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1. Introduction

Methods for calculating generalised airforce coefficients on a harmonically oscillating flat plate wing in
subsonic flow based on linearised theory, have been in the course of development for many years. The
linearised theory is used to set up an integral equation relating the unknown loading distribution to the known
upwash distribution on the wing. Basically two methods have been in the course of development for solving the
integral equation numerically. In the one the loading distribution is replaced by a distribution of concentrated
loads on certain lines and is known as the doublet lattice method, whereas in the other the loading distribution
is replaced by an approximation which is continuous over the wing except in the neighbourhood of its leading
edge and is known as the lifting surface method. There are also methods which are not based on the
above-mentioned integral equation, for example the vortex lattice method. In this paper we concern ourselves
exclusively with the lifting surface method.

The lifting surface theory of Multhopp' was for steady flow and required the loading to be approximated to
by a polynomial in the wing coordinates ¢ and » multiplied by a function of ¢ and 7 which took into account the
known singular behaviour of the loading at the edges of the wing. This approximation to the loading was
substituted into the integral equation to get an approximation to the upwash, and this approximation to the
upwash was equated to the known upwash at a set of points on the wing equal in number to the number of
unknown coefficients in the expression for the approximation to the loading. A set of linear equations for the
unknown coefficients was thus obtained and this set could be solved. The approximation to the loading was
then known and an approximation to any required generalised airforce coefficients could be obtained from it.

Multhopp’s method was extended to low-frequency harmonic oscillations in Ref. 2 and to general-
frequency harmonic oscillations by, among others, Acum®, Richardson® and Davies’. It was found, however,
that in all these methods, in which the chordwise integration was carried out first, the spanwise integral was
evaluated numerically by too coarse a method and this resulted in inaccurate estimation of the approximation
to the upwash at points near to the leading and trailing edges of the wing with consequent loss of accuracy in the
results for generalised airforce coefficients. Garner and Fox® refined the method of numerical integration of
the spanwise integral and applied their refinement to the case of low-frequency harmonic oscillations. Long”.
applied this same refinement to the case of general-frequency harmonic oscillations. Zandbergen, Labrujere
and Wouters® also refined the method of numerical integration of the spanwise integral in a manner somewhat
different from that of Ref. 6 and for the particular case of steady flow. Lehrian and Garner® then extended the
refinement of Ref. 8 to the case of general-frequency harmonic oscillations. A method in which the spanwise
integral is evaluated first is that of Hewitt and Kellaway'’. The numerical integrations in Ref. 10 are all carried
out accurately so that no refinements are necessary.

All the above methods require that the approximation to the upwash be equated to the known upwash at a
set of points on the wing, their number being the same as that of the unknown coefficients in the expression for
the loading, and then these unknown coefficients may be determined. There are other methods of determining
these unknown coefficients and one of these methods is discussed by Davies''. In this method the coefficients
are determined by equating integrals involving the approximation to the upwash to corresponding integrals
involving the known upwash. This process, theoretically, leads to the generalised airforce coefficients being
obtained with the highest possible precision for a loading approximation of a particular form. The said
integrals are evaluated numerically for the present paper, but the number of integration points may exceed the
number of unknown coefficients in the expression for the loading. If the number of integration points equals
the number of unknown coefficients in the expression for the loading then the method of equating the
approximation to the upwash to the given upwash at a set of points on the wing is retrieved. Furthermore the
refinement of Garner and Fox® is used in evaluating the spanwise integral in the integral equation, although
this is modified to some extent in that the parameter g which determines the number of spanwise integration
points may depend on the location of the upwash point concerned.

The process is described in detail in the present paper. A program has been written in ICL 1900 FORTRAN
to calculate, by using this process, the generalised airforce coefficients and the loading distribution for a wing
oscillating harmonically at general frequencies in subsonic flow. The procedure for using the program is
described in Ref. 17. Calculations, using the program, have been carried out for swept tapered and rectangular
wings. The results obtained are given here and their convergence is studied.

2, Theoretical Considerations
2.1. Preliminary Formulae

We refer points of space to an inertial right-handed Cartesian coordinate system Oxyz where O is the origin
of coordinates and Ox, Oy, Oz are the axes of x, ¥, z coordinates, positive z being upwards. We introduce a



thin wing W into the space and consider it to be vibrating in such a way that the position of any material point
on the surfaces of W is near to a fixed point which is the mean position of that surface point. We consider a flow
of fluid in the space about the wing W, which at large distances ahead of the wing is uniform and horizontal with
speed V in the direction of the positive x-axis. We then have the problem of determining the flow about the
vibrating impervious surfaces of the wing W and we take this to be potential flow except across the wake
surface which extends as a sheet of vorticity downstream from the trailing edge of W. Once the flow is known
the pressure forces acting on the wing can be determined.

When the wing W is very thin and is vibrating in such a manner that all the points on its surfaces are always
very near to the plane z =0, the governing equations of motion of the fluid may be linearised. Let the
orthogonal projection of the mean positions of the material points on the surface of W on to the plane z =0
define the area S, which we shall call the wing planform. Then, as far as the aerodynamic problem is concerned,
the wing is replaced by the area § in the plane z = 0 and the boundary condition of the fluid not penetrating the
surfaces of W is replaced by given fluid speed distributions normal to the top and the bottom surfaces of the
planform area S. The wake becomes a flat surface in the plane z = 0 extending from the trailing edge of § to
infinity.

There are two material points on the surfaces of W, one on the top and one on the bottom surface, whose
mean positions have an orthogonal projection onto the point (x, y, 0) of the planform area S. Let the
components, in the direction of the positive z-axis, of the displacement of these points at time 7 from the point
(x, y, 0) on the planform area S be denoted by Z..(x, y, t) and Z_(x, y, t) respectively for the point on the top
surface and for the point on the bottom surface of W. According to linearised theory, the fluid speed
W.(x, y, t) normal to the top of the planform area § and measured positive upwards is given by

0Z.(x,y,t) oZ.(x,y,¢)
W = + .
+(x’ v, t) |4 ox at (1)

Similarly the fluid speed W_(x, y, f) normal to the bottom of the planform area § and measured positive
upwards is given by

dZ_(x, y, ) +aZ—(x, y, t)

Wo(x,y, 0= V=" = @

The perturbation velocity potential in the fluid can be split up into the sum of two constituents, one of which
is symmetric about the plane z = 0 and the other of which is antisymmetric about the plane z = 0. The speed
distribution normal to the planform area S, corresponding to the symmetric velocity potential constituent is
the same in magnitude but opposite in sign on the top and bottom of the planform area S, whereas the speed
distribution normal to the planform area S, corresponding to the antisymmetric velocity potential constituent
is the same in magnitude and sign on the top and bottom of the planform area S. Corresponding to the
symmetric velocity potential constituent there is no net pressure loading across the planform area § but
corresponding to the antisymmetric velocity potential constituent there is a net pressure loading across the
planform area S, and, by the principle of superposition, this is the total pressure loading across the planform
area S. This pressure loading will give rise to generalised airforces on S and these can be taken to be the
linearised values of the corresponding generalised airforces acting on the wing W. Accordingly, to determine
these generalised airforces we need deal only with the antisymmetric velocity potential constituent.

Let us now write

Z+(x, Y, t)=Z(x’ Y, t)+Zl(x’ Y, t) (3)

and
Z—(x7 Y t):'Z(xa Y t)_Zl(x’ Y, t)- (4)

The function Z,(x, y, t) describes the wing thickness distribution, which will not normally be changing with
time, whereas the function Z(x, y, t) describes the position of the camber surface, which will be changing with
time. The antisymmetric velocity potential constituent depends exclusively on Z(x, y, t) whereas the symmet-
ric velocity potential constituent depends exclusively on Z,(x, y, t). Since, as stated above, we need deal only
with the antisymmetric velocity potential constituent we may disregard the thickness function Zi(x, y, t)



henceforth, and consider only the displacement constituent function Z (x, y, t). The corresponding upward
component of the fluid velocity normal to the planform area S on its top and bottom is W(x, y, t) where

aZ b 3 H ’t
W, y,t)=V (;C Y t)+aZ(x Y ).

5
X at ©)
The quantity W(x, y, ¢) is called the upwash on .

For a vibrating wing the displacement function Z(x, y,?) can be given as a linear combination of
independent modes of oscillation. Thus we can write

Z(x.3.0=1 3 45 y)be() ©®)

where / is some typical length of the planform S, {(x, y) is the modal function and b (?) is the generalised
coordinate for the mode number k, both of which are non-dimensional. The modal functions Gex, y),
k=1,2,...,need to be a complete set of functions for (6) to be valid, in general, and to be of practical value
the summation in (6) must be truncated to a finite number of terms. This truncation may entail an error but if
the number of terms retained is sufficiently large the resulting error is negligibly small.

The generalised coordinate b (¢) is a real function of time #, which we shall assume to consist of a linear
superposition of harmonic constituents

(o) e + b (w) e ™ 0)

over a range of values of circular frequency w, where 5% (w) is the complex conjugate of the complex number
bi(w). Since our aerodynamic problem has been linearised we may take

b ()= Ek (a)) e’ (8)

to carry out the determination of the generalised airforces at the circular frequency w. The generalised
airforces for the problem when

bi(6)=bii(w) e™ 9)

are the complex conjugates of those for 5 (¢) given by (8). The generalised airforces corresponding to the real
function b (¢) given by the expression (7) are then the real quantities obtained by adding the two complex
conjugate generalised airforces corresponding to (8) and (9).

If we substitute for Z(x, y, t) from (6) into (5) and use the expression (8) for by () we get

Wt 5.0=V T aus s n)hu(w)e™ (10)

where P is the number of terms to be retained in (6),

o (x,y; v)= li{%—y—)ﬂv{k(x, y) (11)
and
V=-%l \ (12)

is the frequency parameter corresponding to the circular frequency w.
Corresponding to the upwash

Var(x, y; v)bi(w)e™ (13)



in the mode number k, there is, across the planform area S, a normal pressure force per unit area in the
direction of the positive z-axis, called the aecrodynamic loading at the point (x, y, 0) of the planform § at time ¢.
We can write this loading in the form

pVIi(x, y; v, Mo )bi(w) €™ (14)

where p is the density of the fluid in the uniform flow far upstream of the wing and M is the Mach number

Meo=— (15)

where a is the speed of sound in the uniform flow far upstream of the wing.
On using the governing linearised partial differential equation for the perturbation velocity potential, the
boundary condition of prescribed upwash on S, and the condition of no loading on the wake, we can set up an

integral equation relating the upwash on S to the loading on S (see Ref. 5). For the mode number k this takes
the form

1 —xo y— —iv(x —
a(x, y; v)="——73 U le(x0, o3 ¥, Mw)K(u, Yoro, Moo) exp {—w(x—xO)} dxo dyo (16)
47l l { /
S
where, for subsonic flow,
Xy o oyt QU » Mo(Moox + R) {_i_u(—x+MooR>}
K(z’z””M"")”’ j ¢ Wy RG+y) PUTTI\1-M% 17
(~x+MxR)/ (1-M2)
and
R=V{x*+(1-M%)y*}. (18)

For dynamical analyses of oscillating wings in an airstream we need to know the generalised airforce
coefficients Q. (», M) which are given by the expressions

1
O M) =35 | [ €550, yole o, yo5 v, M) o o (19)
S

in the linearised approximation. It is the main purpose of this paper to discuss the numerical evaluation of
Qi (v, M).

2.2. Approximate Solution of the Integral Equation

The integral equation (16) does not have a unique solution, but if we impose the condition that the loading at
the trailing edge of S vanishes then, generally, the solution becomes unique. As a consequence of imposing this
condition the loading acquires a certain behaviour near the edges of the planform § and this behaviour is
known. We shall seek an approximate solution of the integral equation (16) which has this known behaviour
near the edges of the planform S.

We introduce parametric coordinates on the planform S by means of the formulae

1
f—c—(ys{x —x.(y)}
_y
n="_
S

. (20)
o= m{xo —x.(yo)}




where s is the semi-span of the planform S, ¢(y) is the chord length and x, (y) is the x coordinate of the leading
edge at the spanwise position y of the planform S, as shown in Fig. 1.
The integral equation (16) may now be written as

1
ak(X,y;V)‘_‘Z—';J. c(;}O)dnoJ I(xo, Yo3; v,M)K(x xo Y lyo V,Mm)eXD{——(x XO)} déo.

(1)
We now take an approximation [e(xo, yo) t0 li(x0, yo; v, M) which is given by the formula
fu(o, yo)=—— exp (-—ﬂg> > ¥ At 0" \/1 S0 1-m (22)
c(yo) l i=1p=1

The approximation J (xo, yo) t0 & (o, yo; ¥, M) vanishes at the trailing edge of § and has the required
behaviour near the edges of S. The values of the coefficients Ag;;, are such that the simultaneous linear
equations (33) are satisfied.

The approximation f (xo, yo) in formula (22) has been expressed in terms of # chordline base functions £577,
i=1,2,...,n, and of m spanwise base functions 57, p=1,2,...,m The formula (22) will be put into a
different form, which is more convenient for numerical evaluation than is the formula (22) which involves
merely simple monomials £5 'n§7".

The points
1 2i—-1
(.") = —_ | =
& 2[1 cos(2n+lﬂ)}, i=1,2,....n (23)
are a set of n distinct points in (0, 1). We form interpolation polynomials ™ (&), r=1,2, ..., n, based on

these points. These interpolation polynomials are given by the expressions

A b= =1,2 24
(§0) H é_—(n) g(n s r=1,4,...,RH ( )
z;ér
and have the property
h(E) =5, (25)
where 8,; is Kronecker’s delta
1 r=i
= 26
O {0 r#i (26)
The function &, i=1,2, ..., n, can be expressed as a linear combination of the A"(&), r=1,2,...,n,

because these are a set of » linearly independent functions each of degree (n—1) in &.
The points

(m) _ p7 ) — 2
N cos<m+1, r=12,...,m 27
are a set of m distinct points in (—1, 1). We form interpolation polynomials g"(no), s =1, 2, .. ., m, based on

these points and given by the expressions

(m)
gm0= 1 (T o). s=1.2....m (28)
P

p;ﬁs



which have the property

85" (n5") = 8y 9)
where §,, is Kronecker’s delta. The function nS'l, p=1,2,...,m, canbeexpressed as a linear combination of
the g™ (no), s=1,2, ..., m, because these are a set of m linearly independent functions each of degree

(m—1)in no.
Therefore [ (xo, yo) of formula (23) can be expressed in the different, but equivalent, form

ko, yo)=isexp () £ § Bk gty V= (30)

r=1s=1

where the unknown coefficients A.,;, of formula (22) have now been replaced by the new unknown
coefficients By, s, which are linear combinations of the A;;,. We need determine only the coefficients By,
in order to know the function J (xo, Yo).

The n distinct points £™, i=1,2, ..., n,in (0, 1) and the m distinct points n5™, p=1,2,..., m,in (-1, 1)
have the advantage over other choices in that simple expressions, concerning integration, which have been
developed in Appendix A, may be used in the ensuing part of the Report. Other choices of points may be just
as good as far as the numerical accuracy of the final results is concerned, but it is possible to have an
unfortunate choice of the points &y in (0, 1) and noin (=1, 1) resulting inill-conditioning of sets of simultaneous
equations and the numerical accuracy of the final results is poor when only a moderately small number of
significant figures is used in the calculations.

If we use the approximation i (x(,, yo)from (30) for [ (xo, yo; v, Mw)in the integral equation (21) we shall get
a corresponding approximation @ (x, y) to the upwash function a(x, y; ») which is given by

G (x, y)_§ i f By..sU.s(x,y; v, Moo)exp< ilvx) 31

r=1s=1

where

1 m n
U,,s(x,y;u,Mw)=;,;;j_ o 1= dnoj N v, Mo) déo,

r=1,2,...,n;s=1,2,...,m. (32)

Following Ref. 11 we determine the unknown coefficients By, r=1,2,...,n;5=1, 2,...,m, from the
set of mn linear simultaneous equations

J (m)(n)xf___dnj‘ RO — 5)\/—{ak(x i v)—dlx, y )}exp( )dg 0,

i=1,2,...,n;p=1,2,...,m. (33)

The corresponding approximation Q,k to the generalised airforce coefficient Qy is then obtained from
formula (19) on replacing /. (xo, yo; ¥, M) by [ (xo, yo) and is

Ou = “’ &i(x0, Yo)i(¥o, yo) dxo dyo. (34)

S

If we substitute for @, (x, y) from (31)into (33) then we can write the set of mn linear simultaneous equations
(33) in the alternative form

Y th,p,sBk,s—Gk,p, i=1,2,...,n5p=12,...,m, (35)



where

+1 1 " iVx
Ok;i,pzj-_l gf:m)(n)ﬂ—nzdnL h{(1-¢) T_%ak(x,y;V)exp (7) dé,
i=L2,....,n;p=1,2,...,m, (36)

and

+1 1
Gipins =J g (nW1-19? fflnj0 hE”)(l—f)\/l“%Ur,s(x, ¥; v, M) d,
-1
i=1,2,...,n;p=1,2,...,m,r=1,2,...,n;s=1,2,...,m. (37)

We assume that the wing planform S is symmetric about the x—z coordinate plane and that the modes of
oscillation are either all symmetric modes or all antisymmetric. Then we must have

c(=y)=c(y) (38)
xL(-y)=xc(y) (39)

and
Ge(x, —y) = rdi(x, y) (40)

where k = +1 for the case in which all the modes are symmetric and k = —1 for the case in which all the modes
are antisymmetric.
We note, from formula (27), that

(m) (m)

Nm—p+1 ==, p=1,2,..., m. 41)
Then, it follows from (28) that
gmln(m=g(=n),  s=1,2,...,m, (42)
from (32) that
Unm-s+1(%, y; ¥, Moo) = U, 5(x, —y; v, M), r=12,...,n,5s=1,2,...,m, 43)

because the kernel function K(x, y; », M) is symmetric in y, and from (37) that
Gim—prisnm—s+1 = Wipins i=1,2,...,n;p=1,2,...,m,r=1,2,...,n;s=1,2,...,m. (44)

From (40) and (11) we get that the reduced upwash function e, (x, y; ») satisfies

ar(x, —y; v)=kar(x, y; v), (45)

and then, from (36), we get that
Orim—p+1= KOx;; p, i=1,2,...,mp=12,...,m. 46)
Because of (44) and (46), the coefficients By, r=1,2, . .. »n;5=1,2,..., m, which satisfy the set of mn

linear simultaneous equations (35), must satisfy the relations

Birm—s+1= KkBy.rs, r=1,2,...,n;8s=1,2,...,m. 47



We now define the integer my by means of the formula
my =32m+xk —rk(—1)"}. (48)
We note, from (46) and (47), that when m is an odd integer and k = —1 we must have
Orcsimpr1 =0, 49)
and
Bicsrmgr1 =0. (50)

For all values of m and «, only my values of the By, ; are therefore unknown and consequently the set of mn
linear simultaneous equations (35) may be replaced by the set of mgn linear simultaneous equations

s mH
i Z Z \Pi,p;r,sck;r,s=0k:i,pg i=1,2,...,n;p;l,Z,,,,,mH, (51)
r=1s=1
where
Cicirs = 2Bieir,s, r=1,2,...,n;55=1,2,...,mg—1, (52)
2Bk rmps m even
Cioormg = 4 2Brsrmp m odd, k =—1, (53)
)2 J— modd, k=+1, r=1,2,...,n,
and

Wiprs = MWipirs + klipimmsst) i=1,2, . mip=12,. . mmr=1,2,...,n55=1,2,...,ma (54)

Furthermore, the set of mgn linear simultaneous equations (51) may be written as the matrix equation

WG = (6] (55)

where [¥] is a square matrix of order myn X myn consisting of elements which are the quantities Wipins
i=1,2,...,np=12,...,myg;r=1,2,...,0;5=1,2,...,my, [C] is a column matrix consisting of the
men elements Ce,s, r=1,2,...,n; s=1,2,..., my, and [6;] is a column matrix consisting of the mgun
elements 6;.;,,i=1,2,...,n;p=1,2,..., my The arrangement of the elements C;.,.; in the column matrix
[Ci)is immaterial and so is the arrangement of the elements 6y ; , in the column matrix [8¢], but once these two
arrangements have been specified the arrangement of the elements ¥, in the square matrix [W] is
determined.

To be definite we may specify the following arrangement for the elements in the matrices [Ci], [6«] and [¥].
The column matrix [C,] has the element
Cr.rss r=1,2,...,n;s=1,2,...,my, (56)
in the n(mg —s)+ rth row. The column matrix [6] has the element
Or;ips i=1,2,...,m;p=12,...,mp, (57)
in the n(myg —p)+n —i+ 1st row. Consequently the square matrix [¥] has the element

Wipins i=1,2,...,n;p=12,... . mgr=12,...,0n;5=1,2,...,mu, (58)

in the n{my—p)+n—i+1st row, and n(my — s)+ rth column.

10



2.3. Evaluation of the Generalised Forces

If we substitute for f (xo, yo) from equation (30) into formula (34) we get

. s om
Ojk =7 Zl 21 Xj;r.sBk;r,s (59)

where

+1 1 ,
m - n 1 —
Xisns = J.—1 g noW1—ns dneo J’O i(xo, yo) exp (——lzl}x())}ls X&) §0§0 déo,

r=12,...,n;5=1,2,...,m. (60)
On using (40) and (42) in formula (60) we get the relations

Xisnm—s+1 = KXiir.so r=1,2,...,n;5=1,2,..., m. (61)

Therefore, from (59), on using (47), (52), (53) and (61), and noting that x> =1 we get

Ky n mgr
é]'k =7 Z Z Xj;r,ka;r,s~ (62)

lr=1 s=1

The formula (62) may be written as the matrix formula

A S
(AR (eN (63)
where [x;] is a row matrix of myn elements, with the element
Xiins r=1,2,...,0;8=1,2,..., mp, (64)

in the n(mg — )+ rth column and [OQy] is the matrix of order 1x 1 consisting of the one element Q.
If we solve the matrix equation (55) for the column matrix [C, ] and insert the result into formula (63) we get

[Qr] =D [%] ' [6:]. (65)
Let us now write
1 iV (n,m) 5
{,-;,,S=Wexp (Tx,,s )X,-;,,s, r=1,2,...,n;5=1,2,...,m, (66)
and
1 -iV —(n. m) .
ak;i,p=Wexp(Tx,~,p’ )Bk;,-,p, i=1,2,...,n;p=1,2,...,m, (67)
i P
where
y§"°=sn§’”), s=1,2,...,m, (68)
M= c(MED+ (), r=1,2,...,n;5=1,2,...,m, (69)
=(n,m) _ (m)\rq1 . #(n) (m) . R
Eipg =c(yp M1=&")+x(yp™), i=1,2,....m;p=1,2,...,m, (70)

and (see Appendix A, formulae (A-13) and (A-32))

HP= | 1 h,i")(f)\/i—? dt

27
(Cn+1)

(1-£&M),  i=1,2,...,n, (71)

11



+1 “
Gy = L g (mW1—-n"dn

= (m +1 )[1 (ﬂ(m)) ]7 p= 1, 2, [ (72)

If we use the numerical integration formulae (A-16) and (A-35) with » integration points chordwise and
integration points spanwise to evaluate ;,,; and 6y,;, from formulae (60) and (61) respectively we get

Xine= . 3 HOGEROEMR 8™, v exo (745
*H‘")G('"){,(x("'"),yﬁ"")exp( x,s"')) r=1,2,...,0;5=1,2,...,m, (73)

and
hio= 3 5 HOGTHIEG M F57, y ) exo (T35

=H"PGMa (5™, yom, z:)exp(lff';'")), i=12,...,n;p=1,2,...,m (74)

On substituting from (73) and (74) respectively into (66) and (67) respectively we then get

Cins = g’,(x(""'),ygm)), r=1,2,...,n;8=1,2,...,m, (75)

and
ip=ar (B, y0w),  i=1,2,...,mp=12,...,m. (76)

The formulae (73) and (74) are only approximate formulae, but they may be very good approximations to
the correct values at high values of rn and m if ¢(y), ax(x, y; ») and ¢;(x, y) are continuous functions with only a
few undulations over the planform S. There are instances, e.g. control surface rotation, in which their accuracy
is not as good as may be desired unless n and m are unpractically high. If it is considered that the
approximations (73) and (74) are sufficiently accurate then formulae (75) and (76) may be used for {;;. and
ay.;p respectively instead of the expressions (66) and (67) with x;,.s and 6y, being obtained accurately by
numerical integration of the integral relations (60) and (36) using formulae which are much more accurate than
formulae (73) and (74), or, indeed, by carrying out the integrations analytically if this is possible.

Let [¢;] be the row matrix of myn elements with the element

gl';r,m r=152,'~-7n;S:192""smH, (77)
in the n(my —s)-+ rth column. Let [a; ] be the column matrix of mgn elements with the element
Qresips i=1,2,...,m;p=1,2,...,mpg, (78)

in the n(my—p)+n—i+1st row. Let [E] be the diagonal matrix of order mgn X mgyn with the element

H(,")Gg"')exp (_waf,";m)), r=1,2,...,n;8=1,2,..., mg 79

12



in the n(mg — )+ rth row and column. Let [D] be the diagonal matrix of order myn X mgn with the element
H§")G§;">exp(’7”f§j;m)), i=1,2,...,n;p=1,2,..., mu, (80)

in the n(myx—p)+n—i+1st row and column. Then we can write formula (66) and (67) as the equivalent
matrix formulae

[xi1=[&1E] (81)
and
[0i] = [D}eu] (82)
respectively. On substituting from (81) and (82) into (65) we get
[On] = [GNENTT " [D)exe] (83)

which is the final formulation for the approximation Oy to the generalised airforce coefficient Qp..

