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Summary.—The report, which has been written as a preliminary to a later account of similar work in lifting-plane
theory, describes how wing loading problems involving discontinuities are solved by lifting-line theory. The four
discontinuities considered are (a) direction of leading or trailing edge, (b) incidence, (c) two-dimensional Lift slope
and (d) chord. As the effects of the first are of minor importance in lifting-line theory, attention is mainly confined
to the last three, the solution being based on the use of a few terms of a Fourier series in conjunction with special
functions tabulated elsewhere. ‘

The work is limited to straight unyawed flight and includes lift, induced drag, and pitching, rolling and yawing
moments, all with or without deflected landing flaps and ailerons. The method of formation of the equations, and
the solutions of a representative range of problems for a hypothetical wing, including loading due to incidence,
symmetrical wing twist, uniform roll, and deflected flaps and ailerons, are fully described. An indication is given of
how induced drag and yawing moment calculations will later be simplified by the use of special derived functions.

Absolute values of wing properties as given by lifting-line theory are usually too high, but the specification of
correction factors for viscosity is beyond the scope of the report.

1. Introduction.—The report has been written in order to demonstrate the principles by
which problems involving discontinuities are solved by lifting-line theory, preliminary to a later
account of similar work in lifting-plane theory. The nature of the discontinuities which are
to be treated is first described, and a brief description is included of the loading functions,
tabulated elsewhere, which are required to allow satisfactorily for the discontinuities.

The method of solution is demonstrated by calculating symmetrical and anti-symmetrical
solutions for a hypothetical wing, a departure from the usual application of lifting-line theory
being that the equating points are now spaced at even intervals of the semispan instead of in
angular measure, an arrangement which is thought to be generally advantageous as well as
coupling usefully with vortex lattice theory.

The scope of the report is limited to straight unyawed flight and includes lift, induced drag,
and pitching, rolling and yawing moments, all with or without deflected landing flaps.and
ailerons. The induced drag and yawing moment have been calculated in the report by numerical
integration. It is possible for these to be calculated from a formula which involves certain
derived functions the computation of which is not yet complete. These will be published later,
but their use will not introduce any new principle, the main purpose being to reduce the work
of computation to a minimum.

Although the relative magnitudes of the properties of a straight wing as given by lifting line
theory are usually considered to be reasonably accurate, the absolute magnitudes are usually
too high on account of the influence of viscosity. This report deals only with the potential
solutions obtained by the theory, and no attempt is made to specify correction factors for the
effect of viscosity.
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2. Statement of Problem.—The discontinuities which will be considered in this report, all but
one of which are believed to be introduced for the first time, are the following:—(a) discontinuity
in direction of leading or trailing edge, such as occurs at the median section of a straight tapered
wing, (b) discontinuity of incidence, due either to a sudden: change in geometrical incidence
or to the deflection of a movable flap, (c) discontinuity of dC,/de due to a sudden change in wing
profile, and (d) discontinuity of chord.

Since the circulation is continuous, a discontinuity of incidence such as (b) can only be expressed -
mathematically if a function is introduced by which the discontinuity of incidence is offset by a
discontinuity in the induced downwash. Similar considerations apply to (c) and (d), for, with
the former, a discontinuity of induced downwash must be introduced in order to satisfy the
condition that dC,/d« multiplied by effective incidence is continuous, and, with the latter, a
similar discontinuity must be introduced in order to express the discontinuity of local lift
coefficient which follows from continuity of circulation. The functions which are used to
represent the discontinuities (b), (c), and (d) are the Multhopp functions, the derivation and
tabulated values of which for centre and tip flaps, and centre and tip ailerons, are given in
another report’. The discontinuity (a) is not of the same severity as (b), (c), and (d) and there
are good reasons, supported by a trial calculation, for stating that no special functions are
necessary in lifting-line theory, the usual terms of the Fourier series being adequate to cover
or smooth over any effects due to this cause. '

However, this discontinuity becomes of considerable importance in lifting plane theory,
particularly where large angles of sweepback are involved, and some of the functions which it
is proposed to use, which involve a discontinuity of rate of change of induced downwash with
span, have, therefore, been described and tabulated. Hence, the present work is all based on
the neglect of any special effects due to discontinuities of direction of leading or trailing edges,
and on the treatment of the three other discontinuities defined above by including in the wing
loading Multhopp functions with discontinuities at the appropriate spanwise positions.

2.1. The present work will be based entirely on expressing the loading as a Fourier series
with the addition of Multhopp functions, and the subsequent solution of a set of simultaneous
equations as described in a paper in Aircraft Engineering®. An alternative method described
by Multhopp is based on the use of factors obtained by the pre-solution of simultaneous
equations by an iterative process and is designed to simplify the work. There are three reasons
why the latter method has been rejected in the present work:—(a) it has not been possible to
devote any time to the consideration of whether this method, which has been demonstrated for
a simple discontinuity of incidence only, could be extended effectively to include general
discontinuities, (b) for the comprehensive set of solutions described in this report, which are
carried out with despatch by trained computers, it is doubtful whether the saving.of effort
would be appreciable, and (c) it is frequently necessary when discontinuities are present to
guard against oscillatory solutions by using more relations than necessary and reducing the
number of equations by normalisation. : '

2.2. Where a single discontinuity of incidence is involved, the amount of Multhopp function
to be included in the circulation is known, being, in fact, the value of K/4sV as tabulated per
radian of full chord discontinuity. The amount to be included to represent the other discon-
tinuities is initially unknown, and is derived as part of the solution of the problem. In this
report the Multhopp function has been left entirely unrestricted, and, where normalisation is
. used, has been subjected to the same treatment as the other functions.

3. Specification of Wing Example—The method will be described by carrying out a complete
hypothetical example as given in Fig. 1. The basic wing has straight taper of 2} to 1 with
the centre section 0-25 span and the tip 0-10 span. From 0-5 semispan to the tip, the chord
is tncreased by 1-2 to 1.  Symmetrical flaps, equivalent to 25 per cent hinged flaps, extend from
0 to 0-5 semispan, and ailerons extend from 0-5 semispan to the tip, the flap chord ratio varying
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from 25 per cent at the inner end to 85 per cent at the tip. The two-dimensional lift slope is
supposed to have a discontinuity at » = 0-25; the assumed values are 7-0 for » = 0 to 0-25,
and 5-875at n = 0-25 decreasing linearly to 5-5atn = 1. Provision is made for a discontinuity
of incidence at # = 0-25, and for symmetrical wing twist varying according to the law
chord x twist linear.

4. Formation of Equations.—The formula for the circulation for the symmetrlcal loading will
be taken as - :

K[4sV = A;sin ¢ 4 A;sin 3¢ + A sin 8¢ + A, sin 7¢ - iy Mepes
+ my Mepsy .. .. .. .. .. .. .. L. (1)

and for the anti-symmetrical loadlng as ,
K[4sV = A, sin 2¢ + A, sin 4¢ + Agsin 66 - Ag sin 8¢ + 1, Morass
+%2MTA50 .. N .. . .t .. B .. .. .. (2)
The first four terms of each series are the usual Fourier terms, whilst the remaining two are
the Multhopp functions which must be included in order to allow for the discontinuities which

are present at 7 = 0-25 and y = 0-5. These functions are taken dlrectly from the Tables
given in R. & M. 25931 and the notatlon is as follows:—

Suffix CF25 = centre flaps for * = 0-25

Suffix TF25 = tip flaps for * = 0-25

Suffix CA25 = centre ailerons for 3* = 0-25

Suffix TA25 = tip ailerons for n* = 0-25, and so on.

