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Summary 

Some interference effects between fuselage and wing are studied for two classes of configurations. The 
fuselage is an infinite cylinder of circular cross section with the axis parallel to the main stream. The wings have 
constant chord and infinite span, they are attached in a midwing position to the fuselage. In the first group of 
configurations, the wings are non-lifting and have the same symmetrical section shape across the span; in the 
second group the wings are warped such that, when attached to the fuselage, they produce the same chordwise 
load distribution across the span. For the first class of wings, the Report deals with the change of the pressure 
distribution caused by the body interference, and, for the second class, with the change of the required shape of 
the mean surface. 

The problems are solved by considering first the flow field past a single kinked infinite swept source line or a 
vortex, in the presence of the fuselage, and by computing some velocity components. From the tabulated 
values of these velocity components, the interference velocities for wings of given thickness distribution or 
load distribution can be derived by chordwise integration. A few examples demonstrate how the interference 
effects can vary with the angle of sweep, with the ratio between body radius and wing chord and with the 
spanwise distance from the wing-body junction. 

The present Report summarises the work published previously in four separate reports. T M  

* Replaces R.A.E., Technical Report 74073--A.R.C. 35 588 
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1. Introduction 

The aim of this Report is to study some interference effects between fuselage and wing in inviscid 
incompressible flow. From the large variety of possible wing-fuselage configurations, we select a restricted 
class, so that we are able to examine in a systematic manner how the interference velocity depends on certain 
geometric parameters. We intend to provide also the means for deriving, without much further 
computation, an estimate of some interference effects for configurations which differ from those dealt with 
in detail. 

We consider an infinite cylindrical fuselage of circular cross section, with the axis parallel to the main stream 
so that the isolated fuselage does not perturb the main stream. 

The wings are of constant chord and infinite span; they are attached in a midwing position to the fuselage. 
Two types of wing are to be considered: either the wings are untwisted and have the same symmetrical section 
shape across the span, or they are warped (i.e. cambered and twisted) such that, when attached to the fuselage, 
they produce the same chordwise load distribution across the span. 

The thickness- and load-distributions are to be such that they produce small perturbations of the main flow, 
except near leading and trailing edges. The wings can therefore be represented by singularity distributions in 
the chordal plane of the wing. 

We consider only singularity distributions in a plane which contains the axis of the fuselage. For the 
configuration with the untwisted, uncambered wing, both wing and fuselage are therefore at zero incidence to 
the main stream, so that we are dealing with a pure displacement flow. For the configuration with the warped 
wing, we consider only load distributions which produce small angles of twist near the wing-body junction; we 
thus ensure that the angle between the wing chord and the body axis is sufficiently small for us to ignore its 
effect on the interference velocity. 

With the configurations chosen, the sides of the fuselage cross the chordal plane at right angles. The fuselage 
affects the flow near the wing-body junction in a way similar to that of an infinite reflection plate normal to the 
wing plane; but the flow is influenced also by the finite curvature of the body. The aim of the present Report is 
to examine this second effect. For the uncambered wing, we determine the difference between the pressure 
distribution on a wing-fuselage combination and that on the wing when it is attached to an infinite reflection 
plate. This latter distribution is the same as that on the isolated swept wing with its centre section at the 
wing-body junction. (In the following, 'isolated wing' is used to describe the nett wing attached to an infinite 
reflection plate.) For the fuselage in combination with a cambered wing, we examine how the warp of the 
isolated wing has to be modified in order to retain the given load distribution. 

The isolated wings are represented by distributions of singularities (sources and vortices) in the wing plane. 
To these we must add further singularities so that the total normal velocity on the surface of the fuselage 
vanishes and the fuselage remains a stream surface. There exist various possible singularity distributions which 
would solve the problem. One could place all the additional singularities on the surface of the fuselage, or one 
could place some in the part of the wing plane which is inside the fuselage and some on the surface of the 
fuselage. We prefer the latter possibility. 

We extend the singularities, which represent the isolated wing, inside the fuselage in such a way that the local 
reflection effect of the body wall is represented. As a consequence, the requirements for the singularity 
distribution on the fuselage are more easily satisfied than when all singularities are placed on the surface of the 
fuselage. There exists a choice of singularities inside the fuselage which take account of the local reflection 
effect. We choose a distribution which simplifies the computation of the induced velocity fields, using inside the 
fuselage the image (produced by a plane reflection) of that part of the wing source (or vortex) distribution 
outside the fuselage which has a spanwise width equal to the body radius. For the special case of wings of 
constant chord and constant section shape (or load distribution), this means that the singularity distribution in 
the wing plane is equivalent to a chordwise distribution of swept source lines (or vortices) of constant strength 
which are piecewise straight but have three kinks, namely, at the wing-body junctions and at the axis of the 
fuselage, as sketched in Fig. 1. 

The singularities in the wing plane induce a non-zero normal velocity at the surface of the fuselage. To 
cancel this, we place a source distribution on the fuselage, the strength of which is determined by solving an 
integral equation in two variables. The components of the velocity field induced by the various singularities can 
be determined by evaluating double integrals. 

We intend to study configurations with different values of the ratio between wing chord and body diameter, 
and with wings of different section shape or different chordwise load distribution. To reduce the amount of 
computation, we determine first the flow field past a single kinked swept source line, or a single kinked swept 
vortex, in the presence of a fuselage. Using the results for a single source line, or vortex, the interference effect 
for a complete wing can be derived by means of single integrals. The more laborious task of solving an integral 



equation in two variables and of evaluating double integrals has thus to be done only once for a series of 
configurations with wings of the same angle of sweep. 

This procedure has the disadvantage that the singular behaviour of the velocity field near a single line of 
singularities is more severe than near a planar distribution of singularities. We have therefore determined in 
detail the singular behaviour of the interference velocity near the point where the source fine, or vortex, 
crosses the fuselage. This task would have been more difficult if the source line or vortex, had not been 
reflected at the side of the body. 

Some values of various interference velocity components for a single source line, and for a single vortex, in 
the presence of a circular cylindrical fuselage are tabulated for four angles of sweep, q~ = 0, 30, 45 and 60 
degrees. Further values are given in Refs. 3 and 4. 

We use the results for the single source line to determine the effect of the fuselage on the pressure 
distribution of a symmetrical wing at zero incidence and consider wings of different sweep and configurations 
for which the ratio between body radius and wing chord varies. The results given refer to only one particular 
section shape, but results for other section shapes can be derived with a small amount of further effort (see 
also Ref. 3). We derive the results according to first-order theory and study also some of the second-order 
terms. 

In practice, the wing of a wing-fuselage combination differs from the configurations mentioned so far, in that 
the span is finite, and the thickness distribution may vary across the span. We expect however that the results 
derived from infinitely long source lines will allow us to obtain a fair estimate of the interference velocity for a 
general wing shape. This assumption is based on the fact that, with many configurations, the fuselage has an 
appreciable effect on the displacement flow in only a fairly narrow region near the wing-body junction 
(measured in terms of the wing span). We consider only the interference velocity and not the total pressure 
distribution on the wing-fuselage configurations for the following reasons. (1) The interference velocity is of a 
magnitude which is usually appreciably smaller than the perturbation velocity of the isolated wing so that a 
crude estimate is often sufficient. (2) The flow field past a wing attached to an infinite reflection plate can be 
evaluated, to first or higher order accuracy, by existing computer programs (see for example J. A. Ledger s and 
C. C. L. Sells6). 

For two particular configurations, we compare more exact results, derived by means of source distributions 
on the surface of wing and fuselage, 7-9 with the estimates obtained by means of infinitely long source lines. We 
have not included any comparisons with experiment since the test results available for pressure distributions 
near the wing-body junction are strongly influenced by a complicated development of the boundary layer, see 
for example Figs. 2 and 9 of Ref. 10. 

Using the values tabulated for the downwash induced by a single vortex in the presence of the fuselage, we 
determine, by chordwise integration, the required change in the shape of the mean surface, for a given 
chordwise load distribution. A few examples demonstrate how the additional wing warp can vary with the 
angle of sweep, with the ratio between body radius and wing chord, and with the spanwise distance from the 
wing-body junction. For the wing-body junction, we consider also the effect of the finite thickness of the wing 
on the additional wing warp necessitated by the presence of the fuselage. We cannot yet, however, examine 
how useful the results for infinite vortices are in deriving an estimate for the additional wing warp in a practical 
design case, because no results from an accurate design method are available for comparison. 

2. A Single Kinked Swept Source Line in the Presence of a Circular Cylindrical Fuselage 

2.1. Velocities Induced by the Source Line 

Let x, y, z be a cartesian system of coordinates, where z = 0 is the plane of the wing and y = z = 0 the axis of 
the fuselage. Let x, r, 0 be a system of cylindrical coordinates, where 0 = 0 corresponds to z = 0 and positive 
values of y. We consider an infinitely long cylindrical fuselage of circular cross section yZ+z2= R 2 and an 
infinitely long source line in the plane z = 0, which is piecewise straight, swept by an angle :l:~b, and which has 
kinks at x = 0, y = ±R and at x = R tan &, y = 0 (see Fig. 1). The position of the source line is thus given by 

x = IR - ly ]  ]tan 6. (1) 

The strength of the source line is constant along the span and equal to O per unit length. In this and the next 
section, all lengths are made dimensionless by dividing by R. 



The velocity field v~o(x, y, z) induced by the source line can be obtained from the relation 

v~o(x,y,z) 
O {foo [ x -  ( y ' -  1) tan 4~]i+(y - y')j + zk 

47rcos~b J, ~ - x - ~ y T - - f - 1 ) ~ - a n ~ - ~  23dy'  

Io I [x-(1-y ' ) tanq~]i+(y-y ' ) j+zk dy '+  
+ 4[x - ( 1  - y ' )  tan 4~]2 + (y -y')2+z23 

Io I [ x - ( 1 - y ' )  tan 4~] i+ (y+y ' ) j+zk  
+ ~l[x-(1-y')  tan q~]2+ (y + y')2 + z23 dy' 

I, ~° [x-(y'-l)tan,bli+(y+y')j+zk 3dy'}, 
+ ~/[x- ( y ' -  1)tan 4~]2 +(y +y ' )2+ z2 

(2) 

where i, j, k are unit vectors parallel to the x, y, z axes. 

Expressions for the velocity components parallel to the x, y, z axes, vx~o, vy~o, vz~o, can be written down in 
analytic form. Using these, one can determine the normal velocity at the fuselage (positive outwards): 

v,,o(x, O)= cos Ovy~o(X, O)+sin Ov~o(x, 0). (3) 

An explicit formula for Vno(X, O) is given in Appendix A of Ref. 3. 
In the following, we shall require the mean value of the normal velocity at the cross section x -- const 

O,o(x) = ~--~ v,o(x, O) dO. (4) 

Using computed values of v,o(x, 0), we have determined f,o(X) by numerical integration. 
The integral of v.o(x, O) over the fuselage is 

o o  2 r r  oO 

I_~o fo v.o(x, O)dO dx= 2zr f_~o f~,.o(X) dx= 20./1 +tan  24~. (5) 

as is to be expected, since the total source strength of that part of the source line which lies inside the fuselage is 
2Q~/1 + t a n  2 ~b. 

We may note that the normal velocity at the side of the fuselage, v,o(x, 0 = 0), has non-zero values for ~b # 0. 
As x tends to zero, 

v,o(x~O, 0 =0)  = ~-~ sin 2 ~. 

If we were to extend the source line within the fuselage without forming a kink at the body junction, then the 
normal velocity in 0 = 0 would tend to infinity as - O  tan cb/2rrx, when x tends to zero; this type of singular 
behaviour is of course the result of our considering an isolated source line. 

2.2. Strength of the Source Distribution on the Fuselage which makes the Fuselage a Stream Surface 

As mentioned in the introduction, we cancel the normal velocity v,o(x, O) by a source distribution on the 
surface of the fuselage of strength q(x, 0). The function q(x, O) must therefore satisfy the equation (see 
equation (A-4) of Appendix A): 

v,q(x, O)=-v,o(x, 0), (6) 



where 

V~q(X,O)_q(x,O._. )+f~_o ~ ff=q(x',O')tl-cos(O-O')]dO' dx' 
2 ~ 4rr~/(x-x ')2+2[1 - c o s  (0 -0 ' ) ]  3 

(7) 

We introduce the mean value of the source strength q(x, O) at a station x = const: 

(l(X) =-2--~ q(x, O) dO. (8) 

Using equation (A-14) of Appendix A, we can write equation (7) in the form 

q(x, O) + gt(x) + [q(x', O')-q(x, 0')][1 - c o s  (0 -0 ' ) ]  dO' dx' -2v,  o(x, 0). 
o 27r~(x-x')2+2[1-cos(O-O')] 3 - (9) 

One might consider determining a numerical solution of this equation in a manner similar to the panel 
method developed by A. M. O. Smith and J. L. Hess (see for example Ref. 7) for calculating the pressure 
distribution on a non-lifting wing-fuselage combination. This would however involve the solution of a large 
system of linear equations. 

Our aim is to determine only an approximate solution but with somewhat less effort. Further we intended to 
deal with continuous functions for the source distribution, instead of using panels of constant source strength, 
since with the latter one obtains realistic results only for certain points on the panels. This is particularly 
important, since we want to perform the lengthy part of the calculation, (i.e. the determination of the source 
distribution on the fuselage and of the velocity field which it induces) only a few times, namely for single source 
lines of various angles of sweep and then use the results with a series of chordwise source distributions. The 
difficulty caused by planar panels of constant source strength could of course be overcome by using curved 
panels for which the source strength and its first derivatives are continuous, as with the method derived by A. 
Roberts and K. Rundle. 8'9 

We prefer however to derive an approximate solution of equation (9) by an iteration procedure, since this 
provides also some information about the accuracy of the solution. 

Equation (9) suggests that the nth approximation q(")(x, O) may be derived from the (n - 1)th approxima- 
tion by the relation 

i ~ f 2~ [q(n-D(x,,_ 0')--q("-')(x, 0')][ ! -c___os (0 - 0')1 dO' dx' 
q("'(x, O)+~l("'(x)=-2V.o(X, 0)-  oo J,} 2 7 r d ( x - x ' ) Z + 2 [ 1 - c o s - ~ - ~  0o) 

A first approximation q(°)(x, 0) can be obtained by neglecting the last term in equation (10). Thus q(°)(x, O) 
satisfies the equation 

q(°)(x, O)+ q(°)(x)=-2v,o(x,  0). (11) 

Taking the mean value with respect to 0 of both sides of equation (11), we see that 

q(°)(x) = -15,o(x) (12) 

and hence 

q(°)(x, O) = -2v,  o(x, O) + Go(x). (13) 

The integral of the source strength q(m(x, 0) taken over the whole fuselage is 

, 2 w  oo ,2~r 

co I q(°)(x'O)dOdx=-f_, oo So vno(x' O) dO dx =-2o~/ l  +tan2 ¢' 

so that q(°}(x, 0) satisfies the condition on q(x, O) that there is no overall flow through the fuselage. 

6 



The second approximation 

qm(x, O)= q(°)(x, O)+ A(1)q(x, 0)  (14) 

is obtained from 

A(1)q(x, O)+ A(1)~(x)= K(I)(x, 0), (15) 

where 

~ [2~[q(°)(x', O')-q(°)(x, 0')][1 - c o s  ( 0 -  0')] dO' dx' 
g(1) (x ,  0)  = - ~ Jo  27r,f(x - x') 2 + 211 - cos (0 - 0 ' ) ]  3 

(16) 

Comparing equation (15) with equation (11), we obtain, similar to equation (13) 

A(1) q(x, O)= g(l)(x, o)-ll~m(x) (17) 

where 

1 [2= 
/((1)(x) =2--~ Jo K(1)(x, 0) dO. (18) 

Using equation (A-11) of Appendix A, we find that /~m(x) can be derived from the relation 

-_ ° gl(°)(x') - gt(°)(x) k [ K -  E] dx', = - : 

o o  

(19) 

with q(°)(x) from equation (12), where K and E are the complete elliptic integrals (of the first and second kind 

respectively) with the modulus 

k2 = 4 (20) 
4+(x  - x ' )  2 

For 4} = 0 and 4} = 45 degrees, we have computed values of / ( re(x)  and of Kin(x, O) for 0 = 0, 30, 60 and 90 
degrees. For 4} = 0, it was found that IK(~(x, 0)-/C")(x)l is nowhere larger than 0.032 x g/(°)(x = 0) and, for 
4} = 45 degrees, that IKm(x, 0)-R(l~(x)[ is nowhere larger than 0.05 x g/(°)(x = 0). 

We shall mention in Section 2.3 that, for 4} = 0, we have computed the streamwise velocity induced by a 
source distribution of strength KCl)(x, 0)-K,(a)(x) and found that the velocity was nowhere larger than 3 per 
cent of the magnitude of the velocity induced at x = 0, y = R by the source distributions q~°)(x, O) or qm(x, 0). 

Further, in Section 4, we shall show that the streamwise velocity caused by the wing-body interference effect 
is of a magnitude not greater than about 20 per cent of the streamwise velocity of the isolated wing. 

We aim in this Report only towards an accuracy consistent with a small-perturbation theory approach. To 
reduce the computational effort, we therefore neglect the term K(1)(x, O)- K,(a)(x) in the source distribution 
Amq(x, O) for swept source lines. This means we use the approximation 

i - ( 1 )  . .~ Amq(x, O)=~K (.~j. (21) 

Similarly, we approximate q(")(x, O) by 

q°~)(x, O)= q(°)(x, O)+ A(n)4(x), (22) 

with 

zx(° 4(x)=½ 
u = l  



where, (cf. equation (19)), we determine/((~)(x) from 

g(v- 1)(X/) / ~ ( v - 1 ) ( X  ) 

/((~)(x) = - |  - k [ K -  E] dx'. 
oo 4rr d _  

The modulus k, equation (20), is a function of ( x - x ' )  2, and since 

it follows that 

f f  dx f f  dx'[f(x')-f(x)]F((x -x ' )  2) = 0, 

A(")(l(X) dx = O, 
c o  

so that q(n)(x, O) satisfies the condition that there is no overall flow through the fuselage. 
We have computed values of/(( '°(x) for 1 ~ n ~ 6. It was found that 

(23) 

I/~(-)(X)lm~ ~ , --(n-l) <~IK (x)l . . . .  

