ¢~ 

1 

f log I(v+~) 2 - (T'+a)2[dT ' 

0 

= ( l - v )  l o g  ( l - v )  + v l o g  v + ( l + v + 2 ~ )  l o g  ( l + T + 2 ~ )  - ( v + 2 ~ )  l o g  ( T + 2 ~ )  - 2 

a n d  

f log - ~ dv ' 
0 ('c + a)2(T' + c~) 

v + c~/ l o g  er log ~T__~ 

+ + ' ' r  + m / Log + v + mv.r + c~ + 2°~2 Log 
c~1: + 2c~ 2 

T + C~ 
2(I + ~) log (I + ~) + 2~ log 

we write equation (B-2) in the form 

k = log 2 + log (I + ~) 

I s(T) {¢(T') - ¢(T)} log [(T + ~12 (T' + ~121 + log -- ---- dr' 

- 21i ~(v)d- T12 0 (v + a)2(v ' + ~) 

+ e(v){(I - v) log (I - T) + v log v + (I + T + 2~) log (I + v + 2~) 

t~ 



~T log ~----~ + 
T + (~ T + (% 

~T + 2~ 2 ~T + 2~ 2 
T + ~ log T + 

+ 

For a wing without a body, for which 

(y) 

and s(y) is constant for the outer part of the wing, 

E(y) = c(0)(I - a) 

one can derive an analytic expression for k : 

-] 

2(I + ~) log (I + ~) + 2~ log ~I JJ 
e(y) varies linearly over the inner part of the wing, i.e. 

a< I i<1 

aT . (B-3) 

k = log 2 - 2 I (I- a)(1 + a) 3 
I+  ( l - a )  2 2 3 l og  (1 + a) + (1 

2(1 - a) 2 + 2 - @ l l o g  2 - (1 - 

4 4 a) 
log (I - a) + ~4- log a 

a) - 3a + -~- a 2 4 -~-$a 

This relation contains the two results 

(B-4) 

a = 0 , k = 3/2 

25 ! 
a = I , k = 12 3 log 2 

given in Ref. 16. 

and the tip modification. 

We quote the values computed for the wing of model 229, with and without the sting shroud 

a R/s k 

basic wing 1 0 1.852 
basic wing I 0.0625 1.800 
modified wing 0.65 0 1.684 
modified wing 0.65 0.0625 1.632 

> 
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Ap endix C 

DERIVATION OF THE ZERO-LIFT DRAG FROM BALANCE MEASUREMENTS 

The tabulated results from the balance tests do not include values for the 

drag coefficient at the incidence for which the lift is exactly zero. Further 

the CD(C L) curves are not exactly symmetrical with respect to C L = 0 . Such 

an asymmetry may be caused by some non-uniformity of the flow in the empty 

tunnel or by some asymmetry of the model. To eliminate the main effects of flow 

deflection, one would nowadays test the model also in the inverted position. 

This was not done in these early tests° The CD(CL) curves are similar to 

those of slightly cambered wings° 

To derive an approximate value for the zero-lift drag of the symmetrical 

wing in uniform parallel flow, we have expressed CD(CL) in the form suggested 

by linear theory for a cambered wing: 

K 2 
CD = CD min + ~-A (CL - CL min ) " (C-!) 

The drag factor is of course a function of C L , partly because the leading 

edge vortices produce non-llnear effects and also because the friction drag is 

not strictly independent of C L . However, for a small incidence range (say 

l~I < 3 ° ) , equation (C-I) with constant values of K, C L min and CD min may 

be an adequate representation. Our aim is then to find values of CL min and 

K such that, for I~l < 3 ° , the corresponding values of 

K (C L CL CD min = CD - ~-A - min )2 

are independent of C L , within the accuracy to be expected of the measurements. 

It proved possible to find values of CL min and K such that the variation in 

CD min was small and random over the incidence range; the mean of these values 

of CD min has been taken. 

It was found that for most cases ICL minl$ 0.002 . (For two test runs 

with model 233: CL min = -0.004 .) (When one examines how the values of 

CL min vary with Mach number for the various models, it seems likely that the 

asymmetry of the CD(C L) curves is produced partly by a non-uniform flow and 

partly by some small asymmetry of the models.) 
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Since the values of CL min are small and K/~A < I , we consider the 

term CD min to be a reasonably accurate estimate of the zero-lift drag 

coefficient for the symmetrical configuration. 

