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Summary

A linearised theory is presented for the calculation of force and moment coefficients for two-dimensional
cascades of blades in supersonic flow. The cases of both supersonic and subsonic axial velocity are treated.
The perturbations are due to bending vibration, torsional vibration, and wakes shed from moving obstruc-
tions upstream. The method leads to analytical results in the quasi-steady case, and to a fast computer
program for the general unsteady case. Results are in good agreement with previous work. The method can
be used to predict forced vibration and flutter in transonic fan blades.

* Replaces A.R.C. 37 198
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1. Introduction

In the development of high performance compressors and turbines for aviation applications, the problem
of blade vibration has been one of the most persistant and troublesome. This is because the need to minimise
the weight of the machine leads to slender blading which is prone to vibration. In particular, the fan blading
on modern fan engines has encountered severe flutter in a mode in which the blade motion includes both
bending and torsion, and the blades are coupled together through their snubbers. This type of flutter has
been described by Snyder and Commerford (1 974)'° and by Halliwell (1976)°. The flutter occurs when the
blade tips have a supersonic relative inlet Mach number and are not stalled. There is a pressing need to be
able to predict this type of flutter, and there is also great interest in predicting the amplitude of vibration that
will be forced by wakes or other kinds of maldistribution in the inlet flow.

In the construction of a prediction method, it is necessary to use a number of simplifying assumptions in
the development of the theory. All available supersonic theories are two-dimensional, and this assumption
will be made here. Namba (1976)11 has shown that in a three-dimensional subsonic situation the two-
dimensional unsteady strip theory works well, so that there is good reason to hope that strip theory can be
extended to apply to fans with supersonic tips.

It will also be assumed that the unsteady effects are small perturbations of a uniform flow with a
supersonic Mach number. Thus all effects due to incidence, lift, camber, thickness, and shock waves are
neglected. It appears that flutter of actual fan blades running at a given speed is worst when the pressure rise
through the fan is least. The neglect of the effect of the pressure rise is therefore likely to lead to a
conservative estimate of the flutter susceptability of the fan. It will also be assumed that all blades vibrate
with the same amplitude and with a constant phase angle ¢ between each blade and its neighbour. Both
flutter and forced vibration of identical blades is of this form, but in fact any motion of a blade row can be
synthesised by superposing components of this kind, so that the assumption does not lead to any loss of
generality. The object of this report is therefore to predict the aerodynamic forces and moments acting on a
cascade of vibrating flat plates, due to (a) translational vibration of the plates normal to their chord lines,
corresponding to bending vibration of a three-dimensional blade, (b) torsional motion about a given axis,
and (c) wakes convected into the cascade from some other obstruction upstream. This is the basic
aerodynamic data necessary to predict both flutter and forced vibration.

The nature of the solution is fundamentally different according to whether the axial velocity is subsonic or
supersonic. In all practical turbomachines the axial velocity is subsonic, and therefore this case is of primary
interest. In this case it is possible for information to be transmitted upstream in an axial direction, and the
situation therefore combines some features of subsonic flow with some features of supersonic flow. But the
case when the axial velocity is supersonic is much easier to treat theoretically, and this was the first case to be
studied.

The problem of wall interference for a single aerofoil oscillating in a wind tunnel, which corresponds to an
unstaggered cascade with antiphase oscillation of the blades, has been mvestlgated by Drake (1957). The
unstaggered cascade with arbitrary phase angle was analysed by Lane (1957)° using Laplace transform
techniques. The case of supersonic axial velocity has also been analysed by Gorelov (1966)* and by Platzer
and Chalkley (1972)"* who used the method of characteristics. Nishiyama and Kikuchi (197 3)'? have
reported a theory based on the image method.