If the same is true for n > 6, then 

ig~-~(x)[ < I/~(6)(X)lmax ~,, (½)v < ]/~(6)(X)lma×. 
n = 7  u = l  

For computing the velocity components induced on the wing and the fuselage, we therefore use the 
approximate source distribution 

6 
q(x, O)=-2v,  o(x, O)+f,o(x)+ ½ Z g(")(x). (24) 

r l=l  

The function q(x, O) has the same properties of symmetry as Go(x, 0), i.e. 

q(x, O) = q(x, 7r - O) = q(x, -0). (25) 

2.3. S~reamwlse Velocity in the Plane through the Source Line and the Axis of the Fuselage 

We consider now the streamwise velocity in the plane z = 0, i.e. the plane through the source line and the 
axis of the fuselage. 

The source distribution q(x, O) produces the streamwise velocity (see equation (A-1)) 

fo~ fo2= q(x', O')(x-x') dO' dx' 
V,,q(X, y, O) = _co 4 7 r f f ( x  - x / ) 2 - ~  - y2+ 1 - 2 y  cos 0 '3 (26) 

For the numerical evaluation of Gq, we write this relation in the form of equation (A-16) of Appendix A. 
The evaluation of the integrals in equation (A-16) does not cause any difficulty, except for y = 1 and small 

values of ]x I. It is shown in Appendix B that the velocity vxq for y = 1 behaves as 

= log Ix] x vxq(x, YQ= 1, O) cos 34'47r - sin 3 1  +~6 sin24, + ~-~ J4(6) 
+f (x ;  ~), (27) 



where J4(qb) can be evaluated numerically from a single integral and f(x; th) is a finite continuous function. For 
q~ = 45 degrees values of Go(x, 1, 0) are plotted in Fig. 2. 

Our aim is to determine the difference between the velocity fields past a swept wing attached to a circular 
fuselage and past a swept wing attached to an infinite reflection plate. To obtain the corresponding 
interference velocity field for a single source line v~o, we have to add to the velocity field induced by the source 
distribution q(x, O) on the fuselage, the velocity field produced by the source line with three kinks, vm o, and to 
subtract the velocity field produced by the ordinary swept source line, vAo. We therefore derive G~o in the 
plane z = 0 from 

vxxo(x, y, 0)= V~q(X, y, O)+vx~o(x, y, O)-vxAo(x, y, 0). 

Values for G~o(x, y, 0) can be derived from equation (2) and values for GA(x, y, 0) from the relation 

vAo(x, y, z) O ~" ~ [ x - ( y ' - l ) t a n ( k ] i + ( y - y ' ) j + z k  
47r cos th[J,  ff[x - ~ y ' ~  1)-~an ~--- -~;  - - ~  ~ z  23 dy '+  

(28) 

f l [X--(1--y') tan ~ b ] i + ( y - y ' ) j + z k  } 
+ oo f f [ x - ( 1 - y ' )  tan 6 ] Z+ ( y - y ' ) 2 + z 2 3  dy . 

(29) 

Explicit formulae for v,,~o(x, y, 0) and V,,A(X, y, 0) are given in Appendices A and C of Ref. 3. 
For ~b = 45 degrees, values for Vxlo in the wing-body junction are plotted in Fig. 2. The figure shows that, 

for most values of x, the sign of the term Vx~- v,,A is opposite to that of vxq. To judge the magnitude of the 
interference velocity the term -0"2vx^o is also plotted. 

We have computed values of Vx~o for the angles of sweep ~b = 0, 30, 45 and 60 degrees and for the spanwise 
stations y/R = 1.0, 1.25 and 2.0. Values of v,:xo are tabulated in Table 1. (Further values of v,ao are given in 
Table 1 of Ref. 3.) Fig. 3 illustrates how the interference velocity in the wing-body junction varies with the 
angle of sweep. 

For & = 45 degrees, we have plotted, in Fig. 4, Vx~o for various spanwise stations. Since chordwise 
distributions of isolated source lines will be used to represent swept wings and since the pressure distributions 
on swept wings are usually given as functions of the chordwise coordinate ~, where ~ is zero at the leading edge 
of the wing, this coordinate is used in Fig. 4. Note that 

,fiR = x /R - (ly/RI- 1) tan ~b. (30) 

We have mentioned in Section 2.2 that a more accurate approximation to q(x, O) would be obtained, if we 
were to add to the values given by equation (24) the term K(1)(x, 0) -/((1)(x). To judge the importance of the 
term K~l)(x, 0) -/((l~(x), we have expressed Kin(x, 0), for 4' = 0, as a Fourier series with respect to 0. Using the 
numerical values of K(n(x, O) for 0 = 0, 30, 60 and 90 degrees, we found that it was sufficient to consider only 
the first two terms of the Fourier series, i.e. we have used the approximation 

K(1)(x, 0) - I~(1)(x) = Fl(x) cos 20 + G(x)  cos 40 (31) 

Where 

Fl(X) = ½K(~)(x, 0)+½K(~)(x, 30°)-½ K(~)(x, 60°)-½K(1)(x, 90 °) 

and 

F2(x) = 51/~."(l"tx, 0 ) -  ½ K(1)(x, 30°)-  ½ K(1)(x, 60°)+ ½ K(1)(x, 90°). 

For the source distribution A*q(x, 0) = Fl(x) cos 20 +Fa(x) cos 40, we have computed the streamwise veloc- 
ity, Av*(x, y = 1, 0), in the wing-body junction. Av* has the largest value, 0.0015, at x/R = 0.15 and the 
smallest value, -0.0009,  at x/R = 1. These values are small compared to IVxlo(x = 0, y -- 1, 0)1 = 0.0530. We 
have therefore computed the interference velocity from the approximate source distribution given by equation 
(24). 



2.4. Streamwise Velodty on the Fuselage 

The isolated infinitely long fuselage does not produce any perturbation to the free stream. Thus the pressure 
distribution on the fuselage is entirely due to the presence of the wing. 

On the fuselage, the source distribution q(x, 0) produces the streamwise velocity 

ioo f(2"rr q(x', O')(x -x ' )  dO' dx' 
v~q(x, 0) = -~o , 47r~/(x - x') 2 +211 - cos ( 0 -  0')] 3 (32) 

For the numerical evaluation of Gq(x, 0), we write equation (32) in the form of equation (A-I 8). 
The total velocity Go at the surface of the fuselage is given by 

Vxo(X, O)= v~q(x, O) + v~,o(x, 0), (33) 

where v~o(x,  O) = v,,,~o(x, y = cos 0, z = sin 0) can be derived from equation (2). 
As for the flow in the plane of the wing, we define an interference velocity on the fuselage 

Vx~o(x, O)= vx,(x, O) + vx,~o(x, O)-- VxAo(X, y = 1, z =sin 0). (34) 

Values of Gro(x, O) are quoted in Table 2, and, for 4' = 45 degrees, are plotted in Fig. 5. 
We have not computed values of G~o(X, y > R, z ¢ 0) at spanwise stations away from the wing-body 

junction; to do so would require the evaluation of further double integrals, see equation (A-l) .  

2.5. The Velocity Component v~ 

The source distribution q(x, 0) is a symmetrical function with respect to the plane z = 0 and therefore it does 
not produce a velocity normal to that plane: i.e. Gq(X, y, z = 0) = 0 and Glo(x, y, z = 0) = 0. However, at z # 0 
the velocity components Vzq and v~tQ do not vanish. 

To determine the pressure distribution on a wing in the presence of a fuselage to second-order accuracy, we 
require the velocity components at the surface of the wing to second-order accuracy. We therefore need to 
know the velocity component vz at z ¢ 0 which is induced by the single source line in the presence of the 
fuselage. 

The velocity component Vzq(X, y, z ¢ 0), induced by the source distribution q(x, 0), can be derived from 
equation (A-3). We have computed values of Gq(X, y, z) only at the fuselage. In Ref. 3, we indicated how we 
computed first the circumferential velocity component Voq(X, 0), using equation (A-15), and then determined 
v~q (x, 0) by means of the relation 

V~q( X, 0)=  cos Ovoq +sin OV,q = cos OVoq-sin Ov,o. (35) 

We again determined the interference velocity G,o, where 

vzto(x, O) = Vzq(X, O) + G~o(X, O)- v~Ao(X, y = 1, sin 0). (36) 

Values of Vz~o(X, O) are quoted in Table 3 and, for ~b = 45 degrees, are plotted in Fig. 6, together with values of 
vzAo, induced by the ordinary swept source line. 

For the complete velocity field, we would also require values for the spanwise velocity component.  We have 
not computed any values, but those on the fuselage are known since 

vyq + Vy,~O = -s in  O(voq + Vo~o) = - t a n  O(Vzq + vz~o). (37) 

3. A Single Kinked Swept Vortex in the Presence of a Circular Cylindrical Fuselage 

3.1. Velocities Induced by the Vortex 

We consider an infinitely long kinked swept vortex, the shape of which is given by equation (1). The strength 
of the vortex is constant along the span and equal to F per unit length. 
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The velocity field v~r(x, y, z) induced by the vortex can be obtained from the relation 

F ~oo - z i + z  tan 4 ' j + [ x - ( y  - 1) tan 4']k , , . 1.1 - z i - z  tan 4'j +[x +(y - 1) tan 4~]k 
• dy' 

v~r(x, y, z)= -~-~ j~ 4[x-(y'- 1) tan 4']2+(y _y,)2+z23 ay t jo  x/[x - (1  - y ' ) t a n  4']2+(y _y,)2+z23 
+ 

Ij - z i + z t a n 4 ' j + [ x - ( y + l ) t a n 4 , ] k  , f ° ° - z i - z t a n 4 , j + [ x + ( y + l ) t a n 4 " ] k  dy,I. 
+ x/[x--(1--y')tan4']2+(y+y')2+z 23dy +Jl x / [ x - ( y ' - l )  tandp]2+(y+y')2+z 23 

(38) 

Using this relation one can derive analytical expressions for Vy~r and V~r and also for the normal velocity 
v,,r at the surface of the fuselage. An explicit formula for V,r is given in Appendix A of Ref. 4. The normal 
velocity v,r  is an antisymmetric function with respect to the plane z = 0, i.e. V,r(X, O) = -v,r(x,  -0) ;  therefore 
the mean value 5,,v(x) vanishes at any cross section x = const. 

3.2. Strength of the Source Distribution on the Fuselage which makes the Fuselage a Stream Surface 

The strength q(x, O) of the source distribution on the fuselage must be such that the normal velocity on the 
surface of the fuselage is cancelled, i.e. 

v,q(x, 0)=-V~r(X, 0). (39) 

The function q(x, O) has the same planes of symmetry or antisymmetry as v,r(x, 0), therefore the mean values 
~(x) vanish. It follows from equation (A-14) that q(x, O) has to satisfy the equation 

q(x, 0)+ [q(x', O')-q(x, 0')][1-cos ( 0 - 0 ' ) ]  dO' dx' = -2v ,  r(x, 0). 
oo 27rx/(x - x') 2 + 211 - cos (0 - 0')] 3 

(40) 

An approximate solution of equation (40) can again be derived by an iterative procedure, where the initial 
approximation is given by 

q(°)(x, 0 ) = - 2 V ,  r(X, 0). (41) 

The first step in the iteration procedure leads to 

qm(x, O)= q(°)(x, O) + A m q(x, 0), (42) 

where 

I ~ I2=[q(°)(x ', O')-q(°~(x, 0')][1-cos (0 -0 ' ) ]  dO' dx' 
A(I)q(x' 0)= -- oo Jo ? ~ ~ ~ ~  (-'-~-- 0 ~  "~ (43) 

We have computed values of Amq(x, O) for 0 = 15, 45 and 90 degrees; for 4' = 30, 45 and 60 degrees. When 
A(1)q(x', 0) is approximated by the function 

A(1)q(x, 0) = AI(x) sin O+A3(x ) sin 30+As(x) sin 50, (44) 

numerical values for Al(x), A3(x), As(x) can be derived from the computed values A(1)q(x, 0 = 15°), 
Amq(x, 0 = 45°), Amq(x, 0 = 90°). It was found that the maximum values of IA l(X; 4')1 are approximately the 
same for all values of 4'. The ratio IAffx; 4')lm.x/Iq~°~(x, 0; 4')lmax decreases from about 0-18 for 4, = 0 to about 
0.11 for 4, = 60 degrees. The functions IA3(x)l and IAs(x)l have appreciably smaller values than IA~(x)lm,×. 
The ratio [A31max/lAalrnax is about 0.15 and~Aslmax/IAllmax is about 0.05, for all values of 4'; this means that 
IA3(x)l/Iq(°~(x, 0)lmax<0"03 and IAs(x)l/Iq ~ ~(x, 0)[max<0"01. 

These values suggest that for the second term in the iteration procedure 

f~ f2= Ea~,,q(x,, 0')- A(a)q(x, 0')][1 - cos (0 -- 0')1 dO' dx' A(2)q(x, O) J_ Jo 2~4(x -x ' )Z+2[1-cos (o -o ' ) j  3 ' 
(45) 
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it is sufficient to derive an approximate value by substituting for Amq(x, 8) the term A~(x) sin 0. We therefore 
determine an approximate value of A(2)q(x, 0) in the form 

A(2)q(x, 0) = B(x) sin 0, (46) 

where 

B ( x )  = A ( 2 ) q ( x ,  0 = 9 0  °) 

f "  ( e ' ~ [ A d x ' ) - A f f x ) ] s i n  0 ' (1 - s in  0') dO' dx' 
J_ ~o / ~o 27r-,/(x - -  X ' )  2 -I-" 2(1 - s i n  8') 3 

= f °° [A t (x ' ) -A l (x ) ] , / ( x  - x ' ) 2 + 4 [ ( 4 - k 2 ) E + ( 3 k 2 - 4 ) K ]  dx', 
oo 4rr (47) 

with 

k 2  - 4 
4 + ( x  - - X " )  2" (48) 

We have computed values of B(x); it was found that the maximum values of ]B(x; 4,)1 are nearly independent 
of the value of 4' and that the ratio [B(x;4")lma~/lA,(x; 4')[max is about 0.15. We conclude from this that the 
source distribution 

q(x, 8)= q(°)(x, O) + A(l) q(x, O) + A(2) q(x, 8) 

is a sufficiently accurate solution of equation (40). We therefore consider in the following the velocity field 
induced by the source distribution 

q(x, O) = - 2 t ) , , i , ( x  , O)+[AI(x)+B(x)]  sin O + A 3 ( x  ) sin 30+As(x)  sin 50. (49) 

3.3. Downwash in the Plane through the Vortex and the Axis off the Fuselage 

We consider now the velocity which the source distribution q(x, 8) on the fuselage induces in the plane z = 0, 
i.e. the plane through the vortex and the axis of the fuselage. 

Since the source distribution q(x, 0) is asymmetrical with respect to the plane z = 0, it produces no velocity 
component tangential to that plane, that is 

Vxo (x, y, z = O) = 0 

and 

Vyq(X, y, z = O) = O. 

The velocity normal to the plane z = 0 is 

ioo f2,~q(x, ' O) sin OdOdx' 
Vzq(X' y' O) = -- -00 &) "4"-~- ~f(X -- X')2 + y2 + l _ 2 y  cos  O 3 

(50) 

For the numerical evaluation of V~q, we write equation (50) in the form of equation (A-17). The evaluation of 
the integrals in equation (A-17) does not cause any difficulty, except for y = 1 and small values of Ix I. It can be 
shown, by a technique similar to the one used in Appendix B, (see also Refs. 2-4), that the function 
Vzq(X, y = 1~ 0) behaves as 

1 sin 4, cos 4, loglx[ x 
V~q(X, y= l, O)= 87r ( l + c o s 4 , )  2 +-(~[Js(4,)+g(x;cb), (51) 

where Js(4,) can be evaluated numerically from single integrals and g(x; 4,) is a finite continuous function. We 
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have computed the following values for Js(~b): 

0 - 0 . 1 0 6 1 0  
30 ° -0 .10283  
45 ° -0 .09906  
60 ° -0 .09337  

To obtain the interference term for the downwash of a single vortex, Vztr, we have to add to v~q the 
downwash from the vortex with three kinks, Vz~r, and to subtract the downwash from the swept vortex (with 
one kink at y = 1), V~Ar: 

V~xr(X, y, O) = V~q(X, y, O)+ V~r(X, y, 0)--V~Ar(x, y, 0). (52) 

Values of V~r(X, y, 0) can be derived from equation (38) and values of V~Ar(X, y, 0) from the relation 

F { f l ° ° - z i+z tan4~j+[x- (y -1 ) tan4)]k  d y '+  
vAt(x, y, z ) =  - ~--£~ ~ / [ x - ( y ' - 1 ) t a n  4 ] ~ + ( y -  y')2+ z23 

I f  - z i - z  tan ~bj+[x+(y- 1) tan qb]k dy'}. 
+ oo 4 [ x - ( 1 - y ' )  tan 4~]2+(y-y')2-I-z23 

(53) 

For ~b = 45 degrees and y = 1, we have plotted values of v~q and V~1r in Fig. 7. To provide a measure for the 
importance of the interference downwash, we have plotted also the term 0"2vzAr. Comparing Fig. 7 with Fig. 
2, which shows the corresponding results for a source line in the presence of a fuselage, we note that the 
interference effect is more important with respect to the downwash from a vortex than with respect to the 
streamwise velocity component from a source line. 