The standard equation for the solution of .any problem is given in a paper in Arcraft
Engineering®. This is

8s

where a, is the two-dimensional lift slope dC,/d«, ¢ is the chord, s the semispan, « the geometrical
incidence at any section, 2XmM -and 2xM the sums of all the Multhopp functions used in the
solution under con51derat1on and G¢ the induced downwash due to the sum of all the Multhopp
functions used.

EAnsinn¢> smcﬁ—}——%] ——'——smgb.ZM——( —G¢):| U AN (3)

It is usual to separate the symmetrical and anti-symmetrical solutions, and, for the solutions
investigated here, the equations become:—

Symmetrical.

Ay silol ¢ [sin ¢ %OEC] + Ay'sin 3¢ I:Sm 4+ 3851800]

. 5 a, 7 ayc
-+ A; sin 5¢ l:smgs + 5 :I + A, sin 7¢ [sm¢ + s :l
— — sin ¢ l:mlMcm tomMey — R — G| . @
where Gé = m, |:7; —0to 0~25] + [n — 0to 0-50].
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Anti—symmetrical.

2 a,c 4 a,c
S

A, sin 24 [sin é + 3 :| + A, sin 44 [sin é + 3

6 aqc

4 A, sin 64 [sin g + 28] 4 4, sin 8y [sing + 5]

= — 5in ¢ [%MTA% + noaMorpze — a_80§c (& — G<;S):| L .. .. (5
where G = m [n ~ 095 to 1} + [17 — 0-5to 1] .

By transferring to the left hand side the terms in m, and m, or 7, and #,, the right hand side

is left as %"—; « sin ¢, and there will be six unknowns, ¢.e., 4,, 45, A5, A4, m,, m, for the symmetrical

solution and A,, A,, A, As, 1y, %, for the anti-symmetrical solution. The coefficient of s, will
be ’ '

. AoC
sin ¢ [M cres + é] for 0 < 7 < 7% pne and

sin ¢ | Mors | FOr 1% e < 11 < L,
and there are similar expressions for #,, #,, and #,.

An alternative expression to equation (1), which includes the function known as P which
will be used to compensate for discontinuity of slope of leading or trailing edge, is

K4sV = A, sin ¢ + A, sin 3¢ + A;sin 5¢ + pP + muMeres + Malderso. .- (6)

4.1. Six equations would normally be sufficient to determiné the six unknowns, but, in this
work, it is usually advisable to take more than six equations and reduce by normalisation.
One reason for this is that, unless the stabilising influence of a least squares solution is present,
a solution containing Multhopp functions sometimes develops a tendency to oscillate. Another
reason is that it is doubtful whether the wing can be represented adequately by six conditions
only. It will be noted that at each point of discontinuity there will be two equations, corres-
ponding to the inner and outer edges of the discontinuity respectively. There will be, in the
present work, inner and outer values for a, and G¢ at n* = 0-25, and inner and outer values for
c and G¢ at n* = 0-5.-

" Where there is a simple discontinuity of incidence only, the value of the corresponding
coefficient is known, being, in fact, unity per radian of discontinuity. Where other discon-
tinuities are present the s coefficient is unknown, and in the present work, because of this
unknown contribution and because a least squares solution is involved, all coefficients of the
M functions have been taken as unknown.

5. General Formulae—The Lift coefficients and rolling moments due to Multhopp functions
are defined in R. & M. 2593!, from which it is deduced that the total lift coefficient for the
circulation (1) is : \

4s? . - .
C, = TSS‘_ [n A, + my (m — 24,% + sin 24,%) -+ m, (v — 24,* 4 sin 2¢2*):| .. (7)
where ¢,* and ¢,* are angula;r measures corresponding to n* = 0- 25 and n* = 0-50 fespecti vely.
4



The local lift coefficient for C; == 1 is related to the circulation thus:—

4 (K/4sV) '
CLL—W. ‘. . e . .. .. .. + . e (8)
The rolling moment coefficient for the circulation (2) is
2
o= =St e (| )

where 5,* = 0-25 and »,* = 0-50.

The value of C,,, referred to the mean chord z,1s
04 pl
_ 3_“; K % dn
St)_ 4sV 2s
where K[4sV is the circulation at zero lift, and x,/2s the distance back from datum of the local
centre of pressure.

(10)

The general expression for induced drag is

- 8" /w\ [ K

CDi:—ST'_l('V) (4.8—-V>d77, . .. . LI . - n .. (11)

and for induced yawing moment
45t /w K i

C":?_].('V) (‘43—.V>77d7] .o .. . .o .« .. . (12)
The formula for w/V due to the Fourier terms is

0]V — Xn 4,, sin #¢ .

sin ¢

The evaluation of C,, will usually require numerical integration because of irregularities in x,,
but it is possible to avoid this process for Cp; and C, by expressing the integrals in terms of
functions derived from the Multhopp functions by integration. These functions are being
calculated and will be published as soon as possible, but, as no new principle will be involved,
examples are now given of how the drag and yawing moment are derived directly by numerical
integration.

5.1. Lifting-line solutions are based on the treatment of each strip as if the relative chord-
wise distribution were purely two-dimensional. The geometrical incidence to be used in the
formation of the equations when deflected flaps are under consideration is therefore the incidence
of the equivalent straight line aerofoil with the same lift. This equivalent incidence per radian
flap deflection is the quantity a,/a,, given by Glauert in R. & M. 1095%—

ayJa, = 1 — 2[x [cosTy/E — +/(E(1 — E))] . .. . .. (138)
where E is the flap/chord ratio.

The location of the local centre of pressure (C.P.) on the chord follows from the same potential
theory. .

The two-dimensional lift is

Co=2n (@ 4+ Ra) oo oo e



and the moment about the leading edge

c,,,:_fza'+R2n' N € (<)

where «’ is the incidence of the main wing profile, %’ the deflection of the flap, and

*
Ri=1-2 4 (16)
7T T
and Rzzé()*——siné)*—}—%sin%*—% .. .. .. e .. (17
0* being the angular measure at the hinge, related to the flap/chord ratio E by
E =0:5(1 + cos 6%). .. .. .. .. .. . . - (18)

For the three-dimensional wing, the circulation would first be calculated for a given flap
deflection, usually per radian, from which it would. follow that

Lifi 8 K ' :
LV = ¢ &V .. .. .. .. . .. .o (19)

The position of the local C.P. on the section is — C,,/C.;, which, after substituting the relations
(14) and (15) reduces to '

CLL =

0-25 + B o
C‘LL
Ry’ c
025+ TRy 3 1 e (20)
where Ry = % sin 0% — 1 sin 26%. . . .. .. .. . .o (21)

If " were zero, the local CP would be at 0-25 chord. Since Ry, = % sin 6* (1 — cos 6%),
which is positive for 0 < 8% < =; the local C.P. for positive lift coupled with positive flap
deflection is always to the rear of 0-25 chord.