Suppose that there are P modes of oscillation corresponding to the index k in the summation on the right
hand side of (6) taking the values k=1, 2, ..., P, only, just as in formula (10). Let [] be the matrix of order
P X myn obtained by arranging the row matrices [{;], /=1, 2, ..., P, sequentially one below another. Let [a]
be the matrix of order myn X P obtained by arranging the column matrices [ax], k=1,2,..., P, sequentially
one alongside another. Let [Q] be the square matrix of order P X P which has the element [éik] in the jth row
and kth column, j=1,2,...,P;k=1,2,..., P. Then we get immediately from formula (83)

[Q1=[ZIEN¥] ' [D][a]. (84)

2.4. Evaluation of the Loading

We can obtain the approximations fk (x0, ¥0), k=1,2,..., P, to the loading distribution /, (x0, yo; v, M) in
the mode & of oscillation directly from formula (30). By using the definitions (52) and (53) in formula (30) in
order to replace the coefficients By, by Cy.,, we get

A l —iVX()) L 4 (n) (my,) 1—5 3
L (x0, yo)= Cr.r. sk ko H —32V1- 85
& (X0, Yo) 2e(30) CXP( ] Z.l sgl kinshr (€o0) (no)y/ P N0 (85)
where
k(o) =g mo)+ g (=mo),  s=1,2,..., mu. (86)

The relations (42) and (47) have also been used in obtaining the formula (85).
Let [F(xo, yo)] be the row matrix of myn elements with the element

2 "iVX()

exp 7 )hﬁ"’(io)kﬁ'"ﬂ’(no) 1—;50*/1~n3, r=12,..,m5=1,2, ., my (87)

sc(yo)

in the n (my — s)+ rth column and let [ (xo, yo)] be the matrix consisting of the single element fi (xo, yo). Then
we can replace the formula (85) by the matrix formula

[Fxo, yolICel. (88)

D=

[fk (%0, yo)l =

If we obtain [Cy] from formula (55) and express [, ] in terms of [ ] by means of formula (82), then we can
write, instead of (88)

[ (xo, o)l =3[F (X0, yo)I[¥] [D][ete] (89)

which is a formula for determining f (xo, Vo).

13



In particular, if we put in formula (89)

Xo= x5 90
— 4, (m) ( )
Yo=Yp

where x{3™, yi™ are defined in formulae (68) and (69), with i and p replaced by r and s, we get

e,y =3 FG™, yo¥] ™ [Dla]. ©n

We note that the row matrix [F(x%™, y7™)] has only one non-zero element, namely the one in the

n(mz — p)+ ith column. This fact comes from applying the properties (25) and (29) of the functions 4 {™(£;) and
g™ (mo) to the functions k™9)(m) of (86) and the elements (87) of [F(xo, yo)]-
Now let [[, ] be the column matrix of myn elements with the element

L™y, i=1,2,...,0p=1,2,..., my, (92)

in the n(my — p)+ith row and let [F] be the matrix of order mgn X mgn whose n(my —p)+ ith row is the row
matrix F(x{5™, y™). Actually, according to the above, the square matrix [F] is a diagonal matrix. It can be

written as the product of diagonal matrices

[F]=[H][E] (93)

where the diagonal matrix [ E£] has been defined immediately before expression (79) and [H] is the diagonal
matrix of order myn X myn with the element

12 1 1- 3 i'l
2o HPGmkr I =, =L 2 =L me (94)
in the n(my ~p)+ ith row and column.
From equation (91)fori=1,2,...,n;p=1,2,..., mg, we then deduce the matrix equation
(6] =3 H]E][¥] ' [D][ax]. (95)
If we solve equation (95) for [¥'] '[D][ax] and substitute the result into formula (89) we get
[ (xo, yo)l = [F(xo, ol E1 ™ [H] "[i] (96)
which is an alternative formula to formula (89) for determining [ (xo, yo)]. Formula (96) is useful if one
computer program is constructed to evaluate the mgn values T (xE_",;’"), yf,'")), i=1,2,...,n;p=1,2,..., my,
for each value of k from equation (95) and a second computer program is constructed to evaluate [ (xo, yo) at
given values of xo and y, using these myn values lk(xS,",;'"), yg,"‘)), i=1,2,...,n;p=1,2,..., my, for each

value of k in formula (96).

We notice that the matrix product [E][¥] '[D] occurs both in formula (84) for the generalised airforce
coefficients and in formula (95) for the loading at the loading points. It was to achieve this that the product
formula (93) for [F] was introduced.

If [f] is the matrix of order myn X P obtained by arranging the column matrices [fk], k=1,2,..., P,
sequentially one alongside another, and if [{(xo, vo)] is the row matrix of P elements obtained by arranging the
elements [ (xo, yo), k=1,2,..., P, sequentially one alongside another, then we get immediately from
formulae (95) and (96) the formulae

[[1=3HIEN¥] " [Dlla] ©7)

and

[{(x0, yo)] = [F(x0, yO)ILE1'[H][]). (98)
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3. Numerical Integration

The quantities ¢, .., defined in formulae (37) as double integrals, are to be evaluated numerically, and we
do this by evaluating the double integrals using the Gaussian numerical integration formula (A-16) over N
chordwise points £ in (0, 1) and the Gaussian numerical integration formula (A-35) over M spanwise points n

in (—1, 1). This process leads to the formula

Yipirs = -3 ¥ H{PGFPRM(EM gy (U5, 505 v, M),

I=17=1

i=12,...,0p=1,2,....mr=1,2,...,0;8=1,2,...

where (see Appendix A)

+1
G = j g mWW1-ndn
-1

M+1[1 @™, I=12,....M,

0= c(yfNA- M+ 0F),  I=1,2,...,N;T=1,2,..., M,
and
Y= 0
We define the integer Mz by means of the formula

My =2M +k ~(~1)Mk}.

Then, if we use the relations (41), (42) and (43) in (99), and use the definitions (54) we get

z

1:% H(N)G(M)h(")(E(N))L X

=41
\I,i,p;r,s 2

IIM

17

X{Urs(f?‘}”), Y5 v, M)+ kU, st (B, y &0 1, M)},

i=L2,....mp=L2,....mgr=12,...,n,5=12,...,

where
Lys =g ) +rgd (=08 T<My

gMmUD+ kgl (=nSe)  Meven
Lont =< 57— g (—nin Modd, « =—1
gom(0) Modd, k = +1.
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sm,  (99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(108)

(109)



We may now write for the matrix [¥], appearing in formula (55),

(¥1=[L][U] (110)
where [L] is the matrix of order mgn X MuN with the element

LH®OGME®EML, . i=1,2,...,n5p=1,2,...,mxT=1,2,... ,N;J=1,2,..., My,
(111)

in the n(my—p)+n—i+1st row and N(My—J)+N—1I+1st column, and [U] is the matrix of order
MyN X myn with the element

U, B, y 0, v, M)+ kUpmesirn B0, y 805 v M), 1=1,2,...,N;J=1,2,..., My,
r=1,2,....n;s=12,...,mg (112)

in the N(My —J)+ N —I+1st row and n(mg—s)+rth column.
We note that the matrix [¥] given by (110) is non-singular only if MuN = myn. We shall take My = my and
N = n so that this condition is satisfied and then [¥] can be inverted to give [¥]7" required in formula (65).
Now, from (32), we get

e}

5 J g™ (oW1 - 13

U,.(x, y; v, M) == I m, Mo v, M) dno (113)
sl (m—mo)
where
" 1y=yN\2 {' 1- X—Xo y—
I, 1, Mo3 ¥, M) = 4—(——y X °) j h (o) f"K( o Y=Y, Moo) déo. (114)
77' { 0 fo l !

To evaluate U, (x, y; v, Mw) from (113) we write, following Ref. 12,

2 a4l (m) \/Ti
Uty v, M) = j g (naV1-mo
s J-1 (’fi—’ﬂo)
n n a n
x{lf & . mo; v, M) —I(E m, 5 v, Moo)—(no—n)[galf (& m, Mo v, Moo)] }dno+
no=n
2 1 myp N2
+1(¢ 1, m; v, M) I w dno—
$ -1 (m—mo)
27 8 i +1 gm) \/’1_—2
Ll mn ] [ S gy, 115)
5°Lano no=m 71 (7?"170)
Now
1 { () (n) { 9
T 2 Ir 2 £ ; 7M00 _Irn P b 7 ’MOO_ - _IS") ’ ’ ; 7M00] } 116
PE— (& 1, Mo v, M) (& m; v, Mo)—(mo—m) P (& n, mo; v, M) e (116)

becomes logarithmically infinite when no= 7, so that a numerical integration process for evaluating directly
the first integral on the right hand side of formula (115) must not have an integration point at o= 7. Also it is
not easy to estimate the accuracy of such a numerical integration. We can replace the function
I(&, n, no; v, M) in the first integral on the right hand side of formula (115) by a function
"¢, m, Mo; v, M) so that numerical integration of the resulting integral is straightforward using a Gaussian
numerical integration process and analytical integration of the difference between the two integrals can be
carried out. This is achieved by using the known analytical behaviour of I (&, o; ¥, M) fOr no near to n
(see Ref. 5, Appendix 4).
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We introduce the functions [, ,(")(f, 7, Mo} ¥, M) by means of the formulae

Ign)(é‘s 771 170; v, M°0)=f£n)(§’ 71, "70; v, M00)+F‘£n)(§9 77, v, MOO)(n ‘“?70)2 IOg ’77 _nUI’ r= 1: 2’ AEEER S ] n’ (117)

where

~(iv)® %—)L h(”)(fo)\/l §°d§o} r=1,2,...,n (118)

The lowest order logarithmic contribution to I™(£, 0, no; », M) is then completely separated as the second
term on the right hand side of (117). It follows that the function

Hn n d n
( _ 2 If‘ )(f, n, TIO’ v, Mw)_lf‘ )(59 N, MGO)_(TIO_")[ II(‘ )(ga n, 770, v, MOO)] }’
1= "No) Mo o=

r=1,2,...,n (119)

is finite when no=7 if x/(y) and c"(y) are finite. The function (119) is then finite for all 7, in (=1, 1) and
therefore is straightforward to deal with as part of an integrand of an integral which is to be evaluated using a
Gaussian numerical integration process.

If we substitute for I™(£, 0, no; v, M) from (117) into the first integral on the right hand side of (115) we
obtain

(m) 0\/——“
ot y: v, Ma) = L gs (no)V1—mpo

I(n) s Tfy ,Va OO—IS‘n) > M, ’MOO -
E— {(Enno ) (& m,m; v, M)

a n
—(no—n)[—lﬁ & n, 03 ¥, Mco)] } dno+
ano

no=n
2 +1

{
+?F5")(§,n;v,Mm)j_ g™ (no) log |n —nolV1—n3 dno+

r (n) i ggm)("lo)\/—-—z .
+;7L (én,n;v,Moo)J 1—-n5dno—

I’ro
(n),
_7[6_7731’ (fv m Nos ¥, MOO)]

m)
J' gs (770) ,—1—77(2)d1]0. (120)

s -1 (n—mo)

no=mn
It is observed that the third and fourth integrals on the right hand side of (120) are principal value singular
integrals.

The first integral on the right hand side of (120) may be evaluated numerically by means of a Gaussian
numerical integration. The obvious formula is the one with v1~n{ as weight function, but we shall find it
necessary to use also other weight functions in order to justify the final form (156) for U, ,(x, y$*; v, M) in all
circumstances. These weight functions are v(1—10)/(1+n0), V(1 +70)/(1—no) and 1/¥1—n3. If we use A
integration points, the application of the Gaussian numerical integration corresponding to each of these
weight functions gives the result

(m) J—
J (o)1 RINE 1, 03 v, M) —I™E, 0, 13 v, Meo)— (10 — 17)[ I (E 1, no; v, Moo)] }d’ﬂo
-1 (77 770) no=mn

"“(z‘“){l S
(n— Py |

I 0, &) v, M) —

||M>

z
Py

n 0 in
~EE s 5 M)~ @) I i M), (121)

no=
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The values of P, and ¢SV, p=1,2, ..., A, for the different weight functions may be obtained from equations
(A-86), (A-88), (A-91) and (A-94) of Appendix A.
For the weight function v'1— 73 these values are

Py=(A+1) (122)
and
9=
=cos(Ap_:_rl), p=12,... A. (123)

For the weight function V(1 —10)/{1 + 70) these values are

Py=(A+3) (124)
and
-
—cos( 2"") =1,2,... A (125)
=eos\oaeg)  PTLZoA

For the weight function v (1 +%,)/(1 — no) these values are

Pr=(A+}) (126)
and
M =@,
_ 2p—-1 ) _
—cos(2A+17r, p=1,2,...,A. (127)

For the weight function 1/v1— 7§ these values are

Pi=A (128)
and
9 g
2p—1 )
- =1,2,..., A
cos( =n), p=12,..,A (129)

Formula (121) is, in general, only an approximate formula but for the weight function v1— 5§ it would be
exact if the function (119) were a polynomial of degree <2A—m in 7no. For the weight functions
V(1= n0)/(1+ o) and V(1 + 10)/(1 — mo) it would be exact if the function (119) were a polynomial of degree
<2A—m—1 in no and for the weight function 1/\/1 —m¢ it would be exact if the function (119) were a
polynomial of degree <2A —m ~2 in no. However, since the integration weights are positive numbers and the
function (119} s finite for all 1o in (~1, 1), the right hand side of (121) will converge to the exact value of the
integral on the left hand side of (121) as A tends to infinity. We can take A to be large enough for formula (121)
to be sufficiently accurate for all practical purposes.

We note that the form of the right hand side of (121) can be used only if

n#LP,  p=1,2,.. A, (130)
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but if this is not the case the right hand side of (121)is easﬂy modified and the resulting formula involves the
second derivative (92/0n )& n, no; v, M) for no= ¢ for the appropriate value of p.
We can further write

+1
J ('")(no)log |n —molv1~ 710 dno

= [ 0~ g Hog = moV = i+ ) [ o In = ol T3 o

A
=5 ¥ 6 ~g )} log I~ (00N~ (4 H+ 54 ~3 - log 2} b

where one of the above Gaussian integration formulae with A integration points has been used to give

[ 180~ g6m3 0g In = o T3 dmg

=— z {8 — g™ () og In — ¢SV — (oYY (132)

The formula (132) is only approximate but since the integration weights are positive numbers and the
function {g"™(no)— g™ (n)} log | — ol is finite for all ngin (~1, 1) the right hand side of (132) will converge to
the exact value of the integral on the left hand side of (132) as A tends to infinity. We can take A to be large
enough for the formula (132) to be sufficiently accurate for all practical purposes. Actually, the integral on the
left hand side of (131) can be evaluated analytically, but it is simpler to get its value from the expression on the
right hand side of (131), and then the accuracy is consistent with the accuracy of formula (121).

On substituting from (121) and (131) into (120) we get

P oo gmed- @

U.s(x, y; v, Moo)~_s pz (n— — Dy
X1, m, £ v, Moo)+ FYUE 13 v, M) — £V) log In — £V +
2o . g (moV1—n3 7 & g(EM1- DY)
el (f’n’n’V’Mw)“—l (n —no)* - Paki (n—{0) ]-
12[ I™(E n, mo; v Moo)] X
Sz a E} s ¥y o=
(m) (m)y #(A) (A)
g! (nowl—nu 7 A gL -
X[J“l (ﬂ‘”flo) o~ PA021 (71 f(A)) ]

. my | T T &
T2 PG 3 v Mg >(n)[5(n2—%—log 2= L logln =& 1= 4]

l A (m) (A) 1 (A2 .
=Pl -2 2—-:1 (é(:’7 ){gLA)({ ) }I( )(E: m (A) s Vs Moo)+
P rove o oo gPmoNV1-m3 _m A gMEENI- Y]
+?Il‘ (f’ NV M°0)|:J:‘1 (17 Mo ) d Mo~ PA pzl (1? Z;A))Z ]

12 n
2[ I( )(f m Nos VaMUO)] I:J
s“Lan no=nt /-1

m)(ﬂo)Vl 7% 7 A gL =) }]

e O i)

2
+ LR ms v Mg ()| Zn* ~b-log2) 5 § logln—2HI-GON | 33

19



Again,

J gs )(770)‘ 77
~1 (”fl "70) °

_ J’ {gs'"’(no)—gs‘""(n)—(zo—n)gs('")'(n)} T=wl dmo+
1 (m—mo)
Yi—92 Ji-n3
(m) (m)r Mo
| G g [
7§ BT e ) ey

— g™ (n)— g™ (n)

(134)
where the principal value singular integrals jf V(1=18)/(n —=no) dne and j_ V(1 =n8)/(n —no) dno have
been replaced by their respective values —7 and 7n. Similarly

g (moW1—n3
J—1 (n— 770) o

f {g(m>(no)*g§’"’(n)}\/—dn +g('")(77)J’ o
» (n—mno) '

(m —mo)
A (m)g 4 (Ay (m)
=P_77Ap=1{gs (fn )52%) b1 - g7+ ).

dno

(135)
In equations (134) and (135) one of the above Gaussian integration formulae with A integration points has
been used to give

(m) _ ,m) — _ (my
J’ g (no)—g¢ (nj (710 1)8s (77)}\/:7—5(1.170
-1 (77 770)

_ 7 ¢ 18~ e~ @ - el ()

TPy S (- LDy {1-@&™) (136)
and

j {g(m)(”ﬂo) g('")(n)}\/l_ 2

(n— No)

_7 g e (R R ))

Pl e 1@ (137)
The function g™ (n) is the derivative with respect to 1 of g™ (n). The formula (136) is exact if
A=3m—1 (138)
for weight function m, if
A=3m—3 (139)
for weight functions V(1 —70)/(1+n0) and V(1 +10)/(1—n9), and if
A=3m (140)
for weight function 1/v1—na.
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The formula (137) is exact if
A=3im—3 (141)
for weight function V1 — 73, if

A=3m (142)

A=im+3 (143)

for weight function 1/V1~73.

Hence, if one of the conditions (141), (142), (143) holds, as appropriate to the weight function used, then
both formulae (134) and (135) are exact and we can substitute them into the right hand side of (133) to get an
alternative formula which is precisely equivalent to (133),

a 1?2 A
PAS2

) g (L~ (M)

Us(x,y; v, Mo) = (n— év(A))

Il('n)(§’ s (A): v, Mco) -

A (A)
§=:{1 ¢ )}]

_ _l___ {n) (m) [ 1
™ 517 m, ms v, Moo)gs ()] 1+ Pr 2 (g~

{1- («:‘A’)Z}J N

w1 m o M0l x[ng; £ ey

+7T'_F( (f: 71, v, Moo)g(’n) ("I) X

X[%(nz—%— log 2)—% il log|m— 3"} x{1~ ({ﬁ,“)z}] (144)

and this is the numerical integration formula that we use for evaluating U, (x, y; », M). However, we need the
values U, ;(x, y; v, M) only for

y=yM,  J=1,2,...,M, (145)
in order to evaluate the elements (112) of the matrix [ U], and these values of y correspond to
=98, J=12,...,M. (146)

With the values of % given by (146) a simplification of the expression (144) occurs with certain special values of
A, these sgemal values of A being specific to the weight function v1—3, V(1 —n0)/(1+n10), V(1 +10)/(1 —n0)

or1/v1 bemg used. In fact we have (see Appendix B)
_1 {1 ( ‘A’)Z
{1 ( (A))Z}
“p“zlwg—@r & e

n the following five cases:
Tase (i) Any positive integer M, any positive integer J, 1 <J <M, and weight function 1/v1~ 3.
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Values of A are given by
A=a(M+1) (149)

where g is any positive integer.

Case (i)) Any_odd positive integer M, any even positive integer J, 2<J<M —1, and weight function
1/¥1—7ns.
Values of A are given by

A=32a-1)(M+1) (150)

where a is any positive integer.
Case (iii) Any even positive integer M, any even positive integer J, 2<J=<M, and weight function
1+m0/1-no.
Values of A are given by

A=32a~1D)M+1)-3 (151)

where a is any positive integer.
Case (iv) Any even positive integer M, any odd positive integer J, 1<sJ<=M -1, and weight function
1=7n0/1+70.
Values of A are given by

A=22a-1)(M+1)~3 (152)
where a is any positive integer.

Case (v) Any odd positive integer M, any odd positive integer J, 1 <J <M, and weight function v1—~73.
Values of A are given by

A=32a-D(M+1)—-1 (153)

where a is any positive integer.
If we substitute from (147) and (148) into (144) for the values of y given by (145) we get

U, (x, y5$*75 v, M)

_m P& g -
Pist, 2 =)

M (A),
Iﬁn)(f’ nr )’ p ), v, MOO)_

~aPy ?Iﬁ &8, 0 v, Mo)gt ’(n§M’)+ws—2F5 €15 v, Mo)g ™ (n§7) %

A
x| M -1-10g 2= 5 & tog 0~ i1 - @) (154)

It is to be noted that the quantity [(3/3m}{I (& 25, no; v, Mw)gi"’)(no)}],,oz,,;w does not occur in formula
(154).
Formula (154) is valid for the following cases:

Case (i) Any positive integer M and any positive integer J, 1 <J <M, when A is given by (149), P, is given by
(128) and (ﬁ,’\), p=1,2,..., A, are given by (129).

Case (ii) Any odd positive integer M and any even positive integer J, 2<J <M -1, when A is given by (150),
P, is given by (128) and ¢V, p=1,2, ..., A, are given by (129).

Case (iii) Any even positive integer M and any even positive integer J, 2 < J < M, when A is given by (151), P;
is given by (126) and ¢, p=1,2,..., A, are given by (127).

Case (iv) Any even positive integer M and any odd positive integer J, 1 <J < M —1, when A is given by (152}
P is given by (124) and &, p=1,2, ..., A, are given by (125).

Case (v) Any odd positive integer M and any odd positive integer J, 1 <J =< M, when A is given by (153), P, i
given by (122) and ¢V, p=1,2, ..., A, are given by (123).
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By using formula (A-55) we can put the result (154) into yet a different form, in which we do not have to
distinguish between the cases (i), (ii), (iii), (iv) and (v). If we put

M=qM+1)—1 (155)
then the result (154) can be expressed in the form
U,.(x, y?7; v, M)

gp )(770) N

l M n m
=32 L 1P 5" mis v M)l I wy dnut

-1 (9o~
+ L m8% 5 Mg 8| S 7 -3 1o 2)-

e f g6 (nolV1-nj S ins].

- Z ("l(M) ﬂ(M)) log |7I(JM) (M) (156)
p=1 (no— )
If g is a positive even number then we put
q=2a, (157)
where a is a positive number, and formula (156) follows directly from case (i) above.
If g is a positive odd number then we put.
g=2a-—-1, (158)

where a is a positive number. Formula (156) then follows immediately from case (ii) above when M is any odd
positive integer and J, 2<J<M—1 is any even positive integer, from case (iii) above when M is any even
positive integer and J, 2 < J=< M is any even positive integer, from case (iv) above when M is any even positive
integer and J, 1 <=J <M —1 is any odd positive integer and from case (v) above when M is any odd positive
integer and J, 1 <J=<M, is any odd positive integer.

The formula (156) is precisely the formula derived by Garner and Fox® and now it has been demonstrated
that the numerical procedure converges and prov1des a value for U, (x, y?”; v, M) which is correct when g
becomes indefinitely large. Garner and Fox® considered quasi steady flow only but their formula is valid for
general frequencies of harmonic oscillation and was applied to this case by Long’. For a given value of g the
corresponding value of a is obtained from (157) when q is an even positive integer and from (158) when g is an
odd positive integer. The number of integration points A is determined then from (149) when q is an even
positive integer and from (150), (151), (152) or (153) when q is an odd positive integer.

The value of g used in evaluating U, ,(£Y*”, y$*?; v, M) from formula (156) can be taken individually for
each combination (r, s, I, J), that occurs, as a value which gives adequate accuracy for U, (3™, y$°; v, M)
It is to be observed that a higher value of ¢ is needed for a given accuracy in U, (F5v™", y(fM) v, M) as the
point £y approaches the leading edge or trailing edge of the planform than is otherwise needed. In our work
that follows we shall take q to depend only on I and denote it by gr. This will enable us to take higher values of ¢
for points £$¥™ near the leading or trailing edges of the planform than for others further away from the
leading or trailing edges, if we so desire, without unduly complicating the arrangement of the calculation, but
we note that a more general variation of g could be taken.

We would like to mention here that Zandbergen, Labrujere and Wouters in Ref. 8 take

A=aM+1)-1 (159)

where g is any positive integer, and use the weight function v1— 3 for the numerical integration in formula
(121). Provided that condition (130) holds, their final formula is our formula (133), but, as we have indicated,
this is precisely equivalent to (144) if condition (141) holds.

In this case

W= M= cos (Apj—rl) (160)
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and

(M)

J aJ
19 () e (25) o

It therefore follows that the condition (130) is not satisfied when

()

n=ns (162)

for one value of p=1,2,..., A. The formula (121) must then be modified to read

+1_(m) A—m2(.
[ &GN fug 0, o b, M)~ (6 0, m 0, v, Mooy -
—1 (ny )
0
~ (=m0 19, s v M) Lame
oMo =1y

_m & g1 - ey
Py S (-
p#aJ

= M A
I ™, (™, 0, M)~

- Ign)(fs n(JM)’ 77.(TM): v, MOO)_

~(¢P- n(JM))[iI e 18, mo; v, Moo)] } +
Mo ng=nY’
T m &
+§;g§- WHL-¢ Eﬁ))z}[mlﬁ g 158, o3 v, Moo)] o (163)
no=n7y

and correspondingly the formula (133) must likewise be modified. The second derivative
[0*/om&) (& 5™, m0; v, M)l g-nt0 as well as the first derivative [(3/3m0)(E 19™; 1103 v, Muo)]gomnio
appear in these modified formulae, in contrast to formula (156), where neither derivative appears. That the
second derivative appears for all J=1,2, ..., M, is a direct result of A having been given the formula (159),
and it is only when A has this formula that the second derivative appears for all J.

The modified formula (133) would be exact with the A integration points given by formula (159) if the
function (119) were a polynomial of degree 2a(M+1)—m —2 in 7,. The formula requires the values of
1 9, mo; v, M) at the a(M+1)—1 integration points no={¢, p=1,2,..., A, together with the
values [(62/ang)f£n)(§’ nSM)’ Nos ¥, MOO)]"I0=TJU}4) and [(6/5710)1&")(5, nSM)a Mos ¥, MOO)]W():TI(I]W)’ ie. a(M+ 1)+ 1
values in all.