We have computed values of Vzxr for the angles of sweep q5 = 0, 30, 45 and 60 degrees and for the spanwise 
stations y/R = 1.0, 1.25, 2.0. Values of vz~r are tabulated in Table 4. (Further values of v~w are given in Table 
1 of Ref. 4.) Fig. 8 illustrates how the interference velocity V~1r in the wing-body junction varies with the angle 
of sweep. 

For ~b = 45 degrees, we have plotted, in Fig. 9, v~n. for various spanwise stations as a function of ~/R, see 
equation (30). Comparing Fig. 9 with the corresponding figure for a source-line, Fig. 4, we note that ]V~trl 
decreases more rapidly with increasing distance from the wing-body junction than the interference velocity 

[Vx,ol. 

3.4. Downwash at Points away from the Plane z=0 

In practice, we are interested in designing wing-fuselage combinations with wings of finite thickness. We 
therefore require the variation of the interference velocity away from the plane z = 0. 

The velocity component V~q(X, y, z) induced by the source distribution q(x, O) on the fuselage can be 
obtained from equation (A-3). We are particularly interested in the downwash at the junction of a thick wing 
with the fuselage. The value of V~q(X, O) can be derived from equation (A-19). We have again determined the 
interference term 

vz~r(x, O) = v~o(x, O)+ vz~r(x, y =cos  0, z =sin O)-vzAr(x, y = 1, z =sin 0). (54) 

Values of vzw(x, O) are quoted in Table 5, and, for ~b = 45 degrees, are plotted in Fig. 10. 
From the known values of vzo(x, 0), the spanwise interference velocity at the fuselage can easily be found 

since 

Vyq(X, O)+ Vy~r(X, 0 ) = - t a n  O[Vzq(X, 0)+ Vz~r(X, 0)]. 

We have not computed values of Vztr(X, y > R, z # 0) nor of Vy~r(X, y > R, z # 0) at spanwise stations away 
from the fuselage. Neither have we determined the streamwise velocity component vxw(x, y, z ~ 0) at points 
off the wing plane; in z = 0, Vxir vanishesl We note that, for an unswept vortex in the presence of a circular 
cylinder, Kramer ~ ~ has computed (by an approximate method which differs from the present one) the pressure 
distribution at the fuselage and has tabulated values of the pressure coefficient, Cp(x, 0). Using Kramer's 
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values of Ce(x, 0), one can derive values of v,,tr(X, O; 4, = 0): 

v~,,.(x. 0; 4, = 0 ) =  ~ [ C . ( x , - 0 ) - C . ( x ,  0)] 
1 sin 0 

27r x2+sin  2 0' (55) 

We shall see in Section 5.2 that if we intend to determine, to second-order  accuracy, only the shape of a wing 
with finite thickness, for which the vorticity distribution in the wing plane is given, then we do not require to 
know the values of the streamwise and spanwise interference velocities, which implies that we do not need the 
values of v~w(x, y, z) and of vyw(x, y, z). However,  if we wish to determine the pressure distribution at the 
fuselage and at the surface of the wing, and in particular the difference, ACe, between the pressure coefficients 
on the upper and the lower surfaces of the wing, to second-order,  then a knowledge of v,r(x,  y, z) (and for 
large angles of sweep perhaps also of Vy~r(x, y, z)) will be required. 

4. Pressure Distribution on a Symmetrical Wing at Zero Incidence Attached to a Circular 
Cylindrical Fuselage 

4.1. Pressure Distribution on the Wing according to First-Order Theory 

We consider an uncambered untwisted wing at zero angle of incidence. The wing is attached in a midwing 
position to a fuselage. The wing has constant chord and constant section shape, z = z,(x, y), across the span, so 
that 

zt(x, y) = z,(~ = x - ( l Y [ -  R) tan 4,). (56) 

The wing is in a main stream of velocity Vo parallel to the wing chord. In the following, we make all velocity 
components  dimensionless by taking Vo = 1. We want to examine how the pressure distribution on the wing is 
altered by the presence of the fuselage. 

Within first-order theory, we have to satisfy the boundary condition 

v(1), Ozt(x, y) dz,(~) 
z (x, y, z = 0 )  = = (57) 

Ox d,~ 

to first-order accuracy. We use the superscript (1) to denote terms derived by first-order theory. The isolated 
wing can be represented by a source distribution ~)" qw tx, y) in the wing plane of strength 

(1)~ dzt q., ix, y) = q(wl)(~) = 2-;-;. 
a ¢  (58) 

We have seen in Section 2 that the source distribution on the fuselage, which makes the fuselage a stream 
surface, does not produce a velocity component  vz(x, y, z = 0) in the plane z = 0. Therefore,  in first-order 
theory, the strength of the source distribution in the plane z = 0 for the wing-fuselage combination is the same 
as for the wing alone, equation (58). Thus for the configurations considered the source distribution can be 
derived from a chord-wise distribution of the type of source lines studied in Section 2. 

The formulae in Section 2 are derived for a single source line for which the strength per unit length along the 
source line is O. To derive the velocity components  produced by a source distribution q(s ¢) from the results for 
the single source line, we have to replace O by Q dn = cos 4,q(s c) d~: and perform the integration with respect to 

To determine the change in the pressure distribution due to the fuselage-- to  first-order accuracy--we have 
to determine only the change in the streamwise velocity, Av(~l)(x, y, z = 0). Values of Av<x 1) can be determined 
from the relation 

_m, ,, Vxlo[( x - x ' ) / R ,  y /R,  0] x '  
Av~x l~(x, y, z = 0) = cos 4, q w tx ) d 

~,, Q/  R -R 

' ( 0  
c d(z,/c) Vxlo[(x - x  ) /R,  y /R,  O] 

= 2 cos 4 ~ d(x' /c)  Q / R  d , (59) 

where c is the wing chord and values of Vxlo/(O/R) are taken from Table 1. 
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It has been stated above, see equation (27), that, for y = R, the values of Vxq and vxto tend logarithmically to 
infinity when x' tends to x. In computing values of Av~l)(x, y = R, z = 0), we therefore write equation (59) in a 
somewhat different form and make use of the known singular behaviour of v~o(x, y = R, 0). 

For the 10 per cent thick R.A.E. 101 section, we have computed values of the velocity change in the 
wing-body junction, ZaVx~" ~)-- Av~)(x, y = R, 0), for several values of the ratio between wing chord and body 
radius, c/R, and for various angles of sweep. Some results are plotted in Figs. 11 and 12 (further results are 
given in Refs. 2 and 3). For comparison, we have also plotted values of ~1) -0.1 v~, (x) where v(x~, ) is the velocity at 
the junction of the wing with an infinite reflection plate. 

The figures show that, except near the leading and trailing edges, the velocity is reduced (a fact which is 
well-known from experiment). The velocity decrement, -Av~j, vanishes when c/R tends to zero since 
c/R ~ 0 represents the case of a wing attached to an infinite reflection plate. For the range 0 < c/R <~ 10 
considered in Fig. 11, the velocity decrement - A G j  increases with increasing value of the ratio ciR. We note 
that the value c/R = 10 is larger than the values which occur generally on civil aircraft. We have therefore not 
derived values of -AGx for values of c/R larger than 10 and do not know how - A G j  varies when c/R tends to 
infinity, i.e. when the radius vanishes for a wing of given chord. (We may expect that the interference velocity 
evaluated from equation (59) by means of the velocity Vx~o(x, y, z = 0) in the plane z = 0, i.e. 0 = 0, can only be 
a reasonably accurate estimate for configurations where the ratio between the wing thickness and the body 
diameter is small; we note that for the configuration tic = O. 1, c /R = 10, considered in Fig. 11, t /2R = 0.5.) 

We see from Figs. 11 and 12 that, according to first-order theory, the interference velocity is not larger than 
20 per cent of the perturbation velocity of the wing with the reflection plate. 

Fig. 12 shows that, for wings with the same streamwise section shape, the velocity decrement in the 
wing-body junction, -aVxx* <~>, decreases with increasing value of q$. For the unswept wing, the maximum velocity 
decrement occurs in the neighbourhood of the position of the maximum thickness of the wing, but with 
increasing sweep the position of the maximum value of " ~) -zavxj moves rearwards. 

In Fig. 13, we have plotted the total streamwise velocity (from first-order theory) in the junction of the wing 
with a fuselage, GJ, and in the junction of the wing with an infinite reflection plate, G,. We note that the 
difference in the type of velocity distribution between a swept and an unswept wing is not much affected by the 
finite body radius. (Near the leading edge, the values of the velocity from first-order theory are of course not 
representative of the actual velocity.) 

For the case c/R = 5, we have plotted in Fig. 14 the interference velocity at two spanwise stations outboard 
of the wing-body junction as function of the coordinate ~ = [x - xae(y)]/c. We note that, for both stations, the 
maximum value of the velocity decrement varies approximately as cos 4~; Fig. 12 shows a similar variation in 
the wing-body junction. The results suggest that near the junction, R ~< y ~< 2R, the values of the maximum 
velocity decrement decrease approximately linearly with the distance from the junction. 

4.2. Pressure Distribution on the Wing According to Second-Order Theory 

It is of some interest to know the interference velocity somewhat more accurately than the result from 
first-order theory. To obtain the pressure distribution to second-order accuracy, one has first to determine 
singularity distributions which satisfy the boundary condition to second order and then to determine the 
induced velocities at the wing surface to second-order accuracy. This requires the evaluation of, at least, some 
velocity components at z # 0. 

We consider first the boundary condition. For a swept wing of constant chord and constant section shape, the 
velocity field has to satisfy the equation 

• 3 Z t  
[1 + Vx(X, y, z,)--tan 4~vy(x, y, z,)]~xx = vz(x, y, z,). (60) 

An approximation correct to second order is obtained by replacing the terms vx and vy in equation (60) by 
( 1 ) :  

V x t ( X  , y, 0)WAtJ(xl)(x, y, 0) and vyt<l):tx, y, 0)+A/@I)(x, y, 0) respectively. As above, we denote the various 
velocity components for the wing attached to an infinite reflection plate by the suffix t and the interference 
terms by the symbol A; the superscript (1) denotes again terms computed from the first-order source 
distribution. 

We have seen above, see Figs. 11 and 12, that in the wing-body junction the interference term Av<x ~) is of a 
magnitude of only about 0.'tVxt "). Further outboard -avA (1) . . . .  is smaller than the value in the junction 
(-AVxJ)max; thus within the accuracy required we can neglect the term AG in the boundary condition (even 
though it is formally a term of order t/c). We propose to neglect the term Avy, which is zero in the wing-body 
junction, for all spanwise stations. 
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We therefore approximate the left-hand side of equation (60) by the term that applies to the isolated wing, 
and the approximate boundary condition on the wing of the wing-fuselage combination then reads: 

[1 +rOd(x, y, 0 ) - t a n  qbv<y~,)(x, y, 0)]~x'= v~(x, y, z,). (61) 

The solution of equation (61) for the wing-fuselage combination differs however from the solution for the 
isolated wing because the velocity v~(x, y, z~) contains not only a contribution from the second-order source 
distribution of the isolated wing but also the interference velocity Av~ (x, y, z,). 

We consider next the determination of source distributions in the wing plane and on the fuselage which 
satisfy equation (61) approximately. We express the source distribution in the wing plane as the sum of two 

(2)/ terms qw tx, y )+  Aq(x, y), where (21, q~ tx, y) satisfies the boundary condition, correct to second order, of the 
wing attached to an infinite reflection plate and Aq(x, y) is an interference term. 

There exist several possibilities for determining a source distribution q~) (see, for example, Refs. 6 and 12) 
which satisfies the equation 

[l+v(1,,(x,y,O)_tan4,v(y~)(x,y,O)]~ (2> z,)~v(l>(x, , (2) (~,, z,)+~[q~ (x, y ) -  q ~ tx, y)]. = v~, tx, y, y, (62) 

For the present purpose of deriving only the interference velocity field it seems sufficient to use an approximate 
expression for q~) derived by means of a Taylor series expansion of v(~J,~(x, y, z,) with respect to z (even though 
such an expansion is not strictly permissible at the centre section of the wing, see Ref. 12). The resulting 
relation for q ~  reads 

tx, y ) = 2  {z,[1 +v~','(x, y, 0)]}+2 {ztv(y','(x, y, 0)}. 

(1) . (1) When we use for Vx, and vy, the approximate values given by the R.A.E. Standard Method, 13 we obtain 

(2)/ qw ix, y) = q~)(~:)-I- 1 - ] K 2 ]  sin 2 4)2d(z,S(l)) 
cos 4~ d~: 

d / dz,\ dK2 (1) 
- 2K2f( do ) cos q ) - ~  zt-~) + Z T y  ZtS sin ~b. (63) 

(For details concerning the t e r m s  S(I)(s¢),  K2(y), f(~b) see Refs. 6 and 13.) For spanwise stations sufficiently far 
away from the reflection plate (i.e. from the wing-body junction), where K2 = 0, dK2/dy = 0, we obtain 

(2) (2)/ q~(~:) = y q~ (x, >>R) 

= q~)({:) Jr :2 d(z/S(1)--), (64) 
cos ~b d~ 

for the wing-body junction we obtain with K 2 = 1 : 

(2) (2)[X = R )  qwj(x)=qw ~ , Y 

• d(z,S °)) 
=q~(~)+Zcosq~  ~ -  d~ dzt\+2(d_~K2)z,S(1)sin~b. 2f( ,b)coscb--~z,~~) ay J (65) 

(The function K2(y) suggested by Sells 6 gives (dK2/dy)j = -8.)  The interference velocity hvz(x, y, z), related 
to q~) or q~}, does not vanish at z = z, # 0. We shall see that AvOn(x, y, zt) is numerically small; it is therefore 
sufficient to determine Avz from q~ .  For the wing-fuselage combination the velocity vz(x, y, z,) can be 
written, to second-order accuracy, as the sum 

vz(x, y, z,) ~2~, = vz, tx, y, z,)+Av~zl)(x, y, z,)+av*(x, y, z,), (66) 

where Av* is produced by a source distribution Aq(x, y), yet to be determined, in the wing plane. When we 
combine equations (61), (62) and (66), we find that the source distribution Aq has to produce a velocity Av* 
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which satisfies the equation 

Av*(x, y, z,; Aq) = -Av(zl)(x, y,  z r ) .  (67) 

For  the case of a wing, swept by 45 degrees, with the section R.A.E.  101, tic = 0.1, attached to a fuselage 
with the radius R / c  = 0.2, we have computed values of Av(~)(x, O) for various values of 0, using the values of 

aVzj in the v~io(x, O) derived in Section 2.5. By graphical interpolation, we have determined values of " ") 
wing-body junction, i.e. for 0j = sin -~ [(c/R)(z,/c)]. These values are plotted in Fig. 15, together with the 
values of 0. l@,)(x, y; 0 ) =  0.1 dz]dx .  The figure shows that " ~1) av~s is of a magnitude comparable to 0.1 v(~l, ) 

_(2) ~(1) 
(which confirms that we need not consider the source distribution q~ - q ~  when we compute Av~). 

We have not computed values of V~;o(X, y > R, z # 0) for spanwise stations outboard of the junction. We can 
therefore make only an estimate of the source distribution Aq(x, y) which would cancel the interference 
velocity Av{~)(x, y, z,) at all spanwise stations. We can expect that Av(~ ~) varies rapidly across the span; this 
would imply that the strength of the source distribution Aq also varies rapidly across the span. Such a source 
distribution induces at z # 0 a velocity component  Av*(x, y, z) which can be quite different from the velocity 
induced in z = 0, 

Av*(x, y, O)= ½Aq(x, y). 

The aim of deriving an estimate of Aq is of course to estimate its effect on the pressure distribution of the 
wing, which means on vx. In view of the uncertainty about the spanwise variation of the interference velocity 
A ~ )  v~ , we may at tempt  to obtain an estimate of the effect on v~ by means of a distribution of three-dimensional 
sources along the line 0 < x < c, y = R, z = O. We ignore the fact that such a source distribution produces a 
normal velocity at the fuselage and determine the strength of the line source distribution such that it induces 
the velocity 

Av*(x, y = R, z,) = -Av(z~)(x). (68) 

By approximating the line source distribution by one which varies piecewise linearly, the distribution can be 
determined by solving a system of linear equations. 

We are not able to say whether the streamwise velocity produced by the line source distribution is a fair 
estimate of the velocity produced by Aq. It is possible that the interference velocity AvCz 1) varies more rapidly 
across the span than the velocity Av*(x, y, zt) produced by the line source distribution in y = R, z = 0. If this 
were the case, then we could derive an over-est imate of the effect of Aq on vx. We therefore consider Av* 
induced by the line source distribution to be only a measure of the possible error in Vx if we neglect the 
interference velocity Av~)(x, y, zt) in the boundary condition. 

To  evaluate the interference velocity Av~ at the wing surface to second-order  accuracy, we have both to take 
account of the change in the source distributions and to determine the velocity at the wing surface instead of in 
the plane z = 0. 

We consider first the effect of the additional source distribution q~) - q~). We can only make an estimate of 
the change in Avx because this source distribution is no longer of the type considered above, since it varies 
across the span, see equation (63). To obtain an estimate for the magnitude of the effect of q ~ ) - q ~ ) ,  we have 
calculated values of Avx(x, y = R, z = 0) for two different source distributions, each of which is of constant 
strength across the span. We have considered the two extreme cases, firstly the distribution which pertains to 
the source distributions far away f rom the fuselage: 

(2) ~1)_ 2 d(z,S ~1)) 
qws-q~, - 

cos ~b dE 

and secondly the distribution which pertains to the wing-body junction: _(2) _(1) qwJ-q~, given by equation (65). 
Results are shown in Fig. 16. 

