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1. Introduction

This Report describes an integral method for predicting the behaviour of turbulent boundary layers in
two-dimensional and axisymmetric, compressible flows. It is believed to be a significant improvement upon,
and was developed as a replacement for, the version! of Head's2 entrainment method which has been in use in
R.A.E. for some years. At the cost of a fractional increase in computing time-three simultaneous ordinary
differential equations have to be integrated, as compared with two in Head's method-the new method is
consistently the more accurate, particularly in its predictions of the test cases of the Stanford Conference3 on
Computation of Turbulent Boundary Layers.

In fact, it was largely in the aftermath of the Stanford Conference that the present method was developed.
The Conference had convincingly demonstrated that a number of methods existed which were generally more
accurate than the original entrainment method. It had also provided a fairly clear indication that the future lay
with methods in which the turbulence stresses were treated as independent of the local mean velocity
profile-so called 'historical' methods. On the other hand, for the flows to which it was restricted-that is
two-dimensional, thin, attached boundary layers in incompressible flow-the Conference had not shown that
there was anyone class of method which was uniquely successful and, in particular, had not shown
finite-difference methods to be significantly more accurate than integral methods, or vice versa.

The virtues of Head's original method and its R.A.E. counterpart were:
(1) its well established3 adaptability which derived from use of the entrainment equation-compressible

flows, three-dimensional flows, flows with boundary layer control, flows-with heat transfer, wake flows
had all been treated successfully;

(2) its speed, which derived from it being an integral method, and which enabled its extension to treat
general three-dimensional boundary layers4

, and its incorporation in iterative schemes for calculating
the weak viscous/inviscid interaction in flow about a two-dimensional aerofoil5

, without computing
times becoming unduly large.

The combination of speed and adaptability held, in particular, the prospect that a general, three­
dimensional version of the method could be nested within an iterative scheme for calculating three­
dimensional inviscid flow to produce a method for predicting, at an acceptable computing cost, the fully
three-dimensional flow over a swept wing.

To some of those familiar with these virtues of Head's method, the Stanford Conference brought to a focus
the feeling that there was a place for a new method which retained the adaptability of the original entrainment
method but which was 'historical'. Already, at Stanford, Hirst and Reynolds had presented one such method
which the Evaluation Committee had placed in either the first or second classes (depending on how its starting
conditions were specified) and, shortly after the Conference, Head and Patel6 and then Horton7 also put
forward new methods. Impressed by the simplicity and accuracy of the method developed by Head and Patel,
we decided that, extended to compressible flows, it would make a suitable replacement for our version of the
original entrainment method.

Head and Patel calculated boundary-layer development using only two differential equations, momentum­
integral and entrainment, with the entrainment coefficient determined from an algebraic expression in which
'history' was allowed for by incorporation of a measure of the local departure of the boundary layer from an
equilibrium state. The present method emerged from a somewhat light-hearted attempt to show a formal
equivalence, for small sustained departures from equilibrium, between the relationships developed by Head
and Patel and the model of turbulence proposed by Bradshaw, Ferriss and Atwell8 in their highly successful
finite-difference method. The attempt was unsuccessful-the two methods do not seem to be formally
related-but it did yield an ordinary differential equation for peak shear stress, derived from the form of the
turbulent kinetic energy equation put forward by Bradshaw et al., which invited conversion into a differential
equation for entrainment coefficient.

The end result was a 'lag-entrainment' integral method involving three differential equations, momentum­
integral, entrainment, and a rate equation for the entrainment coefficient. Because this last equation
represented explicitly the balance between the production, advection, diffusion and dissipation of turbulent
energy, and because its coefficients could be determined directly from the work of Bradshaw et al., it was
preferred to the simpler but more empirical algebraic relation of Head and Patel. Even so, the way in which the
method as a whole is built around the concept of 'equilibrium' flows, as discussed by Rotta9 for example,
follows closely the path trodden by Head and Patel. Also, the differential equation for shear stress was partly
anticipated by McDonaldlO though, as observed in Section 2.2, there is a significant difference between his
equation and ours.

The method is derived primarily from the model of the turbulence structure proposed by Bradshaw et al.,
and the analysis of 'equilibrium' boundary layers by Mellor and Gibson ll

. It has evolved from these
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antecedents without the introduction of any important new empiricism; Le. no disposable constants have been
adjusted to provide an optimum fit to the available experimental data. Nevertheless, its predictions of the
Stanford test cases appear at least to match those of the methods placed in the first class by the Conference
Evaluation Committee.

The directness of the physical reasoning behind the method is an advantage when considering secondary
effects. For example, Bradshaw's13 proposed allowance for the influence of longitudinal curvature on the
turbulence structure has been incorporated in a simple and logical fashion. Allowances for the effect of flow
divergence on the turbulence structure, and for the change of turbulence structure in a wake have been
introduced in a very similar way. The effect of lack of two-dimensionality on the development of momentum
and displacement thicknesses has also been taken into account to provide a firmer base for comparisons
between prediction and experiment.

The extension of the method to compressible flow is based primarily on the interpretation by Bradshaw and
Ferriss l4 of Morkovin'sl5 hypothesis that the turbulence structure is essentially unaffected by compressibility.
No coordinate transformations are invoked, though the integral parameters used to specify the compressible
boundary layer, the same as were used in the method's predecessorl, necessitate the introduction of an
empirical factor to account for their variation with Mach number in 'equilibrium' flows. As described here, the
method is restricted to compressible adiabatic flows, although its extension to treat flows with heat transfer
along the lines tentatively proposed in Ref. 1 is straightforward. In the section on compressible flow, a very
recent and somewhat speculative proposition by Bradshawl6 that the turbulence structure is influenced by flow
dilatation is noted, and an allowance for this effect is introduced into the method for illustrative purposes.

The Report sets out the derivation of the method, first for incompressible flow, then for compressible flow.
Although the derivations are not short, and the lag equation in its final form looks rather long, the method is
essentially straightforward and its algebra simple. As the equations are predominantly algebraic, with a
minimum of empirical exponential or logarithmic functions, their integration on a computer is in fact a very
rapid process. The predictions of the method are compared with a wide range of experimental data, including a
representative sample from the Stanford Conference, to demonstrate both its significant improvement on the
earlier entrainment method and its accuracy in absolute terms. For compressible flows, the limited data
available, and the uncertainty as to their validity as test cases, undermine any firm assessment of the method in
flows other than at constant pressure.

2. The Prediction Method for Incompressible Flow

2.1. Outline

The boundary layer is defined by three independent parameters, momentum thickness 0, shape parameter
H( =8*10) and entrainment coefficient CEo The development of these in a given pressure distribution, with
their initial values known, is predicted by the forward integration of three simultaneous ordinary differential
equations. Two of these, the momentum-integral and entrainment equations, are those used in Head's2
original method; the third, a rate equation for entrainment coefficient (the 'lag' equation), is derived from the
turbulent kinetic energy equation. This third equation is written explicitly in terms of the factors tending to
drive the overall turbulence structure away from, and those tending to restore, a state of equilibrium.

The derivation of the lag equation is given later. The other two equations, in incompressible, two­
dimensional (i.e. planar or axisymmetric) flow may be written: the momentum integral equation,

1 d Cf rO dUe
- -(ru'O)=r--(H+l)--­
Uedx e 2 Ue dx'

(1)

where suffix e denotes conditions at the edge of the boundary layer and r, the body radius in axisymmetric flow,
may be set to unity in planar flow; the entrainment equation,

(2)

where HI is the mass-flow shape parameter (8 - 8*)10 first proposed by Head. The grouping of the terms in
these equations differs slightly from that used previouslyl, eliminating terms in drldx and hence avoiding
unnecessary differentiation of the input data.
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As in Head's method, relations are needed between H, and H, and to determine skin friction coefficient. In
addition, a relation for the variation of shape parameter with pressure gradient in equilibrium flows is required
in order to specify some of the terms in the lag equation, which here replaces the empirical relation between CE

and H, used by Head. Use of the properties of equilibrium flows is also made to take the final steps in the
process of deriving the lag equation from the turbulent energy equation.

The form of the lag equation makes it possible to represent extraneous influences on the turbulence
structure, such as that of longitudinal curvature, in a logical and straightforward manner. This feature of the'
method is also employed in extending the method to calculate wakes. Finally, a set of first-order corrections is
obtained for use when testing the method against imperfectly two-dimensional experimental data.

2.2. The Lag Equation in Emhryo

The turbulent kinetic energy equation, an exact equation derived from the Navier-Stokes equations, may
for two-dimensional flow be written

1 (aq2 aq2
)-p U-+V--

2 ax ay

advection

au
T­

ay

production

a(-l-)+- pV+_ pq 2v +
ay 2

diffusion

pE

dissipation

=0. (3)

Bradshaw, Ferriss and Atwe1l8 defined parameters

a,=T/pq 2

_(PV 1-2)j(Tmax)! T0- -+-q V --p 2 p p

such that this could be written, still as an exact equation,

! / 'U~ (_T)+ V~(_T )_!.. aU+(Tmax) ~(o!..)+ (T p), =0.
ax 2a,P ay 2a,P p ay p ay p L

adv adv prod diff . diss

(4)

(5)

Their prediction method was then derived by postulating that Land O/(Tm,,/pU;)! could be taken as
functions only of y/o and that a, was effectively a constant, so that equation (5) became an approximate,
empirical, partial differential equation for shear stress.

In flows with adverse pressure gradients, profiles of shear stress against y have a maximum in T/p at which, if
G, L and a, behave as Bradshaw and his colleagues postulated, equation (5) reduces to an ordinary differential
equation for maximum shear stress. Noting that, if

we have, at a maximum in T/ p in incompressible flow,

(Tm,,) I~ (O!..) = _1 (Tmax)2t
p ay p oU. p

where t =dC/d(y/o), and equation (5) becomes

U d (T) (T) aU 1 (T)2 t (T/p)~" o.
2al dx P max - P maxay+ aUe P max + L

adv prod diff diss

5

(6)



If we write T maxipU; = em, multiply equation (6) by 2a18 and divide it by UU;CTm , it becomes, after some
rearrangement,

~ dCTm =2 Ue [~au-~d -c tJ- 25 dUe
C

Tm
dx a 1 U Ue ay L Tm Tm l Ue dx' (7)

adv prod diss diff adv

Anticipating Section 2.3, we define 'equilibrium' flows as those in which CTm and the shapes of the shear-stress
and velocity profiles do not vary with x. Assuming that the dissipation length scale L can be equated to the
conventional mixing length I( = .;:;[plau/ay) at the position of T max in these flows, we may write equation (7)

--.£ dCTm = 2 Uet{d _C~ }+ (2SdUe\ _ 21J dUe
C-rm dx al U L TmEQ

Tm Ue dx) EO Ue dx'

adv prod diss diff adv

(8)

where, by virtue of the condition that the right-hand side of this equation should be zero in equilibrium flows,
we have been able to replace the diffusion term of equation (7) by 2«8/Ue)(dUe/dx))EO'

Equation (8) is the basis of the lag equation of the present method. It differs from earlier, wholly empirical
equations, such as that employed by Nash and Hicks3

, in containing a pressure gradient term (the right-hand
side of the early empirical equations was typically of the form (CTEO/ CT -1) X constant) and, though similar to
the equation derived by McDonald lO

, differs from it in containing a term explicitly representing diffusion.
As written above, equation (8) was derived independently by B. G. 1. Thompson and the first author of this

Report, and both explored simple ways of converting it into a differential equation for entrainment coefficient.
The procedure finally adopted by the present authors is given in Section 2.6.

