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Summary 

A linearised theory for the steady flow of an incompressible, inviscid fluid through a linear cascade of 
aerofoils set in a channel with contracting or expanding walls is developed first for uniform, potential, flow at 
inlet and then for a shear flow to represent thick boundary layers near the endwalls. The results are 
compared with earlier work in which the effects of endwall contraction or expansion are expressed in terms 
of the Axial Velocity Ratio, i.e. the ratio of downstream and upstream axial velocities at mid-span, and it is 
shown that these earlier theories are in substantial error because they neglect the effect of the variation of 
circulation along the aerofoils and the velocities induced by the trailing vortices. Experimental studies of a 
cascade of NACA 0012 symmetrical uncambered aerofoils at a small deflection and pitch-chord ratio in a 
porous endwall tunnel, in a tunnel with contracting endwalls, and also with a substantially thickened endwall 
boundary layer are described and compared with the theory. 

* Replaces A.R.C. 37 077 
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1. Introduction 

The flow in two dimensional cascades of aerofoils has been studied extensively both theoretically and 
experimentally. These studies provide basic data such as lift coefficients, air flow deflections, and losses, 
which can be used in the design of axial flow turbomachinery. The cascade wind tunnel, which consists of 
several aerofoils of uniform section spanning a rectangular duct, is the normal tool used for experimental 
measurements. In such a wind tunnel the flow about the blades or aerofoils is approximately two-dimen- 
sional. Exact two-dimensional flow is not generally achieved because the boundary layers on the end walls, 
that is the wails which contain the span of the aerofoils, generally thickens in the flow through the cascade 
and therefore produces a contraction of the flow even at the mid-span which can be measured in terms of the 
change of axial velocity normal to the cascade and is detected by measurements upstream and downstream. 
In the literature the term Axial Velocity Ratio, that is the ratio of downstream to upstream axial velocity at 
mid-span is used to define a measure of the contraction effect of these wall boundary layers. 

Suction of the boundary through porous end walls has enabled the axial velocity ratio to be controlled, so 
that data on the variation of cascade deflection and lift coefficient with axial velocity ratio may be obtained. 
In turbomachinery changes of axial velocity also occur across the rows of compressor or turbine blades, and 
the effects are often estimated from the data on cascades. 

Several attempts have been made to analyse the effects of end wall contraction on cascade performance by 
using two-dimensional potential flow theories (Pollard and Horlock (1962) 12, Shaalan and Horlock (1968) 15) 
where the axial velocity was gradually increased through the cascade, or by using a quasi-two-dimensional 
theory where the equations are averaged across the contracting passage (Mani and Acosta (1968) 7, Mani, 
Acosta and Wilson (1974)8). 

All these theories assume that the contraction of the flow or change of axial velocity is uniform along the 
span of the aerofoil and therefore there is no change of circulation around the aerofoil in the spanwise 
direction. In fact an effective contraction of the end walls will not produce a uniform change of axial velocity 
across the cascade, especially near the end walls. As a consequence the circulation will vary along the span 
and the flow will become three-dimensional in nature. 

This paper presents a small-disturbance theory for the potential flow past a cascade of aerofoils spanning a 
contracting passage. The theory is fully three-dimensional and takes into account non-uniform lift and 
shedding of circulation by the blades. Results of calculations and experiments are presented to show that the 
flow is three-dimensional and that two-dimensional or quasi-two-dimensional theories yield solutions 
significantly different from the three-dimensional solution. 

A small disturbance theory for the shear flow past a cascade with end wall contraction is also presented in 
order to show the effects of inlet boundary layers on the end walls. 

2. Theory 

The theoretical approach is based on conventional linearised thin aerofoil theory which is extended to 
three dimensions and to allow for wall shape and later for inlet shear (see Section 2.7). For a parallel shear 
flow Honda (1961) 3 reduced the linearised equations of motion, equations (50) to (52) to a partial 
differential equation for the pressure and defined a potential function whose gradient in the x-direction is 
proportional to the pressure. When the flow is irrotational there is, in the linearised theory, a similar 
well-known relationship between the pressure and the potential of the disturbance to the upstream flow, 
equation (23). 

The theory will be developed for the irrotational flow first, but it should be noted that this is only a special 
case of the flow with shear described in Section 2.7. The flow is assumed to be a perturbation (irrotational) of 
the uniform upstream flow with velocity U. The fluid is incompressible and inviscid. The perturbation 
velocities are assumed to be small in comparison with U and are represented by the gradient of a potential. 
The boundary conditions for the blade surface follow thin aerofoil theory and use the method of solution 
given by Honda (1961) 3 and others. 

2.1. The Disturbance due to the Walls 

As the disturbance due to the blades is assumed to be small, the strength of the sheets of sources 
representing the wails depends only upon the shape of wall, U and the inlet flow angle. 

The flow due to the walls is independent of yl. As the displacement of the streamlines due to walls is small, 
the boundary conditions at the walls can be satisfied at z = ±nl  rather than at the walls themselves. 