Next, we examine how the values of Avx at the wing surface z = z, differ from those in the plane z = 0. From 
a Taylor  series expansion of Avx with respect to z we obtain 

. .  O)+zO±Vz(x, y, O) [OAvx(x, y, z) + . = Avx(x, y, 
Avx(x, y, z) = Avx(x, y, 0 ) + z l  ~ ~=o Ox ~- . . .  (69) 
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The component  Avz (x, y, 0) in the plane z = 0 vanishes, because v~ o vanishes in z = 0, except for x = 0, y = R 
where vz~o is finite. The difference A v~ (x, y, z,) -Av~ (x, y, 0) is therefore a term of third order. Nevertheless, 

Av~j(x, z,) in the junction, using the values of the velocity component v~o(x, O) we have computed values of (2) 
given in Table 2 and the source distribution ~2) qw~. By graphical interpolation, we have derived values of 

(2) Av~j (x, 0j) and plotted these in Fig. 17 together with the values of Av~)(x, 0 = 0) and Av~)(x, 0 = 0). The figure 
shows that, for the particular case considered, the maximum velocity decrement is increased by about the same 
amount when evaluating Avx at z = z, instead of at z = 0 as when evaluating Av~ from q tZ2 instead of from q~); 
the ratio between (-Av~])(x, 0:)m~ and (-Av~)(x, 0))m~ is about 1.5. 

Finally, we have determined the strength of the line source distribution, which satisfies equation (68) for the 
a (1) values of ~av~j given in Fig. 15, and have computed the streamwise velocity component Av*(x, y = R, z,) 

induced by the line source distribution. Values of the sum Av~])(x, 0~) + Av*(x, R, z,) are also plotted in Fig. 17. 
We note that the ratio between * " (~) --A/) . . . .  and /~Dxj m a x  is about g. We have however to stress again the 
uncertainty of the estimated Av* which means of the effect of Av(~ ~) in the boundary condition. 

In comparing the difference between the values of Av~ computed from q~Z~ _ q (1)w and from q (~>wj - q (~)w, given" m" 
Fig. 16, with the magnitude of the somewhat uncertain value of Av*, it seems justified to ignore the spanwise 
variation of q~) and to use only the simpler term q~2~ in evaluating the interference velocity Av~. 

In order to compute the pressure coefficient C v to second-order accuracy, we ought to take account also of 
the velocity components Avy and Av~. We have not computed values of the spanwise interference velocity Avy 
away from the wing-body junction. The approximate boundary condition of equation (61) states that the 
velocity component v~ at the surface of the wing attached to the fuselage is the same as for the isolated wing. 
Within the present approximations, the ctiange in the pressure distribution caused by the fuselage is therefore 
only produced by the change in the streamwise velocity. 

4.3. Pressure Distribution on the Fuselage 

The pressure distribution on the fuselage, to first-order accuracy, can be derived by computing the values of 
Av(x')(x, 0), using the values of v~1o(x, O) of Table 2 and ~(1) ~) ~tw, and adding these to the velocity v~, at the 
reflection plate at z = R sin 0 (computed from vx/xo, using q~)). For 0 = 90 degrees, values of 

v<x')(x, O)= v<~zt)(x, y = R, z = R sin O) + Av~)(x, O) 

are plotted in Fig. 18. 
More accurate values of vxt can be derived by using q~(x,  y) instead of q~) with Ledger's program 5 or by 

means of the iteration technique developed by Sells. 6 However, without further effort, we are not in a position 
to determine more accurate values of Avx. 

Fig. 18 shows that for the configuration considered, with c /R  = 5, the maximum perturbation velocity at the 
top of the fuselage is about half the velocity in the flow past the isolated wing in the plane of symmetry at z = R. 
A reduction of the perturbation velocity is to be expected since the fuselage straightens the streamlines past 
the isolated wing. The maximum velocity at the top of the fuselage decreases with increasing sweep, as for the 
isolated wing, and the position of the maximum velocity moves rearwards. 

4.4. Comparison of ResuBts using the Present Method with those derived by Other Methods for Particular 
Configurations 

The configurations considered so far deal with wings of constant chord and infinite span. We have 
mentioned in the introduction that we assume that the tabulated values of vxlo for infinitely long source lines 
can also be used to estimate the interference on wings of finite span (when the span is larger than say five times 
the diameter of the fuselage). One may also expect that wings of moderate taper can be dealt with. In order to 
examine the validity of these assumptions, comparisons can be made of the results derived by the present 
method with those from more exact methods. Such comparisons can also provide information about the 
accuracy of the estimate for Av*. 

For symmetrical wing-fuselage configurations at zero lift, it is generally assumed that nominally-exact 
pressure distributions can be derived by means of singularity distributions on the surface of the wing and the 
fuselage, the strengths of which are chosen such that the exact boundary condition is satisfied at certain points 
of the surface. A method for solving the problem by means of planar source panels, each of constant source 
strength, was devised by A. M. O. Smith and J. Hess (see for example Ref. 7). Recently A. Roberts and K. 
Rundle s'9 have produced a computer program for solving the problem by means of curved panels where the 
geometry of the panels and the strength of the source distribution vary continuously between adjacent panels. 
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Using both methods, calculations have been done (unpublished work by A. F. Jones, R.A.E. and A. 
Roberts, B.A.C.) for two particular wing-fuselage combinations and for the related gross wing without 
fuselage. Geometric details are given in Fig. 19. The velocity components have been computed by Roberts' 
program for a freestream Mach number Mo = 0.4. In the following analysis, we compare only the streamwise 
perturbation velocity component pertaining to incompressible flow, which we have derived from the values of 
v~ computed by Roberts' program by multiplying them by the factor/3 = ~/1 - 0-42. Somewhat different values 
would be obtained if Roberts' program were applied for incompressible flow. We may however expect that the 
difference is small because for the wing alone, the values of vx derived in this way from the Roberts' program 
are very similar to those computed by the A. M. O. Smith program for M = 0. Unfortunately, the two programs 
have produced values for v~ at different spanwise and chordwise positions, so that we have to interpolate or 
extrapolate the computed values before we can make a comparison. In particular, we have to extrapolate the 
values of vx into the junction. In the neighbourhood of the wing-body junction, the two programs produce 
different values for vx, as shown in Fig. 20. It seems reasonable to assume that Roberts' program, which uses 
continuous singularity distributions, produces the more reliable results. (We note also that in Roberts' method 
special singular source 'modes' are used near the wing-body junction, in accordance with the results of Craggs 
and Mangler. TM This feature should also increase the accuracy in this region.) 

Some further justification for the assumption can be derived by an examination of the values for the 
spanwise velocity component obtained by the two methods. The velocity components vy and v~ at the junction 
are related by the condition 

v.-'(x, 0-') = cos O-'vy(x, y-', z,) +sin O-'v~(x, y-', z,) =0. 

The values of Vy(X, y > R, z,) given by Roberts' program extrapolate readily to the approximate values at the 

junction, 

z,/ c dz, (1) 
vy = - tan O-'Vz, (x, y, O) = R /c  dl~" 

However, values from the A. M. O. Smith program for the examples considered, though following the same 
trends as the Robert's results away from the junction, diverge from them for stations within about 2 per cent 
chord of the junction and consequently do not tend to the values given above. 

To determine the interference velocity, we strictly require the velocity on the nett wing, when attached to an 
infinite reflection plate. We have not in fact determined this but have assumed that we may neglect the 
difference between the gross and nett wings (aspect ratio 6 and 5.65 respectively) and thus obtain the 
interference velocity by subtracting the values of vxz(~:, ~ = 0) at the centre section of the gross wing from the 
vxj(~, y j) in the wing-body junction at the same percentage-chord point ~ = [x -XLE(y)]/c(y) (where c(y) is 
the local chord and XLE(y) the coordinate of the leading edge). Values of AVxj are plotted in Fig. 21. 

To derive an estimate for Avx by the method of the present Report, we have approximated the tapered wing 
by an untapered wing of 30 degrees sweep and the same chord cj as the tapered wing in the wing-body 
junction; the ratio between body radius and wing chord is R/c-" = 0-24. For this configuration, we have 

qws(~J), given by equation (64). AVx (x, 01) using the source distribution ~2) computed values of ~2) 
The fuselage is non-cylindrical at a distance greater than one diameter forward of the apex of the gross wing. 

To estimate the effect of the body nose, we have computed, by slender-body theory, values of the streamwise 
A -  (2) velocity vxB for the isolated fuselage and have added these to ,~vxa. 

In Fig. 21, we compare the values o f "  ~2)_ av~j ± v~B with the values of Av~-' derived by the two panel methods. 
Avxj + vxz agree fairly well with those derived from the We note that, for 0.1 < x/c,  < 0.6 say, the values of ~2~ 

Roberts' program. It is likely that the differences over the rearward part of the chord are taper effects. We have 
seen in Fig. 12 that the position where Avx vanishes moves forward with decreasing angle of sweep. An 
improved estimate of Avx, at the chordwise position x, could probably be derived if the wing were to be 
represented by one with the local sweep ~b(x) instead of the sweep of the midchord line. Unfortunately, we 
cannot draw definite conclusions because we cannot estimate the accuracy of the interpolated values of vx,. We 
do not compare the various values of Avx near the leading edge because the interpolated values of v~, can be 
rather inaccurate and because the present method is based on a small perturbation theory (without 
leading-edge corrections) which is by nature unreliable near the leading edge. 

We have computed values of Av~) ~ and hence, by means of a line source distribution, values of the 
corresponding change in the streamwise velocity Av*. If we consider the values of Av~ derived from Roberts' 
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program as reliable, then Fig. 21 suggests that the change in Avx, which is related to the change Avz at the 
surface of the wing, is smaller than Av*; this could imply that the interference term AG decreases more rapidly 
away from the wing-body junction than Av*(x,  y, z,) induced by the line source distribution. 

A calculation by Roberts' program has also been done for a combination of the same gross wing A with a 
fuselage, Bo, for which the diameter of fuselage BI has been reduced by the factor x/0.5. For this configuration, 
the ratio between the wing chord in the wing-body junction and the body radius, c J R  ~ 6. From the computed 
results we have derived values of AGj in the same way as for the larger fuselage. These are plotted in Fig. 22 
together with the values for the thicker body B1. The maximum velocity decrement is larger for the thinner 
body because the projection of the junction shape into the chord plane, ys(x), departs more from a straight 
line. We have also plotted in Fig. 22 the values of (2) Av~ (x, Oj) + G~. The values of At)~ 2) are again determined 
with _<2) q ~.  For the body Bo we have taken for GB half the values of v~B for the body B1. Fig. 22 shows that the 
difference between the values of AG2 for the two bodies is well predicted by the estimates. The maximum value 
-Av*, derived from * ~) zav~j, is 20 per cent larger for the configuration A B o  than for ABe .  If we consider the 
values of AGj, derived from the Roberts results, as being correct, then Fig. 22 suggests again that the change in 
AG, related to Av~(x, y, z,), is negligible. 

We have also derived values of AG for the spanwise stations yj + 0.25R and yj + R and have plotted them in 
Fig. 23 together with the estimates of the present method; note that, for y > R, Av~ 2) has been computed at 
z = 0, using _(2) q~ .  The differences between the results from the two panel methods decrease away from the 
junction, see Fig. 20. The output of the A. M. O. Smith program enables us to derive values of AG at more 
chordwise points than the output of Roberts' program. In Fig. 23, we have therefore shown mainly the AG 
from the A. M. O. Smith program, they agree fairly well with the estimate, Av~2)(x, y, z = O) + v~ .  

Summarising, we can say that the comparison of the present method with the results from Roberts' program 
for two particular configurations suggests that a fair estimate of the interference velocity AGj is given by 
AV~2)(X, 0j) and of AG(x ,  y > R)  by A. (2~, , <2) zav~ ix, y, 0), when the terms a G are computed from the second-order 
source distribution and the velocity component AGIo  related to an infinitely long source line. 

The recommended procedure for estimating the change of the streamwise velocity AG due to the presence 
of the fuselage is therefore as follows. For the given section shape z,(x), one determines the strength of the 
second-order source distribution q ~ ( x )  of the related infinite sheared wing: 

qws(x) = 2 z,(x) 1 + cos 4 ' / J '  (70) 

where 

S(1)(x)=l  l)C dzt(x ') dx' 
dx' x - x "  (71) 

Using _12~ qw,,. one evaluates Av(x 2) from the single integral 

IX --X p ) 
c/R I")xlQ~" --R , y f (x) (2)z ~\ 

Av~)(x, y, z) = cos 4',0 qwstx ) O / R  d ~- ; (72) 

values of Vxlo are given in Tables 1 and 2 (further values are given in Tables 1 and 2 of Ref. 3). Using the values 
of Vxlo(X, y, z = 0) given in Table 1, one can determine the interference velocity in the wing plane. To obtain an 
improved estimate of AGj in the wing-body junction, it is recommended that firstly the integral of equation 
(72) be evaluated for various values of 0 using the values of G1o(x, O) from Table 2 and that secondly one 
interpolates between the values of Av~2)(x, 0) to derive the value applicable to Os(x) -- s i n - l ( z , ( x ) /R ) .  When the 
required angle of sweep differs from the values for which vxlo is tabulated, it seems advisable to compute Av~ 2~ 
with the tabulated values of G~o and to interpolate between the values of Av~2>(x, y, z ; 4 ' ) to derive Av~ 2) for 
the required value of 4'. 

5. Design of a Wing with Given Load Distribution when Attached to a Circular Cynindcical Fuselage 

5.1. Mean Surface according to First-Order Theory 

We consider now the design problem for a wing of constant chord, c, and infinite aspect ratio attached in a 
midwing position to a circular fuselage. 
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We consider first the isolated wing which has a camber surface z(s~(x, y) and a twist distribution, a ('~(y), such 
that it produces a chordwise load distribution which is constant across the span: 

-A Cp(x, y ) =  -ACp(~: = x - ( ] y [ - R )  tan 4,)= I(~). (73) 

(The superscript (1) denotes that the wing warp is to be obtained by first-order theory.) In first-order theory, 
such a load distribution can be represented by a chordwise distribution of infinite swept vortices in the chordal 
plane of strength 3'(~), where the vorticity is related to the pressure difference by the relation 

I(~) = 2 cos 4Y(~). (74) 

Thus, the strength of an elemental strip of vortices, which are parallel to the leading edge, is 

3~(,~) dn = ",/(¢) cos ~b ds c = ½l(s c) de (75) 

where dn is a length measured normal to the leading edge. 
In first-order wing theory, the assumption is usually made that the normal velocity at the wing surface can be 

approximated by the velocity component v~(x, y, 0) in the chordal plane, so that the first-order boundary 
condition reads 

Ozm(x, y) Oz(,l)(x, y) am(y  ) _  v~(x, y, z =0) (76) 
Ox Ox Vo 

where Vo is the magnitude of the freestream velocity, taken again as unity. 
For load distributions like those considered in this Report, where the direction of the vorticity vectors 

changes somewhere discontinuously, the downwash induced in the plane z = 0 tends logarithmically to infinity 
as the station is approached where the vorticity vectors have a kink. In a practical design, this difficulty can be 
avoided since the mean surface for a wing of finite thickness, z,(x, y), is to be determined; for this the 
first-order boundary condition can also be written in the form 

"q ( [uZsl)kx' Y) OL(1)(y) : Dz(X ' y, Ze(X , y)). (77) 
Ox 

The design of the isolated wing can therefore be performed by means of equation (77). 
We examine in the following only how the presence of the fuselage modifies the required shape of the mean 

surface. The interference downwash, Av~(x, y, 0), in the plane z = 0  is everywhere finite, including the 
wing-body junction. We therefore consider first the interference downwash in the plane z = 0. 

It follows from equation (75) that 

Ave(x, y, 0)= 1 R fo 1 l(@)G,r[(x-x')/R,F/R y /R,  0])d(-~); (78) 

values of Vz~r are given in Table 4. For y = R, the values of Vzq and v~w tend logarithmically to infinity when x' 
tends to x (see equation (51)). In computing values of Ave(x, y - R, 0), we therefore write equation (78) in a 
different form and make use of this known singular behaviour of G~v(x, y = R, 0). 

As an example, we choose the load distribution 

. (79) 

which produces at spanwise stations far away from the fuselage, [y[>> R, the downwash 

Vz (~, y >> R, 0) = -o~. 

Values of Av~(x, y = R, O)/a for various values of 4~ and c /R  = 5 are plotted in Fig. 24, and for & = 45 degrees 
and various values of c /R  in Fig. 25. The figures show that the body interference can increase the downwash 
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considerably and that, for the flat-plate load distribution, the interference downwash does not depend much 
on the angle of sweep. The relatively weak dependence of Av~ on the angle of sweep differs appreciably from 
the variation of the interference velocity Av~ for the displacement flow with the angle of sweep, shown in Fig. 
12. The dependence of Avz on the angle of sweep varies of course somewhat with the type of chordwise load 
distribution and with the ratio c/R. 

For 05 = 45 degrees, c/R = 5 and the flat-plate load distribution, the interference downwash has also been 
determined at spanwise stations away from the wing-body junction. In Fig. 26, we have plotted Av~ as function 
of £/c. We note that the magnitude of IAv~(x, y, 0)1 decreases more rapidly with increasing y/R than the 
magnitude of IAv~l)(x, y, 0)[ given in Fig. 14; this different behaviour was to be expected from the different 
variation of v~o(x, y, 0) and vzw(x, y, O) with increasing y, shown in Figs. 4 and 9. 