2.3. Equilibrium Flows

Equilibrium flows are here defined as flows in which the shape of the velocity and shear-stress profiles in the
boundary layer do not vary with x. Throughout the flow, dH/dx and dCTm/ dx are both zero. As Rotta9 has
observed, such flows are in general strictly possible only on surfaces with an appropriate streamwise
distribution of roughness. This does not, however, restrict their usefulness as a foundation for a boundary­
layer method.

The physical reasoning underlying the concept of such flows is set out by Rotta. The parameters which
characterise them are the shape parameter of the velocity-defect profile,

and the pressure-gradient parameter

G=H-1 /2
H VC;'

5* dp
II=--.

Tw dx

(9)

(10)

Various empirical correlations of II as a function of G have been proposed. In the present method, we have
adopted the relation

G = 6'432(1 +0'8II)~ (11)

which is shown in Fig. 1 compared with experimental data from a range of flows in near equilibrium and with
the analytical results of Mellor and Gibson11.

Although perceptibly different from the G(II) locus of Mellor and Gibson equation (11) lies very close to
the empirical G(II) locus proposed by Nash and MacDonald12

, differing primarily in being slightly offset from
the observed behaviour on smooth surfaces. For example, in flow at constant pressure over a smooth surface,
the method does not predict the value of G given by equation (11) with II zero because this flow is not an
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equilibrium flow by our definition: the constants in equation (11) have therefore been chosen so that the zero­
pressure-gradient value of G as given by a calculation using the method is close to 6·55, in agreement with the
flat-plate skin-friction law of Winter and Gaudet17

•

The final form of the lag equation involves equilibrium values of CE and of (8/Ue)(dUe/dx). These are
obtained straightforwardly given that dH/dx is zero in equilibrium. Thus, writing the equilibrium locus,
equation (11),

(12)

we have immediately

(..i.. dUe ) =1.25{Ct_( H-l )2}
Ue dx EO H 2 6·432H

and, by definition,

(~ dUe) =(H +HI) (..i.. dUe) .
Ue dx EO Ue dx EO

Finally, from equations (1) and (2) we obtain

so that the two required parameters are determined as functions of H, HI and Ct.

(13)

(14)

(15)

2.4. Shape Parameter Relation

In Head's original entrainment method2 and the later development of it at R.A.E. I, CE and H were assumed
to be uniquely related to HI. These relationships in fact determined the effective equilibrium locus of the
method, and in the R.A.E. version of the method some care was taken to match the two relationships to
achieve a particular value of G in zero pressure gradient.

In the present method, the equilibrium locus is explicitly specified and as a result, given equations (13) to
(15), the performance of the method does not depend very critically on the assumed relationship between HI
and H. Although some previous workers have sought to improve the entrainment method by introducing a
more elaborate relationship between H, HI and Reynolds number based on momentum thickness R(J, derived
from a two-parameter velocity profile family such as Cole'sI8, we do not think there is anything worthwhile to
be gained in this. In reality, HI is a somewhat arbitrary parameter whose value depends on how we define
boundary-layer thickness. If we take the purpose of the method to be solely to predict R(J and H accurately (in
the knowledge that any other properties of the velocity profile can then be determined readily from a profile
family), its performance is not perceptibly impaired by the use of a unique relation between H and HI: in
effect, this amounts to making our definition of the edge of the boundary layer weakly dependenffin Reynolds
number.

The particular form of relation adopted here is shown in Fig. 2 where it is compared with a trajectory from
Thompson'sl9 two-parameter profile family and with some experimental measurements by East and Hoxey20

of the boundary layer on the plane of symmetry ahead of a bluff obstacle.
The divergence between Thompson's line and the experimental results is attributed to the very severe

adverse pressure gradient in the flow studied by East and Hoxey. Seddon21 has found that velocity profiles are
appreciably distorted away from the simple 'log-law plus wake' shapes of ColesI8 and Thompson if pressure
gradients are sufficiently severe, and Ease2 has confirmed that Seddon's type of distortion was clearly in
evidence in the experiments by Hoxey and himself.

The line drawn in Fig. 2 is

(16)
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It has been biased away from the well-established profile family towards the particular experimental results
shown because it is in severe pressure gradients that the H(Hl ) curve, particularly its shape, has its greatest
influence on the performance of the method. If streamwise variations are gentle, the method will track along
close to the equilibrium locus and the precise shape of the H(Hl ) curve is of minor importance. For values of H
less than 2·35, equation (16) lies close to the results generated by Mellor and Gibson ll in their analytical
treatment of equilibrium boundary layers.

The third term in the equation is of little significance in attached flows but, by ensuring finite dHjdH l for all
positive HI (see inset in Fig. 2), it avoids the possibility of singular behaviour in integrations into regions of
rising pressure. It is merely a device to simplify programming the method so that, given a set of input data, it
will continue its computation to the end without the need for special subroutines to identify a breakdown in the
computation and then seek out the start of a new set of data. The credibility of predicted values of H greater
than, say, 2·5 is somewhat doubtful, but there are some situations (for example, a sudden pressure rise
followed by a plateau, as in a shock and boundary layer interaction) in which the excursion of H to high values
is of relatively short duration. It is possible that the method will still be useful to an engineer in these situations,
but we have not explored this aspect of its behaviour to any extent, and each user will need to judge the
accuracy of the method from his experience with it in his own particular context.

2.5. Skin Friction Relation

Skin friction coefficient is determined as a function of Hand Ro. Following Ref. 1, skin friction in a general
flow is related to skin friction on a flat plate by the empirical expression

( Ct +0'5)( H -0'4) =0.9,
Cta H o

(17)

where suffix zero indicates values in zero pressure gradient. Flat-plate skin friction is then obtained from the
correlation of Winter and Gaudet l

? (in the earlier entrainment method, the correlation of Spalding and Chi23

was used). For our purposes this correlation, which does not give Cf explicitly, has been approximated by the
expression

C
• __ 0·01013
II 0,00075,
a 10glO Ro - 1·02

(18)

which fits the correlation to within 0·04 per cent for values of R(J between 5 x 103 and 5 x 105
• At values of Ro

below 5000, Ct given by equation (18) rises above that of the Winter and Gaudet correlation, being slightly
more than 7 per cent high at R o = 320. This is in qualitative agreement with the observed behaviour at low
Reynolds number although, according to Coles24

, the increase in Cra above that given by logarithmic 'high
Reynolds number' formulae is rather greater than 7 per cent at a value of R(J as low as this. Whilst it should be
possible to correct the method for the anomalous behaviour of Cta and of the G(II) locus at low Reynolds
number, this would require a more careful study of the available experimental data than we have yet made, and
no such corrections are at present included.

To complete the skin-friction relation, we write

(19)

where, following Winter and Gaudet, we take G in zero pressure gradient to be 6·55.

2.6. Completion of the Lag Equation

To complete the prediction method, equation (8) needs to be converted from a differential equation for
maximum shear stress into a differential equation for entrainment coefficient.

As it stands, equation (8) applies only to flows with a maximum stress away from the wall, and contains the
grouping 2a I Uel;/ UL which is a strong function of the position of T max if this is at a value of yj8 less than 0.2
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approximately. The first approximation we therefore make is to delete the suffix m, writing the equation

(20)

where C'T is now C-rm if the maximum shear stress occurs at y/8 ~ 0·2, but is otherwise the value of 'T/PeU; at
yl8 =0·2.

Referring back to equation (5) we see that the only terms simplified by applying the equation at a maximum
in r are the advective term involving Va'T/ay and the diffusion term involving a(G'T)/ay. We must therefore
assess how important are the terms in alay which have implicitly been omitted in regarding equation (20) as a
transformation of equation (5) into a differential equation for 'T at yl8 = constant.

In all adverse pressure gradients except the mildest, maximum 'T occurs at y/8 > 0·2; it is therefore only in
strong favourable pressure gradients that we might expect the omitted terms in a'T!ay to be important.
However, for two-dimensional sink flow, which has the strongest favourable pressure gradient for which an
equilibrium flow is possible, lines of y/8 =constant are also streamlines. In this flow, the terms representing
advection along a streamline are identical with those in equation (20), the production and dissipation terms are
also identical and, since 'TI pU; is constant along streamlines in sink flows, the diffusion term must also be given
correctly by equation (20). On the basis that, if equation (20) is applicable to virtually all adverse pressure
gradient flows and also to sink flows it is not likely to be appreciably in error for flows intermediate between
these, we assume therefore that it is a valid approximation for all flows of practical interest.

The second approximation we make is to replace the group 2a I Ue8/ UL by a constant. Bradshaw et al.8 have
suggested that al is effectively constant at 0,15, and their function LI8 is very nearly constant at 0·09 for
values of y/B between 0·2 and, say 0·5, which is the range of application of equation (20). The velocity ratio
Uel U at the point of application of equation (20) is a function of velocity profile shape, but not a strong one (in
adverse pressure gradients, the influence of the velocity profile becoming less full is to some extent
compensated by the outward movement of the position of maximum 'T). From the work of Mellor and
Gibson l1

, we have taken an approximate mean value of Ue/U at the position of 'Tmax in flows with adverse
pressure gradients to be 1·5. We have also adopted a value of 0·08 rather than 0·09 for L18, to allow for the
fact that the shape-parameter relation of equation (16) gives values of boundary-layer thickness typically 10
per cent greater than those determined from the value of y at U/Ue = 0·995.

Replacing al> L/8 and Ue/ U by these constants, equation (20) becomes

(21)

and all that remains is replace the terms in C'T by corresponding terms in CEo At first it might be thought that the
assumption CE = constant x CT , as is employed by Bradshaw et al. 8 in evaluating their diffusion term, would be
an adequate approximation. This has proved, however, to be an oversimplification which leads to highly
unrealistic behaviour of the method in certain circumstances.