Let ~bw(xx, z)  be the potential of the flow due to the walls. Then, 

+co 

V2~bw=f(x1) ~, ~3(z-nl), (1) 
n ~ - o o  

where f(x~) is the strength of the sources, and 6(z) is Dirac's delta function. If the displacement of the 
streamlines due to the wall is small, 

f (x l )  = 2a ' (xl)  U cos A, (2) 

where a'(x) is the slope of the wall. 
Using the properties of 6(z), (1) may be written as 

t l  2 ~  } 
V2¢~ = 2U  cos A a'(xt)lT+ ~ Z=~ cos (2nTrz/l) (3) 

As the flow is symmetrical about z = +nl/2, Cw may be expanded so that 

(~w "~" ~ f~wn(X1) COS (2nzrz/l) ( 4 )  
n = 0  

Then, from (3) 

dCPwO =2UcosAa(x l ) / l  for n=O, (5) 
dxl 

and 

d2C~wn /\12nzrl2~p,n=4UcosAa'(xl)/l for n > 0 .  (6) 
dx~ \ l ] 

Solving for qbw, by variation of parameters, 

d*w°=2vc°s [fx' dxa - - - ~ l _  J_~ a'(t) exp {-2n~-(xl - t)/1} dt - a'(t) e×p {-2n~-(t - xl)/l} dQ 
1 

2UcOSAA ZxlX. ~ ) (7) 1 

l 

As there is no component of velocity in the ya direction, 

0¢w= - s i n A  ~ d~w, Or ,L=o dx---~ cos (2n~rz / t). (8) 

2.2. The Disturbance due to the Blades 
Let &t be the potential representing the disturbance due to blade thickness, and &b the potential of the 

flow due to blade camber. 
If the thickness distribution on each aerofoil is represented by a source distribution q, then, from the 

assumption of small perturbations. 

q(x) = 2T'(x)U, (9) 

where 2T(x)  is the distribution of thickness. Therefore,  q is a function of x only and ~bt does not vary in the 
spanwise direction. 



From symmetry, 

~bb(x, y, z )=  ~ ~b,(x, y) cos (2nzrz/l) 
n=0 

where the boundary conditions at the walls, OqbdOz = 0 at z = +nl, are automatically satisfied. 
The equation of continuity becomes 

2 2 ~72d~b,, -- (2n~'z / l) Cbbn = 0 

where 

(10) 

(11) 

where 

at the blade surface. 
It can be shown that 

Oy oy Oy U\~xx- / 

O~b,, + O~w,, = 0 (14 ) 
Oy Oy 

f_~ 
[Oqbt] = U 2T'(¢)S(x -~ )  d~, 
I. Oy J~=o 

 finh,2,sin /cos  sin 2,cos , sint 
o 

Substituting (5) and (15) in (13) the conditions at the blade surface become 

a~bo { d( + I~ ~ } 
Oy =Ul~x  s i n 2 A a ( x c o s A ) / l - i - 2  T ' (~)S(x-~)d~ 

and 

a~b,,= Usin2AA, , (x) / l  for n>O. (18) 
3y 

(13) 

(15) 

(16) 

(17) 

and when n > 0, 

2 32 32 32 02 

Ve=~+~=0x-/* aye" 

The boundary condition at the blade surface is 

~yb+a~,+0~w= U\~xx_ ) (12) ay ay 

where ((x) is the equation of the camberline and i is the angle of incidence with respect to the chord line. 
Thus, when n = 0, 



qbho represents the solution to the two-dimensional flow past a cascade of thin aerofoils. The camber line 
of the aerofoils has been modified by blade thickness and the contracting end walls. The r.h.s, of equation 
(17) describes the slope of the modified camber line. The terms n > 0 represent the component of the flow 
that is not two-dimensional and they also represent a further distortion of the effective camber line. It should 
be noted that blade thickness affects only the two-dimensional component of the flow. 

As ~-+I q(~) d ( =  0, the effect of ~bt is not felt far away from the cascade. The effect of blade thickness is 
neglected in some of the subsequent equations. 

2,3. Quasi-Two-Dimensional Flow 

If the equation of continuity is averaged across the passage, 

2 h [ a z J ~  = 0  (19) 

w h e r e h ( x l ) = ~ l - a ( x l ) , ~  1/2h  t-a - = ~'a q S d z a n d g o = O w + c k b + c k , . T h e r . h . s ,  o f e q u a t i o n ( 1 9 )  i s z e r o b e c a u s e  
the equation is not integrated across the sources at z = 0 and I. As 3&/Oz = ± U cos A a'(x~) near the walls, 

2- +h ' (x l ) .  
V2(~ h(x l )  u cos h = 0. (20) 

Equation (20) represents exactly the model used by Pollard and Horlock (1962) in which the increase in 
axial velocity was brought about by placing strip sources in the blade passage. The modified equation of 
continuity obtained by Shaalan and Horlock (1968) 12, 

V22b_ 1 06 (21) 
xl axl 

and the passage averaged equation given by Mani and Acosta (1968) 7 

h '  3~b 
V24~ +~- = 0,  ( 2 2 )  

3xl 

reduce to equation (20) when all second order terms are properly neglected. 