Turning to the case of subsonic axial velocity, this was considered by Gorelov (1 966) but no numerical
results were obtained. An analysis for a finite cascade was given by Verdon (1 973)", in which blades were
added to a finite cascade until no further significant change in the flow pattern was obtained. Kurosaka
(1973)° gave a quasi-steady solution, valid for low frequency parameters. Brix and Platzer (1974) have used
the method of characteristics, and obtained reasonably good agreement with Verdon (1 973)" for a finite
cascade. An analysis by Verdon and McCune (1975)"® for an infinite cascade gives the most comprehensive
results available to date. A comparison between the finite cascade and infinite cascade assumptions has been
made by Platzer, Chadwick, and Schiein (1976)", who also developed an infinite cascade theory which
showed good agreement with the results of Verdon and McCune (1975)"®. Platzer, Chadwick, and Schlein
(1976)" find that as the number of blades used in the finite cascade analysis increases, the results for lift and
moment converge towards the results of the infinite cascade analysis, but the results for the individual
surface pressures do not converge.

In most of the above analyses, including that by Verdon and McCune (1 975)'%, the solution is obtained in
terms of the velocity potential. Here, it is preferred to work in terms of the pressure (or acceleration
potential), since there are then no source terms arising from the wakes of the blades, due to the vorticity shed
from the trailing edges.



The method of solution used in the present report is very similar to that proposed independently by
Goldstein (1975)°. However, Goldstein’s paper does not take the solution so far as to obtain any results.

2. Basis of The Theory

In setting up the basic equations of motion, it is convenient to regard the force applied to the fluid by the
blades as a generalised body force (F) per unit mass, which could be distributed over the whole field.

The thin-aerofoil assumption is made, that the deviations from a uniform flow with velocity U are small,
so that the equations may be linearised and are as follows:—
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The solution will be constructed in terms of the pressure, p. From equations (1), (2) and (3), this satisfies
the convected wave equation with a source term on the right hand side,
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The case of interest is when all variables oscillate with angular frequency . Hence the body force is of the
form:

F(t, x, y)=F(x, y) e,

and similarly,

lwt

p@t x, y)=plx, y)e™
Then equation (4) becomes
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This body force is applied by the thin blades, in the y direction normal to the blade surface. Thus each
blade is considered as being replaced by pressure dipoles distributed along the chord. The origin of
co-ordinates is taken at the mid point of the reference blade (m =0), and extends from x = —¢/2 to
x = +c¢/2. Hence the body force corresponding to the reference blade has only a y component which is

Fo(x, y)= —piof(x)a(y),

where f(x) is the distribution of lift force along the chord of the reference blade, and the minus sign is
because the lift force on the blade is taken positive in the y direction.

The mth blade has its mid-chord point at x = ms sin 6, y = ms cos 6. Also, it is assumed that there is a

constant phase angle ¢ between each blade and the one below it. Hence the body force due to the mth blade
is

F.u(x, y)=Fo(x — ms sin 6, y — ms cos §) ™
= —(1/po)f(x — ms sin 8)8(y —ms cos ) e™®.

Summing for all blades, the force field is

F(x,y)=~(1/p0) 3 _f(x=ms sin 0)5(y = ms cos 0) ™. ©)



The solution of equation (5) may be expressed as

p( )= [ poVFE MG G= y~m) dedn, )

where G is the Green’s function of equation (5).
Substituting equations (6) into (7), and evaluating the integral over n by parts gives
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Once the pressure has been found, the velocity perturbations can be found from equation (2). For
harmonic oscillation and in any region where the body force is zero, this gives
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The distribution of pressure dipoles along the chord, f(£), has to be arranged so that the induced velocity
normal to the surface of the blades, v;, given by equation (10), matches the required upwash velocity vy, so
that

vr = vy, (11)

Three kinds of upwash will be considered. These are (a) Bending vibration of the blades with velocity
q exp (iwt), so that

Vuy=4¢q. (12)

(b) Torsional motion of the blades with angular displacement « exp (iwt), positive nose down, about an axis
position given by x,. Matching the vibration normal to the surface gives

(v;— Ua)e™ = (x —x,,)a% (a &™),

so that
vy = Uaf{l +iw(x —x,)/ U} (13)

(c) The effect of wakes from any kind of periodic obstruction upstream is calculated. These wakes involve a
vorticity perturbation, but no pressure perturbation, so that they are convected downstream at the main-
stream velocity U. The amplitude of the wakes will be specified by the velocity which the wakes would
induce at the position of the mid-chord point of the reference blade, if the cascade were removed, which is
—w exp (iwt). Matching the velocities normal to the surface gives

vy eiwl —w eia)(r—x/U) — 0,

so that

v=we Y (14)

This known upwash velocity enables an integral equation to be set up to calculate the unknown dis-
tribution of pressure dipoles along the chord, given by f. The calculation of the kernel function of the integral
equation is considered in the next section.