On the other hand, if we take A to be given by (149) and use the weight function 1/v'1 — 53 for the numerical
integration in formula (121), then the formula (154) is valid and would be exact if the function (1 19) were a
polynomial of degree <2a(M +1)—m —2 in no. The formula requires the values of I"(¢ P, ¢ 2"); v, M),
p=1,2,..., A, where {{" is given in formula (129), and I(¢, 9, n™; v, M), i.e. a(M+1)+ 1 values in
all. We conclude that formula (154) for case (i) above is of comparable accuracy with the modified formula
(133) for the same value of g, although less work is required in the evaluation of (154) than in the evaluation of
the modified formula (133). All the same, the modified formula (133) is somewhat better conditioned than
formula (154) because the absolute values of the quantities

1=y
-2y 1o
attain greater values in (154) for a given value of a than they do in the modified formula (133).

We note further that formula (154) for case (i) above with @ =1 is the formula used by Hsu'>. Also the
modified formula (133) with weight function v1— 53 and with a = 1 in the formula (159) for determining A is
the formula suggested by Multhopp in Appendix V of Ref. 1.

24



If M =m and q =1 so that M = M = m, then formula (156)s the formula for U, (x, y$*”; », M) which is
normally used in lifting surface theory. The corresponding value of A and the weight function for the
integration formula (121) are those appropriate to case (i), (iii), (iv) or (v) above, whichever has to be used, and
this depends on whether the numbers M and J are even or odd. The numerical integration formulae (121) and
(131)are not of good accuracy in this case because the value of A given by any one of the formulae (150), (151),
(152) or (153) s not large enough. The numerical integration formulae (134) and (135) on the other hand, are
precise. Consequently the formula (156) may not glve good accuracy for U,(x, y§"; », M) in this case. A
significant 1mprovement in accuracy for U, s(x, y 0. . M) should be obtained if q is increased to 2 and thisis
equivalent to using Hsu’s formula®. By taking the value of g high enough we can obtain U, ,(x, yM: 0y M) to
any accuracy that we like.

If now we take

q=4qr I=1,2,...,N, (165)
and
M;=q(M+1)-1, I=1,2,...,N, (166)
then, analogously to formula (156) we have the formula
U,s x5, y§0; v, M)
=L ¥ IO, 9 M) ¢

X J’_l (I)(‘no)\/— I’

mo—nPp 4otz 2F(n)(§(N) s v, Moo)g ™ () x

T (MW2_1 pet M) _ (M) (M) M)
x| Z (@) -3-log2)= L (0= nf)’ log|nS—nf*|x
e

(M’)(ﬂo)‘/—

where
EM=1-¢M. (168)
Quite analogously to the derivation of formula (167) we derive the numerical formula
U m— s+1(x(NM), vy, v, M)

=L 5 Lm0, Mg )%

X J‘ " &Q)___ V1-7n3 dno +
-1 (ﬂo‘“"‘ISM))Z

+ F(n)( —(IN)a nJ Vs Mw)g%n—)s-i—l(n(M))x

[ (n$7P—3-1og2)= ¥ (0" n") log ¥ ~n

+1 (M) \/IT—E
« L 8p "(Mo)V1 =m0 dm]_ (169)

(no—m (JM))2
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Then, on making use of (42), we get from (167) and (169)

=(N,M M =(N,M M
Ur,s(x(I,J )a y(J ); v, Moo)+KUr,m—s+1(x(I,J )9 y(f ), v, Mco)

?owM . ]
=5 3 (8 P)+ kg PONDED, n0, n; 1, Mo
p=1
+1 (M) f1 .2 2
8r "(no)V1-—ng I° om - :
x| B ik L g n )+ ke SO, m; 1, M)
-1 (Mmo—mi ") s
T M,
X[E((W(JM))Z—%ﬂog 2)— Zl (0= POV Jog | 30— 5 O
< " g0 o1 -mg
-1

2
(no— 05 Ode’ (170)

which is the formula we use in getting the elements (112) of the matrilx [U] appearing in equation (110).
We note that

T (Mw2_ 1 Af‘ (M) _ (M2 WD _ (M)
5 ((m5") ~3~log2)- 1(m —np V)Y log|ny =0 x
o

+1 (M) 1— 2
y I g "(MoV1-mo L0 e, (171)
-1 (770*771 )

appears to converge to zero as g, - 0, as far as one can judge from numerical results, but the present author
has not succeeded in proving this analytically. If this is true then we could miss out the coefficient of
FY(EN, 0875 v, M) in formula (170) and still get convergence to the correct value as gr > %, but we must
expect the convergence to be slower than that of formula (170).

To apply formula (170) we must still evaluate (&, n*?, 7™M, v, M) numerically from (114) and the
process for doing this is described in Appendix C, where the use of Chebyshev polynomials is recommended
and illustrated.

Examples

We give, in this section, a selection of results of calculations carried out on four planforms. The
approximations Ojk to the generalised airforce coefficients Qy (v, M..) are obtained from formula (84)and the
approximations f (xo, Yo) to the loading functions /i (xo, yo; v, M) in the mode k of oscillation at points
(x0, yo) on the wing planform are obtained from formula (98).

The four planforms considered are a tapered swept wing of aspect ratio 2, a tapered swept wing of aspect
ratio 6, and rectangular wings of aspect ratios 2 and 8. Diagrams of these planforms are given in Figs. 2, 3, 4a
and 4b.

The tapered swept wings have trailing-edge motivators as shown and each is taken to oscillate in rotation
about the hinge line at its leading edge. The loading in this mode of oscillation has a logarithmic singularity at
the hinge line, but, despite this, an approximation to the loading in the form (22) is permissible, except in the
immediate neighbourhood of the hinge line, and the corresponding approximations to the generalised airforce
coefficients obtained from formula (34) should be acceptable. The:approximations (75) and (76) are not valid
for the motivator mode so that we must use the exact expressions (66) and (67) together with the associated
formulae (60) and (36).

4.1. Tapered Swept Wing of Aspect Ratio 2

The planform of this wing is illustrated in Fig. 2. The x coordinate x.(y) of the leading edge at spanwise
position y is given by the formula

x(y)=V3ly] -s=<yss, 172)
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and the chord length ¢(y) at spanwise position y is given by the formula

c(y)=§(2\/§+3)—¥(4\/§—2) —s<ys<s. (173)

The leading edge and trailing edge of the wing have a discontinuity of slope at the centre line of the wing and,
in order to enhance the convergence of the numerical results, it is necessary to change the shape of the leading
and trailing edges of the wing so that there are no discontinuities of slope. This change of shape is made in the
region —yg <y <yg, where 0<yg <s, and is known as rounding of the leading and trailing edges in the
neighbourhood of their central portions. It is desirable to arrange that x//(y) and ¢"(y) are continuous, as well
as x.(y), xz(y), ¢(y), ¢'(y), because a more accurate numerical estimate for U, ,(x, y; v, M) of formula (113)
is then obtained. The change of shape is achieved by taking

_JV3yrf(d)  —yr<y<yr
xL(Y)—{\/gyRm yr<|yl<s (174)
and
2(2@+3)—¥(4~/§-—2)f(/\) ~YR <Y <yr
)= e (17s)
2(2‘/§+3)—2‘(4‘/§“2)|/\| yr<lylss
where
=7
A . (176)

and f(1) is an arbitrary even function of A with continuous second derivative f“(A)in —1 <A <1 which is such
that

=1, (177)
=1, (178)
Fy=o. (179)

The origin of coordinates at the apex of the tapered wing is, in general, not on the rounded leading edge of the
modified wing.
Here we shall follow Hewitt'® and take

fA)=Ts+8A*— A% +%AC. (180)
Further we shall take

IR _ o (JL)= .

p sin 16 .0-1950903 (181)

and we shall take the typical length / to be the geometric mean chord ¢ of the planform, i.e.

H

I=C=s. (182)
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The motivators shown in Fig. 2 are known when the coordinates (X, Y;) and (X5, Y3) of the inboard and
outboard extremities respectively on the leading edge of the motivator on the starboard side of the wing are
known. These coordinates are given by

X, =33+2V3)¢, (183)
Yi=1¢, (184)
X, =39+4V3);, (185)
Y,=¢. (186)

All the edges of the motivators are straight and the port motivator is the mirror image of the starboard
motivator in the plane of symmetry of the wing planform.
The leading edge of the starboard motivator has the equation

x =xp(y) YisysY, (187)
and the leading edge of the port motivator has the equation
x=xu(-y) ~Y:sys-Y. (188)
The explicit form of the function xg(y) may be obtained from the information given above.
Three modes of oscillation are considered. These are specified by giving the functions £, (x, y), intraduced in

formula (6), for k£ =1, 2 and 3. These functions are taken in this example to be

Lilx, y)=1, (189)

§2(-x’ y)=

YRR

, (190)
and

150 ) = () e - e OHG ~ Y+ oy = V)= Hy~ Yo~ Hy= Y2 (191

where H(x) is Heaviside’s unit function

x<0

0
H(x)={1 x>0,

(192)

Approximations Oii to the generalised airforce coefficients Q;;(v, M) have been evaluated for i =1, 2, 3;-
j=1,2,3, when

v=0-32506 and My =0-78060.
We write O.-j in the form
0, = Oy+ivQ}; (193)

where O,f,- and OZ} are real quantities.
The numerical values of Q}, OF, i=1,2,3; =1, 2,3, obtained with m = M and

qI=q7 I=1729"'7M (194)
for a selection of values of the parameters m, n, N and ¢ are given in Table 1. Examination of Table 1 reveals

that the C)Sj and O} need a fairly high value of ¢ in their evaluation for them to be reliable for a given set of
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parameters m, n and N. As n and N are increased with m = M = 15 the values C),@ and O i seem to converge.
This behaviour is illustrated graphically in-Figs. 5a to 5r. The convergence with increasing g and increasing n
and N appears to be best for the motivator mode of oscillation, mode 3.

Approximations f (x, y) to the loading also have been evaluated for k = 3 for the above values of » and M.
We write (x, y) in the form

feCx, y) =T, y)+ili(x, y) (195)

where [i(x, y) and [4(x, y) are real C}uantities.
Numerical values of /3(x, y) and /3(x, y) are given in Table 2 for m =15, n =10, M=15, N=10, ;= 8,
I=1,2,...,10. The coordinates (x, y) have been transformed to the coordinates (¢ 1) by means of the

transformation (20). The loadings 4(x, y) and 7%(x, y) are given at the set of chordwise lines

n=ni=cos{£%r} i=1,2,...,8. (196)

The locations of the hinge & = £5(n) at the chordwise lines within the motivator span are given by the following
set of numbers:

j= 4 5 6 7 8
n;=0-55557 070711  0-83147  0-92388  0-98079
éu(n;)=0-74654 073387 071750  0-69853  0-68158

Curves of /3(x, y)and [3(x, y)fora range of values of £ along each chordwiselinen =7,,j=1,2,..., 8, are
given in Figs. 6a and 6b. The curve for each value of 5 has its own origin, which is marked.

It is to be noticed that f(x, y) along a chordwise line within the motivator span has a deep minimum near to
the hinge line. The actual theoretical real part of the loading becomes infinite like log [£ — &y (n)| at the hinge
line. Curves for both [(x, y) and f3(x, y) have a number of undulations along them and this is due to the
truncation of an infinite series, implied in formula (22), for a function which has a logarithmic singularity at the
hinge line.

4.2. Tapered Swept Wing of Aspect Ratio 6

The planform of this wing is illustrated in Fig. 3. The x coordinate x; (y) of the leading edge at spanwise
position y is given by the formula

x(y)=33+Py| -s<ys=s, (197)
and the chord length c(y) at spanwise position y is given by the formula
c(y)==3lyl+3s -s<yss (198)

Here again, as with the tapered swept wing of aspect ratio 2 we round the leading and trailing edges in the
neighbourhood of their central portions. The functions x; (y) and ¢ (y) above are thereby modified to the forms

1 L
HV3+hyrfA)  ~yr<y<yr
- 199
x(y) {%(«/5+%)yam yr<lyl<s, (199)
and
1 1
_Jas—3yrf(A)  —yr<y<yr

C(”’“{—é—s—%ym ye<lyl<s, (200)

where A is given by formula (176).
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In this example we shall follow Zandbergen, Labrujere and Wouters® and take
fAY=3+A2=3AP. (201)

We shall again take yg to be given by formula (181) and the typical length / to be the geometric chord ¢ of
the planform, i.e.,

b)lp—l

l=C=3s. (202)

The motivators shown in Fig. 2 are known when the coordinates (X1, Y;) and (X, Y>) of the inboard and
outboard extremities respectively on the leading edge of the motivator on the starboard side of the wing are
known, These coordinates are given by

W3 97\

X= (55 15 )

Y1 = ‘65—6, (204)
W3 91

Xo= ( 10 100) (205)
218

YZ:TOE. (206)

All the edges of the motivators are straight and the port motivator is the mirror image of the starboard
motivator in the plane of symmetry of the wing planform. The ratio of motivator chord to wing chord, in this
example, is independent of the spanwise location of the chord and has the value 0-3.
Three modes of oscillation are considered and these are again defined by equations (189), (190)and (191)
Approximations Ql, to the generalised airforce coefficients Q;(», M) have been evaluated for i =1, 2, 3;
i=1,2,3, when

r=3-1569 and Mo=04.

We write éi, in the form (193). The numerical values of OE,», 5i=1,2,3;j=1,2, 3, obtained for a selection
of values of the parameters m, n, M, Nand q;, I =1, 2, ..., N, are given in Table 3. For all evaluations we have
again taken all the g; equal as in formula (194).

Results for QA,»,-, i=1,2;j=1,2, for this same tapered swept wing of aspect ratio 6 with the same rounding of
the leading and trailing edges and the same frequency parameter and Mach number have been presented by
Lehrian and Garner’. Lehrian and Garner’s results have to be multiplied by —6 to make them compatible with
the present results because of their different non-dimensionalising factor in the definition of Q. Their resuits,
after multiplication by —6, are presented in Table 4.

Lehrian and Garner’ use an extension to oscillatory flow of the steady flow method of Zandbergen,
Labrujere and Wouters®. In their development of this method, the number of upwash points is equal to the
number of basic loading functions, so that M =m and N = n. The parameter a determines the number of
spanwise integration stations to be used in the numerical evaluation of the spanwise integral in the integral
equation much as the parameter g determines the number of spanwise integration stations to be used in the
present method for the numerical evaluation of, effectively, the same spanwise integral. The amount of
computation necessary to get results with ¢ = 2a in the present method is comparable with that required in the
method of Lehrian and Garner and the results also may be expected to be of comparable accuracy, and this is
borne out by examination of the respective results obtained. Lehrian and Garner used effectively the same
values (66) and (60) to obtain {;..; as were used to get the present results but they used values of ax.:p
corresponding to the approximations (76) rather than those obtained from (67) and (36). The differences in
results arising from this cause are expected to be small.

In the present method we may take M =m and N = n. The effect of taking M'>m, N =n can be seen by
examining Table 3. The comparatively large differences in the values of Q,, for m =14 and m =15 when
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M = m are considerably reduced when M > m. The differences in values of Q;; for m =22 and m =23 when
M =m are not so large as those for m =14 and m = 15, but these differences also are reduced when M > m,
The differences in values of Q,, for m =30 and m =31 when M =m are again smaller than are those for
m =22 and m=23. This is an indication that the results are converging as m increases, and that the
convergence is more rapid when M > m.

4.3. Rectangular Wings of Aspect Ratios 2 and §

The planforms of these two wings are illustrated in Figs. 4a and 4b. The origin of coordinates is taken to be at
the middle point of the leading edge. The typical length [ is taken to be the wing chord ¢. Two modes of
oscillation, heave and pitch about the leading edge, are considered. These are specified by the functions
{i(x, y) introduced in formula (6) and defined for k = 1 and 2 respectively in equations (189) and (1 90), with
i=c.

Approximations Qy to the generalised airforce coefficients Q,(», M) have been evaluated for i = 1,2;
j=1,2 when

r=1-0, M,=0-8 and g¢,=32, I=12,...,N,

for a selectlon of values of the parameters m, n, M, N. We write Q,, in the form (193). The numerical values
obtained for Q,,, i i=1,2;j=1,2, are given in Table 5 for the rectangular wing of aspect ratio 2 and in
Table 6 for the rectangular wing of aspect ratio 8. For both sets of results there is evidence of convergence as m,
n, M and N are increased, although it would appear that the convergence is more rapid with odd values of m
than with even values of m. We shall con51der the values obtained form=19,n=8, M=19, N=8 to be the
best estimates of the values of Q}, Qy, i=1,2; J=1, 2. Values of Q,,, Q,, are in close agreement with these
best estimates for smaller values of m, n, M and N. To quantify the closeness of agreement of Q,, with Q;; we
introduce a measure ¢; of percentage difference by means of the formula

(Q— Q)+ (04— Q! 2]%
8!] 100 [ (Qéj)2+V2(QZ' 2 (207)
and the arithmetic mean ¢ of g; over i=1,2;j=1, 2,
€ =%(€11+812+821+€22). (208)

A selection of Values &;; for the wings of aspect ratios 2 and 8 are given in Tables 7 and 8 respectively.

The values of O,, are all in poor agreement with the best estimates Q; whenn=2.Form=4,n=2 M =4,
N =2, the mean ¢ is 10-9 for the wing of aspect ratio 2 and 10-1 for the wing of aspect ratio 8. The percentage
differences do not change greatly when m, M and N are changed with z kept at 2, even when m, M and N are
all increased substantially.

There is a distinct improvement in the values of @,-,- when n isincreasedto4. Form=4,n=4, M =4, N=4,
the mean ¢ is 0-042 for the wing of aspect ratio 2 and 0-18 for the wing of aspect ratio 8. For m =4, n =4,
M =19, N =8 the mean ¢ is 0-032 for the wing of aspect ratio 2 and 0-27 for the wing of aspect ratio 8. Thus
changing (M, N)from (4, 4)to (19, 8) with (m, n) kept at (4, 4) has caused a small improvement in the values of
@ii for the wing aspect ratio 2 and a deterioration in these values for the wing of aspect ratio 8. This latter
suggests that m =4 is not large enough for the wing of aspect ratio 8.

Form=9, n=4, M=9, N=4 the mean ¢ is 0-022 for the wing of aspect ratio 2 and 0-10 for the wing of
aspect ratio 8. For m =9, n =4, M =19, N = 8 the mean ¢ is 0-018 for the wing of aspect ratio 2 and 0-08 for
the wing of aspect ratio 8. Thus changmg (M, N) from (9, 4) to (19, 8) with (m, n) kept at (9, 4) has caused
merely a marginal improvement in the values of Q,, There are no further distinct improvements in increasing
m to 14 or to 19 while keepmg n=4.

Further improvements in the values of Q,, are obtained when # is increased to 6. For m =4 the percentage
differences for n =4 and n = 6 are of the same order, but for higher values of m the percentage differences are
lower for n = 6 than they are forn =4 when M =19.Form =9, n = 6, M =9, N = 6 the mean ¢ is 0-032 for the
wing of aspect ratio 2 and 0-12 for the wing of aspect ratio 8. For m =9, n =6, M = 19, N = 8 the mean ¢ is
0-001 for the wing of aspect ratio 2 and 0-000 for the wing of aspect ratio 8. Thus changing (M, N }from (9, 6)
to (19, 8) with (m, n)kept at (9, 6) has produced almost complete agreement of the O;; with the best estimates.

Form =14, n =6, M =14, N =6 the mean ¢ is 0-015 for the wing of aspect ratio 2 and 0-038 for the wing of
aspect ratio 8. For m =14, n =6, M = 19, N = 18 the mean ¢ is 0-014 for the wing of aspect ratio 2 and 0-037
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for the wing of aspect ratio 8. Thus changing (M, N) from (14, 6) to (19, 8) with (m, n) kept at (14, 6) has
practically no effect on the values of Q,, We may note that almost complete agreement of the O,, with the best
estimates has not been achieved with (m, n) kept at (14, 6), but, all the same, the percentage differences ¢;; are
very small.

It is as well to remark here that our results have been obtained with g =32,7=1,2, ..., N, whereas results
from earlier theories, such as those of Refs. 3, 4 and 5, are comparable with the results we would get by taking
q=1,1=12,...,N; M=m and N= nFormM4Nn4andq,—II 1,2,..., N, we get
0,,=0 84678—:3 2052 G, =-3-2858—i3 1810, 021 = 0-90492 - i0- 83073, 0y =-0- 51381 —i2:0731
for the wing of aspect ratio 2 and O =-1-1040—i13-627, Q.=-16-484—i7-6979, O, =
1:7608—i4:5769, O,,=—4-5283—i6-2760 for the wing of aspect ratio 8. The corresponding percentage
differences e; are €11 =25, £12=3-1, €21 =50, g2, =5-4 for the wing of aspect ratio 2 and £,, =166,
e12=177,621=21-7, €2, =26-3 for the wing of aspect ratio 8. The magnitudes of the ¢; are of the order one
hundred times the corresponding values in Tables 7 and 8 where the g; are changedtoq;=32,1=1,2,..., N.
To get €; of the same order as those in Tables 7 and 8 with gq;=1,I=1,2,...,N, M=m and N=#n an
undesirably large value of m would be needed when n = 4, The values of the (j,-,» withg;=1,I=1,2,..., N,
m=M =4, N=n =4 are quite unacceptable for the aspect ratio 8 wing.

To appraise the convergence of the results as M and N are increased we examine in Tables 5 and 6 the values
of O}, O} when m =4, n =4. For the wing of aspect ratio 2 the convergence of all the O}, QY is rapid for N
fixed and M increasing through 4, 9, 14, 19. Then with M held at 19 the convergence is rapid for N increasing
through 4, 6, 8. For the wing of aspect ratio 8 convergence of these quantities is on the whole slower. Thus,
while O”, Q, 1 continue to converge quite rapidly, the convergence of 022, sz for N fixed and M increasing
through 4, 9, 14, 19 is less rapid, and to achieve convergence to five significant figures the value of M would
have to be increased beyond 19 when N =4, 6 and 8. Convergence to four figures, however, has practically
been achieved at M =19, and also at N =8 when M is held at 19. The behaviour of the other 0y, Ol is
intermediate between the behaviours of O] L Qu and sz, ‘22.

The same pattern of convergence may be observed with other values of m and n kept fixed while M and N
are increased although there are more numbers available in any convergence sequence for the lower values of
m and n. With M and N being increased while m and n are fixed there are converged values of Q,,, é
appropriate to m spanwise loading functions and n chordwise loading functions. Convergence with respect to
m and n being increased then leads to the best estimates of these values.

We may conclude, for both rectangular wings, that increasing # from n = 2 effects a substantial improve-

ment in the results for Q,,, i i=1,2;j=1,2, even while keeping m fixed at m = 4, whereas increasing m
from m =4 and keeping # fixed at n = 2 hardly effects any improvement at all. For practical purposes values of
i Qi i=1,2;j=1,2, can be obtained to sufficient accuracy with n = 4 for both wings and respectively with

m =4 and m =9 for the wings of aspect ratios 2 and 8.

4.4. Discussion

Results for the generalised airforce coefficients on a tapered swept wing of aspect ratio 2 show that a more
refined numerical integration of the spanwise integral than the one used by Multhopp' must be used in order to
obtain acceptable results. Values of M and N equal to m and # respectively were used for the results on the
tapered swept wing of aspect ratio 2, but for a tapered swept wing of aspect ratio 6 values of M >m were
considered. For the tapered swept wing of aspect ratio 6 values obtained with M =2m showed better
convergence on the whole than did those with M = m. In particular, the values of the generalised airforce
coeflicients for m =15, n = 6, M = 30, N = 6 are, on the whole, closer to the values for m =30, n =6, M =30,
N =6 than are those for m =15, n=6, M=15, N=6.

A comprehensive set of results for rectangular wings, of aspect ratios 2 and 8 respectively, illustrate the
nature of convergence of values of the generalised airforce coefficients when m, n, M and N are increased.
Generally, the effect of increasing the values of M and N is to give convergence of results for given m and n,
and then the effect of increasing the values of m and » is to give the final converged results.

5, Concluding Remarks

In the lifting surface theory developed in this paper the loading is represented approximately as a linear
superposition of a finite number of known linearly independent elementary functions, there being a
combination of n chordwise by m spanwise of them, as in a number of other theories. For given n and m, there
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are N = n chordwise by M = m spanwise integration points at which the upwash is evaluated. The mathemati-
cal analysis leads to the same kind of refined process of numerical evaluation of the spanwise integral in the
integral equation as was introduced by Garner and Fox in Ref. 6.