We have derived a more realistic relationship between CE and CT from the analytical study of equilibrium
boundary layers by Mellor and Gibson l1

, using equation (16) to determine HI as a function of H and hence, for
our purposes, to define the edge of the boundary layer and thus CEo

Fig. 3a shows the calculated variation of CE with CT for Reynolds numbers R l3* of 103 and 105
. The

division between flows with maximum shear stress at y/8 > 0·2 and those in which C is based on 'T at y/8 =0·2
is indicated. The fact that CT remains finite when CE goes to zero in sink flows is an important feature which it is
essential to incorporate into the lag equation if it is to be physically realistic.

Fig. 3b shows the analytic approximation that we have adopted for the curves in Fig. 3a. It may be written

C =0·024CE + l'2Ci,+ 0·32Cto, (22)

where Cto is the flat plate skin-friction coefficient given by equation (18). The accuracy of this is consistent with
the approximation made in going from equation (20) to equation (21). Differentiating equation (22) with
respect to x, we obtain

(23)
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where suffix zero indicates a flat surface, Ri is Richardson number (more correctly, the analogue in curved
flows for Richardson number in buoyant flows) and (3, an empirical constant, has a value of 7 for flows over
convex surfaces (Ri positive) and 4·5 for flows over concave surfaces (Ri negative).

Richardson number, written

(27)

(25)

(26)

(24)

10

Ri=2UjiJU
R iJy'

prod

-(0'32Cro+0'024CE+l'2Ci,)I}+(~dU,\ _~ dU,].
U, dxJ EO U, dx

diss diff . adv

8(H +H)dCE =CE (CE +0'02)+0.2667Cro [2'8{(0.32C +0'024(C) +1'2(C)2)1
1 dx C

E
+O.Ol ro E EO E EO

, I

and

2.7. Extraneous Iufluences on the Tnrbnlence Structure

There are a number of extraneous influences which can modify the turbulence structure in a boundary
layer-longitudinal surface curvature is one such, freestream turbulence another, flow convergence or
divergence apparently a third. The mechanisms underlying these influences are not well established, and are
probably quite different from case to case. Nevertheless, for engineering purposes, a first-order correction for
each may plausibly be made by suitable adjustment of the dissipation length scale L/8.

Bradshaw", considering longitudinal surface curvature, developed an analogy between its influence on the
turbulence structure and that of buoyancy. Then, on the basis of correlations derived in meteorology, he
proposed that the only change needed to the method of Ref. 8 to allow for longitudinal curvature was to write
his dissipation length scale

This equation completes the method, in its basic form, for incompressible flows. In some circumstances, it
allows negative values of CE to be generated. Negative entrainment is physically possible in strongly
accelerated flows (though in such a situation equation (24) is of uncertain accuracy) and in programming the
method the only constraint imposed on CE has been that it shall not fall below -0,009. This quite arbitrary
limit ensures that we avoid singular behaviour due to the denominator in equation (24) becoming zero.

where R is the longitudinal streamline curvature, varies from point to point across the boundary layer. To
incorporate Bradshaw's argument into an integral method, therefore, an average value of Ri must be
determined. We have taken the average to be the value at y/ 8 =O'5, and have used the tabulated results of
Mellor and Gibsonll for equilibrium boundary layers to arrive at this. In round numbers, we find from Mellor
and Gibson that we may write

SinceCro (not Cr,note) is a weak function solely of R e, its streamwise variation will always be slow andso, given
that equations (21) and (22) both already include a degree of approximation, the neglect of dCroidx in
equation (23) is thought justified. Omitting this term, and making the assumption that the relationship
between C, and CE derived for equilibrium boundary layers also holds good in flows which are out of
equilibrium, so that the above derivation of equation (23) from equation (22) is justified, we combine equation
(21) with equation (23) to obtain, after a little manipulation,



whence we have

(28)

Another influence on the turbulence structure which may be treated similarly is that of flow convergence or
divergence. Bradshaw25 has suggested that, as a general rule of thumb, the effect on the turbulence of small
extra rates of strain may be represented by multiplying eddy viscosity-say-by a factor

1+K x extra rate of strain
aUlay

where K is an empirical constant which appears to be of order ± 10. If, for consistency with equation (25), we
write an analogous expression*,

!:- = (!:-) {1-K U drjalJ"l-l,
8 8 0 rdx ayf

(29)

we should expect the empirical constant K to be of order ±5 (since, by definition, 'T oc eddy viscosity oc (mixing
length)2 for a given shape of velocity profile). In the case of longitudinal curvature, however, where the ratio of
the two rates of strain is 0·5Ri, we have assigned this constant a value of 9 for unstable flows and 14 for stable
flows. Here, for laterally strained flows, we tentatively and rather arbitrarily adopt a value of 7 for K. Then,
taking the ratio of the two rates of strain at y/8 = O'5 as the appropriate average value for the outer part of the
boundary layer, we may substitute equation (27) in equation (29) to obtain

L (L) (7 (Hl) () dr)-l-= - 1--(H+H1) -+0,3 --
8 80 3 H rdx

(30)

Considering how we incorporate these effects into the boundary-layer method, let us first propose that they
be lumped together into a single overall scaling factor A such that

where

. (K(Hl )8 dr)A= (1 +{3RI) 1-3 H +0·3 ~ dx (... etc.).

Then, in the presence of secondary effects, we can write equation (7)

~ dCTm =2al Ue[~ au_(i) AC~m-CTm?'J- 28 dUe,
CTm dx U Ue ay L 0 Ue dx

adv shear diss + diff adv
prod extra

strain
effects

(31)

(32)

(33)

* Since this form of correction is assumed valid only if the correction is small, the factors (1 +Ku) and
(1- Ku)-1, where u is the ratio of secondary strain to the main shear, are usually treated as equal under the
binomial theorem. Throughout this Report, we use only the form in equation (29). In the computer program a
limit of 0·6> Ku > -1·5 is arbitrarily set so that L/8 and (LI8)0 never differ by more than a factor of 2· 5.
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where, in effect, we are representing the influence of secondary strain by the addition of the term

to the right hand side of the equation. Although it is convenient algebraically to group this term with the
viscous dissipation term, it should be remembered that it is an engineering approximation, derived by
multiplying a small physical quanity by a large empirical constant. Without a better understanding of why such
a term arises, we cannot classify it in physical terms in the way that the other components of the equation,
derived from the Navier-Stokes equations, have been classified.

Equation (33) is recast in a form similar to equation (21),

(34)

The points to note about this equation are:
(1) The coefficient of the shear production term, which is a function only of the shape of the velocity profile,

is unchanged from its form in flows free from secondary influences, and hence is written with suffix EOo.
(2) The coefficient of the 'dissipation' term is simply scaled by A, and this will carryover directly to the more

complicated dissipation term of equation (24).
(3) The diffusion term is written without suffix zero, indicating that this term has to be modified to allow for

secondary influences*.
The diffusion term is evaluated by making the assumption that mixing length and dissipation length become

effectively equal in an equilibrium situation, so that the production and dissipation terms and the two pressure
gradient terms in equation (34) separately balance each other when dCrldx = O. From the definition of mixing
length, it follows that, for the same shape of velocity profile,

(35)

We may therefore, from equation (22), write for equilibrium flows

(36)

where suffix EO has been omitted from CE for clarity. Knowing (CE)EQo and A, it is a simple matter to solve this
quadratic for (CE)EQ.

The value of (CE )EQo is determined from equations (13) and (15) as a function of H, H l and Cf' Having then,
from equation (36), evaluated (CE)EQ' we invert equation (15) to obtain

(37)

This may seem, in all, a slightly involved procedure to deal with influences which are semndary in nature. On
a computer, however, it increases the total calculation time by at most fifty per cent, and it has the virtue of
providing a flexible means of handling potentially a wide range of effects without introducing any problems of
keeping the method internally consistent.

2.8. Wakes

The entrainment method of Ref. 1 was extended to treat two-dimensional wakes and was applied with some
success to the prediction of wakes downstream of lifting aerofoils. A similar extension of the present method
has been made. Taking as background the discussion in the earlier Repore of the approximations implied in
applying the method to wakes, particularly to the asymmetrical wakes of lifting aerofoils, we shall only outline
here how the present method is used, offering justification for assumptions only if they are new.

* Bradshaw does not modify his diffusion function to allow for these influences, but our diffusion term
approximates the product of his function and Crm, so the two approaches are not necessarily inconsistent.
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The computation of boundary layer growth over one surface of an aerofoil is taken beyond a sharp trailing
edge, to treat the development of the part wake on one side of the streamline originating at the trailing edge, by
continuing the integration of the three governing differential equations. Downstream of the trailing edge, the
only changes to the method are:

(1) Cr and Cro are set to zero in all equations in which they occur;
(2) the dissipation length scale is doubled.

The first implies: no friction contribution in the momentum integral and entrainment equations (1) and (2); a
change in equilibrium pressure gradient and equilibrium entrainment coefficient for a given H (equations (13)
and (15)); an alteration to the lag equation (24)t.

The second change is made in order to match the observed asymptotic behaviour of far wakes. In the earlier
treatmene of wakes, entrainment in the far wake was empirically increased so as to reproduce the behaviour
observed by Townsend26 in a wake of small velocity defect at constant pressure:

dH 3
() dx =-0'234(H-l) , (38)

where () is the momentum thickness of the half-wake. In the limit H ...,..1, HI""" 00, CB , CT ...,.. 0, with Cr =0, the
present method can readily be shown to give

but

dH 3()-...,.. -0'060(H-1)
dx

dH 3()-...,.. -0'242(H-1)
dx

if A = 1,

if A=0.5.

Corroboration for setting A= 0·5 in the far wake comes from Narasimha and Prabhu27
, who tabulate some

properties for wakes in equilibrium from which we can write eddy viscosity

liT =0·0634Ue8*.

This is almost exactly four times the value

used by Mellor and Gibsonll in their studies on equilibrium boundary layers. A fourfold increase in liT

corresponds to a doubling of L/8; it is reassuring that this change in the dissipation scale corresponds, in a
symmetrical flow at least, to the change in the scale of the large eddies between flow over a surface and flow in a
wake.

In general, the change in L/8 associated with the wake should be compounded with other secondary
influences by writing equation (32)

A =!(1 +(3Ri)( . .. etc.), (39)

but it is not clear in what situations other secondary influences will be significant. For example, if there is
longitudinal curvature in the wake, its sign will be opposite for the two sides of the wake and the effects will

t To justify this change to the lag equation in physical terms, compare boundary layers and wakes passing
from a region of strong favourable pressure gradient (but not so strong as to cause relaminarisation) to a region
of constant pressure. In the boundary layer, entrainment falls to a very low value but skin friction is high; when
the pressure gradient relaxes, the boundary layer starts to grow fairly rapidly due to the high Cr and
entrainment quickly builds up; the term in Cro in equation (24) is needed to provide for this. In contrast, in
a wake, whilst a strong favourable pressure gradient will almost destroy the velocity defect and will lead to a
very low value of CB , relaxation of the pressure gradient will not cause the wake to grow again; the Go term in
equation (24), which is in effect a regenerative term, is inappropriate.
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tend to cancel. Given that the treatment of asymmetrical wakes1 is already approximate, it is doubtful whether
this particular influence is worth including.