Once f is known, the lift on the aerofoil is given by

+c/2
L=] f@ae (15)
/2
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The moment about the torsional axis at x = x,,, taken nose down positive, is

+c/2
Mo=[ fexe-x e (16)
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3. Calculation of the Kernel Function

The Green’s function of equation (5) can be obtained by solving the equation

¥ & 2eUs &’
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This equation has to be solved subject to the boundary condition that there is no disturbance outside the
Mach cone emanating from the origin.

This boundary condition will be handled by the mathematical device of supposing that the angular
frequency @ has a small negative imaginary part, so that

w=w1—iw2

where w; and w, are real and positive, and the limit w,->0 is implied. This means physically that an

oscillation which is growing very slowly in time is being studied. Disturbances which originate far from the
reference blade must have been emitted at much earlier times when the oscillation was negligible small.
Hence this device eliminates unwanted effects coming from the far field.

The solution is sought in the form of a double Fourier transform as follows

1 +o +oo »
G, y)=4—w2f_ e ™ ) J G0, a)e™ da. (18)

The Dirac delta functions in equation (17) can be similarly expressed as

+00

6(x)=LJ‘ e ™ da, (19)
27T —00
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Substituting equations (18), (19) and (20) in equation (17) gives
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This may be written

{B*(A —@/c)Y—a®~B*%*/cA6G(, a)=1,
where B2=M2—-1,

o =wc/U,
< = Ma/B?,
i =Mk.

Hence the Green’s function is given by

G(x )__L_ J“Lo0 N JMD e ™ do
4 4t ), . BZ(A—ﬁ/c)z—az—le?z/cz

It will be convenient to replace A by a displaced variable A' = A — fi/c, so that

1 —ifx/c reomae —iA'x ' i e—iay da
G(x,y)=-—4ﬂ_2e ! J . e " dA j BAT—a?- B/ (21)
—0—a/c —00

If @ and therefore g are real, the displacement by g@/c on the limits of the first integral makes no
difference. But since  is supposed to have a small negative imaginary part, it will be necessary to allow for
this in the evaluation of this integral.



At this point it is convenient to switch to a non-dimensional co-ordinate system, and to work in a
transformed plane (%, ). The relationships are as follows

F=x/c,E=¢&/c,A=cA’,
=By/c, 7 =Bn/c, & =ca/B,

2

(22)
tan 8 = (tan 8)/B,
§=(sB cos 8)/(c cos 8).
In this plane the Mach waves propagate at 45° to the %, ¥ axes.
Equation (21) becomes
_ 1 » +00—jft —ike _ +00 e—zay d-
G(&, y)=BG(x, y)= 12° '”‘Lo_ﬁ e M da Lo T (23)
Equation (8) becomes
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where
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m=—o0 T J-o—fz A K
and

ﬁ=P/P0U2, f=f/P0U2,
fm =X —m5 sin 8, §., = ¥ —m5 cos 6.
This shows how the solution for the pressure is constructed from the strength of the dipole sources
distributed along the reference blade.

The corresponding expressions for the velocity perturbations may be obtained from equations (9) and (10)
and are

u(x, +1/2 o _ _
ae =20 [ FBae-E ) (4)
—1/2
o v(xy) J”’z s E
y = = 3 d o 27
o(x, ) BU ~Jap F(O)0e(x—E 7) dé 27
where
B - j*“’“"‘ (A+@)e ™ dk j*‘” i@ ¢ da
Be5y)=- 1 e ey Gra/B) e &R 28)
= 1 (" e Fmdl [ it e da
= (= =Y —igx, +im$ _*
Be(%, 7)= m;_me 4 ,[_oo_ (A +a/B? )Lw A —a*-ik%y 29)

Equations (28) and (29) show that in the X integration an additional pole appears at A = —@/B>. This
corresponds physically to vorticity waves which are convected downstream at a speed U, and which do not
involve any pressure perturbation.