The results obtained for generalised airforce coefficients, using the Garner and Fox® refined process of
numerical evaluation of the spanwise integral in a lifting surface theory are a considerable improvement over
those obtained by a simple extension of Multhopp’s steady flow method to oscillatory flow. The results
obtained with N =#n and M = m are so good, particularly for rectangular wings, that it is not easy to detect any
further improvement obtained by taking N > »n and M > m. Nethertheless results for the example of a tapered
swept wing aspect ratio 6 do show evidence of a further improvement being obtained when M > m. Thus, for a
given M, if one allows m < M it may be possible to use a lower value of # than if one insists on having m = M,
and get results of comparable accuracy, with, incidentally, less storage space and execution time on the
computing machine.
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A®

A (A)
Arip
bi(t)
bi(w)
bi(w)

B®
B,(A)
Bi.r.s
c(y)
C(A)
[Ci]
Ci.rs

(D]
D,(A)
(E]

E (@)
E.(A)
fla)

fm

[F]

F(a)
F.(a)
F.(A)
[F(xo, yo)]
FM (& ;5 v, M)
g(a)
gﬁm)(’ﬂo)
g (n)
g"(n)
G(a)

LIST OF SYMBOLS

Speed of sound in undisturbed main flow. Also a positive integer which deter-
mines A from one of (149), (150), (151), (152) or (153)

Defined by formula (A-19)

The integral (A-75). Also a point within (0, o)
Approximation given by formula (A-79) to the integral A
Coefficients appearing in formula (C-46)

Coeficients appearing in formula (22)

Generalised coordinate for mode number k (see formula (6))
Quantity defining amount of harmonic constituent in b (¢) (see formula (7))
Complex conjugate of by (w)

The integral (A-76)

Approximation given by formula (A-83) to the integral B
Coefficients appearing in formula (C-47)

Coefficients appearing in formula (30)

Chord length of planform S at spanwise position y (see Fig. 1)
Coefficients appearing in formulae (C-44) and (C-45)

Matrix appearing in formula (55) and defined immediately afterwards
Coeflicients defined in formulae (52) and (53)

Defined by formula (A-38)

Diagonal matrix with (80) as general diagonal element
Coefficients appearing in formula (C-44)

Diagonal matrix with (79) as general diagonal element

The functions defined by formula (C-62)

Coeflicients appearing in formula (C-45)

The function defined by equation (C-23)

Defined by formula (A-73)

Matrix appearing in equation (93) and defined immediately before
The function defined by equation (C-30)

The functions defined by equations (C-34) and (C-35)
Coefficients appearing in equation (C-75)

Row matrix with (87) as general element

Quantities defined by formula (118)

The function defined by equation (C-24)

Set of interpolation polynomials defined by equations (28)

Set of interpolation polynomials defined by equations (A-27)
Set of interpolation polynomials defined by equations (A-62)
The function defined by equation (C-31)
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G, ()
G.(A)
Gy
G
G
G
h(a)
hle)
h{(E)
h{(€)
[H]
H(a)
HP
H{Y
HY

I

i
Il(a)
I, o; v, M)
jgn)(fa 777 nO; v, MOO)
j(@)

J

JO
J(r,l)
J(r,2)

](”3)

(7 3 o)
k{a)

ka(a)

k" (o)

K

K(a)

Ki(a)

K(2 )
/

be(x, y; v, M)
ik (%0, o)

(]

The functions defined by equations (C-36)
Coeflicients appearing in equation (C-75)
Quantities defined in formulae (72)
Quantities defined in formulae (103)
Quantities defined in formulae (A-32)
Quantities defined in formulae (A-67)
The function defined in formula (C-67)
The function defined by equation (C-70)

Set of interpolation polynomials defined by equations (24)

Set of interpolation polynomials defined by equations (A-8)
Diagonal matrix with (94) as general diagonal element
The function defined by equation (C-65)

Quantities defined in formulae (71)

Quantities defined in formulae (102)

Quantities defined in formulae (A-13)

Integral introduced in formula (A-14)

Approximation to I

Modified Bessel function of the first kind and first order
Quantities defined in formula (114)

Quantities defined in formula (117)

The function defined in equation (C-22)

Integral introduced in formula (A-33)

Approximation to J

Approximation to J

Approximation to J

Approximation to J

Quantity defined in formula (C-9)

The function defined in formula (C-67)

The function defined by equation (C-71)

The function defined by equation (86)

Integral introduced in formula (A-68)

The function defined by equation (C-66)

Modified Bessel function of the second kind and first order
Subsonic kernel function defined by equation (17)

Typical length of the planform $

Loading function introduced in expression (14)
Approximation (22) to the loading function /(x, yo; », M)

Column matrix with (92) as general element
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[ik(x()a yo)]
(&)

(L]

Li(a)

N, (A)

P(a)
Py

q

qr

Qi (v, M)
G,
[0]
Qa(m)
R

RA(m)

s

S

S(a)

Sa(n)
t
T.(n)

(U]

U,s(x, y; v, M)
1%

Wix, v, 1)

Matrix consisting of the single element fk (x0, yo)
Orthogonal polynomials of degree r in ¢ satisfying equation (A-1)
Matrix with (111) as general element

Modified Struve function which is related to the Struve function |H|-,(i) by
means of formula (C-18). The function is defined by equation (C-21)

Quantities defined in formulae (108) and (109)

Number of spanwise loading functions (see formula (22))
Integer defined by formula (48)

Mach number defined by formula (15)

Integer defined by formula (155)

Number of integration points spanwise for evaluation of ;5. from the numerical
formula (99)

Integer defined by formula (106)

Set of N positive integers defined by formulae (166)
Coefficients appearing in equation (C-74)

Number of chordwise loading functions (see formula (22))

Number of integration points chordwise for evaluation of ;.. s from the numeri-
cal formula (99)

Coeflicients appearing in equation (C-74)

Function defined in formula (C-15)

Quantities defined in equations (122), (124), (126) or (128)

A positive integer for determining M from formula (155)

A set of N positive integers introduced in formula (165)
Generalised airforce coefficients, defined by formula (19)
Approximation (34) to the generalised airforce coefficient Qi(v, M)
Matrix appearing in formula (84) and defined immediately before
Function defined by formula (B-46)

Quantity defined by formula (18)

Function defined by formula (B-39)

Semi-span on the planform S

Wing planform

Function defined by formula (C-12)

Function defined by formula (B-22)

Time

Orthogonal polynomials of degree r in n satisfying equation (A-56). Also
Chebyshev polynomial defined in formula (C-43)

Matrix with (112) as general element
Quantity defined by formula (32)
Speed of main flow. It is in the positive x direction

Quantity defined by equation (5)
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Quantity defined by equation (1)
Quantity defined by equation (2)

Rectangular cartesian coordinates of a point relative to a frame fixed with respect
to the mean position of the wing

x)coordinate of the leading edge of the planform $ at spanwise position y (see Fig.
1

Quantities defined by formulae (69)

Quantities defined by formulae (70)

Quantities defined by formulae (104)

Quantity defined by formula (C-10)

Quantities defined by formulae (68)

Quantities defined by formulae (105)

Quantity obtained from equations (3) and (4)

Quantity obtained from equations (3) and (4)

Displacement from the plane of S of a point on the wing top surface
Displacement from the plane of S of a point on the wing bottom surface
Reduced upwash function, defined by formula (11)

Approximation (31) to the upwash function a(x, y) corresponding to the approx-
imation f (xo, ¥o) to the loading function I (xo, yo; », M)

Matrix appearing in formula (84) and defined immediately before
Quantities defined by formulae (A-80)

Quantities defined by formulae (A-84)

Euler’s constant

Orthogonal polynomials of degree r in % satisfying equation (A-21)
Kronecker’s delta, defined in formula (26)

Function defined by equation (C-32)

Quantity defined by formula (208)

Function defined by equation (C-33)

Quantities defined by formula (207)

Modal function for the mode number k as it appears in equation (6)
Set of A points defined in equations (123), (125), (127) or (129)
Parametric coordinate defined by formula (20)

Parametric coordinate defined by formula (20)

Set of m points in (—1, 1) defined by formulae (27)

Set of M points in (—1, 1) defined by formulae (101)

Set of 7 points in (—1, 1) defined by formulae (A-25)

Matrix appearing in formula (55) and defined immediately afterwards
Quantities defined by formulae (A-7)

Quantities defined by formulae (36)
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For symmetric modes of oscillation
For anti-symmetric modes of oscillation

Number of integration points used in the numerical evaluation of the integral
(121)

Function defined by equation (C-68)

Frequency parameter defined by formula (12)
Function defined by equation (C-69)

Parametric coordinate defined by formula (20)
Parametric coordinate defined by formula (20)
Set of n points in (0, 1) defined by formula (23)
Set of N points in (0, 1) defined by formula ((100)
Set of N points in (0, 1) defined by formula (168)
Set of r points in (0, 1) defined by formula (A-6)
Density of the fluid in the main flow

Variable defined in equation (B-1)

Quantities defined by formulae (A-26)

Quantities defined by formulae (A-61)

A row matrix appearing in formula (63) and defined immediately afterwards
Quantities defined by formulae (A-60)

Quantities defined by formulae (60)

Quantities defined by formulae (37)

Quantities defined by formulae (54)

Matrix appearing in formula (55) and defined immediately afterwards
Circular frequency of harmonic oscillation
Indicates differentiation

Indicates differentiation twice
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APPENDIX A

Integration Formulae

Integrand with Weight Function V(1 - £)/&

Letl(£),r=0,1,2,...,bethesetof polynomials of degree r in £ which satisfy the orthogonality relations

| Lenen 3-? dg =5,

where 8,; is Kronecker’s delta

If we make the change of variables
£=3(1—cos 9)

in the integrand of (A-1) we get

T {1—cos 1—cos a2 gm
J;lr( > H)ls( > H)(cosza) dg =8,

from which it follows that

l(l—cos __\/Zcos(r«l—%)ﬂ
o2 7 cos3zf

(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

for this is a polynomial of degree r in the original variable ¢ and both (A-1) and (A-4) are satisfied. Since
v(1—¢§)/¢is positive for £ in (0, 1) the polynomial /,(¢) will have r zeros in (0, 1). Let these zeros be denoted by
£9,i=1,2,...,r Thelocations of these zeros are obtained directly from (A-5)and (A-3)and are given by

£P=31-cos6?), i=1,2,...,n

where

We define the interpolation polynomials /{”(¢£) by means of the formulae

Fey_ T ik
hi (5)—21___}. (f_—,(”—fﬁ))’

i=1,2,...,r

These polynomials are of degree (r—1) in £ and have the property
h{A(ED) = 8y
They are given also by the alternative formula

L&)

hfr)(é‘):m i=1,2,...,r.
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where the dash represents differentiation with respect to the argument of the appropriate function. By
differentiating formula (A-5) with respect to 8 we easily establish that

e = (1)[ Gr+ 1) (A-11)

sin 8" cos 207"

Then, from formula (A-10), we get

i+1 + _1_)0
1) =2V G 60 cos 1gn St . A-12
©)= 2r+1) 2r+1) im0 cos20 cos 29(cos @ —cos 6")' ( )
Therefore
1 —
mo=[ ooy a
¢
= | WP cos oY do
_(——1)"+1 .1 (,)J"[cos (r+1)8 +cos rd]
T @2r+1) sin 6 cos 26 o (cos @ —cos 05')) a6
_w(=nTt ® (,)[sm (r+1)8 sin rG(')]
T (2r+1) sin 67 cos 0 in " sin 68"
2 ___1 i+1
= m:;(r n )1) (cos 36¢”)* sin (r +3)6¢"
2m ,
(2 +1)(cos 30{7)?
2w (r)
We are interested in the numerical evaluation of the integral
1 1 _ f
[ roy (A-14)

where f(£) is an arbitrary continuous function of £ in (0, 1). If we take an approximation f(¢) to f(¢) which is
the interpolation polynomial of degree (r—1)in &

)= T FERE), (A-15)
we get a corresponding approximation I” to I which is given by
I9=Y HOfED) (A-16)
i=1

by replacing f(£) on the right of (A-14) by f”(¢). Formula (A-16) is the Gaussian numerical integration
formula for a weight function v (1 —£)/¢ when r integration points are used. Because of the orthogonality
relationship (A-1) we have that the approximation I’ is exactly equal to I whenever f(¢)is a polynomial in £ of
degree <2r—1. If f(£) is not such a polynomial then we can give an estimate for the error I — I'” by using the
following procedure.
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We can show that the approximation I to I given by formula (A-16) is also given by the formula

T _ +(— p+1
I")—i lim J’ f(l cos \{1+(=1Y"" cos (2r+1)p8} (cos 16Y? b, (A-17)
0

2 ) {cos (r +3)6}

where p runs through the positive integers. To show that (A-16) and (A-17) are equivalent formulae for
continuous functions f(£), the range (0, 7) of integration in (A-17) is divided into r subranges with each of the
subranges containing one of the zeros § =600, i=1,2,...,r of cos (r+3)8 internal to it. For each of the
subranges a new variable of integration is introduced by translation of @ so that the zero of the new variable is
at = 6" in the ith subrange and Fejér’s integral (see Ref. 14) is thereby obtained for that subrange. Then, by
applying Fejér’s theorem (see Ref. 14) to each of the subranges the result that (A-16) and (A-17) are
equivalent formulae is obtained.
From (A-17) we get

1= lim L " f(1 _‘;"s H){ 142 3::1 (—1)¥(1 “5) cos (2r + 1)sa}(cos 16) do

p—>0

) ‘[’Wf(l —-(2:08 H)(COS %0)2 48 +x!i—gl° sél (_l)s(l —;7) Jowf(l_zos 0) X

X[cos {(2r +1)s —3}8 +cos {(2r + 1)s +3}8] cos 30 d9

-[ f(E)\/g‘—f d+iim T 2 e0(1-2) || e
X[larr1s-1(€)+ 1(2r+1>s(§)]\/§§d§

. L4 P s
= I+gl_glo \/g 21 (-1) (1 _;)[a(Zr-l—l)s—l +a@r1y] (A-18)

where

1 ‘ 1 __5
an = j FO N dé (A-19)

The formula

j4
IP=I+1im \/%T Zl (—1Y[a@r+1)s—1F a@renys] (A-20)

p—>00

is equivalent to the formula (A-18) provided that the limit on the right hand side of (A-20) exists. The formula
(A-18) is valid whether the limit on the right hand side of (A-20) exists or not. Taking the limit as p >0 in
(A-20) corresponds to summing an infinite series directly whereas taking the limit as p—> in (A-18)
corresponds to summing the same series by arithmetic means or by Cesaro’s means of first order.

The error I-I” may now be gauged from either formula (A-18)or formula (A-20). The coefficients a, tend
to zero as n tends to infinity, as is shown by an application of the Riemann-Lebesgue theorem (see Ref. 14)to
formula (A-19) after changing the integration variable from £ to 8. The error I— I converges to zero as r
increases indefinitely because the multipliers H{” of formula (A-16) are, according to formula (A-13), all
positive.

The formula (A-18) s also valid for more general f(£) than continuous functions, e.g. for f(£) having a finite
number of jump discontinuities for £ in (0, 1), but in this paper we are interested only in continuous functions

f(é).
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Integrand with Weight Function V1 — 52

Lety,(n),r=0,1,2,...betheset of polynomials of degree r in n which satisfy the orthogonality relations

+1
L Y Mvs(MV1-n"dn =8, (A-21)
If we make the change of variables
n =cos ¢ (A-22)
in the integrand of (A-20) we get
| wlcos dyvi(cos #)sin )7 dg = 5, (A-23)
0

from which it follows that

in (1
7(cos ¢) = \/% W, (A-24)

for this is a polynomial of degree 7 in the original variable n and both (A-21) and (A-23) are satisfied. Since

v1—n?is positive for 5 in (—1, 1) the polynomial v,(n) will have r zeros in (—1, 1). Let these zeros be denoted
r)

byn;”,j=1,2,....,r Thelocations of these zeros are obtained directly from (A-24)and (A-22) and are given
by
() ) .
7’ =cos ¢;”, i=1,2,...,r, (A-25)
where
I AN A2
st i=L2,...,r (A-26)

We define the interpolation polynomials gi”(n) by means of the formulae

) (-l
gm)=TI (“m) i=1,2,...,r (A-27)
1;;1_ Ni — Mk
7

These polynomials are of degree (r—1) in » and have the property

g(n) = 8. (A-28)

They are given also by the alternative formula

¥(n)
(r)

(r) N Al ¥ —
& )= Py — D)

(A-29)
where the dash represents differentiation with respect to the argument of the appropriate function. By
differentiating formula (A-24) with respect to ¢ and putting ¢ = ¢'” we easily establish that

Oy (¥ 2 1) -
yn;")=( 1y 7 (sin ¢§r))2' (A-30)

Then, from formula (A-29) we get

1y
r+1)

sin (r+1)¢
sin ¢ (cos ¢ —cos ¢{7)’

g ()= (sin () (A-31)
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Therefore

+1

G{= J-_l gPnW1-ndy

= [ &(cos #)in 6 s

_ (____1)j+1
2(r+1)

(sin

5,))2 J‘ ™ (cos rp —cos (r +2)¢) s

(cos ¢ —cos ¢'")

_rCD <,))2[sin r¢;” _sin (r+2)¢,‘-')]
2(r+1) sin ¢{” sin ¢

_m(=1y
(r+1)

(sin ) cos (r+ 1)

(N2
0+ )(Sm¢ )

T N2
= rrpli- @ (a-32)

We are interested in the numerical evaluation of the integral
+1
7=[ faWi=a?dn (a-33)
~1

where f(n)is an arbitrary continuous function of 9 in (-1, 1). If we take an approximation f"(n) to f(n ) which
is the interpolation polynomial of degree (r—1)in n

)= Z fng (), (A-34)

we get a corresponding approximation J to J which is given by

JO= z G f(n}") (A-35)

j=1

by replacing f(n) on the right of (A-33) by f7(n).

Formula (A-35) is the Gaussian numerical integration formula for a weight function v1—72 when r
integration points are used. Because of the orthogonality relationship (A- 21) we have that the approximation
Jis exactly equal to J whenever f(n)isa polynomlal in n of degree <2r—1.If f(n) is not such a polynomial
then we can give an estimate for the error J—J®

Instead of formula (A-35) we can write

D sin (r +1pé\2, . 2
7= tim = j f(cos ¢)(m) (sin &) dob (A-36)

where p runs through the positive integers. That (A-35) and (A-36) are equivalent formulae for continuous
functions f(n)is demonstrated if we divide the range (O ) of integration in (A-36) into r subranges with each
of the subranges containing one of the zeros ¢ = ¢ isi=12,...,r of sin(r+1)¢ internal to it, and then
apply Fejér’s integral formula (see Ref. 14) to each of the subranges.
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From (A-36) we get
oo [ o (1_5 P
J"= gLr?O J.o f(cos ¢){ 1+2 s; (1 p) cos 2(r+ l)sqﬂ}(sm @) do

= Lﬂf(cos $)sin ¢ ) dep + lim él (1 —;) wa(cos $)x

X{[sin {2(r +1)s + 1}¢ —sin {2(r + 1)s — 1}@] sin ¢ dop

| =I_+ faW1-n*dn+

1
+gg§o\/ 1—~ J F¥ai0e() = Yaer1e2V1—n" dn

= J+gl_glo \/7 — [dZ(r+l)s —dai1ys-2] (A-37)
where
+1
o= fnypm VT d. (A-38)

We can write, instead of (A-37), the formula

% LURTIN
JU=T+ 5 gl_glo 21 [da2gr+1)s — dar+1)5—2] (A-39)

provided that the limit on the right hand side of (A-39) exists. The formula (A-37) is valid whether the right
hand side of (A-39) exists or not.

The error J —J may now be gauged from either formula (A-37) or (A-39). The coefficients d,, tend to zero
as m tends to infinity, as is shown by an application of the Riemann-Lebesgue theorem (see Ref. 14) to
formula (A-38) after changing the integration variable from 7 to ¢. The error J—J® converges to zero as r
increases indefinitely because the multipliers G¢” of formula (A-35) are, according to formula (A-32), all
positive.

The formula (A-37) is also valid for more general f(n), e.g. f(n) having a finite number of jump -
discontinuities for » in (—1, 1), but in this paper we are interested only in continuous functions f(n).

We are also interested in the analytical evaluation of the integral

+1 (" 1.2
J' gi"(n) 1(r) 4 (A-40)
-1 (n=ni)

Let us write

J‘“g§')(n)*/1—n2dn= 1 J“ Y(q)W1-
L (=0 yin) o (- m'))(n 0"

1 +1 1 1 2
Ty —n") L {(n ~0 (- n§r>)}%(n)\/ 1—n°dn. (A-41)

Now, we have

1 y(n) —— 1 7 (cos rp —cos (r +2)¢d)
L (n—¢) 1=n dn~mL (cos ¢ —cos i) d

~ \/2_} (sin r —sin (r +2)i)
) sin ¢
= V27 cos (r+ 1)y (A-42)
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where

{=cos .

On changing ¢ to 1" in (A-42), and consequently, on changing  to ¢ we get immediately

JH v(n) ———=J1—n% dn =27 cos (r+ 1)¢?".

1 (n— (r))

If we substitute from (A-42) and (A-44) into (A-41) and use (A-30) we get

[T, a1y

(ri2
m-0 M erpltm@]

&-n")

Hence, if

we get from (A-45)

+1 (r) \/— -l (r) -
e e sti=cor

and if
(=0

we get from (A-45)

+1 (r) J—” —_1Y
[, B = T - P cos -+ 1]

(cos (r+ )¢ —cos (r +1)¢ )

¢{=nY

_m(=0j [ d]di cos (r+ 1)y
= )][ (d cos )/ dw L o
=0.

Also from (A-45), on differentiating with respect to ¢, we get

L gPm1-n’ | -4 (" gPyi-n® |

a-0F "Tal. @m0
=7T(_1)j+1

(cos (r+ 1)y —cos (r + l)qbf’))

[1-(n}")’]

(r+1) -y

sin(r+Dy 1

+a(=1Y[1- ("))

Hence, if

we get from (A-50)

(r) Vi—n? =1 ](r) "
L (1(777)17('))77 dn—(r+{)(n((f)’ )(],))2[1—(—1)’ 1,
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sing (-0

(A-43)

(A-44)

(A-45)

(A-46)

(A-47)

(A-48)

(A-49)

(A-50)

(A-51)

(A-52)



whereas if

(=7 (A-53)
we get from (A-50)
JH gPWV1-n?
( r) n
-1 n- n;)

__77(—1)j i d*
=Syl G cos ¢+ 1]

= 11(/)

_ w1y
T20+1)

d 1 4
sin ¢ d«// sin ¢ diy gy st l)w]

cos (r+ 1) sin (r+ l)tﬁ]
(sin o)’ sin ) 1y-po

- —

w=n7

=21y =@ e+ )
=—§O+D- (A-54)
Collecting together the results (A-52) and (A-54) into one formula we get

o .
j ' W1-n® T+ e (A-55)
e dn= 1) )
-1 (77 Nk ) (r Zi;(n((;? ) (]r))z[l _(_1)f+k] k ?5]

Integrand with Weight Function 1/v1—5°
LetT,(n),r=0,1,2,...,bethesetof polynomials of degree r in n which satisfy the orthogonality relations

+1

T,(n)T, =85 A-56
| ronm - (A-56)
If we make the change of variables
7N =Cos ¢ (A-57)
we get
| Titcos @)T(cos ) do = 8, (A-58)
0
from which it follows that
1
—= r=0
Var
T,(cos ¢)= (A-59)

\/zcosrd) r#0
w

for this i 1s a polynomial of degree r in the original variable n and both (A-56) and (A-58) are satisfied. Since
1/v¥1—n7 is positive for 0 in (~1, 1) the polynomial T;(n) will have r zeros in (—1, 1). Let these zeros be
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denoted by x{”,7=1,2, ..., r. The locations of these zeros are obtained directly from (A-59)and (A-57) and

are given by

xP=cos§”  j=1,2,...,n (A-60)
where
- 2f—1 ,
§)=—2°;—Tr ]'—‘1,2,...,1’. (A'61)

We define interpolation polynomials Z(n) by means of the formulae

( ! TI—chr)
g]r)('f,)= 1—[ (m) ]= 1, 2, R & (A—62)
llc;} Xi — Xk

These polynomials are of degree (r—1) in n and have the property
2 (n)= 8. (A-63)
They are also given by the alternative formula

T.(n)

SOy =) ]

where the dash represents differentiation with respect to the argument of the appropriate function. By
differentiating formula (A-59) with respect to ¢ we easily establish that

! r r
TaN=C0"N e (A-65)
Then, from formula (A-64) we get
=(r) _=H )}H (" cos r¢ )
g] ("7) Sl ¢] (COS(ﬁ"'COS $§r))' (A 66)
Therefore
ap=| arm—2s
77
= J g/"(cos ¢) d
( )] () J cOs rqS
sin ¢ (cos ¢ —cos ¢§'))
_1\f+1 -
_7CD sin ré}"”
T
=7 (A-67)
We are interested in the numerical evaluation of the integral
+1
dn
K= j A-68
» f(n) \/I:—”'—'F ( )
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where f(n)is an arbitrary continuous function of 7 in (-1, 1). If we take an approximation f"(n)to f (n)which
is the interpolation polynomial of degree (r—1) in 7

Fm= 3. fo g0, (A-69)

we get a corresponding approximation K to K which is given by
K?=% G (A-70)
i=1

by replacing f(n) on the right of :A-68_) by f"(n). Formula (A-70) is the Gaussian numerical integration

formula for a weight function 1/v1—%* when r integration points are used. Because of the orthogonality

relationship (A-56) we have that the approximation K is exactly equal to K whenever f(n)is a polynomial in

n of degree <2r—1.If f(n) is not such a polynomial then we can give an estimate for the error K — K.
Instead of formula (A-70) we can write

1

Oy L7
K lim sz’o flcos @)

{1+(=1)" cos 2rpe}
(cos rep)*

de (A-71)

where p runs through the positive integers. That (A-70) and (A-71) are equivalent formulae for continuous
functions f(n) is demonstrated if we divide the range (0, 7) of integration in (A-71)into r subranges with each
of the subranges containing one of the zeros &= q§§’), J=1,2,...,r, of cos r¢ internal to it, and then apply
Fejér’s integral formula (see Ref. 14) to each of the subranges.

From (A-71) we get

O [ o vl 1.8
K -mL f(cos¢){1+2s§1( (1 p) cos2rs¢} b
_ [ dn Lo o S\ [ dn
-[ s e tim Vi £ cy(1-2) [ FTantn) 2L
P s
~K+lim V27 ¥ (—1)3(1—1—7)]5,3 (A-72)
where
+1 dn
= Tm(n) ——. A-73
fo= [, s Ttor) 2 (A-73)
We can write, instead of (A-72), the formula
KO=K+V2rlim 5 (-1 (a-74)

provided that the limit on the right hand side of (A-74) exists. The formula (A-72) is valid whether the right
hand side of (A-74) exists or not.

The error K — K may now be gauged from either formula (A-72) or (A-74). The coefficients fm tend to
zero as m tends to infinity, as is shown by an application of the Riemann-Lebesgue theorem (see Ref. 14) to
formula (A-73) after changing the integration variable from 7 to ¢. The error K — K converges to zero as r
increases indefinitely because the multipliers G{” of formula (A-70) are, according to formula (A-67), all
positive.