2.9. Corrections in Comparisons with Experiment

Many of the available experimental data for nominally two-dimensional flow are impaired by the flow not
having been perfectly two-dimensional. With some experiments, there is the additional difficulty that the
boundary layer was far from a state of equilibrium at the first measuring station so that, if measurements of
turbulent shear stress were not made, problems arise in determining starting values for 'historical' calcula­
tion methods which treat shear stress or entrainment as an independent variable. This section describes some
modifications to the method which are intended to put comparisons between calculation and experiment on as
sound a footing as is practicable.

The conclusion that the boundary layer in any particular exp"eriment was not two-dimensional is usually
based on the failure of the momentum integral equation to balance when all the terms in it are evaluated from
the experimental data, (see, for example, the analysis of test cases for the Stanford Conference3

). Not
necessarily all the imbalance in the momentum equation is due to three-dimensionality; there can also be a
contribution from the growth of the Reynolds normal stresses. However, when the imbalance is sufficient to
have a serious effect on comparisons between measurement and prediction, it is usually so gross that the major
part of it has to be attributed to three-dimensionality.

For comparison with experiment, the present method can be programmed to accept the experimental
distribution of momentum thickness as part of the input data. Then, assuming that the entire experimental
imbalance in the momentum equation is due to three-dimensionality, a distribution of free-stream con­
vergence or divergence can be computed such that the predicted and measured distributions of momentum
thickness are in precise agreement. If this is achieved, the comparison between experiment and the predicted
value of Hand Cf provides a rather more realistic test of the method than does a comparison with predictions
for wholly two-dimensional flow.

The assumption we make is that departures from two-dimensionality-(planar or axisymmetric) take the
form of the plane-of-symmetry flow studied by Johnston28

. Relative to the nominal flow, this involves a local
convergence or divergence of the free stream which is amplified within the boundary layer. We define w as the
velocity component within the boundary layer at right angles to the flow direction at the edge of the layer and
take cjJ as this flow direction. Then, following Johnston28

, for a small rate of divergence suddenly applied we
write

(40)

as a description of the crossflow within the boundary layer. The experiments of East and Hoxey20 confirm
Johnston's findings that equation (40) is a good approximation for all the boundary layer outside a narrow
region close to the wall; for simplicity, however, we assume that equation (40) applies to the entire boundary
layer.

With the assumption that a local rate of divergence acjJ/az of the free stream generates crossflows given by
equation (40) within the boundary layer, it may be shown, from the equations for three-dimensional boundary
layers29

, that the momentum integral and entrainment equations (1) and (2) have to be rewritten:

divergence

1 d Cr r() dUe
- -(rUe()=r--(H+ 1)---
Ue dx 2 Ue dx

_ r() acjJ _
az

divergence

dH dH{ 1 d acjJ
r() dx = dH

j
rCE - H j U

e
dx (rUe() - r()H j az

acjJ
2r()(H -1) az;

crossflow

2r()H
acjJ

}.
az

crossflow

(41)

(42)

The lag equation remains unchanged, as do the various auxiliary relations. In a calculation using these
equations, equation (41) is solved for acjJ/az with the left-hand side evaluated from the input data.
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The more usually employed correction for momentum imbalance assumes coplanar velocity profiles so that
w is zero, only the divergence terms in equation (41) and equation (42) appear, and the result of substituting
the momentum equation into the entrainment equation is that the divergence terms cancel leaving dH/dx
locally unaffected by flow divergence. The present treatment differs in leaving a residual term 2r8[Ht (H -1)­
H]iJ</J/ iJz in the entrainment equation after substitution of the momentum equation.

Whilst it has not been demonstrated that Johnston's flow model is universally more accurate than assuming
co-planar flow, there is strong experimental evidence to support it in flows in which convergence or divergence
occurs relatively suddenly over a short streamwise distance. Since the crossflow terms in equation (42) are
likely to be significant only in these circumstances-in flows with a more gradual but sustained divergence the
other terms in equation (42) will dominate-we have felt fully justified in applying equation (41) and equation
(42) generally.

The second problem which has to be faced in making comparisons with experiment is the choice of starting
values. If measurements of turbulent shear stress were available at the station of the first velocity profile
measurement, it would be possible to evaluate C'T and hence, from equation (22), obtain an initial value of CEo
So far, however, we have chosen either to take initial CE as (CE)EQ, as indeed we generally must for all
calculations performed in the abstract, or else we have evaluated an initial CE from the experimental velocity
profile measurements. In the latter case, values of de/dx and dH/dx at the starting point are estimated from
the experimental data, equation (41) is solved for iJcf>!iJz and this enables equation (42) to be solved for CEo For
some experiments, the general level of agreement between measurement and prediction has been found to
depend quite significantly on the initial value of entrainment coefficient.

3. The Method for Compressible Flows

3.1. Outline

In this section we describe the application of the method to adiabatic compressible flows. The method has, in
fact, also been programmed to treat compressible flows with heat transfer by including a fourth differential
equation, the total energy equation, as proposed in Appendix A of Ref. 1: this aspect of the method is not,
however, sufficiently developed to justify further discussion here.

The extension to compressible flows is fairly straightforward and does not involve any coordinate
transformations. For the lag equation, we follow the reasoning applied to the turbulent kinetic energy
equation by Bradshaw and Ferriss t4, and which is their interpretation of Morkovin'st5 hypothesis that the
turbulence structure is unaffected by compressibility. The other two differential equations are changed to
include density terms, and some of the empirical relations are modified to account for compressibility. The
concept of equilibrium flows as used in Section 2 is not entirely applicable in compressible flows, but it has been
possible to derive adequate working relationships by considering flows which are locally in equilibrium in a
more restricted sense. In deriving these relations, we have relied on the observation of previous workers30 that
distributions of mixing length and eddy viscosity, suitably scaled, are insensitive to Mach number.

In compressible flow, the three independent parameters used to specify the boundary layer are momentum
thickness e, entrainment coefficient CE , and the shape parameter

(43)

The momentum integral and entrainment equations, with density terms included and with some rearrange- "":l#A~
ment from equation (1) and equation (2), are written

and

d Cf 2 r8 dUe
-(rO)=r--(H+2-M )---
dx 2 Uedx

dB dB [ { Cf r8 dUe}]rO-=- rCE-Ht r--(H+1)- -- ,
dx dHt 2 Ue dx
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where M is Mach number at the edge of the boundary layer. Fuller derivations are given in earlier work l
.
31

•

Implicit in equation (45) is the assumption made below that H is a unique function of HI.
The lag equation, written in the form of equation (21), is unchanged. Its derivation for compressible flow and

conversion to a differential equation for CE are given in Section 3.2.
For the shape-parameter and skin-friction relationships, we make assumptions similar to those used in

extending Head's method to compressible flow I . Thus, taking H as the analogue in compressible flows for H at
low speeds, we now write equation (16)

and equation (17) becomes

1-72 - 2
HI =3·15 +H -1 -O-OI(H-1) , (46)

(47)

where suffix 0 indicates values in zero pressure gradient. Following Winter and Gaudet17
, for compressible

flow we write equation (18)

(48)

where

(49)

and

For zero pressure gradient equation (19), extended empirically as shown below, becomes

1 JCto 2I--=-= 6·55 -(1+0-04M )
H o 2

and, finally, the shape parameters H( =8*/ (J) and fi are related by

( rM2)
H + 1 = (H + 1) 1+-5-

(50)

(51)

(52)

where r is temperature recovery factor.
The last of these equations (52) is the well known result for flows with a parabolic relation between velocity

and temperature. Equation (51) differs from that used with the previous method l in containing the empirical
term in M which is derived in Section 3.2. Equations (48)-(50) have been demonstrated by Winter and
Gaudet17 to be in good agreement with experiment at Mach numbers up to 3. The general forms of equations
(46) and (47) have also been shown previouslyl to be in agreement with experiment. To complete the method,
we need now only the differential equation for CE , and auxiliary relations for any new unknowns in this
equation.

3.2. Lag Equation and Equilibrium Flows

Bradshaw and Ferriss l4
, to whom the reader is referred for a more detailed discussion, derive for

compressible flows a differential equation involving shear stress, their equation (19), which at a maximum in
T/p can be written*

3. J 2

~~(!.) =(!.) aU_(T/p);"_(!.)2 [aG_ Gr(y_l)M aUl.
2aI dx p m p may L p m ay U ayJ (53)

* In this particular equation, M denotes local Mach number; elsewhere, it denotes Mach number at the edge
of the boundary layer.
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It should be noted that the important variable in this equation is not shear stress itself but the quantity Tip,
which has the dimensions of (velocityf and is assumed by Bradshaw and Ferriss to be directly proportional to
the local mean square fluctuating velocity. Making the definition

C,,= u12( 2:)
e P

(54)

(not TIPeU;, note), we now follow Section 2.6 in assuming equation (53) to apply at a maximum in (Tip )if this
occurs at y/8 ~ 0,2, and otherwise to be a good approximation for y/8 = 0·2. Equation (53) is then written

(55)

In making this step, we have followed Bradshaw and Ferriss in assuming that the dissipation length scale L/8 is
independent of Mach number; we have also assumed that mixing length and dissipation length are equal at
(T/P)max in an 'equilibrium' flow, which is defined at this stage as a flow in which the shape of the velocity
profile, i.e. its kinematic shape parameter

(56)

does not vary with streamwise distance. The experiments of Winter and Gaudee7 have demonstrated the very
closely similar shapes of velocity profiles in compressible and incompressible flow, so we have good reason to
postulate that a flow in which the H k is constant, even if Mach number is varying, will have velocity profiles
which outside the viscous sub-layer will remain virtually identical in shape. The work of Maise and
McDonald30 confirms that the mixing length scale 118, and the kinematic eddy viscosity scaled on the kinematic
displacement thickness, are both effectively independent of Mach number in flows at constant pressure.
Hence, we argue that a flow in which the shape of the velocity profiles does not vary with distance will also have
unvarying profiles of (Tlp)IU; and dC,,/dx will be zero.

Now the ratio HklH, though always fairly close to unity, is a weak function of Mach number. Hence, if H k is
constant in a flow with pressure gradient, H will slowly vary. Because it is convenient to use the entrainment
relation to evaluate the 'equilibrium' value of CE , we have chosen to define equilibrium flows as those with H
rather than H k constant. Although C" will not be constant in these flows, we assume that its variation will be
sufficiently slow for mixing length and dissipation length to be effectively equal: for a given H, Ro and M, this
assumption implies that values of C" and CE will be the same in the two kinds of equilibrium flow, although the
pressure gradients necessary to give zero dHIdx and dHkldx will differ.