The value of C,, can be calculated either by the direct use of relation (10), in which x,/2s is
the distance of the local C.P. behind datum, or, alternatively, by separating the loading into
two components. The loading on any section can be regarded as made up of C,,, the local
moment coefficient for zero local lift, together with the local lift force acting at 0-25 chord.
The alternative calculation for overall C,,, is, therefore, by the use of relation (10), x,/2s being
taken as the distance of the quarter chord behind datum, with the addition of the integral of
the local moments for zero local lift. Now it can easily be shown from relations (14) and (15),

r (20), that the local moment coefficient C,, = M,/3pV?*%* = — Ry’ and it follows that the

additional C,, = M [$pV?CS = % f — Rsp'c?dy or

8st »
cm(,:__?f Ra'(c/2s) dy. .. .. .. .. (22
. -1

As the centre of pressure of any additional loading due to incidence is also at the quarter-chord,
it follows that the loading system under any conditions can be represented by applying the
local lift force at the quarter-chord, and adding the moment defined by equation (22).
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6. Equations.—The constants for the wing derived from the specification of section 3 are
given in Table 1 and it will be noted that there are inner and outer values for a,¢/8s at n* = 0-25
and 0-50. Three sets of equations are required, i.e., (a) symmetrical equations for incidence
(b) symmetrical equations for zero lift and (c) anti-symmetrical equations. The derivation of

these is from the formulae of section 4, the values of the Multhopp functions being taken from
R. & M. 2593, and the values of sines of multiple angles from Table 1.

The equations are formed for = 0, 0-15, 0-25 (2), 0-35, 0-5 (2), 0-7 and 0-9, giving a total
of nine for six variables.

The symmetrical equations for the plain incidence solution are given in Table 4 before and
after normalisation by the process of which an example is given in Table 8 of R. & M. 2591%.

The symmetrical equations for wing twist, which are given in Table 5, are derived from the
previous equations by substituting the condition for zero lift. ~ This condition, that the right
" hand of relation (7) must be zero, reduces to

A, + 0-31496m, + 0-60900m, = 0.

Hence, to convert the incidence equations to zero Jlift, the following transformations are used:—
A, omitted:
A, A;, A,, as belore:
my (zero lift) = m, — 0-314964;:
my (zero lift) = m, — 0-609004,.

The revised incidence is «, plus wing twist. Hence the , column is the same as for the original
constant column, and the new constant column will be — (a,¢/8s) sin ¢ X (twist). In Table 5,
the twist used in calculating the constant column refers to the ¢6 linear figures of Table 2.

The anti-symmetrical equations of Table 6 are derived from relation (2), and the constant
column refers to the solution for uniform roll, for which the geometrical incidence for ¥V /ws
unity at the tip is 7.

7. Solutions.—The three sets of equations described are all that are necessary for the solution
of any straight flight problem. Once they have been normalised and solved by elimination,
by the process described in R. & M. 2591* the solution for any other problem which involves
a change in the constant column can easily be obtained by the process described also in the
same report.

We now proceed to describe the representative solutions which have been obtained, together
with the derivation of the corresponding constant column.

7.1. Plain Wing, Incidence Solution.—This solution is given in Table 7. The symmetrical
equations of Table 4 are used, the constant column being — (a¢/8s) sin ¢. The circulation
per radian (column 2) is calculated from the sines of multiple angles given in Table 1, and the
Multhopp functions given in R. & M. 2593". The quantity in column 3 is the distance back of
the quarter-chord from datum in terms of the span. The aerodynamic centre is obtained by
dividing the integral of column 4 by the integral of column 2. Because of irregularities in the
circulation, the standard Simpson factors are not applicable, and the integrating column 5 is -
built up from the components described in Appendix 1. The local lift coefficient is derived
fro(in relation (8), and the geometrical mean quarter chord from an integration of columns 6
and 8.

The induced drag is calculated by the process givenin Table 8. The three separate components
of the induced downwash are tabulated, the two corresponding to centre flaps being derived from
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the coefficients m, and m, given by the solution of the equations. That part of the induced
downwash due to the Fourier terms is calculated from w/V = XA, sin #é/sin ¢ using Table 1.
The total w/V is obtained by summation and the induced drag obtained by integrating
(w/V) (K[4sV) as in relation (11). The same integrating factors are used as in Table 7, and, after
the result is divided by C,* per radian, lead to Cp; = 0-0608C,2, the minimum being 0-0601C 2.

7.2. Symmetrical Wing Twist, Linear Product of Chord and Twist—This solution is given in
Table 9, the equations used being the symmetrical equations for zero lift of Table 5, the constant
column being — (a,¢/8s) sin ¢ X twist. In the Table are given the circulation per radian twist
at the tip; the integral of the product of circulation and distance back of quarter chord from
datum, which, after a suitable factor defined in relation 10, gives C,, per radian; and the local
lift coefficient obtained as previously.

7.3. Fifty per cent Span Flaps: Zero Lift—This solution, given in Table 10, applies to hinged
flaps or their equivalent. The symmetrical equations for zero lift of Table 5 are used, the
constant column being — (a,/a,) (@,¢/8s) sin ¢ from % = 0 to 0-5 inner, and zero from 0-5 outer
to tip. The ratio a,/a, is given by formula (138), numerical values being included in Table 2.
Since the flap/chord ratio is a constant 0-25, a,/a, = 0-60900. The solution follows the same
lines as previously, excepting that, because of the deflected flap, the local C.P. is no longer at
0-25 chord. The position of the local C.P. on the chord is given by relation 20, leading to
[(0-25 + 0-16238 ¢/2s)/(K[4sV)] chord over the flap span.

7.4. Discontinuity of Incidence at n = 0-25.—This solution is given in Table 11 and follows
the same pattern as previous solutions. It should be noted that the coefficient ,, which should
be unity for one radian discontinuity, solves by the least squares process to 0-9833.

7.5. Uniform roll.—The solution for uniform roll applicable to Vjws = unity at the tip, given
in Table 12, is obtained by using the anti-symmetrical equations, Table 6, with constant column
— (a.c/8s) n sin ¢. The solution gives rolling moment, circulation, and the local lift coefficient
for unit (— C). :

7.6. Adleron fromn = 0-510 1-0, Wing at Zero Incidence.—This solution is given in Table 13,
the anti-symmetrical equations of Table 6 being used with constant column zero from # == 0
to 0-5 inner, and — (a,/a;) (a,c/8s) sin ¢ from n = 0-5 outer to tip. The value of flap/chord
ratio E varies from 0-25 to 0-33 and the corresponding values of a,/a, are given in Table 2.
The solution is calculated in the same way as the previous solution.