The procedure was not always quite straightforward. For Mach numbers 

M ~ 2.4 , the values of CD min derived from the measured values of CD(C L) 

for ]CL[ close to zero are in some cases smaller than the values derived for 

]CL] > 0.03 . These smaller values may be a consequence of somewhat say 

ineffective transition strips. When such a 'laminar bucket' was obvious, the 

low values of CD min were excluded from the derivation of the mean value. (It 

is unfortunate that the forces were measured at wider intervals of the angle of 

incidence than would be used today.) 

With a test run at any particular Mach number the scatter of the CD min 

values is less than 0.0002 and the uncertainty caused by incomplete transition 

seems to be smaller than 0.0002. 

With respect to the accuracy of the balance measurements of the drag, 

A.O. Ormerod has contributed the following note. 

In the results from overall force measurements there was uncertainty 

because of the unknown drift of the balance readings corresponding to zero aero- 

dynamic load. The results were computed with the assumption that the zero read- 

ings varied linearly with time from those observed before the run to those 

observed after the run. The few repeat tests made during this series and subse- 

quent experience have shown that this assumption was not entirely satisfactory. 

It is considered that the resulting uncertainty in drag measurement, applicable 

to all the tests in this Report, was ±0.7 Ib(±3N). For the delta wings of 

aspect ratio 4/3 this corresponded to ±0.0002 in drag coefficient at Mach 

numbers between 1.4 and 2.4 and to ±0.0003 at Mach numbers of 2.6 and 2.8. For 

other wings the uncertainty in terms of drag coefficient was inversely 

proportional to the plan area. 
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Appendix D 

EXPERIMENTAL RESULTS FOR THE LIFT-DEPENDENT DRAG FACTOR 

The values of the lift-dependent drag factor K for small values of ICLI , 

lel < 3 ° , which were derived from the present tests on delta wings with rhomblc 

cross sections are plotted in Fig.27o We have also plotted the curves, derived 

by linear theory, for thin, uncambered delta wings, both with and without 

leadlng-edge suction (with full leading-edge suction K = 2E(k) - k , where 

k 2 1 82s 2 = - ; with no leading-edge suction K = 2E(k) where E is the 

complete elliptic integral of the second kind). We may note that four wings of 

aspect ratio 4/3 with rhombic cross sections were tested; three of these wings 

had the same type of thickness distribution but the thickness-to-chord ratio 

varied (between 6% and ]1%)o Within the accuracy of the K-values, say 

IAKI < 0.05 , the K-values were independent of the wing thickness° One may 

perhaps interpret this fact as implying that the aeroelastic distortion of the 

wings which was known to occur has not had a large effect on the K-values at 

small values of the lift coefficient. 

For the delta wings of different cross-sectional shapes (with the same 

aspect ratio and the same area distribution) we found some systematic dependence 

of the K-values on the type of section shape. We have plotted the results in 

Fig.28. As we should expect, the values of K for the round-edged wing are 

lower than those for the sharp-edged wings at these low lift coefficients, since 

some leading-edge suction will be realisedo It is not clear why the rhombic 

cross sections should be superior to the parabolic sections of the same area. 
° 

In general for sharp-edged wings two effects oppose one another: greater thick- 

ness reduces the circulation in the leading-edge vortex sheet, see Ref.17, but 

also provides more forward facing surface for the suction peak to act on. 

The K-values obtained for the wing with a gothic planform are plotted in 

Fig.29 as a function of ¼8A , following the procedure of Ref. 18. The figure 

contains also the K-values, from Figo27, for the delta wing with the same 

aspect ratio, A = I . We have also plotted the curves derived by linear theory 

for no leading-edge suction. Values of K for the gothic planform have been 

computed by P.Jo Davies (RAE, unpublished) using a program developed by 
19 

A. Roberts o The values of K for the gothic wing are lower than those for 

the delta wing of the same aspect ratio. 
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ESTIMATE OF THE SKIN-FRICTION DRAG 

A full scale boundary-layer calculation for the flow past a three- 

dimensional configuration is a formidable task. We therefore derive only an 

estimate for the skin-friction drag. 

We take advantage of the fact that at zero lift the pressure gradients are 

small. Cooke 5 has shown that for fairly thin wings the effect on the boundary 

layer of the pressure gradients and the streamline curvature is negligible, so 

that the boundary layer develops along each chordline in the same way as the 

boundary layer over a seml-infinite plate at zero incidence having a leading 

edge normal to the incident stream. The local skin friction cf at a point 

x, y depends then only on the chordwise distance of the point from the leading 

edge, x - Xle(Y ) , and the properties of the free stream. 