2.4. Downstream Flow 

In a small perturbation flow, 

p - p _ ~  = - p u - -  
3x 

~-'~ --p U[COS A O~)WOX1 "-]-O~bl'~xj" (23) 

Far downstream, where the walls are parallel, the pressure becomes uniform so that all terms except those 
for n = 0 disappear, giving the pressure rise coefficient, 

p ~ - p - ~ _  Cpbo 4a(m) Cp = ~pU2 I cos 2 A, (24) 

where Cpb o is the pressure rise coefficient for a two-dimensional flow through a cascade whose camber line is 
given by (17). 

Let the deflection of the flow be given by 

/3 =/30+ ~ /3, cos (2nrrz/l) ,  (25) 
n=l 



where 

10f~)bn 10cbw. 
t3.=-u oy + u oy 

(26) 

where the derivatives are evaluated at x = + co. 
From (5)/3wO = a(co)sin 2A/1 and because by inspection of (7) 

d@wn 
- - - - - > 0  
dxl 

a s  Xl "-> 0(3, 

flw. for n > 0 also vanishes for x = 00. 

2 . 5 .  S o l u t i o n  

Solutions to the problem posed by (11) and (18) have been given by Honda (1961) 3, Nally and Hawthorne 
(1968) l° and Namba (1969) 11. The solution assumed is 

C b . ( x , y ) = -  M.(6) • Ko Rm dxd6, 
m ~ - - o o  oo 

(27) 

where Ko is the modified Bessel function of the second kind of order zero and 

Rm = {(x - ~:- ms sin A)2 + (y _ ms cos Z )2}~. (28) 

When n = 0, the solution to equations (11) and (17), neglecting the effect of blade thickness, is 

~bo(X, y) = -- Mo(6) Y, log Rm) dx d6, 
m = - - o o  

(29) 

where 2~-Mo(x) is the distribution of bound vorticity on each blade. Nally and Hawthorne (1968) 1° show that 
the solution given by (27) also corresponds to a distribution of bound vorticity of strength 27rM.(x) on each 
blade. The bound vorticity on each blade may now be expressed as 

y(x, z) = 27r ~ Mn(x) cos (2nrcz/l). (30) 
n = 0  

From (27) and (29) 

and 

lim 0Tb.= 0 ~ b  forall  n (31) 
x-.-oD Oy 

OdP wn 
lim = 0  for all n (32) x-.-~ ay 

as a ( x ) =  0 at x = - c o .  

Honda (1961) 3 shows that at downstream infinity 

OdgbO 27r ff~ 
0y s cosA Mo(6) d6 for n =0 ,  (33) 

and 

0 ¢ b .  = 2nqr 2 cosh {(nTr/l)(s cos A - 2 y ) }  ~+~ 
Oy 1 sinh [(mr/l)s cos A] J_~ M.(6) d6, (34) 



where 0 < y < s cos A and n > 0. Averaging equation (34) between y = 0 and s cos A, we have 

OdPb. 21r I~ ~ 
0y s c o s h  M.(~)d~ for n > 0 .  

The local lift coefficient at a spanwise station may be obtained from equation (30) 

4~r 
CL(Z)=--~ ~=o [ I~  Mn(~) d~C] cos (2nTrz/I). 

From (25), (33) and (35) we have 

a~ 27r cosA f+½ 
Bo = -~- sin 2A + ~ ~_~ Mo(~)  d~, 

and 

(35) 

It can also be shown that 

(36) 

(37) 

B. = Us cos h M.  (~) d~:, (38) 

Cp 4~rsinAI_~ / Us M°(~¢) d~¢ - 4  cos 2 A. (39) 

M.(x) can be obtained by solving an integral equation of the type 

/1 f ( x ) = -  M.(~) Y. Ko R,,, dxd~ at y=O,  
m = - - o o  oo 

(40) 

M.(x )= M,~(x )+ k.N.(x ), (43) 

where M" is a solution to equation (41) and k. is a constant. The constant k. is determined by the trailing 
edge condition, i.e. by putting M.(~)=  0, so that 

kn = t I I - M .  (~)/N.(~). (44) 

2.6.  T h e  Close ly  Spaced Cascade  

In a cascade with closely spaced blades in two-dimensional flow the outlet angle becomes nearly equal to 
the blade exit angle. Therefore from equation (17) 

/3o-/320 = sin 2A (a~- a,.e.)/l. (45) 

f •  h.(x --~:)N.(~) d~ ¢ = 0. (42) 

Then 

where f(x) represents the right hand side of equation (18). The complete solution to equation (41) must also 
include the singular solution such that 

,+~ 
t 

= | h.(x -sC)M.(~) d~, (41) 
J -.~ 



The subscript ' 2D '  refers to two-dimensional flow without endwall contraction and 't.e.' refers to the trailing 
edge. Equation (39) shows that the terms n > 0 do not contribute to the pressure rise through the cascade. 
Hence from equation (23) 

d~O__z_ ~ = 0 when n > 0, 
0x 

because the pressure is uniform far downstream. On the other hand these terms contribute to the y 
component of velocity 0&b,/Oy = - 3",/s cos A, which can be resolved into components - y , / s  and yn tan A/s 
in the pitchwise (yl) and axial (xl) directions respectively. 