7.7. Half span distributions of circulation for six of these solutions are plotted in Fig. 2.

8. Composite Solutions.—In order to demonstrate the method for finding a composite solution,
the calculation of yawing moment, and a suitable specification of the wing loading for use in
aeroelastic problems, a composite solution for flaps and ailerons at zero lift has been calculated.
The specification is for 50 per cent span flaps with 4C, due to flaps = 1, and 50 per cent ailerons
deflected to give rolling moment coefficient 4+ 0-1. It follows from the separate solutions that
the incidence for zero lift is"— 0-2275 radians, the aileron deflection is — 0-3138 radians, and
the composite circulation is 0-6135 (flaps) minus 0-3138 (ailerons). In Table 14, the circulation
for port and starboard half wings, chord, Ry for the flap/chord ratios from Table 2, and »’ the
flap deflection, are given. :

It has been shown in section 5.1 that the force system on any section is made up of the lift
acting at the quarter-chord, with the addition of a moment defined by
~ Mady 8s* , , 2
Cp = Vs TS R (0/23) an.
The last column of Table 14 gives the numerical values of the local C,,.
8




9. Conclusion.—In conclusion, the writer acknowledges the valuable help received from
Miss W. M. Tafe, who was responsible for computing the solutions given in the report.
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APPENDIX 1
Modified Simpson factors

The standard Simpson factors of 1, 4, 1 require modification when the curve to be integrated
‘has an infinite slope. It is shown in R. & M. 2591* that the factors 0-800, 4-525, 0-675* will
give a reliable value for the integral when used over the intervals at the wing tip which include
an infinite slope at the boundary, the starred value being used at the infinity.

In this report, since it is occasionally necessary to cover an odd number of intervals, the
three-eighths rule is also used, factors 1-125, 3:375, 3-375, 1-125. A modification for infinite
slope calculated by a similar method to the above gives 0-655, 4-454, 2-520, and 1-371.

At a discontinuity, the exact magnitudes of the factors are difficult to calculate exactly, and
it has been found that mean values between the above sets give reliable results.

Hence, for any given integration, the factors are made up from a combination of the following
to suit the positions of the discontinuities.

Standard Modified for Modified for
Case factors infinite slope | discontinuity
Two 1 0-675% 0-838+
interval 4 4:525 4-262
1 0-800 0-900
1-125 0-655% 0-8907t
Three 3-375 4-454 3-914
interval 3-375 2-520 2-948
1-125 1371 1-248

* To be used at the infinity.
+ To be used at the discontinuity.
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TABLE 1

Sines of Multiple Angles for Regulay Values of

¢ sin ¢ sin 2¢ sin 3¢ sin 4¢ * sin 5¢
deg

0 90-000 1-5708 1-00000 0 — 1-00000 0 1-00000
0-05 87-134 1-5208 0-99875 0-09987 — 0-98876 — 0-19875 0-96889
0-10 84261 1-4706 0-99499 0-19900 — 0-95519 — 0-39004 0-87718
0-15 81-373 1-4202 0-98869 0-29661 — 0-89970 — 0-56652 0-72975
0-20 78-463 1-3694 0-97980 0-39192 — 082303 — 0-72118 0-53458
0-25 75-522 1-3181 0-96825 0-48412 — 0-72618 — 0-84722 0-30258
0-30 72-542 1-2661 0-95394 0-57236 — 0-61052 — 0-93868 0-04732
0-35 69-513 1-2132 0-93675 0:65572 — 0-47774 — 0-99014 — 0-21536
0-40 66 -422 1-1593 0-91652 0-73321 — 0-32994 — 0-99717 — 0-46779
0-45 63256 1-1040 0-89303 0-80373 — 0-16968 — 0-95643 — 0-69112
050 60-000 1-0472 .0-86603 0-86603 0-00000 — 0-86603 — 0-86603
0-55 56-633 0-9884 0-83516 0-91868 0-17538 — 0-72576 — 097372
0-60 53-130 0-9273 0-80000 ¢-96000 0-35200 — 0-53760 — 0-97712
0-65 49-458 0-8632 0-75993 0-98791 0-52436 — 030625 — 0-92248
0-70 45-573 0-7954 0-71414 0-99980 0-68558 — 0-03999 — 0-74157
0-75 41-410 0-7227 0-66144 0-99216 0-82680 0-24804 — 0-45474
0-80 36-870 0-6435 0-60000 (-96000 0-93600 0-53760 — 0-07584
0-85 31-788 0-5548 0-52678 0-89553 0-99562 0-79702 0-35932
0-90 25-842 0-4510 0-43589 0-78460 0-97639 0-97291 0-77484
0-95 18-195 0-3176 0-31225 0-59328 0-81497 0-95517 0-99986
1-00 0 0 0 0 0 0

7 sin 6¢ sin 7¢ sin 8¢ sin 9¢ sin 10¢ sin 11¢

0 0 —+1-00000 0 1-00000 0 — 1-00000
0-05 0-29564 — 0-93932 —.0-38957 0-90037 0-47961 — 0-85240
0-10 0-56547 — 076409 — 0-71829 0-62043 0-84238 — 0-45195
0-15 0-78544 | — 0-49412 — 0-93368 0-21401 0-99788 0-08535
0-20 0-93496 | — 0-16059 — 0-99920 — 0-23909 0-90356 0-60051
0-25 0-99850 0-19668 — 0-90017 — 0-64676 0-57679 0-93515
0-30 0-96706 0-53292 — 0-64731 — 0-92131 0-09452 0-97802
0-35 0-83939 0-80293 — 027734 — 099707 — 0-42061 0-70264
0-40 0-62204 0-96614 0-14997 — 0-84616 — 0-82690 0-18464
0-45 0-33443 0-99210 0-55846 — 0-48949 — 0-99900 — 0-40961
0-50 0-00000 0-86603 0-86603 0-00000 — 0-86603 — 0-86603
0-55 — 0-34533 0-59385 0-99857 0-50458 — 0-44354 — 0-99247
0-60 — 0-65894 0-20639 0-90661 0-88154 0-15124 — 0-70005
0:65 — 0-89208 — 0-23838 0-58308 0-99638 0-71222 — 0-07049
0-70 — 0-99820 — 0-65592 0-07992 0-76780 0-99500 0-62520
0-75 — 0-93015 — 094048 — 0-48058 0-21962 0-81000 0-99539
0-80 — 0-65894 — 0-97847 — 0-90661 — 0-47210 0-15124 0-71409
0-85 — 018618 — 0-67582 — 0-96272 — 0-96080 — 067064 — 017929
0-90 0-42180 — 0-01560 — 044087 — 079418 — 0-97964 — 0-96918
0-95 0-94455 0-79480 0-56556 0-27976 — 0-03400 — 0-34437
1-00 0o . 0 0 0 0 0
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Table of Constants for Wing

TABLE 2

Twist Twist-
7 o c/2s ac(8s 0 linear ¢0 linear
0 7-000 0-2500 0-43750 0 0
0-15 - 7-000 0-2275 0-39812 0-15 0-06593
0-25 inner 7-000 0-2125 0-37188 0-25 0-11765
0-25 outer 5-875 0-2125 0-31211 0-25 0-11765
0-35 5-825 0-1975 0-28761 0-35 0-17722
0-50 inner 5-750 0-1750 0-25156 0-50 0-28571
0-50 outer 5-750 0-2100 0-30188 0-50 0-28571
0-70 5:850 0-1740 0-24578 0:70 0-48276
0-90 5-550 0-1380 0-19148 0-90 0-78261
1-00 5-500 0-1200 0-16500 1-00 1-00000
Function m* (0-25) 72* (0-50)
¢* radians .. 1-318116 1:047198
sin 2 4* .. .. 0-484123 0-866025
7|2 — ¢* + §sin 2 $* 0-494742 0-956611
4/3 (1 — o282 |, 1-210307 0-866025
E dz/dl R5
0-25 0-60900 0-64952
0-26 0-64918
0-27 0-63048 0-64818
0-28 0-64656
0-29 0-65090 0-64434
0-30 0-64156
0-31 0-67036 0-63824
0-32 0-63441
0:33 0-68892 0-63008
" 0-34 0-62530
0-35 0-70666 0-62006
Aspect ratio = 5-298
64s*/5* = 112-28 ns*/S = 4-161