When Av~(x, y, 0) is known, the required change of the wing surface can be derived from the first-order 
boundary condition, see equation (76) 

OAz(t)(x' Y) -OAz~l)(x' Y) ~ tyJAce(1)l-x 
Ox Ox 

=zXvz(x, y, 0). (80) 

If we keep the z-coordinate at the trailing edge, zrE(y) = z(~/c = 1, y), the same as for the isolated wing, then 
the additional wing warp Az (~) is given by the relation 

- A v ~  = - tan 4 ,+ - - ,y ,  0 d ( 8 1 )  
C / c  C C / C " 

Values of Az t ' ,  derived from equation (81) and the downwash Avz given in Fig. 26, are shown in Fig. 27. The 
additional wing warp can be expressed as a change in twist, Ace(l)(y), and a change of the camber shape, Az~ 1), 
where 

Aa( ' (y )  = -- Avz(~:', y, 0) d (82) 

and 

- Avz(~', y, 0) d + Aa(1)(Y). (83) 
C "0 

When the values of Avzj, given in Fig. 25 for various values of c/R, are inserted into equations (82), (83), we 
find that the additional wing warp increases with increasing c/R, or for given chord with decreasing body 
radius. We have, however, to remind ourselves of the assumption made above that the mean surface of the 
wing does not depart much from the plane z = 0 ;  this requires in particular ]Az(')I<<R , Aa(1)<<R/c, 
IAz~'/c[ << R/c. To achieve this it is necessary that II(s¢)l or a tend to zero when R/c tends to zero. When c/R 
tends to zero, the interference downwash and the additional wing warp vanish, since c/R ~ 0 represents a wing 
attached to an infinite reflection plate. 

For an unswept wing, which, when attached to a fuselage, produces a flat-plate load distribution, the mean 
surface has the twist distribution Aa(~)(y) and the camber Az~l)(x, y). For a swept wing the mean surface of the 
isolated wing is already twisted and cambered. 

To illustrate the magnitude of the interference downwash for a combination of a swept wing and a fuselage, 
we have computed values of the downwash at the centre section of the isolated wing, at a station far away from 
the centre section and at the wing-body junction. We have mentioned that, with a load distribution which is 
constant across the span, the downwash at the centre section must not be computed at z = 0. We have 
therefore computed the downwash for a constant finite value of z, namely z/c = (R/c) sin 10 ° = 0-2 sin 10 ° ~  
0.035. To allow a proper comparison, we have computed also the interference downwash and the downwash 
of the sheared wing at z ~ 0. For 05 = 45 degrees, c/R = 5 and the flat-plate load distribution, the various 
downwash distributions are shown in Fig. 28. The figure shows that, for a wing with 45 degrees sweep, more of 
the difference between the required wing shape in the wing-body junction and the shape far away from the 
junction is produced by the reflection-plate effect than by the effects of the curvature of the body. 
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5.2. Mean Surface according to Second-Order Theory 

We have learnt in Section 4.2, see Fig. 17, that the interference velocity ~ ~2) -Lxv~ for the non-lifting 

wing-fuselage configuration, computed by second-order theory, can be appreciably larger than -Av~ 1), 
derived by first-order theory. We therefore investigate the effect of second-order terms on the shape of a wing, 
with prescribed load distribution, when attached to a fuselage. We may stress here that, in this Report ,  the 
term 'load distribution' is used to denote a distribution of lifting singularities in the plane z = 0; this is in 
general only the same as the physical load distribution -ACp in first-order theory. 

We consider here only configurations for which the axis of the fuselage is parallel to the main stream. 
Secondly, we consider only singularity distributions in a plane through the axis of the fuselage. A second-order 
wing theory should be based on singularity distributions which lie in the chordal surface. This means that we 
can use the results of Sections 2 and 3 only for load distributions which produce a relatively small value for the 
twist o~(y) near the centre section of the isolated wing (a(y)  includes the angle of incidence for the sheared 
wing) and for the interference twist Aa(y),  we thus ensure that the wing-body angle is sufficiently small for its 
effect on the interference velocity Av to be neglected. We consider therefore load distributions of low strength, 
i.e. with small lift coefficient CL, and wings with finite thickness. We do not attempt to derive a complete 
second-order theory but our aim is to determine the effect of the finite thickness on the additional wing warp 
caused by the presence of the fuselage. 

It can be shown, see Section 3.2 of Ref. 4, that the additional wing warp can be derived from the relation 

OAz(2)(X' Y) -Aver(x, y, - - -  y, Y, cgx zt) Ox[ZXzs v,,t ,~, oy (84) 

We have given Av~ the suffix I to distinguish it from the interference velocity Av~,(x, y, z) of the displacement 
flow (see the term Av~z ~) in equation (66) and Fig. 15 where we have plotted Av~a). Az~s 1) is the additional wing 

Dxt , camber due to wing-body interference derived by first-order theory and (~) v<y~, ) are the velocity components 
on the isolated wing, induced by the first-order source distribution ~1), q~ ~x, y ) =  20zJOx. We have added the 
superscript (2) in equation (84) to indicate that we expect Az <2> to be accurate to 'second-order ' ,  i.e. to the 
order  (CLt/c) (where t/c is the thickness-to-chord ratio). We note that the term Az <2) given by equation (84) 
varies linearly with the strength of the load distribution. If account were to be taken of the wing-body angle, 
one might expect that Az would also contain a term of order C~ and furthermore that this term would become 
more important for larger values of ciR.  

We examine the difference between A2 "(2) from equation (84) and AZ (1) from equation (80) only in the 
wing-body junction, because we have computed values of v~w at z ~ 0 only at the fuselage. For q5 = 45 
degrees, c /R  = 5 and the fiat-plate load distribution, the interference downwash Av~(x, 0) is plotted in Fig. 29 
for various values of 0. Fig. 29 shows a strong dependence of Av~(x, 0) on 0, even for relatively small values of 
0. This behaviour seems to be at variance with the fact that a Taylor series expansion of Aver(x, y, z) in powers 
of z does not contain a linear term, since 



for the wing-body junction the approximate equation 

d a G  ~ 
dx 

d A .O ) r dz[1 
- - -  c o s  c o s  

-<;>  'S?>cos 4 a¢ ~b -f(~b) cos sin "," d~2 (86) 

For the flat-plate load distribution and c /R  = 5, values of dAz~2)/dx are plotted in Figs. 30 and 31~ (The small 
discontinuity in the curves at x/c  = 0.3 is a consequence of the discontinuity in the slope dS(l)(x)/dx at 
x/c = 0.3.) For the swept wing, we note that taking account of the wing thickness reduces the interference 
downwash considerably; in particular the additional twist is much reduced. We have not derived the effect of 
the second-order terms on the wing shape away from the junction, but we may assume that they are less 
important, because the fact that the linear term in the Taylor series expansion of Avz~(x, y, z) with respect to z 
vanishes is likely to have a more decisive influence on the difference between Avz~(x, y, z,) and AG~(x , y, z = O) 
for y > R than for y = R. As a consequence, it may be expected that the change in the wing warp caused by the 
body interference varies less rapidly across the span when it is determined by second-order theory than by 
first-order theory. 

In a practical design case, the thickness distribution and the pressure distribution on the upper surface of the 
wing attached to a fuselage at zero incidence may be prescribed. From this one can derive a first-order load 

m distribution l(~)(x, y) by a procedure similar to that of equation (85) in Ref. 12, by substituting for vx, the sum 
~ (1) 71_ A "  (1) 

x, avx , .  The resulting load distribution will presumably vary across the span and the effect of the trailing 
vortices on the normal velocity at the surface of the fuselage has also to be taken into account. By applying the 
method developed in this Report,  we can derive therefore only an estimate of the additional wing warp Az. If 
the interference velocities Avxt and Avyt at the surface of the wing are neglected the accuracy of the load 
distribution and of the mean surface of the isolated wing can be improved by a procedure similar to that 
suggested in Section 3.2 of Ref. 12. We expect that AGt(x, y, z) will contain a term of order (ZCL) and that the 
wing-body angle will not be small, so that the application of the present method, which neglects the effect of 
the wing-body angle, will produce an error in Az which may be of a magnitude similar to that of the second- 
and third-term on the right-hand side of equation (84). In a practical application of the present method, we 
therefore suggest that these terms should be ignored and that in the wing-body junction Azj should be derived 
from the interference downwash AGt(x, Oj) computed at O~ 

dAzj  
dx = Avzl(x' Oj) (87) 

and not from Avzt(x, 0 = 0) computed at 0 = 0, i.e. not from equation (80). For spanwise stations away from the 
fuselage, equation (80) should produce a sufficiently accurate estimate of Az(x, y > R). 

The accuracy of the proposed procedure has not been examined because the pressure distribution on a 
wing-body configuration, designed by the suggested procedure has not been computed by a relatively accurate 
method, like the Roberts '  program. It is to be expected that the estimate for Az is less accurate than the 
estimated values of Avx, for the displacement flow, because, in a practical design case, it is likely that the load 
distribution in the neighbourhood of the wing-body junction changes fairly rapidly to avoid too rapid changes 
of the wing shape. 

Since we do not yet know how useful the present method is for deriving an estimate of Az in a practical 
design, it does not seem important to extend the present work, on wings with infinite aspect ratio and constant 
spanwise load distribution, to the computation of the streamwise interference velocity at points away from the 
wing plane nor of the interference downwash at points away from the fuselage and the wing plane. It seems 
more desirable to extend the present method to general vorticity distributions in the plane 0 = 0, even though 
this extension can provide an estimate of the required Az only for wing-fuselage combinations, where the wing 
is mounted near the centre line of a circular cylindrical fuselage. 

6. R6sum6 

The present Report  gives tabulated values of the difference between the streamwise velocity component 
induced by a single swept source line in the presence of a circular cylindrical fuselage and the streamwise 
velocity induced by the source line when it is reflected at an infinite plate. The tables have been used to 
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compute the streamwise velocity on symmetrical wings at zero angle of incidence attached in a midwing 
position to a cylindrical fuselage. 

It is shown that the streamwise velocity in the wing-body junction can be about 25 per cent lower than the 
maximum perturbation velocity at the centre section of the corresponding isolated wing. For the section shape 
chosen in the numerical examples (10 per cent thick R.A.E. 101 section) and a given ratio between wing chord 
and body radius, the maximum decrease of the velocity in the wing-body junction measured in terms of the 
maximum perturbation velocity at the centre section of the isolated wing does not vary a great deal with the 
angle of sweep. The reduction of the velocity is of course less when the ratio between the body diameter and 
the wing chord is increased. 

It is also shown that the value for the velocity decrease is appreciably larger when it is computed at the 
surface of the wing using the second-order source distribution of the isolated wing than when it is computed in 
the wing plane using the first-order source distribution. It is further shown that, by means of the tabulated 
values for infinite source lines, fairly accurate estimates can be derived of the streamwise interference velocity 
for wing-fuselage configurations, where the wings are of finite span, have some taper and are of uniform 
section. 

The Report gives also tabulated values of the difference between the downwash induced by a single swept 
vortex in the presence of a circular cylindrical fuselage and the downwash induced by the vortex when it is 
reflected at an infinite plate. These tables have been used to design wings of constant chord and infinite aspect 
ratio, attached in a midwing position to a fuselage, such that the wing-fuselage combination produces the same 
flat-plate load distribution across the span. 

It is found that the interference downwash in the wing-body junction can be of a magnitude comparable to 
the downwash of the related sheared wing; the required additional wing twist can be 60 per cent of the angle 
of incidence of the sheared wing. It is shown that the interference downwash in the wing-body junction, 
computed in the wing plane, does not depend a great deal on the angle of sweep. As with the displacement 
flow, the interference effect is of course reduced when the ratio between the body diameter and the wing chord 
is increased. 

For the fiat-plate load distribution, it is shown that the magnitude of the interference downwash in the 
wing-body junction is less, when it is computed at the surface of a wing with finite thickness than when it is 
computed in the wing plane. The effect of the wing thickness increases with the angle of sweep. 

With increasing spanwise distance from the wing-body junction, the interference downwash in the wing 
plane decreases more rapidly than does the decrement of the streamwise velocity for the displacement flow. 

No statement can be made about the usefulness of the tabulated values for infinite vortices with respect to 
practical design requirements, where the chordwise load distribution may be expected to change more rapidly 
near the wing-body junction than the chordwise thickness distribution. But since the present work has shown 
that the interference downwash can be large, both for swept and unswept wings, it seems even more important 
to take account of the wing-body interference for lifting wing-fuselage configurations than for pure 
displacement flows. 
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C 

c(y) 
Q 

Kt1)(x, O) 

g(1)(x) 

g(~)(x) 

l(x, y) 
Q 

q(x, o) 

q~°~(x, 0) 

qCl~(x, O) 

Ct(x) 

qw(x, y) 

(2) _(2) 
qws, qwJ 

Aq(x, y) 

R 

t/c 

V,, 

V 

V~ 

v A 

Vq 

VI 

VI 

Vt 

Un 

Ox, Uy, /)z 

Uo 

Z)xB 

Av 

LIST OF SYMBOLS 

Wing chord 

Local wing chord 

Lift coefficient 

See equations (15), (16) 

See equations (18), (19) 

See equation (23) 

Strength of the distribution of lifting singularities 

Strength of single infinite source line 

Strength of source distribution on the fuselage related to a single source line (or vortex) 
with triple kink in the plane z = 0 

First approximation to q(x, 0), see equation (13) or equation (41) 

Second approximation to q(x, 0), see equations (14)-(18) or equations (42)-(44) 

Mean value of source strength q(x, O) at a station x, see equation (8) 

Strength of source distribution in the wing plane representing the wing attached to an 
infinite reflection plate 

See equations (64), (65) 

Interference term of source distribution in the plane z = 0, which cancels the velocity 
Av~zl)(x, y, z,), see equation (67) 

Radius of fuselage 

Thickness-to-chord-ratio 

Free stream velocity, taken as unity 

Perturbation velocity 

Velocity induced by single source line (or vortex) with three kinks see equation (2) (or 
equation (38)) 

Velocity induced by single source line (or vortex) with one kink see equation (29) (or 
equation (53)) 

Velocity induced by source distribution q(x, O) on fuselage 

= vq + v~-vA,  interference velocity related to single source line (or vortex) 

Velocity field induced by load distribution l(x, y) with an infinite reflection plate 

Velocity field past the thick unwarped wing attached to an infinite reflection plate 

Velocity component normal to the surface of the fuselage 

Mean value of v.(x, O) 

Components of the perturbation velocity with respect to the various axes 

Circumferential velocity component at the surface of the fuselage 

Streamwise velocity on isolated fuselage 

Difference between the velocity field past the wing-fuselage combination and the 
velocity field past the wing attached to aLa infinite reflection plate 

Streamwise velocity induced by line source distribution in y = R, z = 0, for which 
Av*(x, y = R, z,) = -Av¢z~)(x) 
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x, y, Z 

x, r, O 

XL~(y), xTAy) 

Zs(X, y) 

2z,(x, y) 

Az(x, y) 

,az~(x, y) 

,~(y) 

A~(y) 

F 

"v(~:) 

Oj(x) 

4, 

(9 

F 

J 

l 

t 

(1) 

(2) 

LIST OF SYMBOLS--continued 

Rectangular coordinate system, x-axis coincides with the axis of the fuselage 

System of cylindrical coordinates 

Ordinate of the wing leading edge or trailing edge, respectively 

Camber distribution of isolated wing 

Thickness distribution 

= Az~(x, y)+ Aa(y)(xr~ --X), change in wing warp produced by the body interference 

Additional camber produced by the body interference 

Twist distribution of isolated wing 

Additional twist produced by the body interference 

Strength of single vortex 

Strength of vorticity distribution 

=s in - l (R  z'(X)tc / 

--x - ( [y l -R) tan  6 

Angle of sweep 

Suffices 
Related to single source line 

Related to single vortex 

Refers to wing-body junction 

Related to load distribution I(x, y) 

Related to the source distribution in the wing plane which represents the isolated wing 

Superscripts 

Term derived by first-order theory 

Term derived by second-order theory 
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APPENDIX A 

The V e l o d t y  Field Induced by a Source Distribution on the Fuselage 

We consider the velocity field v~(x, y, z) induced by a source distribution of strength q(x, O) on the surface of 
the fuselage. The streamwise component of Vq is 

I f  t 2"~ q(x', O')(x - x') dO' dx' 
Gq(x' Y'Z)= ~ o 4 7 r , f ( x - x ' ) 2 + ( y - c o s 0 ' ) 2 + ( z - s i n 0 ' )  23' 

(A-l)  

the spanwise component is 

i~o f2w q(x', 0')(y--COS 0') dO' dx' 
vyq(x, y, z )=  oo o 47r~f (x-x ' )Z+(y-cos  O')2+(z-sin 0') 2 3, 

(A-2) 

the component normal to the wing plane is 

i oo ~2~ q(x', O')(z - s i n  0') dO' dx' 
V~q(X, y, z )= 

-~ Jo 47r~/(x--X')2+(y--COS O'-)2+(Z-s in  0') 2 
3. (A-3) 

For the velocity component normal to the fuselage, V.q, we obtain from equations (A-2) and (A-3): 

V,q(X, 0) = vyq cos 0 + V~q sin 0 
q(x, 0______) + f2"~q(x', 0')[1 - cos (O-O'___~)]_dO___~' dx' 

2 o0 ~Jo 4--~(x ----~2T2[1-cos ( 0 -  0')] 3' (A-4) 

For the circumferential velocity component, Voq, on the fuselage, we obtain 

Voq = - -Vyq  sin 0 + v~q cos 0 = j_~ 
¢X3 i 2~ q(x ' ,O')sin(O-O')dO' dx' 

o 4 ¢ r ~ ( x - x ' ) 2 + 2 [ 1 - c o s  ( 0 - 0 ' ) ]  
3. (A-5) 

In order to simplify the numerical evaluation of the various velocity components, we make use of the 
relations 

f ~_ (x - x') dx' O, 
J ( x  - x ')2 + a ~ 3 

i oo dx' 2 
- c o  ~/'(x - -  x ' ) Z  + a 2 3 = a ---~' 

(A-6) 