It has become standard practice, see Smith 20, to take account of the 

difference between the wetted area of the actual wing and the planform area. 

Let us consider an element of the wing surface z(x,y) of area ds × do , with 

the plan area dx × dy . The skin friction which acts on this element of the 

wing surface produces a tangential force of magnitude 

cf(x,y)dsda = cf(x,y) ] + \~x/ + ~y] dy 

We assume that the inclination of this friction force to the x-direction is small, 

so that its drag component has the magnitude 

dx 
cf (x,y)dsdo ~Es = cf(x,y) + \ ~y / dxdy 

Thus the coefficient of the skin-friction drag for a wing with an unswept 

trailing edge is calculated from 

] ! 

E olJ CDF CO = 4 f d (s ~) f cf x - Xle(Y))R C l + ( ~y ~-) dx 

0 Xle (y) 

(E-I) 
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r 7 
cfl(X-Xle(Y))Rcn [ is the local skin-friction coefficient, which is a function 

L.- v~ 

of the Reynolds number R based on the distance from the effective start of 
x 

the boundary layer; we assume this is at the leading edge, so that 

Rx = (x - Xle(Y))Rc0 , where RC0 is the Reynolds number based on the wing 

chord, c o . 

For fully turbulent boundary layers, zero heat transfer and a tunnel total 

temperature between 0°C and 60°C, Smith 20 has produced diagrams for the mean 

skin friction coefficient 

£ i/ 
CF (R£ ;M) = ~ cf (Rx;M)dx . (E-2) 

0 

Using these diagrams one can evaluate the drag coefficient of a flat plate from 

CDF flat plate IRc0 ' M) 

I 

0 

(E-3) 

where c(y) is the local chord (for the delta planform: c(y)/c 0 = 1 - y/s , 

for the gothic planform: c(y)/c 0 = ~I - y/s) ° We note that the effect of the 

planform on CDF is small. For RC0 = 107 and 1.4 ¢ M < 2.4 it was found 

that for the gothic planform the value of CDF flat plate is about 3% smaller 

than for the delta planform. 

For wings for which the surface slopes are not large, equation (E-l) can 

be approximated by 

CDF CDF flat plate 

= CDF flat plate 

1 , j [  
~Y ] 

0 x I y) 

1 

c 0 
0 

dx 1 + dy 
L ~y J 

0 0 
1 

f s (x)dx 

0 

(E-4) 



Appendix E 43 

For model 242, which has fairly large spanwise slopes over a large region 

of the plan area 

laz]  x 2 ~y = 1.89(I - x)(l - 1.5x + - 0.25x 3) 

CDF flat plate 

we have computed CDF both from equation (E-I) and from equation (E-4) for 

RC0 = 107 and M = 2 . Equation (E-I) gives for the ratio between the skin- 

friction drag for the thick wing and the flat plate the value 1.102, whilst 

equation (E-4) gives ].089. In view of the other simplifying assumptions made 

in deriving equation (E-I) and the limited accuracy of the experimental results, 

we have used the simpler equation (E-4) in the present analysis. The effect of 

the sting shroud on CDF has been ignored. 

We quote in the following table the values of the ratio between CDF and 

used in the analysis. 

Model 

229 
230 
231 
233 
234 
237 
238 
239 
240 
242 

CD F 

CDF flat plate 

1.024 
1.025 
1.018 
1.042 
1.025 
1.015 
1.008 
1.042 
1.015 
1.089 

ACD roughness 

0.00016 
0.00016 
0.00016 
0.00016 
0.000]6 
0.00012 
0.00016 
0.00021 
0,000]6 
0.00030 

When calculating CDF flat plate it was assumed that the flow was 

turbulent from the leading edge. To produce the transition to turbulent flow 

close to the leading edge transition strips were attached to all models near the 

leading edge. An allowance must be made for the drag of these roughness bands. 

Several details of the transition strips are not known, so that we can 

make only a crude estimate for the drag increase caused by the transition strips. 