E = flap/chord ratio
g .
afas =1 — 2 [cos™ VE — \/<F (1 — E))] .
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TABLE 3

Table of Distances for Wing in Terms of Span

Datum to

7 leading edge chord

0 0 0-2500
0-05 0-0019 0-2425
0-10 0-0038 0-2350
0-15 0-0056 0-2275
0-20 0-0075 0-2200
025 0-0094 0-2125
0-30 0-0112 0-2050
0-35 0-0131 0-1975
0-40 0-0150 0-1900
0-45 0-0169 0-1825
0-50 0-0188 0-1750
0-50 0-0188 0-2100
0-55 0-0206 0-2010
0-60 0-0225 0-1920
0-65 0-0244 0-1830
0-70 0-0262 0-1740
0-75 0-0281 0-1650
0-80 0-0300 0-1560
0-85 0-0319 0-1470
0-90 0-0338 0-1380
0-95 0-0356 0-1290
1-00 0-0375 0-1200

TABLE 4

Symmetrical Equations

Before novmalisation

n Al Ag 'A5 A7 kot Wy 1
0 1-4375 — 2-3125 31875 —4-0625 | 0-9268 1-1900 — 0-4375
0-15 1-3711 — 1-9641 21741 — 1-8656 0-8461 1-1214 — 0-3936
0-251i 1-2976 — 1-5133 0-8556 0-7024 0-7245 1-0433 — 0-3601
0-250 1-2397 — 1-3831 0-7652 0-6201 0-3644 0-9855 — 0-3022
0-35 1-1469 — 0-8597 — 0-5114 23687 0-2696 0-8839 — 0-2694 =20
0-50 1 0-9679 0-0000 — 1-8393 2-2750 0-1870 0-6589 — 0-2179
0-500 | 1-0114 0-0000 — 2-0572 25800 0-1870 0-4411 — 0-2614
0-70 0-6855 0-9951 | —1-4409 — 1-5969 0-1036 0-2210 — 0-1755
0-90 0-2735 0-9865 1-0796 — 0-0277 0-0328 0-0684 — 0-0835
After normalisation
A]_ As A5 A7 M Mo 1
10-987 — 9-730 4-482 — 0-292 4-644 8-002 — 2-988
— 9-730 16-111 — 13-924 7-485 — 5-502 — 8-369 2-722
4-482 — 13-924 27-323 — 24-362 4-712 5-062 — 1-5561 — 0
— 0-202 7-485 — 24-362 40-856 — 3-229 — 1-207 0-546 -
4-644 — 5-502 4-712 — 3-229 2-387 3-636 —1-293
8-092 — 8-369 5-062 — 1-207 3-836 6-197 — 2177
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TABLE 5 .

Symmetrical Equations. Zevo Lift
Before normalisation
n A3 A5 . A7 M Mo og 1
0 — 2-3125 3-1875 — 4-0625 0-4740 0-3146 — 0-4375 0
0-15 — 1-9641 21741 — 1-8656 0-4143 0-2864 — 0-3936 — 0-0260
0-251i — 1-5133 0-8556 0-7024 0-3158 0-2531 — 0-3601 — 0-0424
0-250 — 1-3831 0-7652 0-6201 — 0-0261 0-2305 — 0-3022 — 0-0356
0-35 — 0-8597 — 0-5114 23687 — 0-0916 0-1854 — 0-2694 — 0-0477 | _ 0
0-501 0-0000 — 1-8393 22750 — 0-1178 0-0694 — 0-2179 — 0-0622 -
0-50 0 0-0000 — 2-0572 2-5800 — 0-1316 — 0-1748. | — 0-2614 — 0-0747
0-70 0-9951 — 1-:4409 — 1-5969 — 0-1123 — 0-1965 — 0-1755 — 0-0847
0-90 0-9865 - 1-0796 — 0-0277 — 0-0533 — 0-0982 — 0-0835 — 0-0653
After normalisation
A3 A5 A7 ¥/(5] Mo [£ ) 1
16-111 — 13-924 7-485 — 2437 — 2-444 2-722 0-0568
— 13-924 27-323 — 24-362 3-300 - 2-333 — 1-551 0-2240
7-485 — 24-362 40-856 — 3-137 — 1-029 0-546 — 0-3135 = 0
— 2-487 3-300 — 3-137 0-552- 0-367 — 0-367 0-0113 -
— 2-444 2-333 — 1-029 0-367 0-416 — 0-388 — 0-0034
2-722 — 1-551 0-546 — 0-367 — 0-388 0-793 0-1025
TABLE 6
Antisymmetrical Equations
Before normalisation
n A2 A4 As Ag 71 Mg 1
0 0 0 0 0 0 0 0
0-15 0-5294 — 1-4623 2-6528 — 3-8968 0-1093 .| 0-0435 — 0-0590
0-251 0-8288 — 2-0806 31947 — 3-5496 0-2136 0-0742 — 0-0900
0-250 0-7710 — 1-8780 2-8367 — 3-1192 0-5158 0-0742 — 0-0756
0-35 0-9914 — 2-0666 2-2348 | — 0-8979 0-5708 01082 — 0-0943 —0
0-501 1-1857 | — 1-6214 0-0000 2-4929 0-5495 0-1911 — 0-1089 o
0-50 0 1-2729 — 1-7957 (-0000 2-8415 0-5931 0-4525 — 0-1307
0-70 1-2055 — 0-0679 — 2-1849 0-2142 0-4456 0-3945 — 0-1229
0-90 0-6425 1-1692 0-6685 — 0-8852 0-1958 0-1819 — 0-0751
After normalisation
Az As Ag Ag C Ny Mg 1
7-437 — 9-534 6-251 — 2-038 3-268 1-644 — 0-7495
— 9-534 21-490 — 19-542 10-603 — 4-510 — 1-517 0-9423
6-251 — 19-542 35-505 — 33-592 2-869 0-064 — 0-6510 -0
— 2-038 10-603 — 33-592 53-439 — 0-329 0-924 0-2671 -
3-268 — 4-510 2-869 — 0-329 1-540 0-705 — 03253
1-644 — 1-517 0-064 0-924 0-705 0-455 — 0-1672
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TABLE 7
Plawn Wing, Incidence Solﬁtion
Equations: Symmetrical, Table 4.
Constant column: — (a,c/8s) sin ¢, as given in ’i‘able 4.

Solution: .
K|4sV = 0-3207 sin 4 — 0-0077 sin 3¢ + 0-0087 sin 5¢
4+ 0-0003 sin 7¢ - 0-1171 Mg — 0-1536 Mepso.
Local aerodynamic centre 0-25 chord:
dcpjde = 4-395.