(A-7) 

i< 2,~ sin (0 - 0') dO' 
) "x/(x - x ' )  2 +211 - c o s  (0 - 0')] 3 = 0, (A-S) 

ff 2~r dO' 4E(k) 

o ~ / (x -x ' )2+2[1-cos(O-O' )]  ~ (x-x'2)~/(x-x'2) +4 '  
(A-9) 

where E is the complete elliptic integral of the second kind, with the modulus 

k2 = 4 
4+(x  --X') 2, 

f 2~ [1 - c o s  ( 0  - 0 ' )3  c t0 '  
k[K(k) -E(k)] ,  

o x / (x -x ' ) 2 + 2 [ 1 - c o s  (0 -0 ' ) ]  3 

(A-10) 

(A-I f )  
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where K is the complete elliptic integral of the first kind, with the modulus 

k2 4 
4 + (x - x)2' 

I~ = dO' 4E(k) 
0 3 X t)2 • , /(x-x')Z+yZ+l-2y cos [ ( x -  +(y-1)2]'J(x-x')2+(y+l) 2 

(A-12) 

where 

k2 = 4y 
(x -x ' )2  + (y + 1) 2. (A-13) 

We evaluated l,)nq(X , O) from the relation 

V.q(x,O) q(x, O) +j  ° ~ + 
2 I 2 = [ q ( x ' ,  0 ' ) - q ( x ,  0 ' ) ] [ 1  - c o s  (0 - 0 ' ) ]  dO' dx' 

o 47,/7  -- os - -0 ,7 '  " 
(A-14) 

Voq(X, O) can be evaluated from the relation 

f_~ f2=[q(x',  0')--q(x, O')-q(x', O)+q(x, 0)] sin ( 0 -  0') dO' dx' 
Voq(X, 0) = oo Jo 4rr,f(x - x') 2 + 211 - c o s  ( 0 -  0')] 3 l- 

f 2" [q(x, 0 ' ) -q(x ,  0)][1 +cos (0 - 0')] dO' + 
~ o  4rr sin (0 - 0') 

(A-15) 

With the special configurations considered in this Report, we are only interested in two types of source 
distribution: either the symmetrical one, q(x, O) = q(x, -0), or the antisymmetrical one, q(x, O) = -q(x, -0) ,  
For the symmetrical distribution, we evaluate the streamwise velocity component in the plane z = 0 from the 
relation 

I ~  f '~[q(x' ,  O')-q(x, O')-q(x', 0 = 0)+q(x, 0 = 0)](x -x')  dO' dx' 
Vxq(X, y, 0) . . . . . . . . . . .  / + 

o~ ao 2rr ( x ~ x - x ' ) f + y - ~ i - - 2 y  C-"~S 0 "~3 

f ~  [q(x', 0 = O)-q(x, 0 = 0)] (x-  x')E(k) dx' 
+ 2 '  (A-16) 

with k from equation (A- 13). For the antisymmetrical source distribution, the streamwise velocity component, 
Vxq(X, y, 0), in the plane z = 0 vanishes. 

The velocity component Vzq(X, y, O) in the plane z = 0 vanishes when q(x, O) is a symmetrical distribution. 
For the antisymmetrical source distribution, we evaluated Vzq(X, y, O) from the relation 

I ~- Io~[q(x"O)-q(x'O)]sinOdOdx'o 3 Io" q(x,O)sinOdO (A-17) 
Vzq(X, y, 0)=  - oo 2rrff(x-x')2+y2+l-2y cos ~ - [y2+1-2y  cos 0] 

The streamwise velocity component on the fuselage Vxq(X, O) can be evaluated from the relation 

I •  f2~[q(x ' ,  O')-q(x, O')-q(x', O)+q(x, 0) ] (x -x ' )  dO' dx' 
vxq(x, O)= + 

oo ~o 4 r r f f ( x - x ' ) Z + 2 [ 1 - c o s  ( 0 - 0 ' ) ]  3 

+ I ~  [q(x', O)-q(x, 0)]E(k) dx' 
o~ ~r(x -x')ff(x - x')2 + 4 (A- 18) 

with k from equation (A-10). 

31 



The velocity component  vzq(x, O) on the fuselage can be evaluated from the relation 

[~ ~2"[q(x', O')-q(x, O')-q(x', O)+q(x, 0)][sin 0 - s i n  0'] dO' dx' 
v~o(x, o) = co ~,, 4 ~ - ~  - x') z + 211 - cos (0 - 03i 3 

o2= [q(x, o')-q(x, O)][sin 0 - s i n  0'] dO' 
+ 4~-[ 1 - c o s  (0 - 0')] J- sin 0 q(x, O) + 

I~  q(x', O)-q(x, O)[K(k)_E(k) ] dx' 
+sin 0 ~ 2~rx / (x -x ' )2+4  

with k from equation (A-10). 

(A-19) 
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A P P E N D I X  B 

The Behaviour of v~q(x, y = 1, O) for Small Values of ] x] 

Inserting q(x, O) from equation (24) into equation (26), and using equations (A-6) and (A-9), we obtain for 
vxq(x, 1, 0) the equation 

v .q(x ,y=l ,O)=_f  ~° f= v.o(x'.O)(x-x')dOdx' + 
o rr~/(x -x ' ) 2+2 (1  - c o s  0) 

+['-~ [~ .o (x ' ) -~ ,o (x )+  l Z U"~(x ' ) -~ ZU'~(x)]E(k)  dx' 
L 1r(x -x')~/(x - x')2 + 4 

(B-l)  

The single integral is a finite continuous function for all values of x. The singular behaviour of the double 
integral for small values of Ixl arises from 

If fo~ v,,o(x', O)(x - x') dO 
J l ( X )  = - -  . dx' "rr~/(x-x')2+2(1-cos 0) 3 , (B-2) 

where a, b, 6 are large compared to [xl. It can be shown that, for 0 << 1 and x << 1/sin 24~, the leading terms in 
v,o(x, O) are 

Q {2 - x 2  c°s2 q5(2 cos 2 ~b - s i n  2 q~) 2x 4 sin 2 ~b COS 4 ~)-I- 
!.)nQ(X , 0) = ~ X 2 COS 2 ~ q- 02 IX 2 COS 2 I~ q- 02] 2 

x sin 413x202 cos 2 4 + 04(  1 q- 2 cos 2 } 
+ ,/Tx~ + 02[x2 cos ~ 4 ,+0q ~ 4)]+0( x, 02) . (B-3) 

We consider first the contribution 3"2 to V~q(X, 1, 0), where 

Jz(x)= -1--~- f_~ f dx'sin4)[3x'202 cos24)+O4(l+2cos2¢b)](x-x')dOdx ' 
477 -2 d al) X c 2 ~ [ X t 2 C O S 2 4 - l - O 2 1 2 4 ( X - - X ' ) 2 q - 0 2 3  

We introduce the variable m defined by 

sin,/,ff' 30-2cosZ~b+o-4(l+2cos2~b) I e l , /  x'(x-x')  x'(x+x') & =  
- 47r2 (j,, da [c°s 2 ~b+0-212 1 . ]T-~ 2 × , _ (x_x,)2 +oZx,23 4(x + x,)Z +0-2x,Z3 j dx' + 

I7 t + ao30~cos26+o4(1+Zcos26)  fd/~[- x ' (x -x ' /  x '(x+x')  ] 
× J,, k#(x  ;x-7~-S-~x '23 . ~ x .  x ~ . 0 -  x [COS 2 6 -1- O'212~/1 -l- 0 -2 / ,  __---'-7x2"--7---2 t23l dx' . 

(B-4) 

The integrals 

and 

I d[ x ' ( x - x  
. L + -  x,)2 + 0.2x,,2 3 

i d/,,~ x'(x - x') 
. [ 4 ( x - x ' ) ' + 0 - 2 x  '23 

x'(x + x') ] 
#(x  + x') 2 + 0-2x'~3J dx' 

x'(x + x') ] 
./(x + x')2 + 0.2 x,~3.j dx' 

33 



2 
contain the term ~ log [x]. This means that ./2 contains the term K log ]x], where 

~0 °° 3 • 2 sin~b 2 3~r2 cos2 qb + o-4(1 + 2 cos2 Oh) cos3 ~b- 1 +~ sm ~b 
K -- 4./r 2 [COS 2 ~b + 0"21211 + 0"2] 2 do- = 4rr sin 3 ~b 

We now consider the contribution J3 to Vxq(X, 1,0), where 

J3(x) = 1 f x+~ f ~ ~'_-x'2 cos~ ~b(2 cos2 ~- -s in2  ~ b ) 2 x ' 4  sin2 (~ c0s4 ~b'~ (x-xt)  dOdx' 
--47"F~ "] ' ( Xt2C0S24 )q-02 [X'2COS2qS+O212jXx/(X--X')2+023 

J3(x) is discontinuous at x = 0. The value 

(B-5) 

(B-6) 

J4(6) = lim J3(x >0;  6) (B-7) 
x ~ O  

can be determined by performing the integration with respect to 0, introducing the variable r by the relation 
x' = x (1 + r) and taking the limit as x/6 tends to zero (see Appendix A of Ref. 2). This leads to the expression 

J4(~b) = - c ° s 2  ~ f)4rr---T- oo { (l+r)212(sin2qb-c°s24~)r2+(2-sini4a)c°s2qb(l+r)z]+" r[-rS---O~c~s2--@ 

r ] l  + r l [ 2 r 2 - ( 2 + s i n  2 ~)(1 +r )=] . ,  , ]  

where 

and 

f ( r )  = tan- '  4 7 2 - ( 1  +r)2  c°s2 ~b 
[1 + w[ cos ~b 

for - 0 0 < r < -  cos~b and c o s ~ < r < 0 0  
1 + cos ~b 1 - c o s  ~b 

1 (1 + r) cos ~b +~/(1 + r)2 cos2 ~b- r 2 cos~b cos~b 
f i r )  = ~ log for - -  < r < . 

(1 q- 7) COS ~ -- ~/(l + T)2 COS2 ~ --"g 2 1 + c o s  ,t, 1 - c o s  ~b 

We have evaluated the integral in equation (B-8) numerically and have obtained the values 

J4(6) 
0 -0-05305 

30 ° -0"04853 
45 ° -0"04240  
60 ° -0-03288 

The remaining contributions to Vxq(X, 1,0) are finite continuous functions. Thus Vxq(X, 1, 0) behaves as 

Vx.(X, y = 1, O) cos 3 ~b - 1 + 3 sin 2 ~b 

Q 47r sin 3 ~b 
X 

log Ixl + ~  J4(~) +f(x; ~), 

where f(x; ok) is a finite continuous function. 
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TABLE 1 

Streamwise Component of the Interference Velocity on the Wing, [vx~o(x, y, z=O)]I[Q/R], for a Single Source Line 

x/•R/R 
~=0 ~=30 ° ~=45 ° ~ = 60° 

1 1.25 2 1 1.25 2 1 1.25 2 1 1.25 2 

- 1 0  
- 5  
- 4  
- 3  
- 2  
-1 .5  
- 1 . 0  
-0-8 
-0 .6  
-0 .4  
-0 .2  
-0 .1  
-0 .05 

0 
0.05 
0-1 
0.2 
0-4 
0.6 
0-8 
1.0 
1-5 
2 
3 
4 
5 

10 

0.0014 
0-0051 
0.0072 
0.0104 
0.0160 
0.0202 
0.0259 
0.0288 
0.0321 
0.0364 
0.0423 
0.0467 
0.0495 

±0.0530 
-0.0495 
-0.0467 
-0.0423 
-0 .0364  
-0.0321 
-0.0288 
i-0.0259 
!-0.0202 
-0.0160 
-0-0104 
-0-0072 
-0-0051 
-0-0014 

0-0015 
0.0052 
0.0072 
0-0102 
0.0152 
0-0187 
0.0228 
0-0243 
0.0252 
0-0243 
0.0181 
0.0106 
0.0056 

0 
-0.0056 
-0.0106 
-0.0181 
-0-0243 
-0.0252 
-0.0243 
-0.0228 
-0.0187 
-0-0152 
-0.0102 
-0-0072 
-0.0052 
-0-0015 

0.0015 
0-0045 
0-0059 
0.0078 
0-0i00 
0-0106 
0-0101 
0.0092 
0-0077 
0.0056 
0-0030 
0-0015 
0.0008 

0 
-0-0008 
-0.0015 
-0.0030 
-0 .0056 
-0.0077 
-0-0092 
-0-0101 
-0-0106 
-0-0100 
-0.0078 
-O.0059 
-0-O045 
-0.0015 

0.0011 
0.0041 
0-0060 
0.0093 
0-0152 
0.0201 
0-0275 
0.0319 
0.0378 
0.0464 
0.0612 
0.0742 
0.0869 

-0.0066 
-0.0152 
-0-0220 
-0 .0246  
-0.0237 
-0.0222 
-0.0208 
-0.0179 
-0.0156 
-0.0116 
-0-0086 
-0-0064 
-0-0018 

0-0011 
0.0041 
0-0060 
0.0091 
0-0146 
0-0191 
0-0254 
0-0286 
0-0322 
0-0356 
0.0358 
0-0320 
0-0284 
0.0237 
010185 
0.0128 
0-0029 

-0 .0093 
-0.0145 
-0 .0164 
-0 .0169 
-0.0161 
-0.0145 
-0.0113 
-0 .0087 
-0.0067 
-0-0022 

0.0011 
0-0038 
0.0053 
0-0077 
0.0108 
0-0127 
0.0139 
0-0141 
0.0137 
0.0127 
0.0109 
0-0097 
0.0091 

• 0.0084 
0.0077 
0.0070 
0.0055 
0.0025 

-0-0002 
-0 .0027 
-0 .0044 
-O.O07O 
-0 .0079 
-0 .0076 
-0 .0063 
-0 .0052 
-0 .0020 

0.0009 
0-0037 
0-0055 
0.0087 
0.0147 
0-0199 
0-0282 
0.0332 
0-0401 
0.0503 
0-0685 
0.0850 
0.1033 

0-0213 
0.0066 

-0 .0058 
-0 .0150  
-0-0176 
-0 .0179 
-0-0175 
-0-0160 
-0-0147 
-0 .0120  
-0-0093 
-0 .0070  
~0.0019 

0.0009 
0.0037 
0.0055 
0.0085 
0-0143 
0-0191 
0.0263 
0-0303 
0-0350 
0-0402 
0.0437 
0-0422 
0.0397 
0-0362 
0-0316 
0-0264 
0.0161 
0-0013 

-0-0066 
-0-0105 
-0-0124 
-0-0137 
-0-0133 
-0-0114 
-0-0095 
-0.0077 
-0.0028 

0.0009 
0-0035 
0.0050 
0.0074 
0.0110 
0.0133 
0.0155 
0.0161 
0.0163 
0.0159 
0.0148 
0.0139 
0.0134 
0.0128 
0.0122 
0.0116 
0.0102 
0-0073 
O.0O45 
0.0018 

-0.00O4 
-0.0041 
-0.0060 
-0.0069 
-0-0063 
-0-0054 
-0.0024 

0.0008 
0.0034 
0.0050 
0.0081 
0-0143 
0.0196 
0.0286 
0.0342 
0.0419 
0.0536 
0-0749 
0.0967 
0.1185 

0.0547 
0.0341 
0.0161 

-0 .0004 
-0-0073 
-0.0107 
-0.0123 
-0.0130 
-0.0125 
-0.0113 
-0-0096 
-0.0076 
-0.0019 

0.0007 
0-0033 
0-0049 
0.0080 
0.0138 
0-0190 
0.0270 
0.0316 
0.0373 
0.0443 
0.0510 
0-0519 
0.0510 
0-O488 
O.0454 
0.0412 
0.03-17 
0-0154 
0.0049 

-0 .0014 
-0.0053 
-0.0095 
-0 .0107 
-0.0107 
-0-0102 
-0 .0089 
-0.0038 

0-0008 
0-0032 
0-0046 
0.0067 
0-0111 
0.0138 
0.0169 
0.0179 
0-0188 
0.0191 
0.0187 
0.0182 
0-0179 
0.0175 
0.0170 
0-0165 
0.0155 
0.0129 
0.0101 
0.0074 
0.0049 
0.0002 

-0-0028 
-0 .0053 
-0 .0057 
-0 .0054 
-0 .0030  



TABLE 2 

Streamwise Component of the lntederence Velocity on the Fuselage, [Glo(x, O)]/[Q/R], for a Single 
Source Line 

x/R• d' = 0  4,=30 ° 

30 ° 60 ° 90 ° 5 ° 10 ° 30 ° 60 ° 90 ° 

- 1 0  
- 5  
- 4  
- 3  
- 2  
- 1 . 5  

- 0 . 8  
- 0 - 6  
- 0 . 4  
- 0 - 2  
-0-1  
-0 -05  

0 
0"05 
0.1 
0.2 
0.4 
0.6 
0-8 
1 
1.5 
2 
3 
4 
5 

10 

5 ° 10 ° 

0.0014 0.0014 
0-0051 0.0052 
0-0072 0.00731 
0-0104 0-0106 
0-0161 0-0165 
0-0205 0-0212 
0-0265 0.0282 
0-0297 0-0323 
0"0338 0.0380 
0-0399 0.0477 
0-0535 0.0642 
0-0683 0"0603 
0.0629 0-0384 

0 0 
- 0 . 0 6 2 9  -0 -0384  
- 0 . 0 6 8 3  -0 .0603  
- 0 . 0 5 3 5  -0 .0642  
-0 -0399~-0 .0477  
-0 -0338  -0 -0380  
-0 -0297  -0 .0323  

!-0 .0265 - 0 . 0 2 8 2  
- 0 - 0 2 0 5  -0 -0212  
-0 .0161  -0 -0165  
- 0 - 0 1 0 4  - 0 . 0 1 0 6  
- 0 . 0 0 7 2  -0 .0073  
-0 -0051  -0 -0052  
-0 -0014  - 0 . 0 0 1 4  