For compressible flow, the parameters of Section 2.3 are defined

and

G=H~I~
H Cr

II = _ 28* J.- dUe
Cr Ue dx'

(57)

The dependence of the G(II) locus on Mach number has been estimated by considering two particular cases;
(1) zero pressure gradient flow, II = 0, for which experimental data of high quality exist, and (2) flow on the
verge of separation, II =00, Cr =0, which we have treated analytically using the results of Mellor and Gibson11
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for equilibrium boundary layers in incompressible flow. Rearranging the equilibrium locus for incompressible
flow, equation (11),

6.432 =H -1 (Cf _ 0.8 8* dUe)-~
H 2 Ue dx '

and with G and II as defined in equations (57), we write for these two cases in compressible flow

for II= 0

and

A =HBl(~fr~

A =H =-1 (-0'8 8* dUe)-~
H Ue dx

for II =00,

(58)

where A is a function of M (and possibly of II) which becomes the constant 6·432 written A;, in
incompressible flow. Fig. 4 shows the estimated variation of AIAi with Mach number.

For the flow on the verge of separation, assuming mixing length 118 to be independent of M, we have
considered boundary layers with profiles of velocity and (Tip) identical to those computed by Mellor and
Gibson for II =00. Over a range of Mach numbers, with total temperature taken as constant through the
boundary layer, the appropriate integral quantities have been evaluated from the velocity and shear stress
profiles to enable us to solve the mean kinetic energy equation which, for Cf =0, can be written

where

and

(jdHe=CD+H [H-l-2M2J~ dUe
dx e 5 Uedx

11 00

pU ( U)2H e =- - 1-- dy
(j 0 PeUe Ue

100 T au
c D = u 3 -dy.

o Pe e ay

(59)

(60)

By analogy with equation (46), we assume He and H to be so related that when dHeldx is zero dHIdx is zero
also; from equation (59) it is then possible to evaluate the equilibrium pressure gradient and hence to
determine A from equation (58).

For the case II = 0, we have adopted the simpler course of assuming AIA; to vary with M in the same way as
GI G, (remembering that A and G are nearly, but not exactly, equal in zero pressure gradient). In Fig. 4, the
points shown are in fact experimental values of GI G; obtained by Winter and Gaudet17 and Hastings and
Sawyer32

•

The curve drawn in Fig. 4,

~. = (1 +0'04M2)~,,
(61)

is thought sufficiently close to the two cases II =0 and II =00 to justify the assumption that it applies at all
values of II. Hence, for compressible flow, the equilibrium locus becomes

or

G =6'432«1 +0.8II)(1 +0'04M2»~
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From this we obtain

and

(~ dUe) = (H+H 1) (!!- dUe) ,
Ue dx EO Ue dx EO

(64)

(65)

while from equation (45) we have

(66)

where equations (65) and (66) are identical to equations (14) and (15).
To convert equation (55) into a differential equation for CE , we consider first the behaviour of C,. in flows in

which dIi/dx is zero. In such flows we have assumed mixing length to have its equilibrium value so that (r/p)
depends only on the shape of the velocity profile and we may write

(
H k -1)2

C,.=constx~ (67)

(this is nominally exact for rip at constant y/8, and a close approximation if (r/p)max occurs at y/8 >0·2).
For a flow with Ii constant and H k varying, we can differentiate equation (67) to obtain

(68)

In Ref. 31, an analysis is given of adiabatic boundary layers with power-law velocity profiles which leads to an
expression of the form

H k F 1(H)M2

Ii = 1+ 1+F
2
(H)M2 •

For Ii constant, this may be differentiated to give

dHk 2Ii F 1(H)M2

dM = M (1 +F2(H)M2f'

which combines with equation (68) to produce

(
1 dC,.) 4Ii F 1(H)M2 1 dM

C,. dx EO =HdHk -1) (1 +F 2 (H)M2
)2 M dx

and we may now write the differential equation for C,.

~ dC,. = 5.6{(C,.)~o- C~}+2 (~dUe) _ 28 dUe +(~ dC,.)
C,. dx Ue dx EO Ue dx c,. dx EO

(69)

(70)

(71)

(72)

which contains one term more than equation (55) as a result of defining equilibrium as Ii constant.
The relationship between CE and C,. in equilibrium flows has been estimated from the same data as were

used in Fig. 4. From our own analysis of flows with II = 00 and C,. = constant, and from the analysis of Winter
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and Gaudet of flows with IT =0 which allows us to treat the case of H k and therefore Cr constant, we have
determined (CE)EQ, as defined by equation (66), as a function of Mach number. We find that the fall in CE as M
increases with C constant is fairly well approximated by

(73)

which, on differentiation with respect to x, gives

(74)

where, following the derivation'of equation (24) for incompressible flow, we have assumed that equation (73)
applies equally to equilibrium and non-equilibrium flows. If, also following equation (24), we neglect dCfo/,dx,
we may combine equations (74), (71) and (72) to obtain

(0,01 +CE) dCE 1 1 (0 dUe)
(0'02CE+C~+0'2667Cfo) 0 dx = 2·8{(C)EQ-(Cr)2}+ Ue dx EQ-

o dUe [2H F 1(H)M
2

- Ue dx + HdHk -1) (1 +F2(H)M2
)2

0·IM
2

] 0 dM
1+0'IM2 M dx

(75)

(76)

where Cr and (Cr)EQ are evaluated from CE and (CE)EQ using equation (73).
The two terms in the square brackets are of similar order, but their difference is not in general negligible.

Although expressions for F 1(H) and F 2(H) are given in Ref. 31, the labour involved in using them in equation
(75) is not thought justified. Instead, the contents of the square brackets are approximated by -0·075M2/(1 +
0·IM2

) so that, replacing (dM)/M by (1 +0'2M2 )(dUe/ Ue), equation (75) finally becomes

(0,01 + CE) dCE _ ! ! (8 dUe)
(0'02CE+C~+0'2667Cro)8 dx -2·8{(C)EQ-Cr}+ Ue dx EQ-

_~ dUe{ 1+0.075M2 (1 +0'2M
2
)}

Ue dx (1 +0'IM2
) .

At M = 3, the approximation to the square brackets of equation (75) is accurate to within 15 per cent for
H < 2, the term in M is"'" 1, so the pressure-gradient term in equation (76) agrees with that in equation (75) to
within 8 per cent. Given that the lag equation is approximate in every respect, this level of agreement is
acceptable.

3.3. Wakes, Other Factors Affecting the Turbulence Structure, and Momentnm Imbalance

In compressible flow, the method of allowing for extraneous influences on the turbulence structure is exactly
the same as at low speeds: the dissipation length scale is written

(77)

where suffix adenotes a flow free from such influences and A is a scaling factor obtained by compounding the
various secondary influences as in equation (32).

From the derivation of the lag equation in Section 3.2, it is clear that the alterations to the equation to
account for variations in L/8 are identical in compressible and incompressible flow. Thus equation (34) is
applicable to compressible flow with only the addition of the term (8/Cr)(dCr/dx)EQ, which was introduced
in equation (72) as a consequence of our adopted definition of equilibrium flows. The notes following equation
(34) apply, and equations (35), (36) and (37) may be used without alteration.

In applying this technique of scaling L/8 to compressible flows, we have even less empirical information on
which to base our corrections than we had at low speeds. Nevertheless, the following effects have so far been
tentatively incorporated into the computer programme.
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Wakes. As in low-speed flow, we write A =!. The main justification for carrying over this assumption lies in the
observed30 insensitivity to Mach number of mixing length and kinematic eddy viscosity in the flat plate
boundary layer. The calculation procedure for wakes is the same as described in Section 2.8.

Longitudinal curvature. With the same definition of 'Richardson number' as in incompressible flow,

Ri=8UjaU
Ray'

we follow Bradshaw and FerrissI4 in assuming that the effects of longitudinal curvature are amplified by a
factor 1+M 2 /5 in compressible flow, giving

A = 1+(3(1+~2)Ri. (78)

Denoting kinematic integrals by suffix k, we may repeat the arguments used in Section 2.7 to obtain the
relations

and

whence

Ri =~ ~(..§....-0'7)
3 R 8t .

(79)

(80)

The inconvenience of having a kinematic integral in this expression may be circumvented by noting that

8 HI-=1+-=­
8t H'

which allows us finally to write

As in incompressible flow, (3 is taken as 7 on a convex wall (Ri positive) and 4·5 on a concave wall.

Lateral strain. For this effect we assume that, as in incompressible flow, we may write

A =l_KU dr/aU
r dx ay

(81)

(82)

whence, making the same approximations as in the derivation of Ri above, and with K taken as 7, we have

A = 1-?..(~1+0'3)~ dr.
3 H r dx

(83)

Dilatation. Bradshaw has very recentlyI6 suggested that an additional and previously unexpected effect arises
as a result to dilatation of the stream in compressible flow. A similar effect appears to have been incorporated
into the turbulence model of Wilcox and Alber33

• Taking

1+K x extra rate of strain
au/ay
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as the multiplying factor on mixing or dissipation length (Le., for near equilibrium flows, on ;:;jp rather than
on r/p), Bradshaw estimated K by trial and error, comparing recent experimental results with calculations for
a range of K. Finally, he concluded that optimum agreement was obtained by taking K = 10 in equilibrium, but
allowing it to lag behind equilibrium with a 'time constant' of 108. Physical reasons can be put forward to
justify this procedure and, indeed, to suggest that all components of A should lag behind their local equilibrium
values. However, Bradshaw found that predictions with K assigned the constant value of 7 gave results
comparable with, though not quite as accurate as, those obtained with K lagging behind a value of 10. For
simplicity, we have adopted the relation

1 7
div U

A= +-­
dUjay'

(84)

noting that, because stream dilatation in two-dimensional flow and lateral strain in incompressible flow have a
similar influence on transverse vorticity (see Bradshaw16

), it is appropriate that K should have the same values
in equations (83) and (84). We evaluate A at yl8 = O'5, recalling equations (79) and (81) but noting that the
value of div U at yl8 = O· 5, in equilibrium flows at least, is close to that at the edge of the boundary layer, and
may consequently be written

Thus

div U= _ Ue dpe =M2dUe.
Pe dx dx

(85)

(86)

Although the evidence for this effect is at present rather indirect, as indeed is the evidence for the other
secondary effects we have discussed, we present this treatment of them to illustrate the relative ease with which
phenomena of this kind can be brought within the framework of the method and also to show that, in some
experiments, their influence might well be appreciable.