(2) (3) (4) (5) 6) 7 8 ©)

HFHOOOOO0OODOODOOOOOOOOO0DO000

K/4sV Xg|2s (2) x (3) | Factors cf2s Crr (8) x (6) | Factors
0-279 0-0625 0-0174 1-125 0-2500 1-02 0-01562 1
0-278 0-0625 0-0174 3-375 0-2425 1-04 0-01516 4
0-275 0-0626 0-0172 3-375 0-2350 1-07 0-01471 2
0-272 0-0625 0-0170 2-025 0-2275 1-09 0-01422 4
0-265 0-0625 0-0166 4-262 0-2200 1-10 0-01375 2
0-254 0-0625 0-0159 1-676 0-2125 1-09 0-01328 4
0-244 0-0624 0-0152 4-262 0-2050 1-08 0-01279 2
0-236 0-0625 0-0148 2-148 0-1975 1-09 0-01234 4
0-227 0-0625 0-0142 2-948 0-1900 1-09 0-01188 2
0-220 0-0625 0-0138 3-914 0-1825 1-10 0-01141 4
0-217 0-0626 0-0136 0-890 0-1750 1-13 0-01096 1
0-217 0-0713 0-0155 0-838 0-2100 0-94 0-01497 1
0-213 0-0708 0-0151 4-262 0-2010 0-96 0-01423 4
0-206 0-0705 0-0145 1-9 0-1920 0-98 0-01354 2
0-197 0-0702 0-0138 4 0-1830 0-98 0-01285 4
0-186 0-0697 0-0130 2 0-1740 0-97 0-01213 2
0-175 0-0694 0-0121 4 0-1650 0-97 0-01145 4
0-161 0-0690 0-0111 2 0-1560 0-94 0-01076 2
0-145 0-0686 0-0099 | 4 0-1470 0-90 0-01008 4
0-124 0-0683 0-0085 1-8 0-1380 0-82 0-00943 2
0-092 0-0678 0-0062 4-525 0-1290 0-85 0-00875 4
0 0-0675 0 0-675 0-1200 0 0-00810 1

Aerodynamic centre = fcolumn 4/fcolumn 2 = 0-06531 span behind datum
= 0-346 ¢ behind datum.
Geometrical mean quarter-chord = fcolumn 8/ f column 6

= (-06558 span behind datum = 0-347 ¢ behind datum.
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TABLE 8

Plawn Wing, Induced Drag

w/V w|V w|V Total |[w\[ K

7 Kj4sV M cpos M crse Fourier w/V V 1 \4sV }| Factors

0 0-279 | 0-1171 — 0-1536 0-3852 | 0-3487 | 0-0973 1-125
0-05 0-278 | 0-1171 — 0-1536 0-3838 | 0-3473 | 0-0965 3-375
0-10 | 0-275 0-1171 — 0-1536 0-3796 | 0-3431 0-0944 3-375
0-15 | 0-272 0-1171 — 0-1536 0-3728 | 0-3363 0-0915 2.025
0-20 | 0-2685 0-1171 — 0-1536 0-3635 | 0:3270 | 0-0867 4-262
0-25 0-254 0-1171 —0-1536 | 0-3520 | 0-3155 0-0801 0-838
0-25 0-254 0 —0-1536 | 0-3520 | 0-1984 0-0504 0-838
0-30 | 0-244 0 —0-1536 | 0-3388 | 0-1852 | 0-0452 | 4-262
0-35 0-236 0 — 0-1536 0-3243 | 0-1707 0-0403 | 2-148
0-40 0-227 0 —0-1536 | 0-3090 | 0-1554 0-0353 2-948
0-45 | 0-220 0 —0-1536 | 0-2938 | ©0-1402 | 0-0308 | 3-914
050 | 0-217 0 —0-1536 | 0-2793 | 0-1257 0-0273 0-890
0-50 | 0-217 0 0 0-2793 | 0-2793 0-0606 | 0-838
0-55 0-213 0 0 0-2666 | 0-2666 | 0-0568 | 4-262
0-60 | 0-206 0 0 0-2569 | 0-2569 0-0529 1-9
0-65 0-197 0 0 0-2513 | 0-2513 0-0495 4
0-70 | 0-186 0 0 0-2514 | 0-2514 0-0468 | 2
0-75 0-175 0 0 0-2580 | 0-2589 | 0-0453 | 4
0-80 0-161 0 0 0-2757 | 0-2757 0-0444 2
0-85 0-145 0 0 0-3040 | 0-3040 | 0-0441 4
0-90 | 0-124 0 0 0-3462 | 0-3462 | 0-0429 1-8
0-95 0-092 0 0 0-4050 | 0-4050 | 0-0373 | 4-525
1-00 0 0 0 0-4836 | 0-4836 0 0-675

21-19 3-323 ., \
Cp; (4395 60 C, 0-0608 C,2.
L _ 00601
nA )
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TABLE 9
Symmetrical Wing Twist, Chord X Tuwist Linear

Equations: Symmetrical, zero lift, Table 5.

Constant column: — (a,c/8s) sin ¢ X twist, Table 2.

Solution: : :

K|4sV = — 0-0086 sin ¢ + 0-0441 sin 3¢ + 0-0018 sin 5¢

+ 0-0043 sin 7¢ — 0-0061 Mcpas + 00172 Mcpso -
cay = — 0-2745.
(1) @) 3 @) ) ©) )
7 Kl4sv X258 (2} x (3) Factors ¢/2s Crr,
per radn per radn

0 — 0-0452 0-0625 — 0-00282 1-125 0-2500, —0-723
0-05 — 0-0445 0-0625 — 0-00278 3-375 0-2425 — 0-734
0-10 — 0-0425 0-0626 — 0-00266 3-375 0-2350 — 0-723
0-15 — 0-0391 0-0625 — 0-00244 2-025 0-2275 — 0-688
0-20 — 0-0346 0-0625 — 0-00216 4-262 0-2200 — 0-629
0-25 — 0-0291 0-0625 — 0-00182 1-676 0-2125 — 0-548
0-30 — 0-0230 0-0624 — 0-00144 4-262 0-2050 — 0-449
0-35 — 0-0165 0-0625 — 0-00103 2-148 0-1975 — 0-334
0-40 -— 0-0100 0-0625 — 0-00062 2-948 0-1900 — 0-210
0-45 — 0-0037 0-0625 — 0-00023 3-914 0-1825 — 0-081
0-50 0-0022 0-0626 0-00014 0-890 0-1750 0-050
0-50 0-0022 0-0713 0-00016 0-838 0-2100 0-042
0-55 0-0077 0-0708 0-00055 4-262 0-2010 0-153
0-60 0-0134 0-0705 0-00094 1-9 0-1920 0-279
0-65 0-0189 0-0702 0-00133 4 0-1830 0-413
0-70 0-0244 0-0697 0-00170 2 0-1740 0-561
0-75 0-0268 '0-0694 0-00207 4 0-1650 0-722
0-80 0-0351 0-0690 0-00242 2 0-1560 0-900
0-85- 0-0399 0-0686 0-00274 4 0-1470 1-086
0-90 0-0429 0-0683 0-00293 1-8 0-1380 1-244
0-95 0-0400 0-0678 0-00271 4-525 0-1290 1-240
1-00 0 0-0675 0 0-675 .0-1200 0

4 .

o = 2 [cotumn 4 = — 11228 CHHOZ — 0.0002.
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TABLE 10
Fifty per cent Span Flaps. Zero Lift

Equatibns: Symmetrical, zero Lift, Table 5.