0-0015 0.0018 0-0019 
0.0055 0.0062 0.0066 
0.0079 0-0091 0-0098 
0.0119 0.0147 0.0159 
0-0199 0-0263 0-0289 
0.(/272 0.0365 0.0396 
0-0395 0.0492 0-0506 
(/.0466 0.0530 0.0524 
0.0545 0.0528 0"0498 
0.0584 0.0451 0.0404 
0.0446 0-0269 0"0229 
0.0254 0-0141 0.0118 
0-0131 0"0072 0"0059 

0 0 0 
-0-0131 -0 .0072  -0 .0059  
- 0 . 0 2 5 4  -0-0141 -0 .0118  
- 0 . 0 4 4 6  -0 .0269  -0 .0229  
- 0 . 0 5 8 4  -0-0451 -0 .0404  
-0 -0545  -0 .0528~-0-0498  
-0 -0466  -0 .0530  -0-0524  
-0"0395 -0 -0492  -0 .0506  
-0 .0272  -0 .0365  -0 .0396  
-0 -0199  -0 -0263  -0-0289  
- 0 - 0 1 1 9  - 0 . 0 1 4 7  - 0 . 0 1 5 9  
- 0 . 0 0 7 9  -0-0091 -0 .0098  
-0"0055 -0 .0062  -0 .0066  
-0 -0015  -0 .0018  -0-0019  

0-0010 0"0011 0.0011 0-0011 
0-0041 0-0041 0.0042 0-0045 
0-0060 0-0060 0"0062 0-0067 
0.0093 0.0094 0-0099 O-Ollli  
0"0152 0.0154 0.0174 0.02121 
0.0202 0.0206 0.0243 0.0313 
0"0279 0"0288 0-0370 0.0477 
0.0325 0.0340 0-0452 0-0557 
0"0388 0-0415 0.0562 0.0631 
0-0486 0-0539 0.0692 0-0668 
0-0686 0.0787 0.0764 0.0627 
0-0916 0.0943 0-0713 0.0565 
0.1064 0.09321 0-0653 0.0526 
0.0845 0.0735i 0-0574 0-0478 
0.0121 0.0391 0-0471 0-0433 

-0 -0280  0-0026 0"0345 0-0377 
-0-0366 -0-0351 0.0111 0-0256 
-0-0301 -0-0389  - 0 . 0 2 5 4  0.0003 
-0 .0264  -0-0325 -0 -0392  -0 .0201  
-0"0238 -0"0278 - 0 . 0 4 0 7  - 0 . 0 3 2 6  
-0-0218  -0"0246~-0"0379 -0 -0385  
-0-0184  -0 -0199  -0 -0290  -0"0375  
-0-0158  -0 .0167  - 0 . 0 2 2 6  - 0 . 0 3 0 9  
-0 .0116  -0 .0121  - 0 . 0 1 4 7  - 0 " 0 1 9 8  
-0-0086 -0-0088  - 0 . 0 1 0 0  - 0 . 0 1 3 0  
-0 .0064  -0 .0065  -0 .0073  - 0 . 0 0 9 0  
-0"0018 -0 .0018  -0 .0021  - 0 . 0 0 2 8  

0.0012 
0.0046 
0.0070 
0-0117 
0.0230 
0.0343 
0.0508 
0-0576 
0.0630 
0-0642 
0.0586 
0-0529 
0.0496 
0-0464 
0-0419 
0.0377 
0-0273 
0.0060 

- 0 . 0 1 3 3  
- 0 . 0 2 8 4  
- 0 - 0 3 5 7  
- 0 - 0 3 9 0  
- 0 - 0 3 3 6  
- 0 . 0 2 1 4  
- 0 . 0 1 3 9  
- 0 . 0 0 9 7  
- 0 . 0 0 3 2  



T A B L E  2--con~nued 

- 1 0  
- 5  
- 4  
- 3  
- 2  
- 1 . 5  
- 1  
- 0 - 8  
- 0 - 6  
- 0 - 4  
- 0 . 2  
-0 -1  
- 0 . 0 5  

0 
0.05 
0.1 
0.2 
0.4 
0.6 
0.8 
1 
1.5 
2 
3 
4 
5 

10 

q5=45 ° 4~=60 o 

0-0009 
0.0037 
0-0055 
0.0087 
0.0149 
0.0203 
0-0292 
0.0349 
0-0429 
0.0562 
0-0827 
0.1032 
0-1090 
0-1012 
0-0775 
0-0449 

-0-00441 
-0-0286!  
-0.0277~ 
-0 -0249 ,  
-0 -0224  
-0 -0183  
-0 -0162  
-0 -0125  
-0 -0096  
-0 -0072  
- 0 . 0 0 2 0  

0.0009 
0-0037 
0-0055 
0-0087 
0-0148 
0-0200 
0-0285 
0-0337 
0-0408 
0-0520 
0-0743 
0-1000 
0.1198 
0-1165 
0.0606 
0.0090 

- 0 . 0 1 9 8  
- 0 . 0 2 1 9  
-0-0211  
-0-0201 
-0 -0189  
-0 -0167  
-0-0151 
-0 -0122  
-0 -0094  
-0 .0071  
- 0 . 0 0 1 9  

0.0009 
0.0037 
0.0056 
0.0090 
0-0162 
0.0231 
0-0356 
0.0438 
0.0552 
0.0700 
0.0832 
0.0840 
0.0877 
0.0773 
0.0710 
0.0628 
0.0428 
0.0036 

-0-0201 
-0 .0299  
-0 .0322  
-0 -0285  
-0 .0236  
-0 .0163  
-0 -0118  
-0 -0086  
-0 . 0026  

0.0009 0-0009 0.0008 0.0008 0.0008 0.0008 0-0008 
0.0038 0-0038 0.0034 0.0034 0-0034 0.0033 0-0033 
0-0058 0-0059 0.0051 0.0051 0.0051 0.0051 0-0050 
0.0097 0.0101 0-0082 0.0082 0-0083 0.0086 0-0087 
0.0190 0.0203 0.0143 0.0144 0.0151 0.0170 0.0180 
0.0286 0-0309 0-0196 0.0199 0-0218 0.0259 0-0277 
0-0449 0.0478 0.0288 0.0293 0.0341 0.0416 0-0442 
0.0536 0-0557 0-0345 0-0354 0-0423 0.0504 0-0525 
0.0628 0-0634 0.0425 0.0441 0.0537 0.0603 0-0612 
0.0702 0-0685 0.0549 0-0581 0-0691 0-0697 0-0687 
0.0720 0-0693 0.0794 0.0860 0.0855 0.0755 0.0721 
0.0697 0.0664 0.1074 0-1090 0.0903 0-0759 0.0722 
0.0676 0.0646 0-1300 0.1188 0.0907 0.0755 0.0718 
0.0651 0.0624 0-1388 0.1184 0.0896 0.0749 0.0711 
0.0619 0-0594 0-1054 0.1067 0.0864 0.0732 0.0698 
0.0583 0.0566 0-0586 0.0844 0.0818 0.0713 0-0684 
0-0494 0.0489 0-0097 0.0386 0.0687 0.0661 0.0647 
0.0276 0.0318 - 0 - 0 0 8 6  - 0 . 0 0 6 3  0.0368 0.0510 0-0525 
0.0061 0-0128 -0 . 0121  - 0 . 0 1 6 8  0.0102 0.0334 0.0379 

z0 .0109  -0-0031  - 0 . 0 1 3 7  - 0 - 0 1 8 7  - 0 - 0 0 6 9  0-0170 0.0226 
-0 . 0222  - 0 . 0 1 6 6  -0 -0143  - 0 - 0 1 8 5  - 0 - 0 1 6 5  0.0035 0.0098 
- 0 . 0 3 2 4  -0 -0317  - 0 . 0 1 3 9 ] - 0 - 0 1 6 4  - 0 . 0 2 3 5  - 0 . 0 1 6 8  - 0 . 0 1 2 8  
-0 . 0308  - 0 . 0 3 1 8  - 0 . 0 1 3 1 1 - 0 - 0 1 4 6  - 0 - 0 2 2 4 - 0 - 0 2 3 7  -0 -0 2 1 9  
-0 -0219  -0 -0236  - 0 . 0 1 1 6  - 0 - 0 1 2 5  - 0 - 0 1 7 6  -0 -0225  - 0 . 0 2 3 7  
-0 .0152  - 0 . 0 1 6 6  - 0 . 0 0 9 9  - 0 - 0 1 0 4  - 0 . 0 1 3 6  -0 -0 1 7 8  - 0 . 0 1 9 0  
-0-0111 - 0 - 0 1 2 0  -0 -0078  - 0 . 0 0 8 0  - 0 . 0 1 0 4  - 0 . 0 1 3 8  -0 -0 1 4 9  
-0 -0037  - 0 . 0 0 3 8  - 0 . 0 0 1 9  -0 . 0 0 2 1  - 0 . 0 0 3 3  - 0 . 0 0 5 5  -0 -0063  

5 ° 10 o 30 ° 60 ° 90 ° 5 ° 10 ° 30 ° 60 ° 90 ° 



T A B L E  3 

z-Component of the Interference Velocity on the Fuselage, [vz~o(x, O)]/[Q/R], tor a Single Source Line 

O~ 

- 1 0  
- 5  
- 4  
- 3  
- 2  
- 1 - 5  
- 1 . 0  
- 0 . 8  
- 0 . 6  
- 0 . 4  
- 0 . 2  
- 0 . 1  
-0 -05  

0 
0-05 
0.1 
0.2 
0.4 
0.6 
0.8 
1-0 
1.5 
2.0 
3 
4 
5 

10 

4 = 0  4 = 3 0  ° 

5 ° 10 o 20 ° 30 ° 5 ° 30 ° 

0.0001 
0-0006 
0.0009 
0.0016 
0.0034 
0.0054 
0.0098 
0-0131 
0.0184 
0-0285 
0.0508 
0-0646 
0.0545 
0-0355 
0-0545 
0-0646 
0-0508 
0.0285 
0.0184 
0.0131 
0.0098 
0-0054 
0-0034 
0.0016 
0-0009 
0.0006 
0-0001 

0.0003 
0.0011 
0.0017 
0-0030 
0.0063 
0-0102 
0-0179 
0.0235 
0-0317 
0-0442 
0.0543 
0-0401 
0.0256 

0.0004 
0-0017 
0-0027 
0.0048 
0.0099 
0.0154 
0.0248 
0.0298 
0-0343 
0.0327 
0.0110 

-O.OO75 
- 0 . 0 1 4 4  

0.0004 
0.0016 
0-0026 
0-0045 
0-0090 
0-0131 
0.0173 
0.0167 
0-0115 

- 0 . 0 0 4 0  
- 0 . 0 3 2 1  
-0 .0451  
- 0 . 0 4 9 0  

0.0000 
0.0001 
0.0002 
0-0005 
0.0013 
0-0023 
0.0049 
0-0068 
0.0101 
0.0164 
0.0316 
0-0452 
0-0440 

10 ° 20 ° 

0-0000 0-0000 
0.0002 0.0002 
0.0004 0-0005 
0-0008 0.0011 
0.0024 0.0035 
0-0044 0.0065 
0.0090 0.0123 
0.0124 0.0159 
0-0177 0-0198 
0-0264 0.0214 
0-0375 0.0095 
0.0327 - 0 . 0 0 6 6  
0.0218 -0 -0 1 5 8  

0.0181 
0.0256 
0-0401 
O.O543 
0.0442 
0-0317 
0-0235 
0-0179 
0.0102 
0-0063 
0.0030 
0.0017 
0.0011 
0.0003 

- 0 - 0 1 6 9  
- 0 . 0 1 4 4  
- 0 . 0 0 7 5  

0.0110 
0-0327 
0.0343 
0.0298 
0.0248 
0-0154 
0.0099 
0.0048 
0-0027 
0.0017 
0-0004 

- 0 . 0 5 0 4  
- 0 . 0 4 9 0  
-0 -0451  
-0 . 0321  
- 0 - 0 0 4 0  

0.0115 
0-0167 
0-0173 
0-0131 
0.0090 
0-0045 
0-0026 
0.0016 
0.0004 

0.0264 
0.0389 
0.0680 
0.0735 
0.0479 
0.0329 
0-0243 
0.0189 
0.0114 
O.0075 
0-0040 
0.0024 
0.0017 
0.00O5 

0.0098 
0-0087 
0-0219 
0-0541 
0-0643 
0-0526 
0-0418 
0.0336 
0-0209 
0.0141 
0.0076 
0.0047 
0.0032 
0-0009 

- 0 . 0 2 3 4  
-0 .0 2 7 3  
- 0 . 0 2 6 5  
-0 .0121  

0.0257 
0.0422 
0.0444 
0.0412 
0.0300 
0.0216 
0-0122 
0.0076 
0-OO52 
0.0015 

- 0 . 0 0 0 1  
- 0 . 0 0 0 1  
- 0 . 0 0 0 1  

0-0003 
0.0024 
0.0046 
0.0075 
0.0079 
0.0057 

- 0 - 0 0 3 5  
- 0 - 0 2 6 2  
- 0 - 0 4 1 8  
-0 -0491  
- 0 - 0 5 5 2  
- 0 . 0 5 9 3  
- 0 . 0 6 1 0  
- 0 . 0 5 6 6  
- 0 . 0 2 9 1  
- 0 . 0 0 1 9  

0.0142 
0-0215 
0.0233 
0-0191 
0.0119 
0-0078 
0.0055 
0-0016 



T A B L E  3--continued 

',D 

- 1 0  
- 5  
- 4  
- 3  
- 2  
- 1 - 5  
- 1 - 0  
- 0 . 8  
- 0 - 6  
- 0 - 4  
- 0 - 2  
- 0 . 1  
- 0 - 0 5  

0 
0-05 
0.1 
0.2 
0.4 
0-6 
0.8 
1-0 
1.5 
2-0 
3 
4 
5 

10 

~ = 4 5  o ~ = 6 0  ° 

5 ° 30 ° 5 ° 30 ° 

0-0000 
0.0000 
0-0000 
0.0001 
0-0006 
0.0014 
0-0032 
0-0047 
0.0072 
0.0120 
0.0239 
0-0348 
0-0340 
0-0162 
0.0187 
0.0520 
0.0810 
0.0629 
0.O454 
0.0345 
0.0273 
0.0171 
0.0117 
0-0065 
0-0042 
0.0029 
0.0009 

10 ° 20 ° 

0.0000 -0 .0001  
-0-0001  -0 -0003  

0.0000 -0 . 0004  
0.0001 -0 .0003  
0.0011 0.0013 
0-0025 0.0033 
0.0058 0.0074 
0.0084 0.0101 
0-0124 0.0130 
0-0192 0-0140 
0.0280 0.0035 
0.0239 -0 -0118  
0.0139 -0 .0215  
0.0005 -0 . 0309  

- 0 . 0 0 6 4  -0 .0381  
0.0007 -0 . 0414  
0.0361 -0 . 0348  
0.0696 0.0041 
0.0655 0.0334 
0-0556 0.0454 
0.0466 0.0478 
0.0309 0.0406 
0.0217 0.0315 
0.0124 0.0193 
0.0080 0.0128 
0-0056 0.0091 
0-0017 0.0028 

-0 . 0002  
-0 -0006  
-0 . 0007  
- 0 . 0 0 0 7  

0.0000 
0.0013 
0.0029 
0-0029 
0-0008 

-0 -0075  
-0 . 0288  
- 0 . 0 4 4 8  
-0 .0531  
- 0 . 0 6 1 0  
-0 -0676  
-0 .0723  
- 0 . 0 7 5 0  
-0 . 0563  
-0 -0266  
- 0 . 0 0 2 6  

0.0125 
0.0255 
0.0248 
0.0179 
0.0128 
0.0094 
0-0031 

0.0000 
-0 . 0001  
- 0 . 0 0 0 2  
-0 . 0001  

0.0001 
0.0006 
0-0019 
0.0030 
0-0048 
0.0085 
0.0174 
0.0252 
0.0231 
0.0038 

- 0 - 0 0 6 2  
0.0172 
0-0700 
0.0809 
0-0652 
0-0521 
0-0425 
0-0281 
0.0201 
0-0119 
0-0080 
0-0057 
0-0019 

10 ° 20 ° 

-0 -0001  - 0 . 0 0 0 2  
- 0 . 0 0 0 3  - 0 - 0 0 0 6  
- 0 - 0 0 0 3  - 0 . 0 0 0 7  
- 0 . 0 0 0 3  - 0 . 0 0 0 9  

0-0001 - 0 . 0 0 0 3  
0.0010 0-0007 
0-0033 0.0035 
0-0052 0.0052 
0-0082 0.0070 
0-0131 0.0069 
0.0191 - 0 . 0 0 4 0  
0-0141 - 0 - 0 1 9 3  
0-0039 - 0 . 0 2 9 6  

- 0 - 0 1 1 0  - 0 . 0 4 0 3  
- 0 . 0 2 3 0  - 0 . 0 5 0 1  
- 0 - 0 2 5 0  - 0 . 0 5 7 5  
- 0 . 0 0 0 9  - 0 - 0 6 1 6  

0.0553 - 0 . 0 3 6 6  
0.0726 - 0 - 0 0 0 8  
0.0712 0-0254 
0.0647 0.0404 
0.0481 0-0499 
0.0360 0.0450 
0.0220 0.0319 
0.0149 0.0229 
0.0108 0-0172 
0.0036 0-0060 

- 0 . 0 0 0 3  
- 0 . 0 0 1 0  
- 0 . 0 0 1 3  
- 0 - 0 0 1 7  
- 0 . 0 0 2 2  
- 0 . 0 0 1 5  
-0 .0 0 1 1  
- 0 . 0 0 1 7  
- 0 . 0 0 4 4  
- 0 - 0 1 2 7  
- 0 . 0 3 3 6  
- 0 . 0 5 0 5  
- 0 - 0 5 9 2  
- 0 . 0 6 8 3  
- 0 - 0 7 6 9  
- 0 . 0 8 4 3  
-0 -0943  
- 0 . 0 9 2 0  
- 0 . 0 7 0 5  
- 0 . 0 4 4 3  
- 0 . 0 2 1 4  