Many bladed cascades are often treated as actuator discs across which there is a change in flow angle, 
pitchwise velocity and pressure (see Horlock (1958) 4 for an exposition of the theory). The actuator disc 
theory for an isolated blade row shows that half the change in axial velocity through the cascade occurs at the 
disc. Therefore,  if we make the simple assumption that the disc is at the trailing edge, 

U sin 2A A 
- I  3'. tan A sin A/s - 3'. cos A/s = l ...... 

i.e. 

U sin 2A s cos h 
3'. = - 2  ---------~. 1 + cos 2 A A ...... (46) 

where y ,  would correspond to 27r ~_+~ M,(~:) d~: in (38). Therefore,  

ft. = y , /  Us cos A 

- 2  sin 2A 
l ( l + c o s  2 A)A ..... . (47) 

The total deflection due to a cascade of closely spaced blades is therefore approximately 

2 sin 2A 1 co 
fl =/3zD +sin 2A (a~o-at.e.)/l 1+cos2 h "7.~i= A ..... cos (2nrrz/l). (48) 

The effects of endwall contraction have been expressed in the literature in terms of the change in deviation 
angle, 6, that is the angle between the tangent to the camber line at the trailing edge and the far downstream 
flow angle (see Fig. 8). Attempts have been made in the literature to correlate the effect of axial velocity 
ratio (AVR) at mid-span on deviation by using [ 6 - 6 2 o ] / [ O ( A V R - 1 ) ]  as a parameter,  where 8zo is the 
value of 5 for no contraction, i.e. AVR = 1, and 0 is the camber of the aerofoil. Our equation (48) may be 
used to derive a mid-span deviation rule in the form 

6--62D B 
A V R - 1  AVR'  

where 

/{ ,)} sin A log (1 + e-2 . . . .  ~/ • (49a) 
B = 1 + cos 2 A " 

When the aspect ratio (l) is small 

B =  sinA . / l o g 2 ,  (49b) 
1 + cos 2 A ~r 

9 



and when l is large 

sin A cos h 
B = 1 +cos 2 A (49c) 

It has been assumed that a ' (xl)  is a constant in the blade passage and zero everywhere else when deriving 
equations (49). 

It should be emphasised that these results are based on the simplest of assumptions. More accurate results 
would be obtained by a through flow analysis. 

The results given in equations (49) may be compared with the approximations given by Lakshiminarayana 
(1970 p. 127) 6 which have the same form, but different values for B. The equation (49a) is used in the 
preparation of the mid-span curves in Fig. 5. 

2.7. The Effect of Inlet Shear 

If the flow is assumed to be a small disturbance of a parallel shear flow U(z), the equations of motion are, 
when second order quantities are neglected, 

uOU+wdU+ 1 0 p = o ,  
-gx -; ox (50) 

,~v IU_=_+_= O_p_p= O, (51) 
Ox p Oy 

and 

U O-ff-w+ 1- OP=o,  (52) 
Ox p Oz 

where u, v and w are the components of the disturbance velocity. 
The equation of continuity is 

Ou Ov Ow 
- - + - - + - -  = o .  ( 5 3 )  
Ox Oy Oz 

Honda (1961) 3 has shown that a potential function, 

= - p / t ,  d x ,  (54) 
oO 

would satisfy the equations of motion if 

104 ,  U't_~ 
u UOx U 2 wdx,  (55) 

o o  

1 04, 
v - v-~o = - -  - - ,  (56) 

U 0y 

and 

1 04,  
= - -  - -  ( 5 7 )  

w U Oz" 

The equation of continuity may now be written as 

2___ 0 1 a~ 

ax z ~- 0y= + 
(58) 

10 



p would also satisfy equation (58). Honda 3 also showed that if 

then 

and 

¢ = E F(k)Z(z ,  k)~P(x, y, k), (59) 
k 

d 1 dZ 2 Z  
(60) 

V~qb- k2qb = 0. (61) 

If the boundary condition w = 0 at z = 0 and l is applied, the solution to (60) yields a complete set of 
orthogonal eigenfunctions = [Z(z, k)]/U such that 

fo r Z(z, i)Z(z, ]) dz 
U2 = 0  when i ~ ] .  (62) 

1 folZZ(z, k)d z 7 U 2 = 1. (63) 

Z(z, k) is normalised so that 

Let  the disturbance to the flow be represented by 

¢ = eb + &w, (64) 

where ~bb is the disturbance due to the blades and ew the disturbance due to the walls. As both ew and eb 
represent small disturbances to the mainstream flow, U(z), let us assume that ¢b and O~ each satisfy 
equation (59). The coordinate axes remain as shown in Figure 1. 