The formula (A-72) is also valid for more general f(n), e.g. f(n) having a finite number of jump
discontinuities for » in (-1, 1), but in this paper we are interested only in continuous functions f(n).
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Integrands with Weight Functions YA +n)/(1-n) and Ja- 7/(+n)

We obtain numerical formulae of integration for the integrals

A =j f(n)\/g dn (A-75)

and

B=jj f(n)\/—;_;_::;l dn (A-76)

by application of the numerical formula (A-16). If we make the transformation of variables

£=3(1-n) (A-T7)
in the integrand in (A-75) we get

A=2] fa- 200/ %f dt. (A-78)

Then, on applying the numerical integration formula (A-16), for weight function v(1 - £)/ € with r integration
points, to (A-78) we get the approximation A" to A which is given by

AV= IS § (1t afftaf) (A-79)
where
a"=1-2¢"
=cos(§]r:_17r) i=1,2,....n (A-80)
If we make the transformation of variables

£=3(1+m) (A-81)

in the integrand in (A-76) we get
B=2 J-Ol f(2.f—1)\/1_—;—?d§. (A-82)

Then, on applying the numerical integration formula (A-16), for weight function v(1—§ )/ € with r integration
points, to (A-82) we get the approximation B to B which is given by

27§ (1-OFEY) (A-83)

)y
B Q2r+1)=1

where

§r) = 2§£’2,~+1 -1

2 ) )
= = R A-84
cos(2r+17r, i=1,2,.. ., (A-84)

The approximation A () is exactly equal to A and the approximation B (s exactly equal to B whenever f(n)

is a polynomial in 5 of degree <2r— 1. If f(n) is not such a polynomial then we can give estimates for the errors
A—A® and B—B®, which are based on formula (A-18).
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Spanwise Integration Formulae

Finally, in this Appendix, let us consider several different evaluations of the integral

7=[ " faWT= o dn (A-85)

-1

which are based on the numerical integration formulae (A-35), (A-70), (A-79) and (A-83). These integration
formulae are required for justifying formula (121) of the main text.
Straightforwardly we have the numerical estimate J from formula (A-33),

IO= 0 L = (). (A-86)

If we write

+1 1—
1=, fena e w5 L an (a-87)

and apply the formula of integration (A-83) we get the estimate J¥ for J which is given by

JP =T Y G- (8] (A-88)
(r+32)=1
since
D=n@  j=1,2,....r (A-89)
If we write
i 1+
7=, ot - an (A-90)

and apply the formula of integration (A-79) we get the estimate J*2 for J which is given by

T =T Y fmE20 1~ (n 800 (A-91)
(r+2)i=1
since
al’=982  j=1,2,...,n (A-92)
If we write
+1 ) d’f]
7=[ " fena -2 (A-93)
-1 V1 -7

and apply the formula of integration (A-70) we get the estimate J** for J which is given by

=2 8 f3hi - §5°Y) (A-94)
i
since

(" @1

Xi =m3i5 =12, ..,r (A-95)

Formula (121) of the main text is obtained by applying one of the estimates (A-86), (A-88), (A-91) and
(A-94) for the integral appearing on its left hand side.
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APPENDIX B

Derivation of Some Identities used in the Main Text

In this Appendix we derive the formulae (147) and (148) of the main text. In the derivation we shall use the
transformation of variables

7 =c0S ¢ (B-1)
and the numbers
Jar
( )= = -
n COS(M+1) J=1,2,..., M, (B-2)

where M and J are positive integers. There are five cases to be considered. The method of derivation is
basically that of Williams'?.

Cases (i) and (ii)
The function Tx(n) is defined by the formula

Ta(n)= \/-72; cosAp  A=1 (B-3)

in conformity with formula (A-59). The function Tx(n) is a polynomial of degree A in 5 and its zeros x &V,
p=1,2,...,A,are given by

2p—1
Xﬁ,“=cos( 2A) p=1,2,.... A (B-4)

just as in equation (A-60). We note that

£ =0 (8-5)

We can write for Tx(n) the alternative formula

Ta(n)=Ta H (n—x" (B-6)

where T, is a constant for a given integer A. From (B-6) and the equation obtained from (B-6) after
differentiation with respect to  we get

Ta(n)_ & 1
Ta(n) »=1(n—x

=Xy (B-7)

and on differentiating (B-7) with respect to n we get

Tatm)_(Tala©>_ _ & 1 _
Ta(n) (TA("?)) 2 (n—x Dy (B-8)
Therefore
A {1- (X(A))z}__ A (1-9% N
=1 (n— X(A)) —p§ {—————( (A))+~,7+X( )}
=(1-7 );Ag”ﬂ; +An, 5.9
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and

A=) Ay a- n) 27
Z 1 (n—xPP = {(n X =™ 1}

p=1

Th(m\?), ., Ta(n)
=—(1- 2{—A@~(A—) }+2 —A. (B-10
T ) 17 Ty )
By making use of the formula (B-3) for T,(n) we establish that
Th(n) sin A¢
=A B-11
Ta(n) cos A¢ sin ¢ ( )
and
Ti(n) 1 .2 Tam) }
=— - cos . B-12
T~ =) Taly ¢ (B-12)
In case (i) A is given by (see formula (149))
A=a(M+1) (B-13)
where a and M are any positive integers. Then, from (B-11), we get
Ta(n$") sin [JA#w/(M+1)]
Ta(n$™) " cos [JAw/(M +1)] sin [Ja/(M + 1)]
—A sin (aJm)
cos (aJw) sin [Jar/(M+1)]
=0 (B-14)
for all positive integers J from 1 to M inclusive.
In case (ii) A is given by (see formula (150))
=3Q2a~1)M+1) (B-15)

where a is any positive integer and M is any odd positive integer. Then, from (B-11), we get
Ta(™) _ sin (3(2a — 1)J)
TA(n5) " cos G2a - V)Ja) sin [Jo/(M + 1))
=0 (B-16)

for all even positive integers J from 2 to (M — 1) inclusive. From (B-12) we then get, in cases (i) and (ii)

Tll(n(M)) A2
TS {1-(FOyy

(B-17)
Finally, on putting

n=n$0 (B-18)

into formulae (B-9) and (B-10), using results (B-14), (B-16) and (B- 17), and rearranging the resulting
expressions, we get

LA {1-(™
a1 % ({—n#%}fo (B-19)
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and

1—()) _
1+APZIW—A (B-20)

in both cases (i) and (ii). It must be remembered however that in case (i) the quantity M is any positive integer
and J is any positive integer from 1 to M inclusive, whereas in case (ii) the quantity M is any odd positive
integer and J is any even positive integer from 2 to (M — 1) inclusive.

Formulae (B-19) and (B-20) agree with formulae (147) and (148) of the main text for cases (i) and (ii) if we
take

Py=A (B-21)

because the ,\/(A) p=1,2,...,A, are the Gaussian integration points corresponding to the weight function
1/¥1- Tlo

Case (iii)

We define the function S,(n) by means of the formula
Sa(n)=cos (A+3)e. (B-22)

For any positive integer A it is the product of v 1+ n with a polynomial in n of degree A and its zeros a®,
p=1,2,..., A, are given by

2p—1
ap cos(2A+17-r p=1,2,...,A, (B-23)

which is in conformity with (A-80). We note that

A
S a®=1 (B-24)
p=1
We can write for Sx(n) the alteérnative formula
Sa(n)=Sa H (n—afW1+n (B-25)

where S, is a constant for a given integer A. From (B-25) and the equation obtained from (B-25) after
differentiation with respect to n we get

Sa(n)_ & 1 1
Salm) ~ oE1 (n—a®) 2(1+n)’ (B-26)
and on differentiating (B-26) with respect to n we get
Si(n) (Sa(m)?_ _ & 1 1
Sa(n) (SA("?)> T Si(m—ay 2+ )P (B-27)
Therefore
& =@} ) 2 Shln)
p;l (1 -a®) (1- )S e )+(A+2) (B-28)
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and

A {l=@pV) L (SK(m) (Sh(n)\? Sh(m) . .1
e U B v v | B v w0 (B-29)
By making use of the formula (B-22) for $1(n) we establish that
Sil(n) 1 sin(A+DHe
m_ (A+2) cos (A +3)¢ sin ¢ (B-30)
and
SX(’O)=_ 1 ;2__55\("7) _
ST e = LT (5-31)
In case (iii) A is given by (see formula (151))
A=3Qa~-1D)M+1)~3} (B-32)

where a is any positive integer and M is any even positive integer. Then, from (B-30) and (B-31), we get

SI (M)
S ®3
and
e (M) 12
Simy7) . (A+3) (B-34)

SA@f) {1-@F
for all even positive integers J from 2 to M inclusive. Finally, on putting

n=n" (B-35)

into formulae (B-28) and (B-29), using results (B-33) and (B-34), and rearranging the resulting expressions,
we get

an_ 1 & {1-(a)?

TR E e (B30
and
1 & {1-(a)}
L T D L ey = AR (B-37)

provided that M is any even positive integer and J is any even positive integer from 2 to M inclusive.
Formulae (B-36)and (B-37) agree with formulae (147) and (148) of the main text for case (iii) if we take

Pyo=A+3, (B-38)
because the @V, p=1,2,..., A, are the Gaussian integration points corresponding to the weight function
V(1 +m0)/(1~n0).

Case (iv)

We define the function R,(n) by means of the formula

R4(n)=sin (A+3)¢. (B-39)
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For any posmve integer A it is the product of v1-n with a polynomial in n of degree A and its zeros B(A)
p=1,2,..., A, are given by

2p1r)
(A).... == -
COS(2A+1 p=1,2,...,A, (B-40)

which is in conformity with (A-48). We note that

Z B(/\)_ _' (B-41)

We can write for Ra(n) the alternative formula

Ra(m)=Ry T1 (n=B"W1-7 (B-42)

where R, is a constant for a given integer A.
By proceeding in exactly the same manner as in case (iii) from formula (B-25) onwards we derive the
formulae

1 {1- (B(A’}
(A+%)p§1 CIEE O (B-43)

n(jM)_

and

1 {1-B .
1+(A+2),,zl (TI(M) (A)) =A+3 (B-44)

provided that M is any even positive integer and J is any odd positive integer from 1 to (M —1) inclusive.
Formulae (B-43) and (B-44) agree with formulae (147) and (148) of the main text for case (iv) if we take

Pr=A+3, (B-45)
because the B,(,A), p=1,2,..., A, are the Gaussian integration points corresponding to the weight function
V(1 —m0)/(1+m0).

Case (v)

We define the function Q,(n) by means of the formula
Qa(n)=sin (A+1)¢. (B-46)

For any positive integer A it is the product of v1—17 2 w1th a polynomlal in 7 of degree A, the polynomial being
a multiple of ya(n) of formula (A-24). The zeros 2™, p=1,2,..., A, of Qa(n) are given by

™ = cos <Ap:1) p=1,2,...,A, (B-47)
just as in equation (A-25). We note that
z 5 =0. (B-48)

We can write for Q(7) the alternative formula

Qu(n)=Qa H (n—ngW1-n> (B-49)
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where Q, is a constant for a given integer A. From (B-49) and the equation obtained from (B-49) after
differentiation with respect to n we get

Qim)_& 1 7 i
Oum) " E =) A=) (B-30)
and on differentiating (B-50) with respect to n we get
Qim) (QhmN?__ & 1 (I+9?) ]
onm o) = BT (= (B-3D
Therefore
A=) ., Qip)
P (1-n )_QA(n)+(A+ Dn (B-52)
and
A=) 5 (Qh(n) (Qh(m)\? Qi(n)
pgl (n— 771(9A))2 (1=m ){ Qaln) (QA('W )) } t2n Qx(n) (A+D). (B-33)
By making use of the formula (B-46) for Q.(7) we establish that
Qam) _ _ cos (A+1)¢
Qaln) (A+1)sin (A+1)¢ sin ¢ (B-54)
and
Q)1 [ 0 Qh(n) ]
G~ = A+ 1 =Gy 059} (839
In case (v) A is given by (see formula (153))
A=3Qa-1DM+1)-1 (B-56)

where a is any positive integer and M is any odd positive integer. Then, from (B-54) and (B-55), we get

Qir(n$™”
2 ) g B-
0a(n%) (B-57)

and

Qi) ___(A+1)

=- B-58
0\~ T T-mPY (B-58)
for all odd positive integers J from 1 to M inclusive. Finally, on putting
n =" (B-59)

into formulae (B-52) and (B-53), using results (B-57) and (B-58), and rearranging the resulting expressions,
we get

o _ 1 A {1*(1?§A))2}=
(A+1),21 (=)

0 (B-60)
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and

LSRR Sl U505 S (B-61)

1+ -
(A+1) ;21 (n§P—n )

provided that M is any odd positive integer and J is any odd positive integer from 1 to M inclusive.
Formulae (B-60) and (B-61) agree with formulae (147) and (148) of the main text for case (v) if we take
Py=A+1, (B-62)

because the nE,A), p=1,2,..., A, are the Gaussian integration points corresponding to the weight function
V1-n3.
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APPENDIX C

Numerical Evaluation of the Functiomn [ £"’(§, s No3 ¥s M)
Integration with respect to &

In this Appendix we discuss the process for the numerical evaluation of the function I f")(f, M, No; ¥, M)
from the formula

1 —ynz (1 — — -
106w, Mo = (2220) [ o[£ Y 0 Ma)dés ()
dar l 0 fo l l

where
=[x —x.()]
eyt Y

"=y

L (C-2)
£o= m[xo—xr.(}’o)]

=0
7o S J
Xy e —awy AU » Moo(Mxx +R) {—iv(—x+MooR>}
K<—3_; ’Mco):l J € §+l (o34 A\
e’ (~x +MwR)/(1~M2) (u*+y?): R(x*+y?) Pl \T1os
(C-3)
and
R=v{x*+(1 -MZ)y3. (C-4)

Formula (C-1) is identical with formula (114) of the main text.

If o = n the evaluation of the integral on the right hand side of (C-1) is straightforward because, from (C-3)
we have

2
Y Ax Y. _|0 x <0, :
i‘i’éﬂK(z’l"”M”) {2 x>0, (€5)

and therefore,

1“50
&o

1 &
1@ 7,7 v, Mw)=2—j 1 (o) do. (C-6)
T Jo

The integral on the right hand side of (C-6) can be evaluated analytically using formulae of Appendix A or it
can be evaluated numerically. To evaluate it numerically, divide the range (0, &) of &, into a number of
intervals of equal length and apply Gaussian integration formulae, using a small number of integration points,
to the integral over each of these intervals. In the interval abutting on &, = 0 the weight function 1/ \/f_o is used
whereas in all the other intervals the weight function 1 is used for the Gaussian integration. The number of
intervals of integration which it is necessary to take to obtain a given accuracy will depend on the number of
integration points in each interval and on the value of n, and will need to be increased if n is increased because
of the resulting increase in the number of undulations of the function A f")(fo). The actual number of intervals
required can be assessed by experience.

If o # n the range (0, 1) of & in the integral on the right hand side of (C-1) is divided into a number of
intervals, not necessarily of equal length, and Gaussian integration formulae using a small number of
integration points are applied to the integral over each of these intervals. In the interval abutting on ¢, = 0 the
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Then formula (C-11) can be written as

/Iy
E X — (VIYI>_J'X —ivilylu/l du -1
532 v M) = (22 R (C-13)

We can show that S(e) satisfies the differential equation

d’S(a) dS(a)
o s} -2 (C-14)
by inserting S(a) from (C-12) into (C-14). If we put
S{a)=aP(a), (C-15)

substitute for S(a) from (C-15) into (C-14) and divide the resulting equation through by a® we get the
differential equation

P"(a)+§P'(a)—(1 +£§>P(a)=;i~2 (C-16)

for P(a), which we recognise as a modified form of Bessel’s differential equation with a non-zero right hand
side. This differential equation has the general solution (see e.g. Ref. 15)

P(a)=g{iL1(a)+ ClLi(a)+ DK, (a)} (C-17)

where C and D are integration constants, L;(e) and K;(« ) are modified Bessel functions of order 1 and of the
first and second kinds respectively and L,(«) is 2 modified Struve function which is related to the Struve
function H_;(ia’) by means of the formula (see Ref. 15)

Ll(a)=—H-1(ia). (C'-18)

For small values of |a| we may write (see Ref. 15)

Li(a)=aj(a) (C-19)

Ki(e) =7 +a] log (5) +7 (@) af(a) (C-20)
2

Li(a)= ——g(a), (C-21)

where j(@), f(a) and g(a) are even integral functions of a which have the power series expansions:

](a)"_,zor'(rﬂ)l(a) (€22)
1 1 (o 1 1 Y e\2r
flay= 2.2 Z r'(r+1)'1szo (s+1) 2(r+ 1)}( ) (C-23)
and
gla)= % 27 (C-24)

S enier+1n”
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For real positive @ the branch of log («/2) which is real is taken in formula (C-20). Therefore, on using the
above expansions, we get, for small values of a

S(a)= %TrD—(ia)+%7rCa2+4l7rDa2['y+log (g) —%] +0(a?). (C-25)

However, we can obtain an expansion of S(a), for small values of «, directly from the integral representation
(C-12). In fact, for small real positive a, we can show that

S(a)= 1—-(ia)+%a2[y+log (%)—%+%—T]+O(a3). (C-26)

On comparing the expansions (C-25) and (C-26) we get immediately

C=i (C-27)
and
2
D=— (C-28)
o

for the values of the integration constants C and D introduced in formula (C-17).
Having obtained the values of the integration constants C and D we can substitute for P{a)from (C-17)into
(C-15) to get S(e) in the form

S(a)=F(a)+iG(a) (C-29)

where
F(a)=1+['y+log <%)]a2j(a)~—a2f(a) (C-30)
G(a)=7a’j(@)-ag(a) (C-31)

are real functions of « for real positive a.
We may also deduce from (C-12) the following asymptotic expansions for F(a) and G(a) of formula (C-29)
for large real positive a. With the integer n = 0 arbitrary we get

Fla)= \/;;e_“{Fn(a)—i—;l;én(a)} (C-32)
and
Gla)= Gn(a)+ﬁgn(a) (C-33)
where
Fola)=1 (C-34)
F(a)= 1+,§1 r!(81a)' Srl G-@2s-1?) n=1, (C-35)

Gola)=—+ 3 @GDCr+1)!

a S0 rirlQa)”

n=0. (C-36)
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The remainder functions 8,(a), £,(a), for any n =0 have the behaviour
n(a)=0(1) (C-37)

en(a)=0(1) (C-38)

for @ » 400,

The same asymptotic expansions (C-32) and (C-33) may be deduced by using the asymptotic expansions of
I(@), Ki(«) and L,(@), as given for example in Ref. 15, in formula (C-17) for P(a) with C and D given by
(C-27) and (C-28) and substituting the resulting asymptotic expansion into (C-15). It is, however, quite easy to
get the required expansions directly from (C-12).

The power series (C-22), (C-23) and (C-24) have to be truncated at finite values of 7 in order to be able to
evaluate from them the values of the functions j(«), f(«) and g(a), and these finite values of r will depend upon
the accuracy to which these functions are required and on the value of o under consideration. If we work
numerically to a given number of significant figures the accuracy with which we can evaluate the sums of the
truncated series will decrease as a increases. Thus, even though these power series expansions are convergent
for any finite value of &, they cannot be used to give accurate values of the functions j(a), f(a)and g(a) when a
becomes indefinitely large, if we are limited in the number of significant figures used in the arithmetical
operations. By working with a given number of significant figures there is a maximum value of « for which
formula (C-30), with j(«) and f(a ) obtained from the power series expansions (C-22) and (C-23) respectively,
can be used to obtain F(« ) to within some prescribed accuracy € > 0. Similarly there is a maximum value of &
for which formula (C-31), with j(«) and g(e) obtained from the power series expansions (C-22) and (C-24)
respectively, can be used to obtain G(a) with the accuracy ¢. The smaller a is, the fewer terms, in general, will
be needed in the truncation of the power series expansions (C-22), (C-23), (C-24) to obtain F(&) and G(a) to
within the accuracy e.

For very large values of o we can use the asymptotic formulae (C-23) and (C-33) to evaluate the values of
F(a)and G(a). Because of formula (C-32) we can, for given ¢ >0, find a,(n, £)> 0 such that

\F(a)~\/”7“e‘“1:n(a)‘ <e (C-39)
whenever
a>ain, ) (C-40)

If we take @, (1, £) to be the minimum quantity for which (C-39)is true under the condition (C-40) we find that,
for fixed e, a1 (n, £) decreases in general as # is increased from zero up to a certain value of # and then increases
as n is increased beyond this certain value. The minimum value of a1(n, ¢), for all the values of #, is then the
minimum value of & for which F(a) may be obtained to within accuracy & from formula (C-32). This accuracy
may be somewhat reduced if we work numerically to a given number of significant figures. The higher « is,
beyond the minimum value, the smaller will the value of n need to be, in general, for (C-39) to be true.
Likewise, because of formula (C-33) we can, for given £ >0, find a,(n, £€)>0 such that

|Gla)=G,(a)<e (C-41)

whenever
a > ay(n, ). (C-42)

Again there is a minimum value of & for which G(a) may be obtained to within accuracy ¢ from formula
(C-33).

The maximum values of & for which F(a) and G(a) can be evaluated to the given accuracy from formulae
(C-30) and (C-31) with j(@), f(a) and g(a) obtained from the power series expansions (C-22), (C-23) and
(C-24) respectively, depends strongly on the number of significant figures used in the arithmetic, whereas the
minimum values of @ for which F(a) and G(a) can be evaluated to the given accuracy from formulae (C-32)
and (C-31) is hardly dependent on the number of significant figures used in the arithmetic, provided that this
number is greater than the number of significant figures required in the values of the functions. The functions
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F(a)and G(a) cannot be evaluated to the given accuracy &, for all @ in (0, <©), using formulae (C-30), (C-31),
(C-32) and (C-33) as described above, if the number of significant figures used in the arithmetic is not
sufficiently high. In other words, if we work to a given number of significant figures, then £ must be greater than
a certain lower bound in order that F(a) and G (a) may be evaluated in the above manner to the given accuracy
¢ for all « in (0, c©). If £ is less than this bound then some other means of evaluating the functions F(a) and
G(a) must be used, at least over the ranges of a for which the above method does not yield the required
accuracy . We shall expand the functions in series of Chebyshev polynomials rather than power series.
Although e will still have to be greater than a certain lower bound in order that F(a) and G(a) may be
evaluated to the given accuracy &, this lower bound should be less than the former lower bound, thus rendering
the procedure involving expansion of fuctions in series of Chebyshev polynomials of wider application than
that involving expansion of functions in power series. It may be true that with the number of significant figures
available on a particular computing machine, functions may be evaluated to a sufficient accuracy for some
applications using expansions in power series, but it would seem to be good practice to use another procedure
which is capable of giving superior accuracy and is no more difficult to apply.

Use of Chebyshev Polynomials

The formulae (C-30), (C-31), (C-32) and (C-33) are valid for complex values of a provided the branch line
of log (a/2) lies in the half-plane Im («)=0, but we are here concerned only with real positive values of «.
There are convergent expansions for j(«), f(a) and g(a), which are valid only for real & but which are more
suitable for numerical computation than are (C-22), (C-23) and (C-24) when « is in some restricted interval
(0, A)where A is some positive finite number. We can also use expansions for F(a) and G(a) which are valid
only for real @ but which are convergent when « is in the restricted range (A, o) as opposed to the expansions
(C-32) and (C-33) which are asymptotic expansions. These convergent expansions in series of orthogonal
polynomials are again more suitable for numerical computation than are the asymptotic expansions. Because
of their simple properties we shall use the Chebyshev polynomials rather than other orthogonal polynomials,
but it is well to remember that other orthogonal polynomials may be more appropriate to use in some
circumstances. The Chebyshev polynomial T,(x) defined by

T, (x)=cos (n cos " x) n=0,1,2,..., (C-43)

is a polynomial of degree r in x. Because j(a), f(a) and g(a) in formulae (C-30) and (C-31) are integral
functions of & we can write, for 0<a <A,

2 2

F(a)=§’0D,(A)T,(2 1)+;a log( ) 3 C(A)T(2 1) (C-44)

and

Gla)=—a Z'E(A)T(z—z 1) ki 22’ C(A)T(za ) (C-45)

where the dash ' on the summation sign } indicates that the quantity under the summation sign for r = 0is to be
multiplied by 3. The coefficients C,(A), D,(A) and E,(A) in the formulae (C-44) and (C-45) may be
determined numerically for r=0, 1, 2, ..., for a given value of A by applying the method of Clenshaw'®.

It is apparent from equations (C 32) and (C-33) that the function e"‘F(a)/\/Zw_ is a function of bounded
variation in 1/a and the function G (a) is a function of bounded variation 1/a” for large . Hence we can
write, for Asa <o

Fa)=vae™ z A (A)T(%—1> (C-46)

and

2

Gla)= —% i:o 15:,(,4)7*,(26‘:‘2 -1), (C-47)
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where, again, the dash’ on the summation sign ¥ indicates that the quantity under the summation sign for r = 0
is to be multiplied by 3. The coefficients A,(A) and B,(A) in the formulae (C-46) and (C-47) may be
determined numerically for r=0, 1,2, ..., for a given value of A by applying the method of Clenshaw®®.

If we determine the coeflicients A,(A), B,(A), C,(A), D,(A) and E,(A) numerically for A =7 we get the
following results:

Ao(T)= 2:57172
A(7)= 003221
Ax(7)=—-0-000 32
As(7)= 0-00001

(C-48)

Bo(7)= 2-0805030)
Bi(7)= 0-0431020
By(7)= 0-0022710
Bs(7)=—0-000 790 2
B4(7)=~0.000 144 5
Bs(7)= 0-000075 0
B(7)=—0-000 002 4 (C-49)
B-(7)=—0-000 008 1
Bs(7)= 0-000 003 5
Bo(7)=—0-000 000 4
B1o(7)=—0-000 000 4
Bi1(7)= 0-000 000 3
B1,(7)=—0-000 000 1

Co(7)=31-850997 610 |
Cy(7)=20-478 045 274
Cx(T)= 6700 050 944
C5(7)= 1298 530059
Cy(7)= 0-164782 643
Cs(7)= 0-014 674 957 (C-50)
Co(T)= 0-000 964 651
CA(7)=  0-000 048 629
Ce(T)=  0-000 001 937
Co(7)="0-000 000 062
Cio(7)=  0-000 000 002
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Do(7)= 48-347809 077
Dy(7)= 14-168 616 622
Dy(7)=—19-622 120 487
Ds(7)=—-14-015 111 195
Dy(7)= —3-981038753
Ds(7)= —0-646 707 438
D¢(7)= —0-068 862 606
D(7)= —0-005 195 562
Dy(T)= —0-0007292 608
Dy(7)= —0-000012 776
Dio(7)= —0-000 000 445
Di(7)= —0-000 000013

} (C-51)

Eo(7)= 15666174951 |
Ei(7)=111-982 807 86
E)(7)= 43-246 690 85
Es(7)= 992891983
E((7)= 147496303
Es(7)= 0-15151557
E«7)= 0-01132883
EA7)= 0-000 641 65
Eg(7)= 0-000 028 41
Eo(7)= 0-000001 01
Eio(7)= 0-000 000 03 |

v

(C-52)

If we now use the values of the coefficients A,(7), B.(7), C.(7), D,(7) and E,(7) from (C-48), (C-49), (C-50),
(C-51) and (C-52) in formulae (C-44), (C-45), (C-46), (C-47), and neglect the remaining higher order
coefficients, we can evaluate F(a) and G(a) for any given value of «. By doing this for all the integers o from 0
to 25, using 11 significant figures in the arithmetic, we find the values F(a) and G(a) of Table C-1 (overleaf).