0.0128 
0-0243 
0.0252 
0.0207 
0.0165 
0.0065 



T A B L E  4 

Downwash  C o m p o n e n t  of the Interference Velocity  on  the Wing, [v=w(x, y, z=O)]/[F/R] for a Single Vortex 

\ 

\ v/R #, 0 &=30 ° 05=45 ° 4)=60 ° "\- 

x / R ~  1 1.25 2 1 1.25 2 1 1.25 2 1 1.25 2 
\ \  

- 1 0  
- 5  
- 4  

3 
- 2  
- 1  "5 
- 1 - 0  
- 0 . 8  
- 0 . 6  
- 0 . 4  
- 0 . 2  
- 0 . 1  
- 0 - 0 5  

1) 
0-05 
0.1 
0.2 
0-4 
0-6 
0-8 
1-0 
1-5 
2 
3 
4 
5 

10 
1 

O-Ol61 
0-0314 
0.0378 
0.0466 
0.0589 
0.0670 
0-0768 
0.0812 
0.0861 
0.0914 
0-0979 
0.1018 
0 . 1 0 3 9  

+0 .1  {)61 
- 0 . 1039  

0.1018 
-0 -0979  
-0 .0914  
-0-0861 
-0 .0812  
-0 -0768  
-0 -0670  
-0 .0589  

0.0466 
-0"0378 
-0 -0314  
-0 .0161 

O. 0104  
0-020O 
O-0238 
0.0288 
0.0347 
0-0374 
0.0384 
0.0375 
0.0350 
0-0295 
0.0186 
0-0101 
0-0052 
0.0 

-0-0052  
- 0" 0101 
-0 -0186  

0.0295 
-0 -0350  

0.0375 
-0 .0384  
-0 .0374  
-0-0347  
-O.0288 
-0-0238  

().0200 
- 0 - 0 1 0 4  

0.0041 
0.0075 
0.0087 
0-0098 
0.0104 
0.0099 
0.0083 
0-0072 
0.0058 
0-0041 
O. 0021 
0.0011 
0.0005 
0-0 

-0 .0005  
-0-0011 
-0-0021 
-0"0041 
-0 -0058  
-0"0072 

0.0083 
-0"0099 
-0 .0104  
-0 .0098  
-0 -0087  
-0 .0075  
-0 .0041 

0-0102 
0-0208 
0"0256 
0-0324 
0.0425 
0-0496 
0"0584 
0.0626 
0.0674 
0.0731 
0.0812 
0-0875 
0.0926 

-0 .1097  
-0 .1111 

0.1107 
- 0 - 1 0 7 t  
-0 .1034  
-0-0995 
-0 .0957  
-0"0864 

0-0782 
-0"0646 
-O-O540 
-0 .0460  
-O-0253 

0.0067 
0.0137 
0-0168 
0.0210 
0-0267 
0.0300 
0-0326 
0"0332 
0"0328 
0.0306 
0"0242 
0.0181 
0-0141 
0-0094 
0"0053 
0-0006 

-0 .0086  
- 0 . 0 2 2 9  
-0 .0317  
-0 -0370  
-0 .0401  
-0 -0426  
-0 -0417  
-0"0371 

0.0322 
-0"0280  
-0 .0158  

0-0029 
0.0058 
0-0070 
0-0083 
0-0096 
0.0099 
0-0094 
0.0089 
0-0081 
0-0070 
0-0055 
0.0047 
0-0042 
0-0038 
0.0033 
0-0028 
0-0018 

- 0 . 0 0 0 2  
- 0 . 0 0 2 1  
- 0 - 0 0 3 8  
- 0 . 0 0 5 3  
- 0 - 0 0 8 0  
- 0 . 0 0 9 5  
- 0 - 0 1 0 3  
- 0 - 0 0 9 8  
- 0 - 0 0 9 0  
- 0 . 0 0 5 7  

0-0077 
0.0162 
0-0200 
0-0257 
0-0343 
0.0404 
0-0483 
0.0522 
0.0567 
0-0623 
0.0704 
0.0772 
0-0831 

-0-1121 
-0 -1154  
-0 -1167  
-0 .1151  
- 0 . 1 1 2 5  
-0 -1094  

0.1062 
- 0 - 0 9 8 0  
-0 .0901  
-0 -0763  
- 0 . 0 6 5 4  
-0 -0568  
- 0 . 0 3 2 8  

0.0052 
0.0108 
0-0134 
0.0169 
0-0220 
0-0252 
0.0283 
0.0292 
0-0296 
0.0287 
0-0249 
0.0206 
0-0178 
0-0143 
0.0105 
0.0064 

-0-0021 
-0 .0166  
-0 .0268  
-0 -0337  
-0 .0382  
-0 .0434  
-0 .0442  
-0 -0414  
-0 .0372  
-0-0332  
-0 .0201 

0-0024 
0.0049 
0.0059 
0-0072 
0.0087 
0.0092 
0.0093 
0.0090 
0.0085 
0.0077 
0-0068 
0.0062 
0-0058 
O-0054 
0-0051 
0.0047 
0.0039 
0-0023 
0.0005 

-0-0012  
-0 .0028  
-0 -0059  
-0 .0079  
-0 .0096  
-0-0098 
-0-0095 
-0-0067 

0-0054 
0.0116 
0-0145 
0.0188 
0-0254 
0.0303 
0.0368 
0-0401 
0.0439 
0.0489 
0.0561 
0.0628 
0.0689 

-0-1157  
-0 .1202  
-0-1232 
-0-1237  
-0 .1221 
-0 .1200  
-0 .1179  
-0-1117  
-0 .1050  
-0 .0923  

1/.0816 
-0 .0726  
-0 .0452  

0.0038 
0-0079 
0.0099 
0.0127 
0-0168 
0-0196 
0.0228 
0-0238 
0-0247 
0.0248 
0.0232 
0-0211 
0.0196 
0.0177 
0-0146 
0.0116 
0.0052 

-0 .0077  
-0-0183 
-0-0262 
-0-0321 
-0-0408 
-0 .0444  
-0-0451 
-0 .0428  
-0 .0397  
-0 .0267  

0.0018 
0-0038 
0.0047 
0-0058 
0.0073 
0-0080 
0.0084 
0-0085 
0.0083 
0-0080 
O-0075 
0.0071 
0.0069 
0-0067 
0.0064 
0.0062 
0-0056 
0.0044 
0.0031 
0.0017 
O-OOO3 

-0 .0027  
- 0 . 0 0 5 0  
-0 -0077  
-0 .0088  
-0 .0092  
-0 -0078  



T A B L E  5 

Downwash Componen t of the Interference Velocity on the Fuselage, [vztr(x, O)]/[r/R], for a Single Vortex 

- 1 0  
- 5  
- 4  
- 3  
- 2  
- 1 . 5  
- 1 . 0  
- 0 . 8  
- 0 - 6  
- 0 - 4  
- 0 . 2  
- 0 . 1  
- 0 . 0 5  

0 
0.05 
0-1 
0-2 
0-4 
0-6 
0-8 
1.0 
1.5 
2-0 
3 
4 
5 

10 

¢ = 0  o ¢ = 3 0  ° 

0 5 ° 10 ° 15 ° 0 15 ° 

0.0161 
0.0314 
0.0378 
0.0466 
0.0589 
0-0670 
0.0768 
0-0812 
0-0861 
0-0914 
0-0979 
0.1018 
0-1039 

±0.1061 
- 0 - 1 0 3 9  
- 0 . 1 0 1 8  
- 0 . 0 9 7 9  
- 0 . 0 9 1 4  
-0 -0861  
-0 -0812  
-0 -0768  
- 0 - 0 6 7 0  
- 0 . 0 5 8 9  
- 0 - 0 4 6 6  
- 0 . 0 3 7 8  
- 0 . 0 3 1 4  
-0 -0161  

0.0158 
0.0309 
0.0372 

0-0151 
0-0294 
0.0354 

0-0140 
0-0271 
0-0324 

0.0102 
0-0208 
0.0256 

5 ° 10 ° 

0.0100 0.0096 
0-0205 0-0196 
0-0252 0.0241 

0.0089 
0.0182 
0-0223 

0.0458 
0-0577 
0.0654 
0-0741 
0.0776 
0-0805 
0-0811 
0-0682 
0.0343 
0.0049 
0-0 

- 0 . 0 0 4 9  
-0 .0343  
- 0 - 0 6 8 2  
-0-0811 
-0 . 0805  
- 0 . 0 7 7 6  
-0-0741 
- 0 . 0 6 5 4  
-0 -0577  
-0 . 0458  
-0 -0372  
- 0 . 0 3 0 9  
-0 -0158  

0.0434 
0.0542 
0.0606 
0.0663 
0-0673 
0.0656 
0-0563 
0-0235 

- 0 . 0 0 3 0  
-0-0071 

0.0 
0.0071 
0.0030 

- 0.0235 
-0 .0563  
- 0 . 0 6 5 6  
-0 .0673  
-0 .0663  
- 0 . 0 6 0 6  
-0 -0542  
-0 . 0434  
- 0 . 0 3 5 4  
-0 -0294  
-0 .0151  

0.0395 
0-0485 
0.0530 
0.0545 
0.0522 
0-0453 
0-0283 

- 0 - 0 0 3 6  
- 0 . 0 1 2 6  
- 0 . 0 0 8 6  

0.0 
0.0086 
0.0126 
0-0036 

-0 -0283  
- 0 . 0 4 5 3  
-0 -0522  
-0 . 0545  
- 0 - 0 5 3 0  
- 0 . 0 4 8 5  
-0 -0395  
- 0 . 0 3 2 4  
-0 .0271  
- 0 - 0 1 4 0  

0-0324 
0.0425 
0.0496 
0.0584 
0.0626 
0-0674 
0-0731 
0-0812 
0.0875 
0.0926 

- 0 . 1 0 9 7  
-0 .1111  
- 0 . 1 1 0 7  
-0 . 107 1  
- 0 - 1 0 3 4  
- 0 . 0 9 9 5  
- 0 . 0 9 5 7  
- 0 . 0 8 6 4  
- 0 . 0 7 8 2  
- 0 . 0 6 4 6  
- 0 - 0 5 4 0  
- 0 . 0 4 6 0  
- 0 . 0 2 5 3  

0.0319 
0.0418 
0.0486 
0.0569 
0.0606 
0-0646 
0-0681 
0-0665 
0.0520 
0.0343 
0-0266 
0.0337 
0.0090 

- 0 . 0 4 8 1  
-0-O845 
- 0 . 0 9 1 4  
- 0 - 0 9 1 9  
- 0 . 0 9 0 2  
- 0 . 0 8 3 4  
- 0 . 0 7 6 6  
- 0 . 0 6 3 0  
- 0 - 0 5 2 9  
- 0 . 0 4 5 2  
- 0 . 0 2 4 9  

0-0304 
0-0397 
0.0458 
0-0525 
0-0550 
0.0567 
0.0550 
0.0408 
0.0241 
0.0185 
0.0217 
0.0319 
0-0369 
0.0168 

- 0 . 0 3 7 2  
- 0 . 0 6 1 7  
- 0 . 0 7 1 4  
- 0 . 0 7 5 0  
- 0 . 0 7 4 4  
- 0 - 0 6 9 6  
- 0 - 0 5 8 9  
- 0 - 0 4 9 9  
- 0 . 0 4 2 8  
- 0 . 0 2 3 7  

0.0281" 
0-0363 
0-0413 
0-0458 
0-0465 
0.0453 
0-0387 
0.0212 
0.0125 
0.0129 
0-0185 
0.0277 
0-0366 
0.0398 
0-0054 

- 0 . 0 2 6 0  
- 0 . 0 4 3 7  
-0 .0531  
- 0 . 0 6 0 5  
-0 -0 5 9 6  
- 0 - 0 5 2 4  
-O.045O 
-0 -0 3 8 8  
- 0 - 0 2 1 7  



T A B L E  5--cont inued 

t '~  

x•/0 ~ = 4 5  ° ~ = 6 0  ° 

0 5 ° 10 ° 15 ° 0 5 ° 10 ° 15 ° 

- 1 0  
- 5  
- 4  
- 3  
- 2  
- 1 . 5  
- 1 . 0  
- 0 - 8  
- 0 - 6  
- 0 . 4  
- 0 . 2  
-0 -1  
- 0 - 0 5  

0 
0-05 
0.1 
0-2 
0-4 
0"6 
0-8 
1.0 
1.5 
2-0 
3 
4 
5 

10 

0.0077 
0-0162 
0-0200 
0"0257 
0.0343 
0.0404 
0.0483 
0.0522 
0-0567 
0-0623 
0.0704 
0-0772 
0.0831 

-0-1121 
-0"1154 
-0 -1167  
-0 .1151  
-0 . 1125  
-0 -1094  
-0"1062 
- 0 . 0 9 8 0  
-0 .0901  
-0 . 0763  
- 0 . 0 6 5 4  
-0 . 0568  
-0 -0328  

0-0076 
0.0160 
0.0198 
0.0253 
0.0338 
0-0397 
0-0472 
0"0508 
0-0547 
0.0588 
0"0603 
0.0526 
0.0411 
0-0353 
0.0470 
0-0367 

- 0 . 0 2 1 9  
-0 -0778  
- 0 . 0 9 2 8  
- 0 . 0 9 7 0  
-0 -0974  
-0 . 0932  
-0 -0868  
-0 .0743  
-0 -0639  
-0 . 0557  
-0 . 0323  

0.0072 
0-0153 
0.0189 
0-0242 
0.0322 
0-0376 
0.0441 
0"0468 
0.0491 
0.0496 
0-0420 
0.0311 
0-0267 
0-0289 
0"0383 
0.0477 
0.0423 

- 0 - 0 1 2 2  
- 0 - 0 4 7 9  
-0 -0655  
- 0 - 0 7 3 9  
-0"0795  
- 0 - 0 7 7 4  
- 0 . 0 6 8 5  
- 0 . 0 5 9 7  
-0 -0523  
- 0 - 0 3 0 6  

0-0067 
0-0142 
0"0176 
0-0225 
0"0296 
0.0343 
0.0392 
0.0406 
O.O408 
0"0378 
0-0270 
0.0206 
0.0205 
0.0246 
0-0325 
0-0421 
0"0540 
0-0334 

- 0 . 0 0 1 5  
- 0 - 0 2 6 7  
- 0 - 0 4 2 3  
- 0 " 0 5 9 2  
-0"0628  
- 0 . 0 5 9 7  
- 0 - 0 5 2 8  
- 0 - 0 4 6 8  
- 0 - 0 2 7 9  

0.0054 
0.0116 
0-0145 
0.0188 
0.0254 
0-0303 
0-0368 
0-0401 
0.0439 
0-0489 
0-0561 
0"0628 
0-0689 

- 0 - 1 1 5 7  
- 0 . 1 2 0 2  
- 0 . 1 2 3 2  
- 0 - 1 2 3 7  
-0 . 122 1  
- 0 . 1 2 0 0  
- 0 . 1 1 7 9  
- 0 - 1 1 1 7  
- 0 . 1 0 5 0  
- 0 - 0 9 2 3  
- 0 . 0 8 1 6  
-0"072 6  
-O.0452 

0.00S3 
0-0114 
0.0143 
0.0185 
0.0251 
0.0298 
0.0361 
0-0392 
0"0426 
0.0465 
0.0498 
0.0470 
0-0411 
0-0378 
0-0492 
0-0555 
0.0206 

- 0 . 0 5 3 7  
- 0 . 0 8 3 6  
- 0 . 0 9 5 6  
-0 -1008  
-0 -1026  
-0"0991 
-0 -0889  
-0 .0 7 9 2  
- 0 . 0 7 0 8  
-0 -0444  

0"0051 
0-0110 
0.0137 
0-0178 
0.0240 
0"0284 
0-0340 
0.0365 
0-0389 
O-04O5 
0"0378 
0-0322 
0.0296 
0-0309 
0.0378 
0.0476 
O.0584 
0-0283 

-0 .0 1 3 5  
-0"0420  
-0"0594  
-0 .0 7 8 3  
- 0 . 0 8 2 6  
-0-0791  
-0"0723 
-0 -0655  
-0"0418 

0"0047 
0-0102 
0"0128 
0.0166 
0.0222 
0-0261 
0.0307 
0-0323 
0.0334 
0.0327 
0.0275 
0.0238 
0-0238 
0-0264 
0"0320 
0-0398 
0-0556 
0-0606 
0.0419 
0-0118 

-0 .0 1 2 5  
-0"0470  
-0 .0 6 0 3  
-0 .0 6 4 8  
-0 -0617  
- 0 . 0 5 7 0  
-0 -0377  
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Fig. 1. Notation. 
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Fig. 2. Additional streamwise velocity in the wing-body junction. 

44 



0 '07  

~ = 6  

4~i ° 

"JO 

0 " 0 6  

O'Op 

0 ' 0 4  
y = R  

z = 0 

0"03 

0"02 

I 
-I.'~ -1"0  

VxZQ 

a/R 

-0"5 

-0"01 

- 0 " 0 2  

I I I I 
i -0 x / R  2-0 ?.'P 

= 60*  

-0"0"~ 

-0"04- 

-0"05 

Fig. 3. Additional streamwise velocity in the wing-body junction. 
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Fig. 4. Addit ional  streamwise velocityin the plane z = 0. 
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Fig. 5. Interference velocity on fuselage. 
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Fig. 6. z-component of the interference velocity at the fuselage. 
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Fig. 7. Additional downwash in the wing-body junction. 
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