21 
Evans has suggested that the increase in the friction-drag coefficient 

due to roughness bands is proportional to the ratio between the area of the 

roughness band and the reference wing area: 
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roughness band area (E-5) 
AC D = K reference wing area " 

Using bands of 60 grade carborundum grit, which had been carefully sieved and 

sprinkled sparsely, he obtained for K the value 0.0032 and found that K is 

only weakly dependent on Mach number and Reynolds number over the range 

investigated, 1.4 < M < 2.6; 107 < RC0 < 2.107 

With the tests discussed in this Report the roughness strips consisted of 

nominally 100 grade carborundum grit, but it may be assumed that the grit had 

not been carefully sieved, so that it would have contained some over-sized 

particles. It is now not known whether the carborundum grit was applied 

sparsely. The uncertainties of the geometrical details of the roughness bands 

imply that the estimate for the roughness drag is uncertain; we have used for 

the factor K in equation (E-5) the value 0.003. 

The width of the roughness bands normal to the leading edge was 0.25in. 

Hence for the delta wings, with s and c o measured in inches: 

roughness band area ~ 2 x 2 x 
planform area sc 0 

~c 2 2 0.25 0 + s 

0.25 I 1 4 x--~__I + 
(s/c0)2 

The values used in the analysis for the drag coefficient caused by the roughness 

bands are quoted in the table. We note that they are of a magnitude similar to 

that of the uncertainty in the balance measurements, AC D = ±0°0002 . 
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Table 1 

GEOMETRY OF DELTA AND GOTHIC WINGS TESTED IN THE 8ft x 8ft TUNNEL 

Planform 

Delta 

Gothic 

Model Aspect vol 
number ratio 3 

c o 

229 4/3 0.01 

230 4/3 0.01 

231 4/3 0.01 

233 4/3 0.01 

234 4/3 0.0075 

237 16/9 0.01 

239 I 0.00563 

240 4/3 0.00563 

242 2/3 0.00375 

238 1.0 0.01 

Cross 
section 

rhombic 

elliptic 

parabolic 

rhombic 

rhombic 

rhombic 

rbombic 

rhomblc 

rhombic 

rhombic 

Centre line section 
z(x,0)/% 

0 . 1 8 x ( I  - x )  

0 . 1 1 4 5 9 x ( 1  - x )  

0 . 1 3 5 x ( I  - x )  

O.105x(l - x ) [ 4  - 6x  * 4x  2 - x 3 ]  

0.07875x(I - x)[4 -6x + 4x 2 - x 3] 

as 234 

as 234 

0.05906x(I - x ) [ 4  - 6x  + 4x  2 - x 3 ]  

as 234 

o. losx(1 - ~)[2 - 2 ~  + 2] 

Extent of tip 
modification* 

Xle/C 0 Yte/s 

0.9 0 .65 

no modification 

0.917 0.75 

0.833 0.45 

0.792 0.325 

0.75 0.375 

0 . 8 1 7  0 . 2 3 3  

0 . 7 8 3  0 . 3  

0.875 0.25 

0.85 0 .65 

All wings had the length c O = 60in (= 1.524m). x denotes x/c 0 . 

* The wing thickness was increased in the region for which 

Xle Yte 

Xle c O s (~.~_ Xle ~ 

>% ,o °0 J 
c o 
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A 

c o 

c(y) 

cf  

c 
P 

C D 

CD 0 

CD0w 

CD F 

C L 

D 

D 
w 
K 

Ko 
M 

R 

Rc 0 

s(x) 

s 

s(x) 

v o 

x, y ,  z 

z(x,y) 

26 

0 0 

SYMBOLS 

aspect ratio 

chord of centre section, taken as unity 

local chord 

local skin-friction coefficient 

pressure coefficient 

drag coefficient 

drag coefficient at zero lift 

coefficient of zero-lift wave drag 

drag coefficient due to skin friction 

lift coefficient 

drag 

wave drag 

lift-dependent drag factor 

zero-lift wave drag factor, see equation (2) 

free-stream Mach number 

radius of the sting shroud 

Reynolds number based on the wing chord, c O 

local semispan 

= s(x = I), semispan at the trailing edge 

area distribution in sections normal to the stream 

free stream velocity 

rectangular coordinate system, x-axis coincides with the centre line 
of the wing 

wing ordinate 

angle of incidence 

=~2 _ 1 

= 2 tan-ll~z(x,y)/~yly=s(x) , edge angle of spanwise cross sections 

density in free stream 

Suffices 

mod 

s 

derived by linear theory 

produced by tip modification 

derived by slender-body theory 

For notation used in Appendix A see Figs.25 and 26. 
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