Momentum imbalance and initial CEo When the method is being checked against experiment, corrections for
departure from two-dimensional flow in the experiment may be made in the way described in Section 2.9. We
have assumed, though with uncertain justification, that Johnson's relation for the cross flow velocity, equation
(40), remains a good approximation in compressible flow;

~ dW =2(1_~)dcP.
Ue dZ Ue dZ

The corrected versions of the momentum integral and entrainment equations can then be written

~(r8)= rCf _ (H +2- M 2)!! dUe _ r8 dcP - 2r8(H-1) dcP
dx 2 Ue dx dZ dZ

divergence crossflow

and

dH dH [ {rCf r8 dUe} - - dcP]r8-=- rCE-H1 --(H+1)--- +2r8(H1(H-1)-H)- ,
dx dH1 2 Ue dx az

crossflow

(87)

(88)

where the divergence terms in the entrainment equation have been cancelled on substitution of the
momentum equation.

To determine a starting value of CEo as an alternative to taking it as (CE)EQ, the procedure of Section 2.9 is
followed. Given experimental values of d81dx and dH/dx, equation (87) is solved to obtain dcP/dZ and CE is
then determined from equation (88).
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4. Performance of the Method

To assess the performance of the method, we have tested its predictions against a wide range of experiments,
including those used as test cases at the Stanford Conference3

, and have also performed a number of
calculations for hypothetical flows with analytic pressure distributions. The results presented in this section are
typical but not of course exhaustive. Our aim is to illustrate the general accuracy of the method both in
'absolute terms and in comparison with other methods. Particular among these are the method of Head, which
the present method was developed to replace, and the more successful methods at the Stanford Conference
(including Bradshaw and Ferriss, our source), which the present method must at least match to justify its
existence.

4.1. Abstract Test Cases

Fig. 5 shows the computed variation of the shape parameter G with Ro in incompressible flow at constant
pressure. The calculation was started with an initial value of G chosen by trial and error to give a slow initial
variation of G, and an initial value of entrainment coefficient equal to its equilibrium value. Although G does
not remain constant, the enlarged scale of Fig. 5 may give a false impression of its variation; in fact, the value of
H corresponding to the G of Fig. 5 is everywhere within 0·2 per cent of that given by the correlation of Winter
and Gaudet with G = 6·55.

Fig. 6 shows another calculation for incompressible flow at constant pressure, but this time with initial
conditions far from equilibrium. The horizontal scale and initial boundary layer thickness for this calculation
match those in the experimental investigation by Bradshaw and Wong34 of flow reattachment downstream of a
two-dimensional step. The ordinate is the reciprocal of G. The calculation was started at the reattachment
point (Cf = 0, G =(0) at x/h = 6, with an initial value for CE of 0·12 characteristic of the free shear layer before
reattachment. This illustration is intended primarily not to show the method tested against experiment-no
attempt was made to satisfy in any detail the boundary conditions of the Bradshaw and Wong experiment-but
rather to demonstrate the predicted overshoot of the equilibrium condition when starting from such severely
perturbed initial conditions. As a guide to the extent of this overshoot, equilibrium values of 1/G are shown
for zero pressure gradient, II = 0, and for the most severely accelerated flow studied by Mellor and Gibson,
II = -0,5 (the latter giving a value of 1/G which is probably close to the maximum attainable). Although
Bradshaw and Wong have argued that this particular type of flow is too severely perturbed for current
boundary layer methods to be applicable, it is worth noting that the present method does show at least
qualitatively the correct behaviour. In contrast, methods which implicitly or explicitly treat the turbulent
stresses as a function only of the local velocity profile (Head's is shown as an example) will, for the flow of Fig.
6, predict a monotonic return to equilibrium II = O.

Fig. 7 shows the calculated variation of G with R x in compressible adiabatic flow over a range of Mach
numbers. At any particular R x , the variation of G with M does not follow the form of equation (61) precisely.
Again, however, the resulting discrepancies in H are of order 0·2 per cent or less. On the other hand, at M = 5,
the value of H (=8*/()) corresponding to the G shown in Fig. 7 is roughly 5 per cent greater than that given by
the assumption that G remains independent of M (made in the previous extension! of Head's method to
compressible flow).

Fig. 8 shows calculations, for two arbitrary pressure distributions in incompressible flow, by the present
method and by the methods of Head and of Bradshaw, Ferriss and Atwell. In flow A, which is derived from the
flow over the upper surface of one of a family of high lift aerofoils proposed by Weeks35

, the boundary layer
passes abruptly from an initial region of constant pressure to a region of sustained adverse pressure gradient.
The form of the pressure distribution in this second region is such that the boundary layer tends ultimately to
an equilibrium state with H -1·6. In flow B, the boundary layer is allowed to approach its equilibrium
retarded state and then the pressure gradient is suddenly removed, allowing the boundary layer to relax back
to a flat plate condition. The calculations by the methods of Head and of Bradshaw et al. were started at the
point of application of the adverse pressure gradient, x/L = 0·17, with the values of Hand R opredicted at that
point by the present method.

We see from the figure that very similar responses to the sudden changes in pressure gradient are predicteo
by the method of Bradshaw etal. and the present method, even though the final levels of Hand Cf predicted by
the two methods differ slightly. The similarity of response to sudden perturbations is {Qarticularly significant,
since it is primarily when conditions change rapidly over a distance of a few boundary-layer thicknesses that we
may expect an integral method (because of the limitations imposed by its use of simple shape-parameter and
skin friction relationships) to suffer in comparison with a finite difference method. The agree~ntin Fig. 8, on
the boundary-layer behaviour in conditions far from equilibrium, suggests that the salient features of the
method of Bradshaw and Ferriss have been satisfactorily approximated in the present method.
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Where the disagreement between the two methods is most pronounced, the boundary layer is close to a state
of equilibrium; consequently, the discrepancies are primarily attributable to differences between the equilib­
rium and skin friction relations used or implied in the methods, rather than to a failure of the integral method
to reproduce satisfactorily some particular characteristic of the finite difference method. The predictions of
Head's method differ appreciably from those of the other two, particularly in the region of sustained adverse
pressure gradient. Fig. 8 thus illustrates, on the one hand, an appreciable difference between the present and
the earlier entrainment methods and, on the other, a perceptible difference between the two more highly
developed methods arising out of the spread of the experimental results from which the empirical content of
the methods has been drawn.

4.2. Comparisons with Experiment in Incompressible Flow

Figs. 9a to 9g show predictions by the present method and by Head's method of a representative sample of
test cases from the Stanford Conference3

• Also shown inset in each figure is the appropriate summary figure
from the proceedings of the Conference showing, for that particular test case, the predictions of all the
contending methods. The seven methods which were ranked in the first category by the Evaluation Committee
are marked with an asterisk.

Although many of the experiments used as test cases were marred by appreciable departures from two­
dimensionality-revealed by a substantial momentum imbalance in the data-most of the comparisons made
at the Conference were limited to predictions for two-dimensional flow. As a result, the major part of the
divergence between prediction and experiment could in many cases be attributed to three-dimensionality in
the experiment.

Figs. 9a to 9c show predictions for three flows which had fairly satisfactory momentum balance and with
which the better methods should therefore show reasonable agreement. In Fig. 9a, the equilibrium retarded
flow studied by Bradshaw, the present method is seen to be in good agreement with the experiment, being
substantially more accurate than Head's method and apparently slightly more accurate, for Hand Cf judged
together, than any of the methods at the Stanford Conference.

In Fig. 9b, the severely retarded non-equilibrium flow of Schubauer and Spangenberg, the difference
between the present method and Head's is not so pronounced, although the present method is still marginally
the more accurate. In this type of flow, in which the severity of the pressure gradient increases with x as occurs
typically on the upper surface of a lifting aerofoil, Head's method is well known to be fairly accurate. Because
this was not a mandatory test case at Stanford, only a few of the contenders attempted it; of those that did, the
most successful achieve an accuracy very similar to the present method.

Fig. 9c shows the flow studied by Bradshaw and Ferriss in which the boundary layer passes from a region of
sustained adverse pressure gradient to one of zero pressure gradient. Although this flow had a significant
momentum imbalance in its early stages, the calculations shown assume two-dimensional flow. The present
method is significantly more accurate than Head's method, although their differences are not great, and is
again on a par with the best of the Stanford contenders.

In Fig. 9d we show prediction of the flow of Schubauer and Klebanoff made assuming the boundary layer to
be two-dimensional. This flow is somewhat similar in character to that of Schubauer and Spangenberg shown
in Fig. 9b, and is one of the test cases for which Head's method is known to be fairly accurate. As we see,
Head's method appears in fact to be marginally more accurate than the present method, and both are in as
good agreement with the experiment as are the seven methods of the top classification at Stanford.

However, as the boundary layer approaches separation in this experiment, the imbalance of the momentum
equation becomes considerable and we can infer that there was appreciable convergence over the final few feet
of the measured flow. Fig. ge shows the effect of allowing for this flow convergence, as described in Section 2.9,
by forcing the calculated distribution of momentum thickness to match the experiment. The result of making
this allowance is roughly to halve the discrepancy between calculated and measured values of Hand Cf in the
later stages of the flow. A further expected effect in this experiment, to which Bradshaw13 has drawn attention,
is inhibition of the turbulence in the later stages of the flow due to convex longitudinal curvature of the wall.
When allowance for longitudinal curvature, as proposed in Section 2.7, is combined with an allowance for flow
convergence, the agreement with experiment is seen to be very satisfactory right up to the predicted point of
separation.

Fig. 9f shows predictions for the boundary layer measured by Tillman downstream of reattachment aft of a
ledge. The calculations are by: Head's method for two-dimensional flow; the present method for two­
dimensional flow, with initial CE equal to its equilibrium value; and the present method with a correction for
flow divergence and with initial CE chosen to give agreement with the initial dH/dx as described in Section 2.9.
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Two sets of experimental values of Cf are shown. The higher set are the values against which methods were
tested by the evaluation committee at Stanford; the second set, also given in the Conference proceedings,
come from Cole's reappraisal of the data and are thought to be the more accurate. With initial CE and flow
divergence matched to the experimental data, the present method is in excellent agreement with the
experiment. Without these corrections, its predictions are comparable with those of the better methods at
Stanford, and lie rather closer to the data than do those of Head's method.

The final test case from Stanford, sho~n in Fig. 9g, is the nominally axisymmetric boundary layer studied by
Moses. The boundary layer is brought close to separation by a severe adverse pressure gradient which then
abruptly falls to zero allowing the boundary layer to relax back to its flat plate condition. The same three types
of calculation as in the previous figure are shown. The R.A.E. version of Head's method predicts separation at
the end of the region of adverse pressure gradient-more precisely, the method breaks down whlm H reaches
2·85 and dH/dH1 becomes infinite-whereas the original version of Head's method (HE in inset) predicts a
maximum value of roughly 2·8 for H, after which the boundary layer recovers. The recovery is, however, not
very accurately predicted. The two-dimensional calculation by the present method is in fairly close agreement
with the experimental values of Hand Cf> giving results very similar to the best of the Stanford methods (the
predictions of which were also for two-dimensional flow). When the prediction by the present method is
corrected for the flow convergence indicated by the imbalance of the momentum equation, and an indepen­
dent estimate of initial CE is made, the agreement with experiment is less satisfactory. However, since the
thickness of the boundary layer in this experiment was not strictly small compared with the radius of the
cylinder along which it developed (boundary-layer thicknesses were evaluated by integration with respect to
(r + y)2/ r rather than to y), we do not know what accuracy to require, for this test case, of a prediction method
developed for thin boundary layers.