The function values tabulated in Table C-1 should all be correct to seven decimal places. To achieve this
accuracy the coefficients A, (7) needed to be given only to five decimal places because of the factor Yae™ in
formula (C-46), and the coefficients B, (7) needed to be given only to seven decimal places because of the factor
1/a in formula (C-47). The coefficients C,(7), D,(7) and E,(7) could have been given to one fewer decimal
place each, but there is not much gain in this because these coeflicients reduce so rapidly as 7 is increased.

It is also possible to evaluate F(a) to seven places of decimals for « =7 from the asymptotic approximation
Vara/2 e”°F,(a) withn = 5. For higher values of « the value of n required to get this accuracy may be less than
5. However it is possible to evaluate G(a) accurate to only three places of decimals for & =7 from the
asymptotic approximation G, (a) and to get the highest accuracy for « = 7 we must take n = 2. Thus with the
demarcation value A =7 we must turn to some other formula, such as (C-47), in order to be able to evaluate
G(a) to seven places of decimals for a =7. The asymptotic approximation G, (a) cannot be used to evaluate
G(a) to seven decimal places unless & > 17. '

If F(e) and G(a) were required to higher accuracy than seven decimal places then the demarcation value A
in formulae (C-44), (C-45), (C-46) and (C-47) would have to be taken to be some value less than 7, unless the
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TABLE C-1

a F(a) G(a)
0 1-000 000 0 0-000 000 0
1 0-601 907 2 ~0:468 450 8
2 0-279 731 8 —0:467 289 0
3 0:-120 469 3 —0:376 343 2
4 0-049 934 0 —0-291 743 6
5 0-020223 1 —0-229284 5
6 0-008 063 5 -0-185609 1
7 0-003 179 3 ~0-154 965 3
8 0-001 243 0 -0-132 881 5
9 0-000 482 7 —0:116 408 0
10 0-000 186 5 —-0-103 6927
11 0-000 0717 —-0-093 577 4
12 0-:000 027 5 —0-085 324 8
13 0-000 010 5 -0-078 451 3
14 0-000004 0 -0-072 629 2
15 0-000 001 S —0:067 628 7
16 0-000 000 6 —0-063 283 7
17 0-000 000 2 -0-059 4711
18 0-000 0000 —0-056 097 1
19 0-000 000 0 -0-053 089 4
20 0-000 000 0 —-0-0503906
21 0-000 000 0 -0-047 955 1
22 0-000 000 0 —0-045 745 8
23 0-000 000 0 —0-043 732 4
24 0-000 000 0 —0:041 889 7
25 0-000 000 0 —0-040 196 9

number of significant figures used in the arithmetic were increased beyond 11. The coefficients A,(A) and

B,(A)would decrease more slowly as r increased and the coefficients C,(A), D,(A) and E, (A ) would decrease

more rapidly as r is increased with this lower value of A than was the case with A =7. For high enough

required accuracy it will no longer be possible to obtain F(a) from the asymptotic approximation
7a/2 e °F,(a) at the demarcation value o = A.

The numbers of terms which need to be retained in the infinite series in (C-44), (C-45), (C-46) and (C-47)
depend only on A and not on the value of @. On the other hand, the numbers of terms which need to be
retained in the infinite series (C-22), (C-23) and (C-24) do depend on « and are very small when « is very
small. Thus for very small « it is less work numerically to evaluate F(e) and G(«) from (C-30) and (C-31) using
the series (C-22), (C-23) and (C-24) for j(a), f(a) and g(a), than it is to evaluate F(a) and G(a) from (C-44)
and (C-45), but over the whole range (0, A) the formulae (C-44) and (C-45) are more economical.

The numerical evaluation of the summations in formulae (C-44), (C-45), (C-46) and (C-47) is easily carried
out by using the scheme described by Clenshaw'°.

From (C-43) we get, on using elementary properties of the cosine function,

To(x)=1 (C-53)
Ti(x)=x (C-54)

and the reduction formula
To1(x)—2xT, (x)+ T,_1(x) =0. (C-55)
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Suppose now that we wish to evaluate k (x) where k(x) is given by the formula

k(x)= 2_:0 aT,(x). (C-56)
Clenshaw’s scheme is to put
bui2=0 (C-57)
bp+1=0 (C-58)
by =2xby—ri1—bpyi2tan,, r=0,1,2,...,n (C-59)
Then
k(x)=3(bo—b2) (C-60)

as may be shown by application of (C-53), (C-54) and (C-55).
The function S(a) is now obtained from (C-29) and the result used in (C-13) to obtain J(x//, y/{; v, M)
when |X|/|y| is not large.

Procedures when [X|/|y| is Large

To evaluate J(x/1, y/I; v, M) when X/|y| is large and positive we replace 1/(u”*+ 1)% in the integrand on the
right hand side of (C-9) by its expansion as a power series in 1/u and integrate term by term to get

xy @r+ 1)'(Iyl)2'+2 ﬁ)
(l l’ v, Moo) Z ( 1) 22rr'r X E2r+3( l (C'61)
where
1 (O —pdv
E(a)=« J € e r=3,517,.... (C-62)

The expansion on the right hand side of (C-61) is convergent for X/|y|= 1 and, the larger X/|y|is, the faster
does the expansion (C-61) converge, i.e. the fewer terms in a finite truncation of it are necessary to get
J(x/1, y/1; v, M) to a given accuracy. We may arbitrarily choose to use the expansion on the right hand side of
(C-61) for obtaining J(x/!, y/l; v, M) when X/|y|=2.

To evaluate E,,.s(a) we first use the recurrence relationships

1 ] —i i
" ] o - Ejpii(e) p=12,....,r, (C-63)

E2p+3(a)= [(2p+2)_(2p+2)(2p+1) © (2p+2)(2p+1)

to express E»,+3(a) in terms of Ez(a).
We may express Es(a) by means of the formula

Es(a)= %az(log a +’§) +H(a)—iaK (a), (C-64)

where the branch of the function log a which is real for « real positive is taken and H(a) and K () are even
integral functions of a. We may deduce the power series expansions

H(@)=}3~3G-y)a’~da* T D

sZo (s +1)(2s +4)! (C-65)



and

P (_1)sa 2s
=1+ 2 D — - 6
K@)=1+a" ) GriDas+3) (C-66)
from the integral representation (C-62) with r = 3 for Es(a).

For large values of @ the power series expansions (C-65) and (C-66) are of little value. It is then better to
represent E3(a) by means of the formula

Es(@)=e " *{h(a)+ik(a)}. (C-67)

We may then deduce from (C-62) with r =3 the following asymptotic expansions for 4(a) and k() for real
positive . With the integer n =0 arbitrary we get

h@)= @)+ sz in(a) (C-68)
and
k(a)=kn(a)+ﬁvn(a) (C-69)
where
ha (a)—% éog—l)—(zrii)' (C-70)
and
() =5 § CUEG D (©71)

The remainder functions u,(a), v,(a), for any n =0 have the behaviour
n(a)=0(1) (C-72)

va(a)=0(1) (C-73)

for @ - +00.
Because H{a) and K(«) in (C-64) are integral functions of &> we can write, for 0<a < A,

E3(a)=%a2[log(z> '2]+z M(A)T(zi ) (za)z N(A)T(za 1), (C-74)

where the dash on the summation sign Y, indicates that the quantity under the summation signfor r =0istobe
multiplied by 3. The coefficients M,(A ) and N, +(A)in the formula (C-74) may be determined numerically for
r=0,1,2,..., for a given value of A by applying the method of Clenshaw®.

The functlons a’h(a) and ak(a), where h(a) and k(a) are defined in formula (C-67), are functions of
bounded variation in 1/a for large a. Hence we can write, for A<sa <o

e 2A°% ) e 2A% 1)

Exe)=S7 ¥ F(A)T(————l =y G(A)T(_ (C-75)

where, again, the dash’ on the summation sign ¥ indicates that the quantity under the summation sign for r =0
is to be multiplied by 3. The coefficients F,(A) and G, (A) in the formulae (C-75) may be determined
numerically for r=0, 1,2, .. ., for a given value of A by applying the method of Clenshaw'®
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If we determine the coefficients F;(A), G,(A), M,(A) and N,(A) numerically for A =7 we get the following
results:

Fo(7)=+5-180 814
Fi(7)=—-0-360 529
Fy(7)=+0-041 133
F5(7)=—0-006 359
F4(7)=+0-001210
Fs5(7)=-0-000 268 } (C-76)
Fy(7)=+0-000 067
F5(7)=—-0-000 018
Fg(7)=+0-000 005
Fo(7)=—0-000 002
F1o(7) = +0-000 001

Go(7)=—1-8198580)
G,(7)=+0-081 768 8
G»(7)=—-0-007 181 8
G5(7)=+0-000 926 5
G4(7)=—0-000 153 8
Gs(7)=+0-000 030 6
Ge(7)=—0-000 007 0
G+(7)=+0-000 001 7
Gs(7)=~0-000 000 5
Gs(7)=+0-000 000 1

> (C-77)

Mo(7) = +4-768 526 27
My(7)=—0-677 567 89
M,(7)=—2-089 539 69
M;(7) = +0-398 136 24
M4(7)= ~0-065 821 07
Ms(7)=+0-007 658 89
M¢(7)=—0-000 634 37
M-(7)=+0-000 038 88
Mg(7)=—0-000 001 83
Ms(7) = +0-000 000 07

r (C-78)
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No(7)=+7-151718 43
Ni(7)=+2-20117793
N>(7)=—-0-310914 27
N3(7)=+0-055 598 29
N4(7)=-0-007 412 33
Ns(7)=+0-000 704 63
Ne(7)=—0-000 049 07
N7(7)=+0-000 002 59
Ng(7)=—0-000 000 11 }

(C-79)

If now we use the values of the coefficients F,(7), G,(7), M,(7) and N,(7) from (C-76), (C-77), (C-78), (C-79)
in formulae (C-74) and (C-75), and neglect the remaining higher order coefficients, we can evaluate E s(a) for
any given value of a. By doing this for all the integers & from 0 to 25, using nine significant figures in the
arithmetic, we find the values Es{a) of Table C-2.

TABLE C-2
[¢4 Re E3(a) Im E3(a)
0 +0-500 0000 +0-000 000 0
1 +0-0181176 -0-378 5302
2 | —0-2714092 ~0-1077352
3 ~(0-168 342 2 +0:164 075 8
4 +0-058 9296 +0-186 4340
5 +0-163 7699 +0-0311202
6 +0-093 3012 ~0:110 8452
7 —0-043 467 6 —0-120 2582
8 —0-112298 8 —0-021174 8
9 —0-068 523 3 +0-077 1551
10 +0-027 748 1 +0-089 804 8
11 +0-083 589 3 +0-021 269 7
12 +0-057 204 0 —0-0554312
13 —0-0157937 —0-0722636
14 —-0-0650400 -0-023 1071
15 —0-0506515 +0-040227 3
16 +0-006 772 4 +0-060 467 0
17 +0-051 7294 +0-024 944 2
18 +0-046 076 9 —0-028 863 5
19 +0-000 160 8 -0-0516162
20 —0-041 4473 -0-026 368 1
21 —0-0423936 +0-019961 0
22 ~0-005 6857 +0-044 4416
23 +0-033 0851 +0-027 298 5
24 +0-039 121 4 —0-0127600
25 +0-009 811 7 —0-038 304 3

The function values tabulated in Table C-2 should all be correct to seven decimal places. To achieve this
accuracy the coefficients F,(7) needed to be given only to six decimal places because of the factor e/ a>
multiplying the first series on the right of (C-75) and the coefficients G,(7) needed to be given only to seven
decimal places because of the factor e™*/a multiplying the second series on the right of (C-75).

Itis possible to evaluate Es(a) only to three places of decimals for & = 7 using the asymptotic approximation
h.(a)to h(a)and k,(a)to k(e ) and to get the highest accuracy at @ = 7 we must take n = 2 for evaluating both
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h(a)and k (o). Thus with the demarcation value A = 7 we must turn to a formula, such as (C-75), in order to be
able to evaluate Ex(«) to seven places of decimals for « = 7. The asymptotic approximations 4, (a) and k. («)
cannot be used to get Es(a) to seven places of decimals unless « >17.

We may now evaluate J(x/!, y/!; v, M) from the infinite series (C-61) when X/|y| = 2 if we use the relations
(C-63) to express the E,.3(vX/1), occurring in (C-61), in terms of E3(»X/!) and then evaluate E;(»X/!) from
either formula (C-74) or (C-75) depending on whether »X/I <A or vX/1> A.

To evaluate J(x/I, y/!; v, M) when X/|y| is large and negative, we write; from (C-9),

o /1yl
Xy, >=J —inlylus__ AU, _IX —lylut__ Y
J(Z’I’V’M” o € @+1F Lo © W+ 1)

vly| (V|Y|) jw wiylust AU
=2 W g, (HY) et C-80
CETT) T L @+ 1y (©-80)

The evaluation of aK;(a) for 0=<<a =<0 has already been considered. The evaluation of

J eiulylu/l du §
7 3
~ X7yl (u"+1y

for —X/|y|> 2 is carried out in exactly the same manner as the evaluation of J(x/I, y/I; v, M) for X/|y|>2
was carried out, apart from a change in the sign of the imaginary part.
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TABLE 1

Numerical Values of Approximations @,-,, i=1,2,3;7=1,2,3, to the Generalised Airforces on a Tapered
Swept Wing of Aspect Ratio 2, Oscillating in Heave, Pitch and Control Surface Rotation with v = §-32560,
M, = (-7806

3
=
<
z

RS

Al An Al Arn Al An
Oll 11 le 12 013 13

i5 2 15 2 1 0-056 532 ~2-4867 —2-4586 —4-5856 —0-59672 0-047 442
15 2 15 2 2 0-059 524 -2-5112 —2-4806 —4-6469 —0-59274 0-058493
15 2 15 2 4 0-059 303 —2-5094 ~2:4791 —-4-6423 —0-59301 0-058 082
15 2 15 2 8 0-059 245 —2-5092 —2-4790 —-4-6412 —0-59296 0-058 138
15 3 15 3 1 0:063 709 —2-5395 -2-5066 —4-7566 —0-59599 0-092102
15 3 15 3 2 0-060 337 —2:5124 -2-4836 —4-6788 —0-58650 0-084 073
15 3 15 3 4 0-061 863 —2-5223 -2-4921 —-4-7058 —0-58572 (-083 562
15 3 15 3 8 0-061 750 -2-5214 —2-4913 -4-7032 —0-58585 0-083 567
15 4 15 4 1 0-072 016 —2-5627 ~2:5224  -4-8710 —0-59746 0-081139
15 4 15 4 2 0-061 005 —2-5217 -2-4921 —4-7037 —0-58622 0-087618
15 4 15 4 4 0-061 854 ~2-5220 —2-4921 —4-7079 —0-58420 0-084 590
15 4 15 4 8 0-061 849 ~2:5227 —2-4927 -4-7084 —0-58426 0-084 585
15 5 15 5 1 0-069 369 —~2-5493 -2-5125 —4-8268 —0-58719 0-085382
5 5 15 5 2 0-065 804 —2-5421 -2-5080 —4-7790 —0-58680 0-082546
15 5 15 5 4 0-060 595 —2:5179 ~2-4891 —4-6924 —0-58435 0-082547
15 5 15 5 8 0-062 152 —2-5243 —2-4940 —4-7140 —0-58371 0-085162
15 6 15 6 1 0-068 997 —2-5496 —2-5130 —4-8208 —0-58459 0-083682
15 6 15 6 2 0-067 449 —2-5440 —2-5086 —4-7980 —0-58530 0-082405
15 6 15 6 4 0-061 730 —2-5239 —2-4938 —4-7125 —0-58410 0-084 300
15 6 15 6 8 0-061 857 —2-5225 —~24926 —4-7093 —0-58364 0-084 845
15 7 15 17 1 0-068 974 —2-5507 -2-5142 -4-8176 —0-58518 0-085373
15 7 15 7 2 0-065 972 —2-5380 -2-5042 -4-7755 —0-58626 0-082964
15 7 15 7 4 0-063 669 —2-5315 -2-4996  —4-7419 —0-58488 0-084 483
15 7 15 7 8 0-061 305 —-2-5207 -2-4912 —-4-7021 —0-58346 0-085272
15 8 15 8 1 0-067 845 ~2-5448 -2-5095 —4-7959 —0-58257 0-087852
15 8 15 8 2 0-065 255 —2-5356 -2-5024 —4-7649 —0-58684 0-085725
15 8 15 8 4 0-064 781 —2-5348 -2-5019 —4-7571 —0-58619 0-085461
is 8 15 8 8 0-061 416 —2-5218 -2-4921 —-4-7052 —0-58416 0-084 262
15 9 15 9 1 0-067 288 —2-5435 —-2-5087 —4-7863 —0-57992 0-086 495
15 9 15 9 2 0-065 524 —2-5388 -2-5053 —-4-7699 —0-58603 0-086 130
15 9 15 9 4 0-064 664 —2-5336 -2:5010 —4-7544 —0-58664 0-085478
15 9 15 9 8 0-062 050 —2-5245 —2-4943  —4.7152 —0-58462 0-084 989
15 10 15 10 1 0-066 940 —2-5415 ~2:5070 —4-7783 —0-57914 0-085793
15 10 15 10 2 0-065 865 -2-5382 —2-5045 —4-7711 -—0-58455 0-085210
15 10 15 10 4 0-064 066 —2-5307 —2-4987 —4-7450 —0-58584 0-084 590
15 10 15 10 8 0-062 761 —2-5272 -2-4963 —4-7258 —0-58466 0-084 965
15 2 15 3 1 0-058 199 —2-5305 -2-5003 —4-6620 —0-59146 0-049011
15 2 15 3 2 0-056 910 —2-4996 -2-4713 —4-6048 —0-58893 0-043 323
15 2 15 3 4 0-058 384 -2-5112 —2-4814 —-4-6337 -—0-58732 0-049 199
15 2 15 3 8 0-058 298 —2-5103 —2:4806 —4-6313 —0-58745 0-048993
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TABLE 1—(continued)

m n M N gq éh o1 QAiz ) 12 613 13

15 2 15 4 1 0-066 883 ~2:5526 —2:5159 —4-7788 —0-59040 0-072441

15 2 15 4 2 0:056 460 ~2-5081 —2-:4799 —4-6138 —0-58954 0-044 034

15 2 15 4 4 0-058 345 -2-5092 -2:4796 —4-6308 ~0-58752 (-048 557

15 2 15 4 8 0-058 262 ~2:5101 —2:4806 —4-6310 —0-58735 0-048878

15 3 15 4 1 0-071518 -2:5608 -2:5219 —4-8634 —0-59576 0-083 508

15 3 15 4 2 0-060772 -2:5210 —2:4917 —4-6987 —0-58872 0-083986

15 3 15 4 4 0-061712 ~2-5211 ~2:4914 —4-7036 ~-0-58510 0-081262

15 3 15 4 8 0-061 692 -2:5219 -2:4922 —4-7042 —0-58510 0-081363

1s 3 15 5 1 0-067 870 ~2-5428 —2:5078 —4-8026 —0-59178 0-083 598

15 3 15 5 2 0-065 649 —2-5406 -2:5070 —4-7738 -—-0-59044 0-082491

15 3 15 5 4 0-060 261 -2-5166 —2:4882 —~4-6850 —0-58587 0-082290

15 3 15 5 8 0-061 963 ~2-5231 —2:4932 -4-7086 —0-58504 0-081277

15 3 15 6 1 0-067 323 —2-5448 —-2-5100 —4-7963 —0-58833 0-083298

15 3 15 6 2 0-066 517 ~2-5394 —-2-5053 —4-7812 —0-59007 0-081 535

15 3 15 6 4 0-061 439 —2-5229 —-2-4932 —4-7058 —0-58691 0-082 380

15 3 15 6 8 0-061 634 -2-5213 —2-4917 —4-7031 —-0-58509 0-081406

15 4 15 5 1 0-069 064 —2-5449 —2-5081 —4-8175 —0-59207 0-082452

15 4 15 5 2 0-065 842 —2-5414 -2:5072 —4-7783 —0-59036 0-082924

15 4 15 5 4 0-060 581 —2-5176 -2-4888 —4-6917 —0-58422 0-086010

15 4 15 5 8 0-062 137 —2-5240 —-2-4938 —4-7134 —0-58434 0-084 148

m n M N g 04 % 04, 3%, 0 oL

15 2 15 2 1 —0-083903 2-7077 2-6375 5-7238 0-95694  0-050 595

i5 2 15 2 2 —0-088217 2-7098 2-6344 5-7720 0-95471 0-044 836

15 2 15 2 4 -0-087931 2-7090 2-6340 5-7680 0-95500 0-045119

15 2 15 2 8 —0-087884 2-7086 2-6337 5-7667 0-95494  0-045098

15 3 15 3 1 ~0-10036 2:7431 2-6537 5-9967 0-98120 —0-028454
15 3 15 3 2 —0-094 451 2-7286 2:6470 5-9099 0-96384 —0-027 201
15 3 15 3 4 —0-096970 2-7265 2:6419 5-9322 096210 —-0-026717
15 3 15 3 8 —0-096 806 2:7259 2-6415 5-9295 0-96234 —0-026787
15 4 15 4 1 -0-11153 2-7054 2:6033 6-0884 0-97587 —0-019 808
15 4 15 4 2 -0-096315 2:7395 2-6555 5-9499 0-96552 —0-033136
15 4 15 4 4 —0-097049 2:7281 2:6436 5-9408 0-95943 —0-030097
15 4 15 4 8§ ~0-097155 2-7285 2-6439 5-9415 0-95952 —0-029990
15 5 15 5 1 -0-10649 27071 2:6116 6-0428 0-96472 —0-024 649
15 5 15 5 2 —-0-10300 2:7259 2:6341 6-0109 0-96199 —0-025359
15 5 15 5 4 —0-095435 2-7354 2-6528 5-9339 0-95856 —0-029 318
15 5 15 5 8 —0-097602 2-7283 2-6431 5-9469 0-95864 —0-030893
15 6 15 6 1 —0-106 64 27106 2:6148 6-0408 0-95871 —0-025191
15 6 15 6 2 —0-104 82 2-7152 2-6215 6-0219 0-95983 —0-024 189
15 6 15 6 4 —0-097225 2-7344 2:6495 5-9530 0-95930 —0-029 144
15 6 15 6 8 —0-097122 2:7291 2:6446 5-9437 0-95848 —0-030833
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TABLE 1-—(continued)

m n M N q éél y 21 ééz é'z’z ééa A'2'3

15 7 15 7 1 -0-10655 2-7060 2-6104 6-0281 0-95920 -—-0-028 807
15 7 15 7 2 —-0-10244 2-7191 2-6283 6-0024 096111 -0-026 344
15 7 15 7 4  —0-099 863 2-7280 2-6400 5-9760 0-96023 -—-0-028 960
15 7 15 7 8 —0-096415 2-7320 2-6483 5-9398 0-95872 —0-031418
15 8 15 8 1 -0-104 87 2:7059 2:6125 6-0057 0-95623 -0-032 553
15 8 15 8 2 =0-10172 2:7223 2:6323 5-9956 0-96328 —-0-030357
15 8 15 8 4 -0-10125 2:7229 2-6334 5-9867 096242 —0-029 838
15 8 15 8 8 —0-096685 2-7328 2-6488 5-9438 0-95905 -0-030459
15 9 15 9 1 -0-10417 2-7066 2-6140 5-9944 0-95113 -0-031572
15 9 15 9 2 -0-10214 2:7215 26310 5-9965 0-96176 ~0-030934
15 9 15 9 4 -010092 2-7222 2-6332 5-9836 0-96308 -0-030275
15 9 15 9 8 —0-097 600 2-7312 2-6460 5-9522 0-96010 —0-030638
15 10 15 10 1 -0-10363 2-7053 2:6134 5-9838 0-94942 -0-031 183
15 10 15 10 2 —-0-10247 2-7172 2-6265 5-9936 0-95880 —0-029849
15 10 15 10 4 -0-10007 2-7240 2-6360 5-9764 0-96142 —0-029413
15 10 15 10 8 —0-098555 2-7286 2-6423 5-9602 0-96007 —0-030257
15 2 15 3 1 -0-086112 2-7368 2-6638 5-7803 0-94719 0-049 598
15 2 15 3 2 ~0-083 509 2-7138 2-6440 5-7246 0-94308 0-056 959
15 2 15 3 4 —-0-086132 2-7129 2-6397 5-7488 0-94305 0-053779
15 2 15 3 8 —0-086013 2-7122 2:6392 5-7466 0-94319 0-053 965
15 2 15 4 1 —-0-10125 2-6985 2-6083 5-9073 0-95868 0-041 854
15 2 15 4 2  —-0-082895 2:7257 2-6564 5-7324 0-94343 0-054 703
15 2 15 4 4 —0-085998 2-7116 2-6387 5-7467 0-94308 0-053934
15 2 15 4 8 —0-085955 2:7125 2:6396 5-7466 0-94290 0-053 571
15 3 15 4 1 -0-11063 2-7075 2-6079 6-0811 0-97631 —0-026072
15 3 15 4 2 ~—0-095684 2-7389 2-6561 5-9385 0-96706 —0-023 964
15 3 15 4 4  —0-096 643 2-7268 2-6432 5-9319 0-96006 —-0-023619
15 3 15 4 8 —-0-09725 2:7274 2-6437 5-9325 0-96012 —0-023 528
15 3 15 5 1 -0-10436 2-7114 2:6190 6-0227 0-97059 -0-028 846
15 3 15 5 2 -0-10256 2-7245 2-6338 6-0014 0-96833 —0-024 178
15 3 15 5 4 -0-094744 2:7343 2-6529 5-9208 0-96194 —0-023 842
15 3 15 5 8 —0-097121 2-7267 2-6426 5-9362 0-95990 -0-023 570
15 3 15 6 1 -0-10406 2-7148 2:6224 6-0145 0-96499 —-0-027 106
I5 3 15 6 2 -0-10323 2-7163 2-6251 6-0039 0-96726 —0-025 185
15 3 15 6 4 -0-096636 2-7335 2-6497 5-9409 0-96343 —-0-023 819
15 3 15 6 8 —0-096583 2-7274 2-6439 5-9318 0-96011 —0-023 699
15 4 15 5 1 -0-10638 2-7056 2-6100 6-:0371 0:96894 —0-024 067
15 4 15 5 2 ~0-10305 2-7249 2-6329 6-0097 0-96737 -0-025570
15 4 15 5 4 -0-095427 2-7352 2-6526 5-9332 0-96108 —0-031 900
15 4 15 5 8 —0-097576 2-7280 2-6429 5-9459 0-95930 —-0-029 343
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TABLE 1—(continued)