The integrals in equations (25), (28) and (29) can be evaluated in terms of the Bessel function Jy to give
the form

Pe(%. ¥)= — Z e"‘"‘"‘”""’—{Ja[K(xm 7o) 2 1H (%~ | T}, (30)
m=—00 oy
where H is the Heaviside step function. However, this series shows poor convergence, and becomes
unsuitable for numerical work anywhere near the acoustic resonance which will be discussed later.
If, alternatively, the series in these equations are subject to a transformation similar to the Poisson
summation formula, the result is another series, which in physical terms consists of propagatmg or decaying
acoustic waves. This technique works very well in subsonic flow (Kaji and Okazaki (1970)°, Smith (1972)"%)



but in this case of supersonic flow the convergence is bad since all the higher order terms consist of
propagating waves, and these do not decrease in amplitude.

The procedure that will be followed is therefore to split the inner factor in these equations into three terms
as follows

1 1 o 1 1
= =-= K = = .
N—at—? A&t (A-z_a_z)z K Q _ﬂ&z)z(/\z_&z*iz)

31

The first two terms are the first two terms of an expansion in <2, or frequency parameter. These terms
therefore give the low frequency behaviour, and are conveniently handled by summing over blade numbers.
The last term is the remainder, and it will be transformed into a summation over propagating and decaying
acoustic waves.

Since only the v velocity is required in order to set up the Kernel function, only this variable will be
treated. Equation (29) is therefore written

5§=05§+15§+25§, (32)

where the three terms correspond to the terms in equation (31).
The ,0; term is obtained from equation (29), putting < = 0. The integrals may be evaluated by standard
contour integration methods to give

+00

_- = = —f@(x 7 im = i@ -
oB(%, ¥)= —3 L e Il BT 5 (Fo *lyml)+EH(xm = |ymD}- (33)
The & function shows the disturbances propagating along the Mach lines, at 45° to the transformed axes.
There is also some unsteady effect downstream of these Mach waves, given by the H function.
Similarly the ;7 term may also be evaluated as follows

+o0 . 1 +o0— % e—i)ffm d/\— J,+°o ia"2;22 e_ia_ym do
b.(x. V)= — —ig%,, timp _~ © 3
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These velocities need to be evaluated on the surface of the reference blade, where —0.5(x¢0.5, and 7 = 0.
The delta function in equation (33) always yields a finite number of terms in the summation over m. The
other terms in equations (33) and (34) are governed by the H function, which yields the condition

fm—‘).’-MI>O

X —m5 sin 8 —|m|5 cos §>0,

i.e.

i>md for m>0, (35)
and

X>md; for m=0, (36)
where

d, = 3(sin 6 +cos 8),
and

d>=§(sin § —cos 8).

These results are illustrated physically in Fig. 2, which shows the Mach lines radiating at 45° to the
transformed axes from a row of sources. If the axial velocity is supersonic, all the waves go downstream of
the row, and there is no upstream effect. In this case 9 <45°, d, is negative, and there is no effect if ¥ is
negative. For £ positive the summation includes a finite number of terms given by

m”=[%¥/dJsm<=m"=[%/d\],

where the square brackets indicate that the quantity enclosed is to be truncated to the nearest integer
towards zero.



For the subsonic axial velocity case, Fig. 2 shows how some of the waves go upstream of the row. In this
case 8 >>45° d, is positive, and equation (35) gives

Osms=m" forx>0
and equation (36) gives

—o<m<m forx <0
and

—o<m<0 for £ >0.