Constant column: — (a,/a;) (a,c/8s) sin ¢ from 5 = 0 to 0-5 inner,
and zero from 0-5 outer to tip: the flap/chord
ratio is 0-25 for which a,/a; = 0-60900 (see

Table 2).
Solution:
K/4sV = — 0-3676 siné + 0-0376 sin 3¢ — 0-0095 sin 5¢
— 0-0045 sin 7¢ + 0-0293 Mcpes + 0-5884 Mcps,.
ag = — 0-3708.

R; = 1sin % — 1 sin 20% = 0-6495.

. 0-16238 ¢/2s

Local centre of pressure = [0-25 -+ chord for n = 0"

K/4sV
to 0-5 inner.
(1) (@) (3) (4 (5) ©) (7) )

7 Kj4sV ¢/2s Local C.P. Xg 28 (2) x (5) - | Factors Crr -

0 0-0447 .0-2500 1-158 0-290 0:01295 1-125 0-715
0:-05 0-0445 0-2425 1-135 0-277 0:01233 3-375 0-734
0-10 0-0439 0-2350 1-119 . 0-267 0-01171 3-375 0-747
0-15 0-0428 0-2275 1-113 0-259 0-01108 2:025 0-752
0-20 0-0410 02200 1-121 0-254 0-01042 4-262 0-746
0-25 0-0381 0-2125 1-156 0-255 0-00972 1-676 0-717
0-30 0-0344 0-2050 1-218 0-261 0-00897 4-262 0-671
0-35 0-0301 0-1975 1-315 0-273 0-00821 2+148 0-610
0-40 0-0240 0-1900 1-536 0-307 0-00738 2-948 0-505
0-45 0-0141 0-1825 2-352 0-448 0-00629 | 3-914 0-309
0-50 — 0-0078 0-1750 — 3-393 — 0-575 0-00448 0-890 — 0-178
0-50 — (-0078 0-2100 0-25 0-071 — 0-00056 0-838 — 0-149
0-55 — 00290 0-2010 0-25 ‘ 0-071 — 000205 4262 — 0577
0-60 — 00369 0-1920 0-25 0-070 — 0-00260 1-9 — 0-769
0-65 — (0-0400 0-1830 0-25 0-070 — 0-00281 4 — 0-874
0-70 — 0-0405 0-1740 0-25 0-070 — 0-00282 2 — 0-931
0-75 — 0-0398 0-1650 0-25 0-069 — 0-00276 4 — 0-965
0-80 — 0-0388 0-1560 0-25 0-089 — 0-00268 2 — 0-995
0-85 — 0-0379 0-1470 0-20 0-069. — 0-00260 4 — 1-031
0-90 — 0-0385 0-1380 0-25 0-068 — 0-00249 1-800 — 1-058
0-95 — 0-0321 0-1290 0-25 0-068 — 0-00218 4-525 — 0-995
1-00 0 0-1200 0-25 0-068 0 0-675 0

b = — 11298 026%4 — _ 0-3983.
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TABLE 11
Discontinuity of Incidence at n = 0-25. Zeyo Lift
Equations: Symmetrical, zero lift, Table 5.

Constant column: — (a.,¢/8s) sin ¢ from n = 0 to 0-25 inner, and
zero from 0-25 outer to tip.

Solution:
K|4sV = — 0-3372 sin ¢ + 0-0486 sin 3¢ — 0-0166 sin 5¢
£ 0-0069 sin 7¢ - 0-9833 Mcpss + 00452 M.
o = — 0-3264. Cno = 0-01418. |
Local centre of pressure 0-25 chord.
|
7 K[4sV Crr 7 K[4sV Crr
0 0-1048 ~1-68 0-50 — 0-0359 — 0-68
0-05 0-1034 1-71 0-55 — (-0390 — 0-78
0-10 0-0988 1-68 0-60 — 0-0406 — 0-85
0-15 0-0899 1-58 | 0-65 — 0-0418 — 0-91
0-20 0-0736 1-34 0-70 — 0-0425 — 0-98
0-25 0-0361 0-68 0-75 — 0-0425 —1-03
0-30 — 0-0013 — 0-03 0-80 — 0-0413 — 1-08
0-35 — 0-0174 — 0-35 0-85 — 0:0378 —1-03
0-40 — 0-0264 — 0-56 0-90 — 0-0313 —0-91
0-45 — 0-0318 — 0-70 0-95 — 0-0207 — 0-64
0-50 — 0-0359 — 0-82 1-00 0 0
TABLE 12

Uniform Roll: 1 Radian at Tip = Unit V]ws

Equations: Anti-symmetrical, Table 6.
Constant column: — (a,c/8s) % sin ¢.

Solution: :
K/[4sV = 0-0986 sin 2¢ -+ 0-0027 sin 44 -+ 0-0035 sin 64
— 00006 sin 8¢ — 0:0210 Mypps + 0:0583 Moruse -

, = — 0-438.
Local centre of pressure 0-25 chord.
3 Kl4sV Crz per o K|4sV Crr per
per radn unit (— Cy) per radn unit (— Cy)

0 0 0 0-50 0-0859 3-74
0-05 0-0109 0-41 0-55 0-0924 4-20
0-10 0-0215 0-84 0-60 0-0971 4-62
0-15 0-0318 1-28 0-65 0-1007 5-03
0:20 0-0413 1-72 0-70 0-1031 5-42
0-25 0-0497 2-14 0-75 0-1041 5-76
0-30 0-0574 2-56 0-80 0-1030 6-03 -
0-35 0-0649 3-00 0-85 0-0088 6-14
0-40 0-0720 3-46 0-90 0-0893 5-91
0-45 0-0787 3:94 0-95 0-0697 4-94
0-50 0-0859 4-48 1-00 0 0
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TABLE 13
- Aileron from n = 0-5 to 1-0, Wing at Zero Incidence
Equations: Anti-symmetrical, Table 6.

Constant column: Zero from 4 = 0 to 05 inner:
— (@2]a,) (a,c8s) sin ¢ for n = 0-5 outer to tip.
The value of E varies from 0-25 at . = 0-5 to
0-33 at 4 = 0-9: the corresponding values of
a,/a, are given in Table 1.

Solution:
K[4sV = — 0-1016 sin 2¢ — 0-0006 sin 44 - 0-0082 sin 64
— 0-0015 sin 8¢ + 0:0105 Mrpgs + 0-6317 Moras,.
C, = — 0-319.
7 KJ4sV Crz per 7 KJ4sV Cyz per
unit (— C)) unit (—C)
0 0 0 0-50 0-0541 3-23
0-05 0-0026 0-13 0-55 0-0760 4-75
0-10 0-0051 0-27 0-60 0-0839 5-49
0-15 0-0074 0-41 0-65 0-0871 5-97
0-20 0-0098 0-55 0-70 0-0875 6-31
0-25 0-0119 0-70 0-75 0-0860 8-54
0-30 0-0144 0-88. 0-80 0-0829 6-67
0-35 0-0176 1-12 0-85 0-0775 662
0-40 0-0227 1-50 0-90 0-0686 6-24
0-45 0-0318 219 0-95. 0-0525 5-11
0-50 0-0541 3-88 1-00 0 0
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TABLE 14
Composite Leading for Flaps and Ailevons. Zevo Lift

Specification: 4C; due to flaps = 1.
Rolling moment due to ailerons + 0-1.