m n M N g 04 2% 04z 2% Q4 oL

15 2 15 2 1 -0-00053258 0-0048663 0-0042447 0-018 135 0-0090414 0-0013030
15 2 15 2 2 -—-0-00059228 0:0041937 0-0034781 0-017756 0-0091158 0-0014741
15 2 15 2 4 -0-00058763 0-0042532 00035454 0-017800 0-0091126 0-0014620
15 2 15 2 8 -—0-00058755 00042536 0-0035460 0-017800 0-0091126 0-0014620
15 3 15 3 1 —0-000747 41 0-0030613 0-0017543 0-017798 0:014066 0-0043153
15 3 15 3 2 -0-00074942 0-0031098 0-0018109 0-017860 0-013810 0-004 2523
15 3 15 3 4 -0-00074001 0-0031051 0-0018170 0-017738 0-013788 0-004 2512
15 3 15 3 8 —0-00074104 0-0031070 0-0018175 0-017756 0-013795 0-004 2525
15 4 15 4 1 -0-00076911 0-0026327 0-0012742 0-017394 0-012822 0-0065538
15 4 15 4 2 -0-00070877 0-0030650 0-0017943 0-017260 0-012665 0-0063163
15 4 15 4 4 -0-00070738 00030163 0-0017508 0-017 127 0-012543 0-006 2402
15 4 15 4 8 —0-00070801 0-0030107 0-0017440 0-017130 0-012548 0-0062429
15 5 15 5 1 —0-00071663 0-0029411 0-0016533 0-017273 0-010740 0-0074331
i5 5 15 5 2 -0-00071813 0-0029346 0-0016504 0-017209 0-010931 0-0072010
15 5 15 5 4 -—-0-00070206 0-0030804 0-0018268 0-017 184 0-010933 0-:0070199
15 5 15 5 8 —0-00070245 0-0030148 0-0017603 0-017076 0-010929 0:006 996 0
15 6 15 6 1 —-0-00071548 0-0029831 0-0017059 0-017247 0-010436 0-0074300
15 6 15 6 2 -0-00071790 0-0029841 0-0017007 0-017290 0-010667 0-0073763
15 6 15 6 4 —0-00070613 0-0030487 0-0017874 0-017204 0-010761 0-6072203
15 6 15 6 8 -0-00070207 0-0030289 0-0017755 0-017097 0-010784 0-007 1468
15 7 15 7 1 -0-00071060 0-0028396 0-0015739 0-016903 0-010363 0-0072032
15 7 15 7 2 —0-00071990 0-0029689 0-0016845 0-017291 0-010565 0-0073316
15 7 15 7 4 -0-00071116 00030012 0-0017314 0-017206 0-010594 0-0072723
15 7 15 7 8 -0-00070144 0-0030550 0-0018023 0-017136 0-010590 0-0071977
15 8 15 8 1 -0-00069783 0-:0028358 0:0015917 0-016684 0-0099605 0-007 0925
15 8 15 8 2 —-0-00071794 00029388 0-0016583 0-017191 0-010416 0-007 2589
15 8 15 8 4 -0-00071329 0-0029788 0-0017052 0-017200 0-010406 0-007 2820
15 8 15 8 8 —0-00070339 0-0030510 0-0017952 0-017162 0-010327 0-0072327
15 9 15 9 1 —-0-00069417 0-0027880 0-0015512 0:016526 0-0097013 0-0070781
15 9 15 9 2 -0-00070423 0-0029893 0-0017304 0-017086 0-010332 0-007 2189
15 9 15 9 4 —0-00070997 0-0030130 0-0017445 0-017211 0-010412 0-0072798
15 9 15 9 8 -—0-00070505 0-0030371 0-0017782 0-017166 0-010320 0-0072514
15 10 15 10 1 -0-00068553 0-0028116 0-0015889 0-016437 0-0095777 0-0070437
15 10 15 10 2 -0-00070757 0-0029156 0-0016538 0:016982 0-010125 0-0072219
15 10 15 10 4 -0-00071328 0-:0029864 0-0017142 0-017204 0-010265 0-0072994
15 10 15 10 8 —0-00070686 0-0030188 0-0017568 0-017164 0-010241 0-0072728
15 2 15 3 1 —0-00063871 0-0037083 0-0029225 0-017632 0-0092395 0-0016001
15 2 15 3 2 —0-00053033 0:0047729 0-0041518 0-017972 0-0090431 0-0013962
15 2 15 3 4 -0-00058201 00042713 0-0035709 0-017786 0-0091178 0-0015050
15 2 15 3 8 —0-00057853 0-0043098 0-0036150 0-017807 0-0091144 0-001497 1
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TABLE 1—(concluded)

m n M N ¢ (j'sl %1 6'32 Agz QA'33 Ag3

15 2 15 4 1 —0-00078712 0-0026949 0-001 694 3 0-017780 0-0094936 0-0018010
15 2 15 4 2 -0-00055774 0-0044611 0-003 796 5 0-017825 0-0091015 0-0014688
15 2 15 4 4 —-0-00057095 0-004 3908 0-003 707 7 0-017 842 0-009 1025 0-0014795
15 2 15 4 8 -0-00057716 0-004 3228 0-0036300 0-017811 0-009 1134 0:0014951
15 315 4 1 -0-00057890 0-004 4029 0-003 3170 0-017892 0-014239 0-0043274
15 3 15 4 2 -0-00075944 0-0030951 0-0017832 0-017999 0-013917 0-0042805
15 3 15 4 4 -0-00074461 0-0031020 0-001 809 2 0017805 0-013817 0-0042668
15 3 15 4 8 —0-00074143 0-0031289 0-001 8405 0-017 810 0-013821 0-0042665
15 315 5 1 -0-00051796 0-0047906 0-0037854  0-017784 0-014207 0-0043308
15 315 5 2 —0-00066789 0-0036564 0-002 457 8 0-017782 0-013999 0-004 2993
15 3 15 5 4 —-0-00078541 0-0028796 0-0015343 0-017955 0-013837 0-0042744
15 315 5 8 —0-00073417 0-:0031694 0-001 8904 0-:017784 0-013821 0-0042674
15 315 6 1 —0-00055915 0-0043729 0-:0033116 0-017567 0-014050 0-0043059
15 315 6 2 -0-00061417 0-0040305 0-002 9006 0017729 0-014025 0-0043014
15 3 15 6 4 —0-00074938 0-0031273 0-001 8292 0-017 922 0-013878 0-0042796
15 3 15 6 8 —0-00074798 0-0030839 +0-0017864 0-017817 0-013822 0-0042693
15 415 5 1 —-0-00092561 0-0015229 —0-000047 544 0-017482 0-012581 0-0066936
15 4 15 5 2 -0-00076152 0-0026748 +0-0013300 0-017 315 0-012733 0:-0063945
15 4 15 5 4 -0-00068951 0-0031837 0-0019396 0-017 185 0-012642 0-0062355
15 4 15 5 8 —0-00071248 0-0029805 0-001 707 2 0-017 134 0-012578 0-0062356
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TABLE 2

Numerical Values of Approximations I5(x, ¥) to the Loading on 2 Tapered Swept Wing of Aspect Ratio 2
when the Control Surface is Oscillating about its Hinge.
m=15n=10, M =15,N=10, 4, =8,1=1,2,...,10, » =0-32560, M., = 0-78060

I3, y)

0-06000  0-19509  0-38268  0-55557 0-70711  0-83147  0-92388  0-98079

0-01 -0-00074 -0-00189 -—0-04349 -+0-03650 -0-07581 -0-43460 -0-95712 -1-39046
0-03 -0-00755 -0-00257 -—0-03097 +0-11061 +0-06418 -—0-14523 -0-51628 —0-78938
0:06 -0-00203 -0-00715 -0-01899 -—0-10096 -0-21939 -0-39160 -0-68185 —0-63627
0-10 +0-00095 —0-01028 -—0-02427 -0-19141 -0-30860 —0-47131 -0-67715 —0-45242
0-15 —0-00389 -0-01220 -0-04030 -0-07286 ~0-12525 -0-29648 —0-44353 -0-24766
0-20 -0-01010 —0-01618 -0-04694 +0-01337 -0-04112 -0-23565 -0-36681 --0-20765
0-25 -0-01365 —0-02281 -0-04667 —0-03830 -0-16006 ~0-37652 —0-48970 -0-28164
0:30 —0-01568 -0-03045 -0-05097 -0-15836 -—0-34213 -0-56731 -—0-62918 -0-34285
0-35 -0-01914 -0-03783 -)0-06600 ~0-23743 —0-43422 —-0-65711 -0-64111 -—0-32812
0-40 —-0-02594 -0-04521 -0-08841 -0-22306 —0-40129 -0-62260 -0-53781 —-0-27671
0-45 -0-03603 —0-05410 -0-10946 -0-14912 -0-33515 -0-56491 -—0-45755 —0-28526
0-50 —0-04787 -0-06625 -0-12268 -0-10915 -0-38132 -0-62569 —0-55382 —0-42883
0-55 —0-05963 -0-08251 -0-12996 -0-19997 -0-64113 -0-88676 —0-88252 -—0-69828
0-60 —0-07051 -0-10232 -0-14260 -0-46456 —1-10029 -1-30704 -—1-34765 —0-98741
0-65 -0-08130 —0-12396 -0-17616 —0-85816 -1-61686 -—1-72711 -1-73382 —1-13935
0-68 —0-08857 —0-13699 —0-21109 -1-10536 -—1-86525 -—1-89247 —1-82991 -1-11053
0-70 —0-09407 —0-14550 -0-24070 -1-25281 -1-97644 —1-94227 -1-81539 —1-03474
0-72 -0-10024 -0-15377 —0-27458 -1-37358 -2-03157 -1-93528 -1-73395 -0.91715
0-75 —0-11093 —0-16571 -0-33037 -1-48342 -1-99595 -1-81480 —1-49554 -—0-68112
0-80 —0-13218 —0-18417 -0-41834 -1-42519 -1-63370 -—1-37169 —0-90088 —0-24695
0-85 —0-15446 —0-19936 -—0-46281 -1-07807 —1-04704 —0-82157 —0-34836 +0-01419
090 —0-16898 —0-20407 -0-42714 -0-61656 -—0-53606 —0-43508 -0-12911 -—0-02855
0-94 —0-16326 —0-18677 —0-33586 -0-36251 -0-34633 ~—0-30926 —0-15724 —0-13087
0-97 —0-13517 -0-14597 -0-23535 -0-29872 -0-30318 -0-23479 —0-12230 -0-06467
0-99 —0-08648 —0-08813 —0-13772 -0-24236 -0-22438 -—0-12760 -0-01873 +0-05462

I4(x, y)

0-00000  0-19509  0-38268  0-55557 0-70711  0-83147  0-92388  0-98079

0-01 0-01419 0-03523 0-07638 0-17930 0-27935 0-37386  0-43515  0:40115
0-03  0-00714  0-02440 0-04585 0-12139 0-17180  0-21293  0-24798  0-21555
0-06 0-00999 0-01971 0-04192 0-05792  0-08133 0-11276 0-13914  0-10881
0-10 0-01318 0-01935 0-03879  0-03238 0-05149 0-07843  0-09330  0-04887
0-15 0-01402  0-02197 0-03377 0-04896  0-07269 0-08848 0-08465 0-02136
0-20  0-01488  0-02428 0-03326  0-06320 0-08265 0-08761  0-06718 -+0-00401
025 0-01732  0-02573  0-03654 0-05840 0-06797 0-06633  0-03517 —0-01132
0-30  0-02075 0-02720 0-03966  0-04474  0-04758 0-04179 +0-00530 -0-01997
0-35  0-02408 0-02933  0-04023 0-03569 0-03774  0-02668 —0-01161 —0-02024
0-40  0-02671  0-03194 0-03867 0:03661 0-03998  0-02041 —0-01733 —0-01658
045 0-02868 0-03434 0-03698 0-04414 0-04510 0-01428 -0-02057 -0-01569
0-50 0-03043 0-03582 0-03681 0-05087 0-04240 +0-00019 -0-02878 —0-02172
0-55 0-03230 0-03608 0-03825  0-05021 +0-02626 -0-02396 —0-04388 —0-03413
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TABLE 2—(concluded)

Bix, y)

7

0-00000 0-19509  0-38268  0-55557 0-70711  0-83147  0-92388  0-98079
3
0-60 0-03428  0-03532  0-03982  0-03884 —0-00278 —0-05457 —0-06323 —0-04890
065 0-03598  0-03391  0-03922 +0-01652 —0-04098 —0-08622 —0-08347 —0-06159
0-68  0-03660 0-03285  0-03697 —0-00162 —0-06677 —0-10417 —0-09543 —0-06712
0-70  0-03674  0-03203  0-03451 —0-01546 —0-08478 —0-11552 -0-10336 —0-06985
072  0-03662 003110  0-03123 —0-03056 —0-10325 —0-12636 -0-11126 —0-07186
0-75  0-03587  0-02935  0-02478 -—0-05515 ~0-13119 —0-14154 -0-12283 —0-07357
0-80  0-03282  0-02503 +0-01028 -0-09878 —0-17424 —0-16223 —0-13852 —0-07270
0-85  0-02731  0-01820 —0-00764 —0-13810 —0-20113 —0-17022 —0-14048 —0-06537
090  0-01949  0-00883 —0-02550 —0-15820 —0-19454 —0-15493 —0-11781 —0-05046
0-94  0-01210 +0-00077 —0-03415 —0-14672 -0-15865 —0-12400 —0-08496 —0-03775
097  0-00646 —0-00378 —0-03140 —0-11278 —0-11470 —0-09209 —0-06022 —0-03212
0-99  0-00281 —0-00418 —0-02012 —0-06734 —0-06932 —0-05866 —0-04003 —0-02534
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TABLE 3

Numerical Values of Approximations é:,, i=1,2,3;j=1,2,3, to the Generalised Airforces on a Tapered
Wing of Aspect Ratio 6, Oscillating in Heave, Pitch and Control Surface Rotation with » =3-1569,
M,=04

M Ar An Al A Ar Ay él A
m n N ¢ On 11 Q12 12 Q% 21 22 22

14 6 14 6 12 37780 —13-417 32-235 -25-150 55:368 —16-452 60-928 —35-208
14 6 27 6 12 36-990 —13-526 31-155 -25-022 54-831 -16:602 59-937 -35-190
14 6 28 6 12 37-148 -—13-514 31-330 —25-046 54959 —16-582 60-104 —35-201

15 6 15 6 12 36-604 —13-628 30-576 —24-988 54:702 -—16-741 59-529 —35-275
15 6 29 6 12 37-108 -—13-606 31-040 -25-121 55-015 ~—16-653 59-968 —35-287
15 6 30 6 12 37156 -—13-589 31-107 -25-118 55035 —16'633 60-012 -—35-273

22 6 22 6 8 37456 -—-13-633 31-312 -25-232 55391 -16652 60-377 —35-380
22 6 43 6 8 37-134 -13-645 30919 —-25-166 55-074 —16'676 59926 —35-327
22 6 44 6 8 37173 —-13:642 30962 —25-171 55-105 -16-671 59966 —35-329
23 6 23 6 8 36983 —13-684 30-708 —25-177 54-984 -16-737 59-762 —35-381
23 6 45 6 8 37168 -—13-653 30-936 ~—25-180 55-111 -16682 59953 —35.342
23 6 46 6 8 37-167 —13-645 30945 —-25-173 55101 —16-673 59-952 -35.331
306306 8 37-186 —13-646 30969 —25-183 55-128 —16:677 59994 —35.347
31 6 31 6 8 37189 -—13-663 30-952 -25-198 55-155 —16-694 60-002 —35-369
mn MN g 01 s 04 - Q4 04 oL 0%, D%

14 6 14 6 12 -1-9962 —0-36897 0:39310 —0-041884 —3-4483 —0-84922 0-67051 —0-14343
14 6 27 6 12 —1-9856 —0-37948 0-38768 —0-040999 —3-4323 —0-85459 0-66562 —0-14118
14 6 28 6 12 —1-9867 —0-37862 0-38801 —0-041066 —3-4334 —0-85371 0-66577 —0-14132

15 6 15 6 12 —1-9823 —0-39329 0-38081 —0-042441 -3-4224 —0-86763 0-65651 —0-14093
15 6 29 6 12 —1-9693 —0-38541 0-38485 —0-042582 —3-4107 —0-85736 0-65844 —0-14201
15 6 30 6 12 —1-9634 —-0-38517 0-38512 —0-042490 —3-:4100 —0-85704 0-65884 —0-14194

22 6 22 6 8 —1-9833 —0-39212 0-39046 —0-043107 —3-4242 —0-86718 0-66427 —0-14396
22 6 43 6 8 —1-9788 —0-38920 0-38894 —0-042988 —3-4211 —0-86169 0-66146 —0-14347
22 6 44 6 8 —1-9792 —0-38908 0-38894 —0-042987 —3-4215 —0-86154 0-66140 —0-14346
23 6 23 6 8 —1-9763 —0-39093 0-39053 —0-043204 —3-4188 —0-86521 0-66399 —0-14407
23 6 45 6 8 —1-9791 —0-38918 0-38901 —0-042994 -3:4215 —0-86153 0-66144 —0-14348
23 6 46 6 8 —1-9790 —0-38916 0-38894 —0-042996 —3-4213 —0-86148 0-66129 —0-14347
30 6 30 6 8 —1-9790 —0-38933 0-38959 —0-042961 —3-4217 —0-86316 0-66308 —0-14360
31 6 31 6 8 —1-9785 —0-38957 0-38934 —0-042982 -3-4212 —0-86319 0-66275 —0-14356

m NMN g Q30%

14 6 14 6 12 —0-023448—-0-035733
14 6 27 6 12 —0-023851~0-035654
14 6 28 6 12 —0-023865-0-035641

15 6 15
15 6 29
15 6 30

12 —0-024078 —-0-036449
12 —0-023986 —0-036189
12 —0-024001 —-0-036180

NN O
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TABLE 3-—(concluded)

m NMN qg 0405

22 6 22 6 8 —0-023692-0-037150
22 6 43 6 8 —0-023994 ~0-036940
22 6 44 6 8 —0-024002—0-036934
23 6 23 6 8 —0-023757-0-037180
23 6 45 6 8 —0-024011—-0-036952
23 6 46 6 8 —0-024017—-0-036946
30 6 30 6 8 —0-023652-0-037585
31 6 31 6 8 —0-023689—-0-037647

TABLE 4

Numerical Values, Evaluated by Lehrian and Garner’, of Approximations @u, i=1,2; j=1,2, to the
Generalised Airforces on a Tapered Swept Wing of Aspect Ratio 6, Oscillating in Heave and Pitch with
v =3-1569, M., =0-4

m n a é'u A'1'1 O’u A'1'2 é’m 12'1 QA’22 52

14 6 6 | 37-745| —-13-391 | 32:129 | —25-110 | 55-284 | —16-399 | 60-733 | —35-123
15 6 6 {36413 | —13-586 | 30:391 | —24-871 | 54-398 | —16-664 | 59-203 | —35-087
22 6 4 | 373701 —13-610 | 31180 | —25-169 | 55-214 | —16-610 | 60-094 | —35-270
23 6 4 | 36841 | —13-646 | 30-545 | —25-084 | 54-737 | —16-675 | 59-438 | —35-230
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TABLE 5

Numerical Values of Approximations é,,-, i=1,2; j=1,2, to the Generalised Airforces on a Rectangular
Wing of Aspect Ratio 2 Oscillating in Heave and Pitch with » =1-0, M, =0-8,q, =¢=32,I=1,2,...,N

m n M N o o13 0l o18 05 %1 05, oA

4 2 4 2 090594 -3-0921 -—-2-9891 -—3-2292 0-79937 —0-77193 —0-43632 —1-8191
4 2 9 2 090593 -3-0920 -—-2-9890 —3:2291 0-79937 -—0-77192 -0-43631 —1-8190
4 2 14 2 0-90593 -3-0920 -2-9890 —3:2292 0-79937 —0-77192 —-0-43631 —-1-8190
4 2 19 2 090593 -3-0920 -2-9890 —3:2292 0-79937 -—0-77192 —0-43630 —1-8190
4 2 4 4 091725 -3-1079 —-3-0054 -3-2545 0-81469 -0-77069 —0-42610 —1-8405
4 2 9 4 091730 —-3-1079 -3.0054 —3-2546 0-81475 —-0-77069 -—0-42608 —1-8406
4 2 14 4 091730 -~3-1079 -3-0054 —3-2546 0-81475 —-0:77069 —0-42608 —1-8406
4 2 19 4 091730 —-3-1079 -3-0054 —3-2546 0-81474 -0-77069 —0-42608 —1-8406
4 2 4 6 091731 —-3-1081 -3-0056 —3-2547 0-81480 -—0-77077 —0-42615 —1-8407
4 2 9 6 091738 -—-3-1081 -3-0055 -—3-2547 0-81486 —0-77068 —0-42603 —1-8407
4 2 14 6 091735 —3-1080 —-3-0055 —3-2547 (-81483 —0-77066 —0-42602 —1-8407
4 2 19 6 091734 -3-1080 -3-0055 —3-2546 0-81481 —0-77065 —0-42601 —1-8406
4 2 4 8 091742 -3-1083 —-3-0059 -3-2550 0-81494 —0-77085 —0-42619 —1-8409
4 2 9 8 091735 -3-1080 —3-0055 —3-2547 0-81483 —0-77065 —-0-42600 —1-8406
4 2 14 8 091728 —-3-1079 —-3-0053 -—3-2545 0-81475 -0-77060 -—0-42597 —1-8405
4 2 19 8 091723 -3-1078 -—3-0052 -3-2543 0-81470 -0-77056 —0-42595 —1-8404
4 4 4 4 090950 -3-2618 —3-3188 -—3-3228 0-96652 —0-84864 —0-49919 —2-1919
4 4 9 4 090957 -—3-2618 —3-3188 —3-3229 0-96660 —0-84865 —0-49915 -2-1920
4 4 14 4 090956 -—3-2618 —3-3188 —3:3229 0-96660 —0-84865 —0-49915 -2-1920
4 4 19 4 090956 -3-2618 —3-3188 —3:3229 096660 —0-84865 —0-49915 —-2-1920
4 4 4 6 090972 -3-2620 -3-3190 —3-3232 096675 —0-84866 —0-49911 -2-1923
4 4 9 6 090983 —3-2620 —3-3190 —3-3233 0-96681 —0-84858 —0-49900 —2-1924
4 4 14 6 090981 —3-2620 —3-3190 —3-3233 0-96680 —0-84858 —0-49901 -—2-1923
4 4 19 6 090981 —3-2620 -—3-3190 —3-3232 0-96679 —0-84858 —0-49901 -2-1923
4 4 4 8 090991 -3-2622 -3-3191 -—3-3236 0-96694 —0-84873 —0-49909 -2-1927
4 4 9 8 090987 —3-2620 -—-3-3190 —3-3234 0-96685 —0-84858 —0-49899 —2-1925
4 4 14 8 090983 —3-2620 -—3-3190 —3-3233 0-96680 —0-84857 —0-49899 -—2-.1924
4 4 19 8 090981 -3-2620 —3-3190 —3-3232 0-96679 —0-84856 -0-49900 —2-1923
4 6 4 6 090947 -3-2621 —3-3194 -3-3228 0-96684 —0-84890 -—0-49963 —2-1928
4 6 9 6 090958 —3-2621 -3-3195 —3-3229 0-96689 —0-84881 —0-49950 -2.1929
4 6 14 6 090957 -3-2621 -—3-3194 -3-3228 0-96688 —0-84881 —~0-49950 -2-1929
4 6 19 6 0-90956 —3-2621 —3-3194 —-3-3228 096687 —0-84881 —0-49950 —2-1929
4 6 4 8 09096 —3-2622 —3-3195 —-3-3232 0-96703 —0-84898 —0-49961 —2-1932
4 6 9 8 090963 -3-2621 —3-3194 -3-3230 096694 —0-84882 —0-49949 -2.1930
4 6 14 8 090959 -3-2621 —3-3194 -3-3229 0-96690 —0-84881 —0-49949 -2-1929
4 6 19 8 090959 —3-2621 -3-3194 —3-3229 0-96689 —0-84881 —0-49949 —2.1929
4 8 4 8 090966 —3-2622 —3-3195 -—3-3232 096703 —0-84898 —0-49961 —2-1932
4 8 9 8 090963 -3-2621 —3-3194 -3-3230 0-96694 —0-84882 —0-49949 —2-1930
4 8 14 8 090960 —3-2621 —3-3194 —3-3229 0-96690 —0-84881 —0-49949 -2.1929
4 8 19 8 090959 -3-2621 -3-3194 -3-3229 0-96689 —~0-84880 —0-49949 —2.1929
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TABLE 5—(continued)