(a) The Disturbance Due to the Walls 
Let  the contracting walls be represented by sheets of sources at z = 0, +l, +21 . . . .  The strength of these 

sources are given by 

f(xl) = 2a'(xx)U1 cos A, (65) 

where U1 is the value of U(z) near the wall. 
The equation of continuity is 

z O /  1 0¢~\ +co 
V22¢~+U -~z~-~-~z )= 2a'(xllUl cos A ~ 6(z-nl) .  (661 

n = - ¢ o  

Let  ew =~Fw(k)Z(z, k)dPw(x, y, k). 
k 

The boundary conditions at the walls may be satisfied by writing dZ/dz = 0 at z = 0 and I. If we also 
assume that Z(z, k) is the complete set of orthogonal functions described by (62) and (63), the series of delta 
functions may be expressed as 

6 ( z - n O = Y .  G(k )Z(z, k ). (67) 
n = - - o o  k 

(60) 
d 1 dZ z Z  

o, + k -(~= 

Then from (65) and (66) we have 

11 



and 

V~dpw - k 2dp~ = 2a'(x~)U1 cos A G(k )/Fw(k ). 

qbw is a function of x~ only. Therefore 

d ~  G(0) 
• 2U1 cos A a(xl) 

dXl Fw(O) 

where 

As a~w/0yl = 0, 

It should also be noted that 

for k =0  

G(k) 
UlcosAAk(x l )  for k>O, 

Fw(k) 

Ak(xl) = a'(t) exp { - k ( x l -  t)} a t -  a'(t) exp { - k ( t -  Xl)} dt. 
co  1 

0~_____~ = - sin A d~w.  
Oy dxl 

lim Ak(xl)=O for k > 0 .  
x 1--~co 

(b) The  Disturbance D u e  ~o ~he Blades 
The equations governing ~bb follow Honda 3. 

If 

then 

and 

dZb = Y. F(k )Z(z, k )~Pb(X, y, k), 
k 

d / 1 d Z \  . 2 Z = 0  ' 

V209b - k ZCb = O. 

The boundary condition at the walls yield the same set of orthogonal functions Z(z,  k) as before. 
The boundary condition at the blade surface becomes 

Therefore, 

- ~ F ( k ) Z ( z ,  k)[~2yb(x, O,k)+--F~(k)F(k) --~-y (x,OdP~ O,k)] =~xx-d~" i. 

1 
u----~ y V(k  )Z(z ,  k)  = 1, 

12 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(60) 

(75) 

(76) 

(77) 



and 

bb] d ( .  G(0) 
--~y_ly=o=~X-t+-F-~Ulsin2Aa(xcosA) for k = 0 ,  (78) 

d~ . 1G(k) r ,  
= ~ x x - t + ~ F - - - ~ u l s i n 2 A A k ( x c o s h )  for k > 0 .  (79) 

Therefore the problem reduces to that described by Honda (1961) 3 with different boundary conditions at 
the blades. 

It can be shown that 

and 

ft ctzl~ 
Jo 

1Io' F ( k ) =  7 Z(z,k)dzfor k>O, (81) 

1 Z(0, k) 
G ( k ) = l  U• (82) 

The solution to (75) is given by Honda as 

I ,83, 

The expression for R,, is given by (28). It is possible to derive expressions for lift, pressure rise and flow 
deflection from the results obtained by Honda (1961) 3 and Nally and Hawthorne (1969) l°. 

The local lift at a spanwise station is 

U U 

+_~ L(z) = 27rp ~, F(k)Z(z, k) Mk(~) d~, 
k 

p~o-p-~=[p2F2(O)~sinA Mo(~)d~-2G(O)F(O)UlcosZAa(oo)], 

_lIF(O)Z(z,O)2~cosA I+½Mo(~)d~+ Y. F(k)Z(z,k) 2zr f÷i  
k>0 s cos A J-½ M,(~) ds r U~t s J_~ 

+ G(O)Z(z, O)U1 sin 2A a (oo)}, 

f ~' COS ~. 

~7 = v dy. 
S COS A J0 

where 

(84) 

(85) 

(86) 

Kotansky (1965) 5 has shown that relatively simple eigenfunctions Z(z, k) can be obtained if the velocity 
profile U(z) consists of a combination of straight lines. The numerical solution was obtained along these 

lo lines using a procedure developed by Nally and Hawthorne . 

3. Numerical Results and Discussion 

In this section we describe a number of results obtained using the preceding theory. The inlet flow velocity 
except where otherwise stated is uniform and parallel. 

13 



The variation in lift caused by end wall contraction depends on the local increase in axial velocity &bw/dxl. 
Figures 2 and 3 show the considerable spanwise variations in O49w/dxl that are caused by a linear contraction 
of the end walls. They show that if a cascade with uniform inlet velocity is placed within such a contracting 
passage there will be considerable variation of lift and outlet angle along the span. 