In this case therefore the summation has an infinite number of terms.
These infinite summations may be evaluated by the formulae

Y me™=—_os for F(z)>0.
m=1 e”)

(1-

The condition on the imaginary part of z is satisfied, from the assumption that @ has a small negative
imaginary part.
Applying these formulae to equations (32) and (34) gives, for subsonic axial velocity,
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m=1
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where C;= — @5 sin § — &5 cos §/B*— ¢
Cy,= +@5 sin 8 — &5 cos /B> + ¢
Cs=—pssinf—¢
Turning now to the third term in equation (32), this is given by
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The summation over m will be transformed using a result given by Lighthill (1958), as Example 38 (pp.
67, 68). For a period of 27, the result is

1 +00

— ¥ ™= Eo 8(x —2mv) (40)

27 m=—wo v="co

This result is closely related to the Poisson summation formula. Applying this result to equation (39) gives
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Using the delta function to evaluate the integral over & gives

o - 1 _iae—iay 1 ! b J’+°°+f‘ —ik(z—§ tan 8) ;1 (A —Atan 6)2
= —— — = d/\ X ————
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. tan @ 1 - 2 = 1/2
= — F = —— -—
@ Atan20—1 Atan20—1[1 AZ(t“ln o 1)] ’
- (44)
0= A tan 6 + 1 A
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The terms in the square bracket in equation (42) correspond to the terms in the square bracket in equation
(41). The first is the genuine unsteady cascade effect. The second and third terms are the quasi-steady effects
which were added in equation (32) and are subtracted out again here.

In the evaluation of the integral over A, there are poles at A =" and A =", which correspond to
pressure waves, and a pole at A = —@/B?, which corresponds to vorticity waves. There are also poles at
A =Q, and A =, which are purely mathematical artifacts with no physical significance. For large values of
|#| or |A|, Q" and Q, coincide, and Q~ and Q, coincide.

Due to the small negative imaginary part of @, these poles are slightly displaced from the real axis in the A
plane. The positions are illustrated in Fig. 3, which also shows the contours used for the evaluation of the
integral in equation (42), and the small displacement of the path of integration from the real axis will be
noted. If the axial velocity is supersonic, all poles lie within the contour for a downstream point, and all
effects are downstream. If the axial velocity is subsonic, which is the case illustrated in Fig. 3, the poles {3~
and (), lie within the contour used for an upstream point, so that these poles correspond to upstream going
waves. The poles Q*, O, and (—@/B?) lie within the contour used for a downstream point, so that these
poles correspond to downstream going waves. Carrying out the contour integration yields

20¢(%, y)=0, for (¥—7 tan )<0,

(45)
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(£ —y tan 8)>0,
if the axial velocity is supersonic.
If the axial velocity is subsonic
DeE 7)=L U —Jy+J7), for (-7 tan§)<0,
’ (46)
=Y (=J =T +J +I =T 1), for (£—7¥ tan@)>0
In these expressions
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’ Q5 - Q) +@/B”)
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&2 (2tand(A —Q;‘ tan §) 2(A - Q; tan §)

i — —
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where 1

" §cos (tan”> 8—1)
When the axial velocity is supersonic the argument of the square root in equation (44) is always positive,
and the disturbances take the form of waves propagating away from the row of dipoles. But when the axial
velocity is subsonic the argument may become negative, Q" and O~ become complex, and the pressure

disturbances decay exponentially with distance from the row. The marginal condition is
-2

—-%(tanz g—1)=0. (48)

This is the ‘resonance’ or ‘cut-off’ condition, and corresponds to waves carrying energy in a direction parallel
to the cascade direction. The corresponding expression for the phase angle is

¢ —2mv={—M tan 6+ (tan® 9 —1)"/*}i5 cos 4. 49)

At this resonance condition, " =Q and J* and J~ become infinite. The calculation therefore fails at these
two points, and discontinuities in the results are to be expected.

Equations (47) show that there are three other points at which some of the J functions become infinite.
These are at (O, +&/B%)=0, (O, +&/B*)=0, and Q; = Q} (corresponding to A = 0). The calculation also
fails at these three points, but this is purely a result of the mathematical devices used, and has no physical
significance. The further pos51b111ty, (Q*+w/B )= 0, never occurs.