m n M N QAil ) 71 QAiz T2 éél 3 2 ééz 22

9 2 9 2 090653 -3-0924 -2-9891 -3-2302 0-79973 -—-0-77198 -0-43620 -—1-8197
9 2 14 2 090593 —3-0920 -—2-9890 -3-2292 0-79938 -0-77192 -0-43631 -1-8191
9 2 19 2 090608 -3:0921 -—2-9890 -—-3-2295 0-79946 —0-77194 -—0-43628 -—1-8192
9 2 9 4 091817 -3-1088 —3-0060 -3-2562 0-81539 -—0-77081 -—0-42596 —1-8417
9 2 14 4 091732 -3-1079 -3-0054 -3-2546 0-81477 —0-77068 —0-42606 —1-8406
9 2 19 4 091753 -3-1081 -3-0056 -3-2550 0-81492 -0-77071 -—0-42604 -—1-8409
9 2 9 6 091838 -3-1091 -3-0064 -3-2567 0-81567 -—0-77085 —0-42590 —1-8421
9 2 14 6 091738 -—3-1080 -3-0055 -3-2547 0-81486 -—0-77065 —0-42600 —1-8407
9 2 19 6 091760 -—-3-1083 -3-0057 -3-2552 0-81504 -—0-77068 -—0-42597 -—1-8410
9 2 9 8 091845 -—-3-1093 -3-0066 -—-3-2569 0-81577 -0-77086 —0-42588 —1-8423
9 2 14 8 091730 -3-1079 -3-0053 -—3-2545 0-81478 —0-77058 —0-42595 -1-8405
9 2 19 8 091752 -3-1081 -—3-0055 -3-2549 0-81495 -0-77060 —0-42590 -—1-8408
9 4 9 4 091062 -3-2623 -3-3187 -—3-3246 0-96719 -0-84853 -—0-49870 -—2-1931
9 4 14 4 090966 -3-2619 -—3-3188 —3-3230 0-96667 -0-84864 —0-49911 -—-2-1922
9 4 19 4 090990 —3-2620 —3-3188 —3-3234 0-96680 —0-84861 -—0-49900 —2-1924
9 4 9 6 091112 -3-2626 -3:3190 —3-3254 0:-96760 —0-84844 —0-49846 -2-1938
9 4 14 6 090997 -3-2620 -3-3190 —3-3235 0-96692 -0-84854 —0-49892 -2-1926
9 4 19 6 091025 -3-2622 -3-3190 -3-3239 0-96709 -0-84851 -—0-49881 -2-1928
9 4 9 § 091129 -3-2628 -—3-3192 -3-3258 0-96776 -—0-84844 —0-49840 -2-1941
9 4 14 8 090999 -3-2620 -—-3-3190 -—3-3235 0:96693 -—0-84853 -—0-49891 -2-1926
9 4 19 8 091029 -3-2622 -3-3190 -3-3240 0-96711 -—-0-84849 -—0-49878 -2-1929
9 6 9 6 091086 -—3-2627 -—3-3195 —3-:3250 0-96766 —0-84869 —0-49896 —2-1943
9 6 14 6 0-90972 —3-2621 -3-3194 -3-3231 0-96699 —0-84878 —0-49941 -2-1931
9 6 19 6 091000 -3-2623 —3-3194 -3-3236 0-96715 —0-84876 —0-49930 -2-1934
9 6 9 8 091106 -3-2629 -3-3196 -3-3254 0-96784 —0-84870 —0-49891 —2-1946
9 6 14 8 090977 -—-3-2622 —3-3194 -3-3232 0-96703 —0-84878 —0-49940 —-2-1932
9 6 19 8 091007 —-3-2623 -3-3195 -3-3237 0-96722 —0-84875 -0-49928 -2-1935
9 8 9 8 091106 —-3-2629 -3-3196 -—3-3254 0-96784 —0-84869 -—0-49890 —2-1946
9 8 14 8 090977 -3-2622 -3-3194 -3-3232 0-96703 —0-84877 —0-49939 —2-1932
9 8 19 8 091007 -3-2623 —-3:3194 -3-3237 0-96721 —0-84875 -0-49926 -—2-1935
14 2 14 2 0-90593 -3-0920 -—-2-9890 -—3-2292 0-79938 —0-77192 -0-43631 -1-8191
14 2 19 2 090593 -3-0920 -2-9890 -—3-2292 0-79938 —0-77192 -0-43631 -1-8191
14 2 14 4 091732 -3-1079 -3-0054 -3-2546 0-81477 -0-77068 -—0-42606 -—1-8406
14 2 19 4 091732 -3-1079 -3-0054 —3-2546 0-81477 —-0-77068 -0-42606 —1-8406
14 2 14 6 091738 -3-1080 -3-0055 -—3-2547 0-81486 —0-77065 —0-42600 —1-8407
14 2 19 6 091736 —-3-1080 -3-0055 —3-2547 0-81484 —0-77064 —0-42599 -—1-8407
14 2 14 8 091730 -—-3-1079 -3-0053 -3-2545 0-81478 -—-0-77058 —0-42595 -—1-8405
14 2 19 8 091725 -3-1078 -—3-0053 -3-2544 0-81473 -0-77054 -—0-42593 -1-8404
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TABLE 5—(concluded)

m n M N o} o1 0., oA o8 o1 0 2%

14 4 14 4 090966 -—-3-2619 -—-3-3188 —3-3230 0-96667 —0-84864 —0-49911 -2-1922
14 4 19 4 090966 —3-2619 —3-3188 ~3-3230 0-96667 —0-84864 —0-49911 ~2.19272
14 4 14 6 0-90997 —-3:2620 -—3-3190 -3-3235 0-96692 —0-84854 —0-49892 —2-1926
14 4 19 6 090996 -3-2620 —3-3190 -3-3235 0-96692 —0-84854 —0-49892 ~-2.1925
14 4 14 8 090999 -3-2620 -—3-3190 —3:3235 0-96693 —0-84853 -—0-49891 —2-1926
14 4 19 8 0-90997 -3-2620 —3-3190 —3-3235 0-96692 —0-84852 —0-49891 -2-1925
14 6 14 6 090972 -3-2621 -3-3194 -—3-3231 0-96699 —0-84878 —0-49941 —2.1931
14 6 19 6 0-90972 —-3:2621 -—3-3194 —3-3231 0-96699 —0-84878 —0:49941 —-2-1931
14 6 14 8 0-90977 -3-2622 —3-3194 -—3-3232 0-96703 —~0-84878 —0-49940 —2-1932
14 6 19 8 090976 -—3:2622 -—-3-3194 -—3-3231 096703 —0-84878 —0-49940 -2-1931
14 8 14 8 090977 —3-2622 -3-3194 -3-3232 0-96703 —0-84877 —0-49939 -—2.1932
14 8 19 8 090976 -—-3-2621 -—3-3194 -—3-3231 0-96702 —0-84877 —~0-49939 -2.1931
19 2 19 2 090608 —3-0921 —2-9890 —3-2295 0-79946 —0-77194 —0-43628 —1-8192
19 2 19 4 091753 -3-1081 -3-0056 -3-2550 0-81492 —0-77071 —0-42604 —1-8409
19 2 19 6 091760 -3-1083 -—3-0057 -3-2552 0-81504 —0-77068 —0-42597 —~1-8410
19 2 19 8 091752 -3-1081 -3-0055 -3-2549 0-81495 —0-77060 —0-42590 ~1-8408
19 4 19 4 090990 -3-2620 —3-3188 ~3-3234 0-96680 —0-84861 —0-49900 —2-1924
19 4 19 6 0-91025 -3-2622 —-3:3190 —3-3239 0-96709 -—0-84851 —0-49881 —2-1928
19 4 19 8 091025 -3-2622 -3-3190 —3-3240 0-96710 —0-84851 —0-49882 —2.1929
19 6 19 6 091000 -3-2623 —3-3194 -3-3236 0-96715 —0-84876 —0-49930 -2-1934
19 6 19 8 0-91007 —-3-2623 —-3-3195 —3-3237 0-96722 —0-84875 —0-49928 -2-1935
19 8 19 8 091007 -3-2623 -3-3194 -3-3237 0-96721 —0-84875 —0-49926 -2-1935

85



TABLE 6

Numerical Values of Approximations @,,, i=1,2; j=1, 2, to the Generalised Airforces on a Rectangular
Wing of Aspect Ratio 8 Oscillating in Heave and Pitch with v =1-0, M, =08, q, =¢ = 32,1=12,...,N

m n M N o o8 éiz oI O o4 (0% Agz

4 2 4 2 -=1-2372 -15-939 -19-123 —-9-5648 1-9318 -5-1566 -5-0567 —7-3567
4 2 9 2 -—12323 -15956 —19-143 —-9-5824 1-9402 —5-1633 -5-0615 -7-3746
4 2 14 2 -1-2323 -15-956 -—19-143 —-9-5824 1-9402 —5-1632 -5-0614 -7-3746
4 2 19 2 -1-2322 -15956 —19-142 -9:-5824 1-9402 —5-1632 -5-0614 —7-3746
4 2 4 4 -1-1413 -15-986 —19-113 -9-7481 1-9823 —5-0979 —-4-9262 -—7-3833
4 2 9 4 -1-1294 -—-16-001 -—-19-125 -9:-7725 19939 -5-0996 -4-9226 -—7-4018
4 2 14 4 -1-1289 -16-000 —-19-123 —-9:7724 1-9938 —5-0989 —4-9215 -7-4011
4 2 19 4 -1-1288 -16-000 -19-123 —-9:7724 1-9938 -—5-0987 —4-9213 -7-4009
4 2 4 6 -1-1416 -15991 -19:-120 -97490 1-9859 —5-0979 —4-9246 -7-3876
4 2 9 6 —-1-1308 -—-16:005 -—19-132 -9:7733 1-9946 -—5-1018 —4-9255 -7-4048
4 2 14 6 -1-1295 -16-002 ~—19:126 —9:7729 1-9941 -—5-0999 —4-9228 -—7-4024
4 2 19 6 -1-1290 -—16-001 -—19-124 —-9-7727 1-9940 -5-0991 -4-9218 -—-7-4016
4 2 4 8 -1-1363 -15982 —-19-100 -9-7464 1-9870 —5-0885 —-4-9105 -—7-3798
4 2 9 8 -1-1312 -16-007 -19-135 -9.7735 1-9958 —5-1022 —4-9255 -7-4065
4 2 14 8 -1-1301 -16-003 -19-129 -9:7732 1-9946 -—5-1009 -4-9240 -7-4039
4 2 19 8 —1-1294 -16-002 -19-126 —-9:7728 19942 —5-0998 —4-9226 -—7-4024
4 4 4 4 -1-9903 -16-192 -20-312 —8-3273 2-1285 —5-8804 -—6-2842 —8-3902
4 4 9 4 -1-9848 -—-16-204 -20-325 -—8-3398 2-1356 —5-8812 -—6-2822 -—8-4013
4 4 14 4 -1-9849 -—-16-203 —-20-324 —8-3387 2-1352 —5-8804 —6-2812 —8-3998
4 4 19 4 -1-9849 —-16-203 —20-323 —8-3384 2-1351 -—5-8802 -—6-2809 -—8-3395
4 4 4 6 —-1-9886 —16-196 -20-316 —8:3284 2-1317 —5-8776 —6-2799 —8-3924
4 4 9 6 -—1-9838 16208 —20-331 —8:3452 2-1377 -—5-8828 —6-2828 -—8-4067
4 4 14 6 —1-9840 —-16206 —20-327 —8-3426 2-1367 -5-8808 —6-2804 —8-4029
4 4 19 6 —-19841 —-16-205 -—20-326 —8-3415 2-1363 —5-8800 —6-2795 -—8-4015
4 4 4 8 -—-1-9886 —16-187 -20-303 —8:3155 2-1295 -—5-8654 -—6-2657 —8:3761
4 4 9 8 -19834 —16-210 —-20-332 —8:3453 2-1387 -—5-8824 —-6-2823 -8-4079
4 4 14 8 -1-9838 -—-16-207 —20-329 —8:3440 2-1374 —5-8818 -—6-2815 -8-4051
4 4 19 8 —-1-9840 —-16-206 —20-327 —8:3426 2-1368 —5-8808 —6-2804 -—8-4031
4 6 4 6 -19935 -16-189 —-20-310 -—-8-3134 2-1268 —5-8806 —6-2905 -—8-3868
4 6 9 6 -—1-9884 -16-202 —20-325 -—8-3306 2:1330 —5-8863 -6-2941 -8-4019
4 6 14 6 -—1-9885 -—16-200 —20-321 -—8-3284 2-1322 —5-8845 —6-2919 -—8-3986
4 6 19 6 —1-9855 -16-199 —-20-320 -—8:3275 2-1319 -5-8838 —6-2910 -—-8-3974
4 6 4 8 -—-1-9929 -—-16-182 -20-298 —8:3024 2-1254 -—5-8696 -—6-2772 —8-3728
4 6 9 8 -1-9880 -16-204 —20-326 —8:3309 2-1340 -5-8859 -—-6-2936 -—8-4031
4 6 14 8 -1-9883 —16-202 -20-323 —8-3297 2-1328 —5-8854 —6-2930 -—8-4006
4 6 19 8 -1-9884 -16200 —20-321 —8-3285 2-1323 -—5-8846 —6-2920 -8-3988
4 8 4 8 -19929 —-16-182 —20-298 —8:3024 2-1254 —5-8696 -—6-2772 —8-3728
4 8 9 8 -—1-9880 -16-204 -—20-326 —8:3309 2-1340 —5-8860 —6-2937 —8-4032
4 8 14 8 -—-1-9883 -16-202 —20-323 —8:3297 2-1328 —5-8854 —6-2930 -8-4007
4 8 19 8 -—1-9884 -—-16-200 —20-321 —8:3285 2-1323 -—5-8846 -—6-2920 —8-3989
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TABLE 6—(continued)

m n M N Qi o 0L T2 04, 21 o % 3%
9 2 9 2 -1-2419 -15950 —-19-138 -9-5696 1-9332 —5-1624 -5-0659 -7-3735
9 2 14 2 -1-2429 -15-938 -19:-126 -9-5601 19311 -5-1573 -5-0601 -7-3650
9 2 19 2 -—-1-2426 —-15941 -19-129 -9:-5625 1-9317 -—5-1585 -5:0615 -7-3671
9 2 9 4 -1-1379 15998 —19:128 —9-7635 19904 —5-0986 —4-9264 -7-4075
9 2 14 4 -1-1355 -15-980 -19-103 -9-7545 19869 —5-0901 -4-9160 -—7-3939
9 2 19 4 -1-1359 -15-984 —-19-108 —-9:7567 1-9878 —5-0918 —4-9181 -7-3969
9 2 9 6 -1-1413 -16:006 —19-141 -—-9-7637 19920 —5-1028 —4-9320 -7-4133
9 2 14 6 -1-1360 -—15-982 -—-19-106 -9-7550 1-9873 —5-0911 -4-9173 -—-7-3953
9 2 19 6 -1-1365 -1598 —19-111 -—9-7568 19882 —5:0927 —4-9192 —7-3983
9 2 9 8 -1-1433 -16-010 —19-149 -9-7634 1-9938 —5-1046 -4:9339 —7-4170
9 2 14 8§ -~1-1367 -—15-983 —19-109 —9-7552 1-9877 -—-5-0921 —4-9185 -7-3967
9 2 19 8 -1-1373 -15-987 ~-19-114 -9-7568 1-9885 —5-0937 -—4-9205 -7-3996
9 4 9 4 -2:0062 -16200 -20-327 ~-8-3118 2-1204 —5-8855 -—-6-2962 -—8-3944
9 4 14 4 -2:0091 -16-184 —-20-310 —8-2965 2-1165 —5-8790 —-6-2889 —8-3802
9 4 19 4 -2-0084 -—16-188 —-20-313 -—-8-2998 2-1173 —5-8802 —-6-2902 -—8-3831
9 4 9 6 -—-2-0050 -16-207 -—20-337 —8-3187 2:1236 —5-8886 —6-2991 -8-4031
9 4 14 6 -—-2:0080 -16-187 -20-313 —8-3006 2-1180 —5-8793 —6-2880 ~8&-3835
9 4 19 6 -2-0074 -—-16-190 -20-316 —8-3035 2:-1188 —5-8803 —6-2892 -8-3860
9 4 9 8§ -2-0047 -16-211 -20-341 —8:3198 2-1253 —5-8894 —-6:3003 —8-4068
9 4 14 8 -2-0078 -—-16-188 —20-315 —8-3020 2-1187 -5-8803 —-6-2892 —8-3856
9 4 19 8 -2:0073 ~16-192 -—20-319 -—8-3048 2-1194 —5-8814 —6-2905 -—-8-3882
9 6 9 6 -2:0099 -16-201 —20-331 —8-3038 2-1187 -5-8921 -6-3103 -8-3980
9 6 14 6 -—-2-0126 -16-181 -—20-307 —8-2863 2-1135 —5-8831 —6-2997 -8-3793
9 6 19 6 -—-2-0120 -16:184 -20-311 -—8-2893 2-1143 -—5-8842 -6-3008 -—8-3819
9 6 9 8 -2:0097 -16-205 —20-336 -—8:3050 2-1205 -—5-8928 —6-3113 -8:4016
9 6 14 8 -2-0125 -16-182 -20-309 -—-8:2876 2-1142 -5-8840 -6-3007 -—8-3813
9 6 19 8 -2:0119 -16-186 —-20-313 —8:2905 2-1149 —5-8852 -6-3021 -—8-3839
9 8 9 8 -—-2:0097 -16-205 -20-336 —-8-3051 2-1205 —5-8929 -6-3114 -—8-4017
9 8 14 8 -2-0125 -16-182 —-20-309 —82876 2-1142 —5-8841 -6-3008 —8-3813
9 &8 19 8 -2-0119 -16-186 —20-313 —8-2905 2:-1149 —5-8852 -6-3021 -—8-3840
14 2 14 2 -1-2429 -15-938 -19-126 -9-5601 1-9311 -5-1573 -5-0601 -7-3650
14 2 19 2 -1-2429 -15-938 -—-19:126 —-9-5601 1-9312 —5-1573 -5-0601 -7-3650
14 2 14 4 -1-1355 -15-980 -—-19-103 —-9:7545 1-9869 —5-0901 —4-9160 —-7-3939
14 2 19 4 -1-1354 —15-980 —19-102 -—-9-7544 1-9869 -—~5-0899 —4-9157 -7-3937
14 2 14 6 -1-1360 -15-982 —-19-106 —-9-7550 1-9873 —5-0911 —-4.9173 -—-7-3953
14 2 19 6 -—1-1356 ~—15-980 —19-103 —-9-7547 1-9871 -—5-0903 -—4-9162 -7-3944
14 2 14 8 -1-1367 -15-983 —-19-109 -9-7552 1-9877 -—5-0921 —4-9185 -7-3967
14 2 19 8 -—-1-1360 —15-981 -19-105 —-9-7549 19873 -5-0910 —4-9171 -7-3952
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TABLE 6—(concluded)

m n M N é'u T1 QA’12 A'1'2 QA'zl 7 O'zz Agz
14 4 14 4 -2:0091 -16-184 —20-310 —8-2965 2-1165 -5-8789 —6-2889 —8-3803
14 4 19 4 -2-0091 -16-184 —20-309 —8-2963 2:1164 —5-8788 —6-2887 —8-3799
14 4 14 6 -2:0080 -—16-187 —20-313 -8-3007 2-1181 ~5-8793 —6-2880 —8-3835
14 4 19 6 -2:0081 -16-186 —20-312 —8-2997 2-1177 —-5.-8785 —6-2871 -—8-3821
14 4 14 8 -2-0078 -16-188 —20-315 -—8-3021 2-1188 -5-8803 —6-2892 —8-3857
14 4 19 8 -2:0079 -16-187 —20-313 —8-3008 2-1181 -5.8793 —-6-2880 —8-3837
14 6 14 6 -2-0126 -16-181 —20-307 -—8-2864 2:1135 -5.-8831 —6-2997 -8:3794
14 6 19 6 -2:0126 -16-180 —20-306 —8-2855 2:1133 ~5-8824 —6-2988 —8-3781
14 6 14 8 -2-0124 -16-182 -20-309 —8-2877 2:1142 -5-8840 —6-3007 -8-3814
14 6 19 8 -2-0125 -16-181 -20-307 -—8-2865 2:1137 —5-8832 —6-2997 -8-3796
14 8 14 8 -2-0124 -16-182 —20-309 -—8-2877 2-1142 —5-8840 —6-3008 —8-3814
14 8 19 8 -2-0125 -16-181 —20-307 -8-2865 2-1137 -5.8832 —6:2997 -—8-3796
19 2 19 2 -1:-2426 -—15-941 -19:-129 -9-5625 1-9317 —5-1585 —5-0615 -7-3671
19 2 19 4 -1-1358 —15-984 -19-108 —9:7567 1-9878 —5-0918 ~4.9181 -7-3969
19 2 19 6 -1-1365 -15986 —19-111 -9-7568 1-9882 —5-0927 -4-9192 -—7-3938
19 2 19 8 -1-1373 -15-987 ~—19-114 —9:7569 1-9885 —5-0937 —4.9205 —-7-3996
19 4 19 4 -2-0084 -16-188 -—20-313 —8-2998 2:1173 —5-8802 -—6-2902 —8-3831
19 4 19 6 -2-0074 -16-190 —20-316 —8-3035 2:1189 -5.8803 —6-2892 —8-3860
19 4 19 8 -2-0072 -—16-192 —20-319 —8-3049 2:1195 ~5-8814 —6-2905 —8-3882
19 6 19 6 —2-0119 -16-184 —20-311 -8-2893 2-1144 -5-8814 —6-3008 -8-3820
19 6 19 8 -2-0118 -16-186 —20-313 —8-2906 2-1149 -5-8852 —6-3021 -8-3840
19 8 19 8 -2-0118 -16-186 —20-313 -—8-2906 2:1149 -5-8852 —6-3021 -—8-3840
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TABLE 7
Numerical Values of Percentage Differences ¢,, i =1, 2; j =1, 2, for a Rectangular Wing of Aspect Ratio 2

m n M| N €11 €12 £2 €22
41 2 41 2 5-0 7-3 14-3 16-9
1912119 8 4-6 6:8 13-3 16-0
41 4 4| 4 0-022 0-023 0-054 0-071
4 4 (19 8 0-012 0-014 0-036 0-055
91 4 91 4 0-016 0-024 0-017 0-031
914 119} 8 0-007 0-011 0-022 0-034
14 4 |14} 4 0-017 0-020 0-043 0-058
141 4 |19 8 0-009 0-010 0-029 0-047
191 4 |19 4 0-010 0-014 0-034 0-050
19 4 | 19| 8 0-006 0-010 0-020 0-033
4 6 41 6 0-019 0-019 0-031 0-035
416 | 19] 8 0-015 0-017 0-025 0-029
9] 6 91 6 0-026 0-028 0-035 0-038
916 19| 8 0-000 0-002 0-000 0-000
141 6 |14 6 0-012 0-013 0-017 0-019
14| 6 |19 8 0-010 0-013 0-014 0-019
1916 [19] 6 0-002 0-002 0-004 0-005
191 6 [ 19| 8 0-000 0-002 0-000 0-000
41 8 4 8 0-013 0-011 0-023 0-021
4 8 | 19| 8 0-015 0-017 0-025 0--29
91 8 91 8 0-034 0-036 0-049 0-051
91 8 {19 8 0-000 0-000 0-000 0-000
14| 8 | 14| 8 0-009 0-011 0-014 0-015
14 8 [ 19| 8 0-011 0-013 0-015 0-019
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TABLE 8
Numerical Values of Percentage Differences £, i =1, 2; j =1, 2, for a Rectangular Wing of Aspect Ratio 8

m|n ! M| N £11 £12 £21 €22
44 2 41 2 5-0 8-0 12-0 15-4
19| 2 191 8 5-5 86 12-8 16-1
4| 4 44 4 0-14 0-17 0-23 0-18
4 4 19 | 8 0-21 0-25 0-36 0-28
91 4 91 4 0-09 0-12 0-09 0-11
914 {19 8 0-05 0-07 0-09 0-12
14 4 14| 4 0-02 0-03 0-10 0-13
141 4 |19} 8 0-03 0-05 0-11 0-14
19| 4 1191 4 0-02 0-04 0-09 0-11
191 4 19| 8 0-05 0-07 0-09 0-12
41 6 41 6 0-11 0-11 0-20 0-11
41 6 |19 8 0-17 0-18 0-28 0-17
91 6 9| 6 0-09 0-10 0-13 0-16
916 19! 8 0-001 0-001 0-000 0-001
141 6 141 6 0-031 0-033 0-040 0-049
14| 6 19| 8 0-031 0-033 0-037 0-048
19| 6 197 6 0-012 0-011 0-061 0-023
19| 6 19| 8 0-000 0-000 0-000 0-000
41 8 41 8 0-12 0-09 0-30 0-26
4 8 19| 8 0-17 0-18 0-28 0-17
9| 8 91 8 0-12 0-12 0-15 0-19
9| 8 19} 8 0-001 0-001 0-000 0-000
14} 8 14| 8 0-024 0-023 0-022 0-028
14 | 8 19| 8 0-031 0-033 0-037 0-048
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FiG. 1.

General wing planform S.
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Ao = T/3C

=t
Co=7p (3+2/3)c=16160254¢
Cy= 1z(s -2 /?) €=0-3839746¢

e;= /3¢ =17320508 ¢

X, =1 (3+2 /3 )e=16160254¢
Yi=5¢

X, = §(9+473)c = 119910254 F
Yo=¢

Y = sin (7/16) € = 0-1950903 ¢

Fic.2. Taperedswept wingof aspect ratio 2.
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Co = 38/2
Cy = &/2
er = (V3 +1/2)e = 2232051¢
2/3 97 \. .
= [&2 4+ 20 15 =1-662
X, (5 +]0>c 62820¢
Y, = 6&/5
7/3 91\ . _
X2=<—1—0—+1——0—)c-2122436c
Y, = 218/10
YR = S sin 112_:0-19509035

Fic.3. Taperedswept wing of aspectratio 6.
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Fic.4a. Rectangular wing of aspect ratio 2.
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Fic.4b. Rectangular wing of aspect ratio 8.
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Generalised airforce coefficients on a tapered swept wing of aspect ratio 2. »=0-32560, M =
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101

0120

0-110

0-080

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

Fic. 5g. Generalised airforce coefficients on a tapered swept wing of aspect ratio 2. » =0-32560, M =
0-78060.
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Generalised airforce coefficients on a tapered swept wing of aspect ratio 2. »=0-32560, M =
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