The actuator disc solution, that is the solution for s = 0 which corresponds to an infinite number  of closely 
spaced blades, is compared with the exact solution for increasing values of pitch-chord ratio for a flat plate 
compressor cascade in Fig. 4. Unless otherwise stated, a linear contraction of the end walls that begins at the 
leading edge and ends at the trailing is assumed in every calculation. The end wall contraction causes flow 
deflection to decrease near the wall and increase at mid-span. The spanwise variations decrease with the 
increase in pitch-chord ratio. Fig. 5 shows the influence of stagger angle on the changes in deviation angle at 
mid-span and near the wall. These calculations were made using the actuator disc theory for two aspect 
ratios. The curves show that end wall effects reach a peak when inlet flow angle is between 50 and 70 
degrees. Two points in the figure show the solutions for a flat plate cascade with s = 1.5 (note the chord = 1). 

The effects of aspect ratio and wall shape on deviation angle are shown in Fig. 6. The solution for n = 0, 
which coincides with the two-dimensional solution given by Pollard and Horlock (1962) 12 expressed in 
equation (20), is also given, and it underestimates the increase in mid-span turning angle by about 50 per 
cent. The main reason for this discrepancy is that the n = 0 term does not contain the effect of the spanwise 
variation of axial velocity in the passage and the effects of the circulation shed from the blades. These are 
contained in the terms n > 0 and may be seen to have an effect at all points along the span. An improvement  
of the use of equation (20) might be obtained by applying it to several stream sheet thicknesses across the 
passage. 

In Fig. 6 are also shown the results obtained for a parabolic wall shape. The shape of wall used in the 
calculation is given by a ( x t ) =  a~(½+x1)(3/2-x1). 

If the local axial velocity causes an apparent  change in the camber line as shown by equations (17) and 
(18), then from Figs. 2 and 3 it is clear that the relative positions of the cascade and the contraction will also 
have an influence on the outlet angles. This effect is shown in Fig. 7 where the position of a linear end wall 
contraction equal in length to the axial chord length was changed relative to the blades. 

The calculations presented so far have made it clear that the position and shape of the end wall contraction 
has a very significant influence on the outlet flow angle. In other words it appears that it is not possible by 
simply measuring inlet and outlet velocities at mid-span in a cascade experiment to ensure that the effects of 
flow contraction are properly determined. This conclusion may be explained physically by noting that the 
circulation around the blades depends on the details of the flow. The fact that the solution is a function of the 
shape and position of the end wall contraction throws some doubt on the usefulness of current experimental  
cascade data, in which the effective wall shape is not known, in determining the so-called axial velocity ratio 
effects across a cascade. 

A calculation to show the effect of a parallel shear flow at inlet was done for comparison with test results to 
be described below (Fig. 13). 

4o The Experlmen~al Program 

The experimental program was carried out in the low speed cascade wind tunnel at the S.R.C. 
Turbomachinery Laboratory,  Cambridge. The tunnel was fitted with a variable incidence mechanism and 
side wall suction. A seven bladed cascade of uncambered aerofoils of the shape N A C A  0012 was tested. The 
details of the cascade are given below: 

Stagger angle = 45 ° 
Camber  angle = 0 

Max. thickness = 0.12 chord at 30% chord 
Chord = 12 inches 

Aspect ratio = 2 
Pitch/chord = 0.64 
Axial chord = 8.48 inches 

The porous side walls projected 5 inches upstream and downstream of the cascade in the axial direction. 
The term 'unrestricted suction' will refer to tests where side wall suction was applied through the total area 
of porous wall, 'restricted suction' refers to tests where side wall suction was applied only within the blade 
row. Static pressure tappings were located on the central blade at five spanwise positions, and the outlet flow 
was traversed in a plane one axial chord length downstream of the trailing edge plane. The values presented 
have been made non-dimensional with respect to the measured mid-span velocity upstream. 
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More details of apparatus and instrumentation are given by Galappatti (1973) 2. Test were also carried out 
after fitting contracting solid end walls to the cascade. The shape of the contraction is shown in Fig. 8. All 
tests were carried out at a Reynolds number of 3.70 × 105. The details of the tests are given in Table 1. 

T A B L E  1 

Inlet 
Inlet Side Side wall flow Extent of 

Test flow walls suction angle suction AVR 

A / 0  uniform porous 1, 2, 3 & 4 49 ° unrestricted < 1 
A/1  uniform porous none 49 ° - -  1.049 
A / 2  uniform porous 5 49 ° unrestricted 0.947 
A / 3  uniform porous 6 49 ° restricted 0- 966 
A / 4  uniform porous 6 51 ° restricted 0°982 
A / 5  uniform porous 7 49 ° restricted 0.943 
B / 1 uniform built-up none 49 ° - -  1.251 
B / 2  shear built-up none 49 ° - -  1.154 

5. Discussion 

It was possible to determine the two-dimensional performance of the cascade by plotting the variation of 
mid-span outlet angle with AVR, as shown in Fig. 9. The variation of lift coefficient is also shown. The 
outlet angle for an axial velocity ratio of unity was found to be 47.7 degrees which represents a deviation 
angle of 2.7 degrees at an incidence of 4 degrees. Potential flow theory predicts a negligible deviation angle 
for the flow past a flat plate cascade of the same geometry with the same inlet conditions. The increased 
deviation in the experiment was due to the effect of blade thickness. This fact was later confirmed by a 
standard Schlichting and Scholz (1951) a4 calculation which yielded an outlet angle of 47.74 degrees. 