The series over » for J*, J;" and J are evaluated numerically. The series for J* alone is not umformly
convergent, since the terms do not decrease with increasing ». The terms of zero order are removed by J
and the terms of order » " are removed by J;. This leaves a series with terms of order » 2, which is good for
numerical computation. This is the whole point of introducing the 47, and ;, terms in equation (32).

The series for J*, J,” and J,*, which correspond to the vorticity waves, may be evaluated analytically. This
will be done for the case § = 0 and the required formulae are

= 1 _L[ 1 _1]
v o Quv—x) 22 2z[1-€CT 1 P

w0 Qgy—x) =L[ 1, 1 _1]_1[ 11 ]
Vo {(ZWV—X)Z—ZZ}Z 42 l_ei(z+x) l_ei(z—x) 4 {1 __ei(z+x)}2 {1 _ei(z—x)}Z -

When the result is combined with equation (37) and (38), the final result for the kernel function in the case of
subsonic axial velocity is as follows:

+o0 R __ —
Tg(%,0)= —3 ¥ e N5(5 + md,)
1

m=

cwt| T me(i® 1=B> R N ie1-B* &9 @ _ &G
—e {_ Z=le Cl(z_ 5 —mZSCOSG)-f"Z B2 1—_;—,-3—1—Zsc050'(‘i*_e,-—cl)2} (50)
s zw1+B< T imc,, €0 )} N
e {4 B2 m§:=1e +1‘“eicﬁ +u=z—00 (J "P +Jq )’
for x <0
= = Sy im(—fis cos 6+) o = —i®% o imC. ical—Bz ’32 o
Ue(%,0)=—35 Y e 8(x~md;)—e {+ Y oe™ 2(—— > —m—§cost9)
m=0 m=1 4 B 4
i®1-B* &% 2 ~ e Lo sinh (@§ cos 6/B)
—— e ——=+—§ cos 0 ;
4 B? 1-¢&< 4SC (1-e"2)? 2B cosh (@5 cos 6/B) — cos(¢+wssm0)} (51)
—iaz|i® 1+B*y m* —im
—e "{Z) 5 (+Z Co 4 )} Z(J —J, +J;), fori=0.
m=1 1
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For the supersonic axial velocity case, there is no effect for £ <0 (upstream of row of dipoles) and for
=0,

+00 N . - +00 5 e -
56(2’ 0)= _% Z—Oexm(—us °°50+¢)5(f—md1)—% Z_l ezm(—ﬂ-s cos a_¢)6(f+md2)

iax| T imcy (i@ 1-B*  &* N M e (i@1-B & 2

—e "‘”‘{ Y e'"‘c‘(%w 5 —ma—s’cos 0>+ Y e""CZ(lIw BJZB —m%s'cos 0)
m=1 m=1

_i_a_)l—Bz{ e . eiC2 >+E_2.§COS§[ i1 . e ]

4 B? \1-€< 1-¢<%/ 4 (1-e1)? " (1-e%)?
Lo sinh (@ cos §/B) }

2B cosh (&5 cos 8/B)—cos (¢ + @5 sin 6)

i@ 1+BY(m- . . omt 0
"’“‘%" IB? { Y "+ Y e ""Cé+1}— Y U =d, AT+ =T+, (52)
m=1 m=1 v=—00

4. Effect of Wave Reflections

The integral equation which has to be solved is, from equations (11) and (27)

+1/2 _ - _
L, F@ree—£0)dE =0 (53)
where 0, is the known kernel function from equations (50), (51) and (52), and ¥y is the known upwash
velocity.

In the general unsteady case, this equation has to be solved numerically, f(£) being specified at N points
evenly distributed along the chord. The integral equation is then replaced by a set of N simultaneous linear
equations. In its simplest form this scheme was found to be very inaccurate. The reason may be seen by
noting that the leading term in the kernel function is the sum of a number of delta functions, and that in the
steady case (@ = 0) this is the only term. This term corresponds physically to the Mach waves radiating from
the row of dipoles on other blades hitting the reference blade, as shown in Fig. 2. When these Mach waves
hit another blade, they ought to be reflected. In the numerical scheme, the wave originating at one of the
points where f(£) is specified on one of the other blades will not hit the reference blade exactly at a point
where f(£) is specified, and the reflection is very imperfectly modelled by the numerical scheme. This is the
cause of the inaccuracy, and it occurs whatever numerical interpolation scheme is used.