As a final test of the method in incompressible flow, Fig. 10 shows it applied to a symmetrical two­
dimensional wake subject to a sudden deceleration, one of the nonequilibrium flows studied by Prabhu and
Narasimha36

• To give some indication of the influence of entrainment in a flow of this type, with its
characteristically low values of H, we also show the calculated behaviour of an inviscid rotational flow with the
same initial velocity profile. Agreement with experiment is fairly satisfactory and it is clear that the method
represents entrainment accurately over the major part of the flow, the errors becoming significant only in the
region of severe deceleration. At its greatest, the discrepancy between prediction and experiment amounts to
an error of 1 per cent in displacemen~ thickness.

4.3. Comparisons with Experiment in Compressible Flow

Fig. 11 shows predictions of boundary layer development in the experiments by Cook on a lifting aerofoil at
high subsonic speeds. The calculations are by the R.A.E. version of Head's method and the present method
both for two-dimensional flow, and by the present method with a correction for momentum imbalance. The
distributions of Hand Cf on the upper and lower surfaces of the aerofoil are seen to be quite well predicted by
all three methods. A point worth noting is that, on the upper surface of the aerofoil where the severity of the
adverse pressure gradient steadily increases, predictions of H by the original entrainment method are in fairly
good agreement with both the present method and the experimental data. Over the rearward part of the lower
surface, however, where the adverse pressure gradient diminishes and eventually changes sign, the original
method appreciably overestimates H whilst the present one predicts it fairly accurately. Thus the pattern we
have noted previously for incompressible flow is repeated.

Although we may also note that agreement between the present method and the measurements is improved
by allowing for lack of two-dimensionality in the experiment, not too much weight should be given to the
absolute levels of agreement. On the one hand, the measured values of integral parameters were subject to
appreciable corrections for interference from the traverse gear, and the values of skin friction shown in Figs.
11d and 11e, measured by surface razor blades, were significantly lower than values deduced from Preston
tube readings and Clauser plots; on the other hand, certain secondary effects which might be significant­
longitudinal curvature and perhaps dilatation-have not been included in the calculations.

In Fig. 11f, a prediction of wake development is compared with Cook's measurements. The asymmetry of
the wake of a lifting aerofoil no doubt complicates the flow structure appreciably. Nevertheless, the
assumption (discussed in Ref. 1) that the two halves of the wake can be predicted separately, and their integral
parameters added to give integrals across the whole wake, has already been shown1.37 to give results adequate
for engineering purposes. Fig. 11f confirms that this remains true for the present method.

Measurements by Winter, Rotta and Smith38 of the boundary layer on a waisted body of revolution in
subsonic and supersonic flow are shown in Fig. 12. In this experiment, all the secondary influences on
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turbulence structure treated in this Report-longitudinal curvature, lateral strain, dilatation-are thought to
have had a significant effect on the flow. In the figures we compare: first, the RAE. version of Head's method,
the basic lag method with no allowance for secondary influences, and the lag method with all three of the above
named influences allowed for as outlined in Section 3.3 and with CE chosen to match the initial value of dHIdx
(Figs. 9b and 9d); second, the basic lag method, and versions of the lag method with an allowance for each
secondary influence on its own (Figs. 9c and ge). Because the momentum balance in the experiment is
reasonably good, all calculations are for axisymmetric flow.

Figs. 12c and 12e show the predicted influence of the secondary effects to be appreciable, particularly on Ct.
At M = 0·6, the effect of lateral strain is considerable, that of longitudinal curvature is significant though not
large, and that of dilatation small. At M = 2,0, all three influences are considerable, though longitudinal
curvature has less effect than the other two. The body geometry is such that at a high rate of lateral strain is
sustained for a considerable fraction of the length shown in Figs. 12b to 12e, whereas the longitudinal
curvature is high only for a relatively short distance near the waist. The occurrence of the factor (1 +M 2IS) in
the allowance for longitudinal curvature is of course responsible for the greater predicted influence of this
effect at M = 2.

In Figs. 12b and 12d, the basic version of the lag method is shown to be on balance perhaps less successful
than the RAE. version of Head's method. With all secondary influences allowed for, however, the lag method
is the most accurate of the three, particularly if compared with values of Ct deduced from the Clauser plots by
Winter et al. of their velocity profiles, rather than from their surface-razor-blade readings. Over the rear flare
of the body at M = 2, this version of the method predicts velocity profiles appreciably fuller and skin friction
higher than for zero pressure gradient at the same R o, in agreement with the experimental results. The simpler
methods in Fig. 12d predict the boundary layer at the base of the body still to be recovering towards the
flat-plate condition after its passage through the adverse pressure gradients between xlh = 0·4 and 0·75 (Fig.
12a).

Although we may take some encouragement from the results of the fully corrected calculations in Figs. 12b
and 12d, it is in our view unrealistic to look for really close agreement between current prediction methods and
this particular experiment. Leaving aside questions of interpreting the measurements-skin friction deduced
by surface razor blade did not agree with that derived from Clauser plots, and the Clauser plots themselves
were sometimes anomalous in form-it seems likely that the secondary influences in this experiment were too
powerful to lie within the scope of the rudimentary first-order allowances which are possible with our present,
very limited understanding of these influences. For example, the term {3(1 +M 2/5)Ri which occurs in the
allowance for longitudinal curvature attains a value of around unity at the waist of the body at M = 2, whereas
the allowance was initially assumed valid only if this term was of order less than unity. The corresponding
lateral strain and (at M = 2) dilatation terms are also of similar order to unity. Finally, although the
experimental results give no indication of such an effect, it would not be surprising to find that over the concave
part of the surface a system of longitudinal vortices developed, similar to those noted by other workers in both
low speed39 and hypersonic40 flow.

Fig. 13 shows predictions of boundary layer recovery3! downstream of a small region of separation induced
by an incident-reflected shock of 8 degrees deflection; the Mach number downstream of the shock system
was approximately 2. The calculation by the present method with CE initially taken at its equilibrium value is
appreciably more accurate than that by the previous RAE. entrainment method, and choosing an initial CE

to match the initial dH/dx improves agreement further still. Although this agreement with experiment is very
satisfactory, the rather violent history of the boundary layer in the immediately upstream region must
nevertheless cast some doubt on the value of making close comparisons with data of this kind.

Finally, in Fig. 14, we show some predictions of the supersonic flow studied by Lewis, Gran and Kubota41 in
which the boundary layer along the inside wall of a cylinder was severely decelerated and then reaccelerated by
a system of waves generated by a spiked centrebody. The three calculations shown are by the original
entrainment method, the present method in its simplest form, and the present method with an allowance for
dilatation as outlined in Section 3.3. Although Lewis et al. do not present experimental values of H or H, the
values of Ii calculated by the three methods are shown in Fig. 14 for comparative purposes.

These particular experimental results, and some earlier ones42.43 obtained in qualitatively similar flows,
were cited by Bradshaw16 as the chief evidence that dilatation has an important effect on the turbulence
structure. They were also used by him to determine the empirical constant in his formula correcting for this
effect. Calculations by the present method, with and without a correction for dilatation, agree fairly closely
with corresponding calculations by Bradshaw, and the calculation allowing for dilatation is in reasonable
agreement with experiment. This last result is hardly surprising, in view of the use of these data in the
derivation of the correction term in the prediction method, and we should, on the basis of Bradshaw's results,
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expect similarly good agreement with the other experiments of this kind42
,43 (though no predictions of these by

the present method with an allowance for dilatation have been made),
It must be observed, however, that the allowance for dilatation in the calculation shown in Fig. 14 becomes a

dominant effect rather than a mere first-order correction. The result of making the allowance is roughly to
double the predicted values of CE in the region of strong deceleration and, conversely, to reduce CE to
virtually zero over the second half of the region of reacceleration. Until we have a more detailed understanding
of the turbulence structure in flows such as these, therefore, it would seem premature to interpret the results
shown in Fig. 14 as indicating that our flow model is generally adequate in strongly perturbed compressible
flows.

5. Conclusions

The prediction method described in this Report, applicable to turbulent boundary layers and wakes in
two-dimensional and axisymmetric, adiabatic, compressible flow, is, in our view, a worthwhile improvement
on the original entrainment method of Head and its variants. Whilst retaining the potential of the original
method for extension to a range of more complicated flows, the new method, at the cost of only a fractional
increase in computing time, gives significantly greater all-round accuracy than its predecessor. Tested against
the data compiled for the Stanford Conference on Computation of Turbulent Boundary Layers, it has shown a
general accuracy fully comparable with that of the methods most highly rated by the Evaluation Committee of
the Conference.

The chief distinguishing characteristic of the method is the 'lag' equation for entrainment coefficient,
developed, with as little additional empiricism as possible, from the differential equation for shear stress
derived by Bradshaw, Ferriss and Atwell from the turbulent kinetic energy equation. These origins of the
present lag equation are grounds for expecting it to represent the turbulence behaviour more realistically than
earlier and more empirical lag equations; they may also account for the success of the method when tested
(without any empirical 'tuning') against the data of the Stanford Conference; they certainly make it possible to
introduce first-order corrections for secondary influences on the turbulence structure, such as longitudinal
surface curvature, in a logical and straightforward manner.

The dominant influence on the predictions of the method is, however, the equilibrium locus rather"than the
lag equation. Although the empirical locus employed in the present method lies very close to those used in
other methods, the scatter of the experimental data for equilibrium flows is such that some element of
uncertainty must remain as to the absolute accuracy of the method in flows with strong, sustained pressure
gradients. In compressible flow, the concept of equilibrium flows is not as useful as at low speeds, there are few
if any experiments (except in zero pressure gradient) which we can be satisfied are free from significant
secondary influences on the turbulence structure, and uncertainty as to the absolute accuracy of the method in
compressible flows with strong pressure gradients is therefore somewhat greater than at low speeds. These
uncertainties must of course afflict all prediction methods to a similar degree, and will only be diminished as
and when more extensive, more detailed and better understood experimental data become available.