To compare theory with experiment it is necessary to derive the two dimensional flow through a cascade 
with camber line given by equation (17). This may be done by a standard Schlichting calculation. However,  
in order to simplify the computations it was assumed that the solution for ggbO could be obtained from an 
equivalent cascade of flat plates of zero thickness set at a stagger angle of 47.7 degrees and the same 
pitch-chord ratio. In other words the equation for ~bo was solved by assuming that the fourth integral term 
in the braces on the right hand side of equation (17) which contains the effect of thickness could be absorbed 
in the third term, i, by decreasing it by 2.7 degrees. In effect this was equivalent to changing the stagger or 
blade setting without altering the inlet flow angle. A few sample calculations showed that the error involved 
in this procedure was negligible. 

In every calculation it was assumed that the change in axial velocity was caused by a linear contraction or 
divergence of the end walls inside the blade passage. The theoretical variation of mid-span outlet flow angle 
with A V R  is also shown in Fig. 9. Although the theoretical curve was constrained to agree with the 
experimental result at AVR = 1, it shows very good agreement over the whole range of AVR. If the 
theoretical curve is approximated to a straight line, then 

6 = 3 z o  - 11.3 ( A V R -  1) 

where 6 is the deviation angle in degrees. 
Fig. 10 shows the spanwise variations from tests done with solid side walls designed to contract the passage 

by boundary layer growth on the end walls. The measured Axial Velocity Ratio was 1.049. The agreement 
between theory and experiment is not very good in this case. There is no reason to expect that the wall 
boundary layer will cause a displacement equivalent to a linear contraction. In fact, better agreement would 
have been obtained if it was assumed that the wall boundary layer began to grow only in the latter half of the 
blade passage. 

The tests done with unrestricted suction are not very suitable for comparison with the theory as 
measurements made one axial chord length downstream of the trailing edge plane would not have reflected 
the conditions far downstream. In the theory it is shown that the disturbance due to the walls (4~w) causes 
only a uniform change in flow angle far downstream. Fig. 2 shows that the disturbance due to the walls 
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adjusts to its far downstream condition after about one contraction length downstream of the downstream 
edge of the contracting wall. If side wall suction is applied over an area larger than the blade passage, then it 
is necessary to make measurements farther downstream than one axial chord length from the trailing edge in 
order to obtain the proper downstream condition. This point should be considered in assessing the value of 
data from experiments with unrestricted side wall suction. 

Fig. 11 shows the results from a test where side wall suction was restricted to the blade passage only. In 
this case the large pressure difference across the porous wall would have ensured uniform suction. Uniform 
wall suction would be consistent with a straight line divergence of the endwalls. The agreement between 
theory and experiment is good, except for slight deviations near the walls. 

Fig. 12 shows the results of the test with solid contracting walls shown in Fig. 8. Of the measured Axial 
Velocity Ratio of 1.251, 1.2 can be accounted for by the shape of the wall. Therefore,  a linear contraction of 
the end wall could be assumed with more confidence. There is reasonable agreement between theory and 
experiment; the discrepancy may be due to some boundary layer separation as described below. 

As will be seen from Fig. 12 the effect of the contraction on a compressor cascade is to give a lower 
deflection near the walls and a higher deflection at mid-span. This effect is opposite to the effect of the 
endwall boundary layer shear which causes a secondary flow giving a higher deflection near the end walls. 
The contraction and shear effects therefore tend to counterbalance in compressor cascades. Fig. 11 shows 
that suction or expansion increases the deflection near the walls and therefore reinforces the shear flow 
effect. In a turbine cascade on the other hand the contraction effects are of opposite sign to those in 
compressor cascades. Expansion or 'flare' of turbine cascade end walls therfore counterbalances the effect of 
secondary flow or shear. 

Fig. 13 shows the results of the test B2 in which a substantial shear flow at inlet was obtained by artificially 
thickening the boundary layer on the end walls. The results from the tests in Fig. 12 with a normal thin inlet 
boundary layer are shown for comparison. The AVRs in the two tests are now the same and the results are 
further masked by the very small or negative deflections close to the wall. Although the experimental results 
are disappointing the theoretical curve, when compared with those in Fig. 12, shows the counterbalancing 
effect mentioned above. 