In order to overcome the difficulty, the reflections are allowed for explicitly. A new dipole strength, g(£),
is defined along the chord of the reference blade, and with it go the additional dipole strengths necessary to
give the required reflections. The total dipole strength, f(£), is therefore given by

fO=®+ T Fle@+d)E, (54)
where F, is a constant factor which depends on the phase angle between blades, d, is a displacement
distance, and the notation [ ]% indicates that the term is to be included if & < ¢<§&,. F,, d,, &1, and & are
given in Table 1 for various cases; and the corresponding wave reflection patterns are shown in Fig. 4.

Considering first the subsonic axial velocity case, if d,>1 the wave from the trailing edge of one blade
goes ahead of the blade above it, as shown in Fig. 4a, and there are no reflections. In steady flow there is no
interference between blades, but in unsteady flow each blade can influence the flow over the blades behind
it. If d,<1 and d,>1, the upward starting wave may be reflected once, as shown in Fig. 4b, but as the
downward starting wave from the leading edge of one blade falls behind the trailing edge of the blade below
it,'the downward starting wave is never reflected. If d; <1 and (2d;—d>)>1 the pattern is shown in Fig. 4c,
with the upward starting wave reflected 0, 1 or 3 times, and the downward starting wave reflected 0 or 2
times. This is the usual design case for a fan tip section. If (2d; —d;)< 1, there are possibilities of further
reflections, as shown in Fig. 4d, but these cases are not thought to be of much practical importance.

If the axial velocity is supersonic, d- is negative, and if (— d,)> 1 the waves from the leading edge of one
blade go behind all other blades, as shown in Fig. 4e. There js then no interference between blades in steady
or unsteady flow, and each blade behaves as an isolated aerofoil. Figs. 4f, 4g, and 4h show cases of increasing
numbers of possible reflections.
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When equation (54) is substituted into (53), the result may be written
+y2 _ - &;+d,
[ " a@|nc-20+ 5 [Fods-Z+a,0)] lag=su 55)
2

-1/ reflections &1+dy

This is the required integral equation for the unknown dipole strength g(£). When the kernel function,
shown in braces thus { }, is evaluated, all the delta functions cancel except for that at (£ — £)= 0. The result is
that g(£) is a smooth function of £ over the range —0-5<Z<0-5, whereas f(£) shows discontinuities at the
points where the waves from the leading and trailing edges of other blades are reflected.

The corresponding expressions for lift and moment are, from equations (15) and (16)

_ L 1 +1/2 _ e
L= 1, 2@ aleie } 3 56
7Tp0Uzc mI-1/2 g(f) reﬂeéions [F ]§1 p df ( )
M, _*Ala—_lj+l/2 '(é?){(é?—_ )+ Y [(E—d,~X,)F, 52”"} d&. (57)
) mPo Uzc ’ 7T d-172 d o reflections p " An)la ]£1+d,, g

5. Numerical Solutions of Integral Equations

The dipole strength g(£) is specified at N equally spaced points along the chord of the reference blade
given by

~ I-1
§=—0-5+~NT1, for 1<sI<N., (58)
The upwash velocity is matched at the same points. Equations (12), (13) and (14) may therefore be written
V—[—l— l+i£(-_- L _m] q/U e q/U
575 8¢ T ge a |= a |, (59)
w/U w/U

where R is a matrix with N rows (corresponding to the N matching points) and 3 columns (corresponding to
the 3 kinds of upwash velocity).