In the meantime, the present method provides accurate predictions over a range of flow conditions perhaps
as wide as we may realistically hope to cover, with understanding of turbulence as it stands at present. Given
this accuracy, the main virtue of the method is its speed, and the potential this provides for applying the
method, or developments of it, to those problems (for example, fully three-dimensional boundary-layer
calculations nested within an iterative calculation of the overall flow field) for which finite-difference methods
may well prove too costly to use on a routine basis.
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LIST OF SYMBOLS

Ratio of turbulent shear stress to kinetic energy (equation (4))

Parameter in equilibrium locus (equation (58))

Function of CE and Cto (equation (A-31))

Shear work integral (equation (60))

Entrainment coefficient (equation (A-7))

Skin-friction coefficient (equation (A-6))

Skin-friction coefficient in equilibrium flow in zero pressure gradient

Shear stress coefficient (equation (54))

Function of CE and Cro (equation (A-21))

Functions of ii (equation (69))

Scaling functions in skin-friction law (equations (49) and (50))

Clauser shape parameter = (ii -1)/iiJCr/2)

Diffusiog function in turbulent kinetic energy equation (equations (4), (5), (53))

(Equation (A-3))

(Equation (56))

(Equation (60)) velocity-profile shape parameters

(Equation (A-5))

(Equation (A-4))

Values of ii and H in equilibrium flows at constant pressure

Empirical constant (equation (29))

Dissipation length scale (equation (4))

Mixing length =-r:;:JP/(au/ay)

Mach number at the edge of the boundary layer

Pressure

Mean fluctuating velocity

Radius of longitudinal curvature

'Richardson number' (equations (26), (A-22))

Reynolds number based on momentum thickness (equation (A-U))

Reynolds number based on x

Transverse radius of axisymmetric body

Temperature recovery factor (equations (52), (53), (A-17))

Temperature

Fluctuating component of streamwise velocity

Mean component of streamwise velocity

Fluctuating component of velocity normal to surface
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LIST OF SYMBOLS (continued)

V Mean component of velocity normal to surface

w Mean velocity component parallel to surface and normal to external streamline

x Coordinate along surface

y Coordinate normal to surface

z Coordinate parallel to surface and perpendicular to external streamlines

{3 Empirical constant (equations (25), (A-23))

8 Boundary-layer thickness (Section 2.4)

8* Displacement thickness (equation (A-i))

e Dissipation of turbulent energy (equation (3))

( Diffusion function (equation (6))

(' = d«()/d(y/8)

() Momentum thickness (equation (A-2))

A Scaling factor on dissipation length (equations (31), (A-27))

I.t Absolute viscosity

VT Kinematic eddy viscosity

II Pressure gradient parameter for equilibrium flows (equations (10) and (57))

p Density

T Shear stress

c/J External streamline deviation relative to nominal flow direction

Subscripts

e

EQ

EOo

m,max

o

TE

w

2D

Denotes conditions at edge of boundary layer

Denotes equilibrium conditions

Denotes equilibrium conditions in absence of secondary influences on turbulence structure

Denotes values in incompressible flow

Denotes conditions at the maximum in (7/p)

Sometimes denotes freedom from secondary influences on turbulence structure, sometimes
denotes stagnation conditions: which is always obvious from the context

Denotes the trailing edge

Denotes conditions at the wall

Denotes conditions in two-dimensional flow
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APPENDIX A

Summary of the Method

A.l. Definition of Main Parameters

In compressible flow, the parameters which occur in the present method are defined as: boundary-layer
thickness 8 = y at UjUe-0·995, but with the precise value depending on Mach number and Reynolds
number (see Section 2.4).

Displacement thickness

momentum thickness

shape parameters

skin-friction coefficient

entrainment coefficient

* (oo( pU)8 = J, 1-- dy
o PeUe

O=foo~(1- U)dY
o PeUe Ue

H=8*jO

- 1foo P( U)H=- - 1-- dyo 0 Pe Ue

1 f8 pU }H 1=- --dy
o 0 PeUe

8-8*
=--o

Tw
Cf =l U2

ZPe e

CE =~u dd (ri

8

pUdy)Irpe e X 0

1 d
=-U -d(rPeUeH l0).

rpe e X

(A-I)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)

A.2. Compressible Flow over Solid Surfaces

Boundary-layer development, specified by the three independent parameters 0, Hand CE , is predicted by
the numerical integration of the three simultaneous ordinary differential equations:

OdH= dH[CE-Hl{Cr-(H+l)~dUe}], (A-9)
dx dH1 2 Ue dx

In these equations, r is the body radius in axisymmetric flow, set to unity for two-dimensional flow. The various
dependentvariables and functions in the equations are evaluated from the following relationships:

For Cr: from the known surface-pressure distribution the local free-stream properties M, Ue, Pe are evaluated
from gas-dynamic relations and the absolute viscosity !-te from an appropriate relation such as Sutherland's.
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Then we write:

ForH:

R o =PeUe8,
J.te

Fe = 0-01013 0,00075,
c fa 10glo (FRRo) -1-02

1-~o= 6-55 {~a(l +0'04M
2

)r.
Cr = Cfa {0'9 (ffa -0'4) -1 -0-5}.

(
rM2)H=(H+l) 1+-

5
- -1,

(A-ll)

(A-12)

(A-B)

(A-14)

(A-15)

(A-16)

(A-17)

where, in this particular equation, r is the temperature recovery factor in adiabatic flow. A value of unity is
recommended for r when calculating integral quantities involving density (see Ref. 17 for example).

For H l and dH/dHl ;

dH (H-l)2_= c--_~_-=

dH1 1-72 +0-02(H-1)3'

ForC.,.andF:

C.,. = (0-024CE + 1-2C~+0-32Cra)(1 +0-IM2
);

F = (0-02CE + C~+ 0-8Cra/3)
(O-OI+CE ) •

For secondary influences;

If R is radius of longitudinal curvature, positive on a convex wall, we write

(A-18)

(A-19)

(A-20)

(A-21)

(A-22)

and

f3 = 7 for Ri > 0, 4-5 for Ri<O, (A-23)

Al = 1+f3(1+~)Ri.
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Also,

(A-25)

(A-26)

and any other extraneous influences (free-stream turbulence, perhaps?) which can be represented by further
terms in the form A, = 1+.... Finally, we have

(A-27)

It should be borne in mind that these correction formulae are of a provisional nature, and are best programmed
as a,n optional subroutine. As they are believed to be justified only when secondary influences are small to
moderate, we have arbitrarily imposed the limit

in the computer program, with any value of A outside either of these limits reset equal to the limit.

For equilibrium quantities:

( .!-dUe) =1'25{C,_( ii-I )2(l+O'04M2)-1},
Ue dx BOo H 2 6·432H

and

Also, from equation (36) of the main text, writing

C= (O'024(CB)BOo+ l'2(CB)~Oo +O'32C,o)A -2_0'32C,o}

= (C.,.)BOo(l +O·IM2r 1A-2-0·32C,o,

we have

'whence

(A-28)

(A-29)

(A-30)

(A-3I)

(A-32)

(A-33)

Equations (A-II) to (A-33), arranged in a subroutine in the computer program in the order presented here,
provide the dependent variables needed to evaluate equations (A-8), (A-9) and (A-lO) at each stage of the
numerical integration.

A.3. Walke Flows

To continue a boundary layer calculation past a trailing edge, so that one side of the wake is calculated at a
time, for x > XTE:

(1) by-pass equations (A-11) to (A-16) and set

Cr=Cro=O;
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(2) replace equation (A-27) by

(A-35)

A.4. Boundary Conditions

To specify the problem, free-stream stagnation properties Po and To and streamwise distributions of M(x)
and r(x), or some equivalent information must be given. Sometimes longitudinal curvature of the surface R (x)
will also be required. Ideally, initial values of (), Hand CE should also be given, but these will usually be known
only when making comparisons with experiment. The minimum practicable information is an initial value of () ;
frequently calculations are started at an assumed transition point, and the initial 8 is estimated by applying a
simple, approximate method to the laminar boundary-layer development from its origin to the transition
point. InitialH may then be estimated either from equation (A-15), i.e. assuming a flat-plate velocity profile at
the starting point, or else by assuming the flow is locally in equilibrium and using equations (A-28) to (A-33) to
evaluate H given «()/Ue)(dUe/ dx). In this case, it is simplest to assume A = 1 and determine H from equation
(A-28), but even to do this a process of iteration is required. With () and H known, the initial value of CE may
be taken as its equilibrium value. In this case, whether or not we assume A =1, CE may be determined directly
as (CE)EQ from equation (A-32) (if A = 1, equation (A-29) will do) and the preceding equations.

A.5. Comparisons with Experiment

For comparisons against experimental data which do not fully satisfy the two-dimensional or axisymmetric
momentum integral equation, and for which the model of flow three-dimensionality of Section 2.9 is thought
justified, the streamwise distribution of momentum thickness ()(x) measured in the experiment is specified as
part of the input data. Differentiating this data numerically to obtain (d(r()/dx)EXP, and using equations
(A-H) to (A-33) as before to determine the other dependent variables, we then write

- acP Cf 2 () dUe (d )r8(2H-l)-=r--(H+2-M )r- --- -(r() ,az 2 Ue dx dx EXP
(A-36)

from which ()(acP/aZ) is determined. The three equations then to be integrated (assuming the method is to be
programmed with a common format and common use of library routines for both this and the straightforward
type of calculation) are:

.!!.- (r() = (.!!.- (r())
dx dx EXP

dH dH { (Cr () dUe) - - acP }8-=- CE-H1 --(H+l)--- +2(H1(H-l)-H)()-
dx dH1 2 Ue dx az

(A-37)

(A-38)

and equation (A-lO) unchanged.
Knowing initial values of () and H in the experiment, the starting value of CE may be determined either by

assuming equilibrium conditions initially, and using equations (A-29) or (A-32), or by specifying the
experimental value of dH/dx at the starting point as part of the input data. In the latter case, CE may be
determined by inverting equation (A-38), evaluating the other terms in the equation from equations (A-II) to
(A-33) and (A-36).

A.6. Incompressible Flow and Other Simplifications

The equations of the method do not involve division by M at any point, so there is not lower limit to the value
of M for which the method in its above form will work. However, if the method is to be used exclusively for
incompressible flows, the computer program may be somewhat simplified by striking out all terms in M in the
equations of this Appendix and by-passing some of the equations altogether. For example, Hand H become
identical, and equations (A-12), (A-13), (A-l7), (A-26) become redundant.

Similarly, if extraneous effects are to be ignored and the method is not to be used for wake calculations, A
may be equal to 1 and equations (A-22) to (A-27) and (A-31) to (A-33) become redundant.
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Finally, two points are worth making. First, the method is fast enough for simplifications in order to save
computing time to be hardly worth making. Second, the method is so straightforward that, given a
Runge-Kutta library routine for integrating the differential equations, with a control on step-length to ensure
numerical accuracy, a major part of the programming effort is spent on handling the input and output data and,
for example, determining the streamwise distributions of M, Pe, Ue, J.te and dUeldx from the given pressure
distributions. As a result, the main bonus of simplification comes from savings on the input/output
programming, which is effectively common to all boundary layer methods, rather than from simplifying the
internals of the computation.
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