Fig. 14 shows the measured mid-span pressure distributions for two values of axial velocity ratio. The 
Martensen (1959) 9 solution for the two-dimensional pressure distribution is also shown. An outlet angle of 
47.7 degrees was assumed when carrying out the Martensen calculation. The large adverse pressure gradient 
on the pressure surface of the aerofoil was caused by the closeness of the blade spacing. The growth of the 
boundary layer was calculated using the approximate method due to Thwaites (1949) ~6 and it was found the 
laminar separation occurred at a distance 0.6 chord from the leading edge according to criteria given by 
Dunham (1972) 1. It is possible that laminar separation occurs on the pressure surface in every experimental 
pressure distribution shown. Separation can reduce the diffusing action of the latter part of the blade passage 
and yield trailing edge inviscid pressures lower than those calculated by potential flow methods. The result 
that the trailing edge pressure for A V R = 0 . 9 4 3  is less rather than greater than the two-dimensional 
potential flow value may be due to this separation. Fig. 15 shows the variation of pressure distribution along 
the span in the test with solid contracting end walls. It should be noted that, due to blade thickness and the 
closeness of the spacing, all pressure distributions show negative lift near the leading edge. 

It was possible to calculate the variation of pressure distribution along the span by solving the n = 0 term 
by a Schlichting type method which takes into account blade thickness and then adding the other, three- 
dimensional terms later (Galappatti (1973)2). The results of one such calculation are presented in Fig. 16 
and the theoretical curves appear to predict the trends observed in the experiments (Fig. 15). 

6. Conclusion 

The small perturbation theory which has been developed for endwall contraction or expansion of the flow 
through linear cascades of compressor or turbine blades shows that earlier methods, which depended on a 
spanwise integration of the flow equations, are in error, because they do not allow for the variation of 
circulation along the blades and the effect of the induced velocities produced by the consequent shed 
vorticity. The work shows that Axial Velocity Ratio is not the only significant parameter governing the 
effects of endwall contraction and that the aspect ratio, the stagger angle, and the pitch-chord ratio as well as 
the shape and position of the contraction or expansion, and endwall suction, also have an influence. The 
experimental results from a cascade of symmetrical uncambered aerofoils spaced at such a small pitch chord 
ratio and tested at such a low angle of attack that only a few degrees of deflection were obtained were 
affected by the large diffusion on the pressure surfaces which probably caused some separation. Nevertheless 
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most of the eight experiments confirmed the theoretical predictions satisfactorily and those with porous 
endwall suction demonstrated the need for considerable care in cascade experiments with porous walls to 
ensure that the suction through the walls is restricted to an area which does not affect the measurements 
made downstream of the cascade. 

An extension of the theory to allow for the shear flow at the end walls produced by substantial inlet 
boundary layers as well as contraction or expansion indicates that secondary flows induced by this shear may 
be reduced by endwall contraction in compressor cascades or by expansion in turbine cascades. 

An important conclusion is that the use of empirical correlations of the effects of Axial Velocity Ratio 
should be used with greater care in the calculations of flow through compressors and turbines. 
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LIST OF SYMBOLS 

Given by equation (71) 
Given by equation (7) 
Axial Velocity Ratio 
Wall shape 
Lift coefficient 
Pressure rise coefficient 
Chord length 
Coefficient in equation (74) 
Source strength on wall 
Coefficient in equation (67) 
Width of passage in spanwise direction 
Angle between inlet flow and blade chord 
Modified Bessel function of the second kind of order zero. 
Eigen value 
Constant in equation (43) 
Aspect ratio 
Doublet strength 
Non-singular solution 
Summation index 
Singular solution 
Number of Fourier terms 
Pressure 
Strength of sources along chord line 
Given by equation (28) 
Given by equation (16) 
Pitch chord ratio 
Half the thickness of blade 
Mainstream velocity 
Components of disturbance velocity 
Pitchwise averaged velocities 
Co-ordinate axes based on inlet flow direction 
Co-ordinate axes based on cascade line 
Eigenfunction 
Flow deflection 
Circulation on aerofoil 
Deviation angle 
Dirac's delta function 
Equation of camber line with respect to chord line 
Camber angle 
Inlet flow angle 
Co-ordinate of singularity distribution along x-axis 
Density of fluid 
Potential function 
Velocity potential or potential function 
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Subscripts 

b 
2D 

n 

t 

t .e.  

w 

Disturbance due to thin blades 
Two-dimensional flow without endwall contraction 
Number of Fourier terms 
Disturbance due to blade thickness 
Trailing edge 
Disturbance due to the walls 
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(c) Mar tensen  two-dimensional  theoretical  solution. 
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FIo. 16. T h e o r e t i c a l  p r e s s u r e  d i s t r ibut ions .  

A V R  = 1 . 2 5 1 ,  s/c = 0 . 6 4 ,  I/c = 2,  

- - - - - -  m i d  s p a n ,  CL = - 0 . 1 1 5 .  

z = 0 . 0 5 • .  CL = - 0 . 1 5 8 .  

s tagger  = 4 5  °, a l  = A = 4 9  °. 
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