The integrals in equations (55), (56) and (57) are evaluated by the trapezoidal rule; that is assuming that
the integral varies linearly between the points given by equation (58). Equation (55) then gives

KG=V, (60)

where G is a column matrix giving the values of the g function, and X is a square N X N matrix giving the
values of the kernel function.
Equations (56) and (57) may be written

[Aga]=AG 61)

where A is a matrix with two rows and N columns, giving the coefficients necessary to evaluate the integrals.
Equations (59), (60) and (61) then give
q/U
l]=c]| = ] (62)

w/U

g' T

where
C= [ CLq CLa CLW

=AK'R. 63
Cvs Cita CMWJ 63)

Two computer programs have been written in Fortran to calculate the force and moment coefficients given
by equation (63). The first program works for both subsonic and supersonic axial velocity, but does not
include Crw and Cyw. The second program only covers the case of subsonic axial velocity, but since more
care has been taken to optimise the coding it is much faster. On an IBM 370 this second program requires
64 K bytes of core store, and with N = 16 the execution time is about 0-3 seconds for each case.
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6. Steady Solutions
The steady solution is obtained by putting & = 0. Then equations (50) and (51) give (for ¢ # 27n)

ﬁé(f’ 0)= —%

irs

e ™5(X +mdy), <0,

5:(%,0)=—3 ¥ e"™ 8( —md,), £=0.
m=0

The kernel function of equation (55) then reduces to

K (%)= —38(%).

(64)
In this case all three kinds of upwash velocity become identical, so that
R= —1-[1 1,1] 65
S[1,1,11. (65)
The solution of equation (55) is therefore simply
2@)= = (66)
g B
The force and moment coeflicients are the same for all three kinds of upwash, so that
Crq=Cra= Cw(=CL), 67)
Crg = Cre = Crw (= Cur).
In case (a) (subsonic axial velocity with no interference) the results are
f&=-2/B,
C.=-2/#wB, (68)
CM =+ 2)6.,1/ 7B.
In case (b) (subsonic axial velocity with one reflection of the upward starting wave) the results are
@)= { —2(1—-e™*YB, —0-5<£<(0-5—d,),
-2/B, (0-5—d)<£<0-5.
) (69)
Co=——1-e(1-dy)},
7B

2 -
Crv = +—olxa—¢ *(1—da)(xn +3d2)}.
In case (c) (with up to three reflections of the upward starting wave and up to two reflections of the
downward starting wave) the results are

- = 2 —i .5— —i . —i -
f&)= _E{l —[e d’]gg-sdz +[1-e ¢]23~5+d1 +[1-e ¢]g3~siﬁl—dz},

Co= {1 e (1~ dy)+2(1 ~cos $)(1—d1)}, 70
Cu= +7TLB{X1; —e7 (1= dy)(xn +3d2) +2(1 — cos ¢ )(1 — d1)(x, —3d1 +3d2)

+1i sin ¢(1 —dl)dz}.
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General expressions for the force and moment coefficients are

C.= __{2 1—e (1 —d)H(1—d2)+2(1—cos ¢) 5 (A —rdi+rdy—d2)H(1—rdy + rdz—dz)}a
7TB r=1 2
Cu = —x,Cr —i[ ™% dy(1—dp)H (1~ do) 1)
aB

+ E 2[’(1 —COS ¢)(d1 —dz)“‘ldz sin ¢](1 - rd1 +rd2—d2)H(1 t Td] + I'dz —dz)}.
r=1

In these expressions, the H functions switch on the various reflections as they appear in groups of four with
decreasing values of the cascade spacing.

These results are not strictly valid when ¢ =0 (or a multiple of 247) so that all blades move in phase. The
results then depend on the way in which the limits @ - 0 and ¢ - 0 are approached, and in particular on the
ratio @/¢. Actuator disc theory should be used for this case. But the results for cases (b) and (c) do
correspond to steady flow in a cascade, when a particular back pressure is applied. It is interesting to note
that over the front part of the blade, —0-5 < £< (0-5—d,), f(£) is zero. There is then no wave coming from
the leading edge of the blade, and the effective incidence is zero. This corresponds to the unique incidence
condition given by Kantrowitz (1946)’. In case (a), on the other hand, it is possible for Mach waves to pass
upwards through the cascade, and each blade operates as an isolated aerofoil, with incidence.

For the cases of 