Incidence for zero lift: — 0-2275 radn
Aileron deflection: " — 0+:3138 radn
Composite K/4sV = 0-6135 (flaps) — 0-3138 (ailerons).

Mady 8s* ( ¢ )2
Local C,, T,0°55 S Ry o dn Bdy.
7 Kj4sV Kl4sV c/2s R oy
starboard port

0 0-0274 0-0274 0-2500 0-6495 0-6135
0-05 0-0265 0-0281 |. 0-2425 0-6495 0-6135
0-10 ©0-0253 0-0285 0-2350 0-6495 0-6135
0-15 0-0240 0-0286 0-2275 0-6495 0-6135
0-20 0-0222 0-0282 0-2200 0-6495 0-6135
0-25 0-0197 0-0271 0-2125 0-6495 0-6135
0-30 0-0166 0-0256 0-2050 0-6495 0-6135
0-35 0-0130 0-0240 0-1975 0-6495 . 0-6135
0-40 0-0076 0-0218 0-1900 0-6495 0-6135
0-45 — 0-0013 0-0187 0-1825 0-6495 0-6135
0-50 — 0-0218 0-0122 0-1750 0-6495 0-6135
0-50 — 0-0218 0-0122 0-2100. | 0-6495 -+ 0-3138
0-55 —0-0416 0-00860 0-2010 0-6492 + 0-3138
0-60 — 0-0489 0-0037 0-1920 0-6482 - 0-3138
0-65 — 0-0518 0-0028 0-1830 0-6466 4 0-3138
0-70 — 0-0523 0-0027 0-1740 0-6443 4 0-3138
0-75 — 0-0514 0-0026 | 0-1650 | 0-6416 -+ 0-3138
0-80 — 0-0498 0-0022 0-1560 0-6382 4+ 0-3138
0-85 — 0-0476 0-0010 0-1470 0-6344 + 0-3138
0-90 — 0-0439 — 0-0009 0-1380 0-6301 + 0-3138
0-95 — 0-0362 — 0-0032 0-1290 0-6253 |+ +£0-3138
1-00 0 0 0-1200 0-6201 + 0-3138
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TABLE 15

Yawing Moment with .Deﬂected Flaps and Ailevons. Zero Lift

HOOOOOOOOOOOOOOOOOOOOC‘D
SOV NNOD N TN R OWNNED==OO
CQUioUhouICcuonoconouIonTonnon

K4sV w[V Antisymmetrical w\/ K K4sV w/V Symmetrical w\ /[ K Inte-
Symml. (—) <——) Antisymml|— (—) (_> grating
Mrass Mraso | Fourier Total VI\4sV ’ Mcres | Mcrsy | Fourier Total V/\4sV Factors

0-0274 0 0 0 0 0 0 0-0180 | 0-3610:| —0-3045 0-0745 . 0 0
0-0273 0 0 0-0002 0-0002 0-00001 || —0-0008 | 0-0180 | 0-3610 | —0-3041 0-0749 | —0-00006 | 0-169
0-0269 0 0 0-0010 0-0010 0-00003 || —0-0016 | 0-0180 | 0-3610 | —0-3028 0-0762 | —0-00012 | 0-338
0-0263 0 0 0-0029 0-0029 0-00008 || —0-0023 | 0-0180 | 0-3610 | —0-3003 0-0787 | —0-00018 | 0-304
0-0252 0 0 0-0064 0-0064 0-00016 || —0-0030 | 0-0180 | 0-3610 | —0-2963 0-0827 | —0-00025 | 0-852
0-0234 0 0 0-0118 0-0118 0-00028 || —0-0037 | 0-0180 | 0-3610 | —0-2904 0-0886 | —0-00033 | 0-210
0-0234 | —0-0033 .0 0-0118 0-0085 0-00020 || —0-0087 0-3610 | —0-2004 0-0706 | —0-00026 | 0-210
0-0211 | —0-0033 0 0-0193 0-0160 0-00034 || —0-0045 0-3610 | —0-2820 0-0790 | —0-00036 | 1-279
0-0185 | —0-0033 0 0-0289 0-0256 0-00047 || —0-0055 0-3610 | —0-2706 0-:0904 | —0-00050 | 0-752
0-0147 | —0-0033 0 0-0403 0-0370 0-00054 || —0-0071 0-3610 | —0-2559 0-1051 | —0-00075 | 1-179
0-0087 | —0-0033 0 .0-0532 0-0499 0-00043 j| —0-0100 0-3610 | —0-2376 0-1234 | —0-00123 | 1-761
—0-:0048 [ —0-0033 0 0-0668 0-0635 | —0-00030 || —0-0170 0-3610 | —0-2157 0-1453 [ —0-00247 | 0-445

0

0

0

0

0

0
—0-0048 [ —0-0033 | —0-1982 | 0-0668 | —0-1347 0-00065 || —0:0170 0 0 —0:2157 | —0-2157 0-00367 | 0-419
—0-0178 [ —0-0033 | —0-1982 | 0-0804 | —0-1211 0-00216 || —0-0238 0 0 —0-1908 | —0-1908 0-00454 | 2-344
—0-0226 | —0-0033 | —0-1982 | 0-0930 | —0-1085 | - 0-00245 || —0-0263 0 0 —0-1638 | —0-1638 0-00431 1-140
—0-0245 | —0-0033 | —0-1982 | 0-1036 | —0-0979 0-:00240 || —0-0273 0 0 —0-1364 | —0-1364 0-00372 | 2-600
—0-0248 [ —0-0033 | —0-1982 | 0-1112 | —0-0903 0-00224 || —0-0275 0 0 —0-1111 | —0-1111 0-00306 | 1-400
—0-0244 | —0-0033 | —0-1982 | 0-1149 | —0-0866 0-00211 || —0-0270 0 0 —0-0916 | —0-0916 0-00247 | 3-000
—0-0238 | —0:0033 | —0-1982 | 0-1139 | —0-0876 0-00208 i —0-0260 0 0 —0-0824 | —0-0824 0-00214 | 1-600
—0-:0233 | —0-0033 | —0-1982 | 0-1081 | —0-0934 |- 0-00218 || —0-0243 0 0 —0-0898 | —0-0898 0-00218 | 3-400
—0-0224 | —0-0033 | —0-1982 | 0-0976 | —0-1039 0-00233 || —0-0215 0 0 —0-1215 | —0-1215 0-00261 | 1-620
—0-0197 | —0-0033 | —0-1982 | 0-0836 | —0-1179 0-00232 || —0-0165 0 0 —0-1872 | —0-1872 0-00309 | 4-299
0 —0-0033 | —0-1982 | 0-0680 | —0-1335 0 0 0 0 —0-2985 | —0-2985 0 0-675

C,: First part 10-596 % — 0-00894
‘ Total: 0-01978.
Second part 10-596 206138

0 = 0-01084
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