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Summary 

Kelvin's circulation theorem is applied to compressible flow through a cascade of blades and expressions are 
derived for the three streamwise components of vorticity at exit from the cascade. Calculations show that for a 
decelerating flow, such as a compressor cascade, the distributed secondary vorticity increases as the inlet Mach 
number increases. However,  for an accelerating flow, such as a turbine cascade, there is a wide range of inlet 
flow angles for which compressibility has little effect on the secondary flow. 

* Replaces A.R.C. 35 835 
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1. Introduction 

When a non-uniform flow passes through a linear cascade of blades, a streamwise component of vorticity is 
produced and the exit flow angle varies along the span of the blades. The problem of secondary flow in cascades 
has been the subject of many papers during the past twenty-five years and an excellent review of previous work 
has been given by Horlock and Lakshminarayana. 1 For many years, the theory of secondary flows in cascades 
has been based on a relatively complex analysis, but recently, Came and Marsh 2 have shown that a simple 
derivation for the three streamwise components of vorticity can be obtained by applying Kelvin's circulation 
theorem to the flow through a many-bladed cascade. This new approach has led to a new expression for the 
trailing shed vorticity and removed several inconsistencies from secondary-flow theory. 

In this report, Kelvin's circulation theorem is applied to a non-uniform compressible flow through a cascade 
and expressions are derived for the three streamwise components of secondary vorticity at exit from the 
cascade. The analysis can be compared with the earlier work of Loos, 3 who considered the effect of 
compressibility on secondary flows. The analysis given by Loos is based on a binomial expansion which 
requires that the inlet Mach number is small. However, in spite of this limitation, there is good agreement 
between the example quoted by Loos and the more exact analysis developed here. As the inlet Mach number 
increases towards unity, it is found that the effect of compressibility is to increase the distributed secondary 
vorticity at exit from a compressor cascade, but in a row of turbine nozzles, compressibility has little effect on 
secondary flow. 

2. Kelvin's Circulation Theorem 

For an inviscid incompressible flow, Kelvin's circulation theorem states that the circulation around any 
closed material curve is invariant with time, 

DF 
=o.  (1) 

Dt  

For a compressible inviscid fluid, the more general form of Kelvin's circulation theorem states that the rate of 
change of circulation around any closed material curve C is given by 

D F c _ _ ~  Vp. dr, (2) 
D t  o 

where the line integral is evaluated for the contour C. If the entropy is constant throughout the fluid, then the 
density at any point is a function of the pressure alone and the line integral is zero, so that equation (2) reduces 
to equation (1). For compressible flow through a cascade, the non-uniformity in the inlet flow usually takes the 
form of a wall boundary layer and in this situation, the entropy is not constant throughout the flow field and the 
density at any point is not a function of the pressure alone. 

When applying Kelvin's circulation theorem to a compressible non-homentropic flow, it is convenient to 
introduce temperature and entropy. For any process, the change of entropy can be expressed as 

1 
T ds = dh - -  dp, 

P 

so that 

Vp. d ~ = ~  Vh. d f - ~  TVs. df 
P 

or, using the identity 

~ Vh. df = 0, 
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we have 

~ VP. d ~ = - ~  TVs .  dE 
P 

Kelvin's circulation theorem may then be written as 

DFc = ~ TVs . d~ 
Dt L 

which shows that in a flow field where there is a gradient of entropy, the circulation around a closed material 
curve may change with time. 

3. The Time Difference  for Flow over the Blade Sul'faces 

Consider a non-uniform flow passing through a cascade, as shown in Fig. 1, and assume that the primary flow 
takes place in planes which are normal to the span of the blades. This is the usual approximation for 
secondary-flow theory in which the secondary-flow perturbations are sufficiently small for there to be no 
significant rotation of the stream surfaces. If the flow originates from a reservoir with uniform stagnation 
enthalpy, then from the steady-flow energy equation, the stagnation enthalpy is uniform throughout the flow 
field. The non-uniform flow at inlet to the cascade is caused by a loss of stagnation pressure which leads to a 
variation of entropy along the span of the blades, 

s = s (z) .  (4)  

If there are no changes of entropy produced while passing through the cascade, then the flow in a plane at a 
constant spanwise position z is an isentropic flow. For any closed material curve C lying in the plane 
z = constant, we have 

~ TVs .  d~ = 0 

and Kelvin's circulation theorem for this curve C reduces to 

DFc 
= 0 .  (5) 

Dt 

Hence, for the flow in a plane normal to the span, the circulation around any closed material curve does not 
vary with time. 

If the flow upstream of the cascade has no component  of vorticity in the spanwise direction, then there is zero 
circulation around any reducible closed circuit lying in a plane normal to the span of the blades. It therefore 
follows that for compressible flow through a cascade, there is no spanwise component  of vorticity and at all 
points in the flow field 

Ou Ov 
Oy ax (6) 

This equation is based on the assumption that the real compressible flow can be modelled by isentropic flow on 
a series of parallel planes, so that entropy is a function of z alone. 

Equation (6) can be integrated across the blade passage shown in Fig. 2 to obtain 

2 d~ 
Ub -- Ua = S COS /3~X x , (7) 

where s is the pitch and f is the passage averaged value of the velocity component  v. For any blade in the 
cascade, the difference in the time taken for fluid particles to travel over the pressure and suction surfaces of 



the blade is given by 

I'e~. I i  °d l  
At  = . - q-~b 

=Io 1 1 

where q is the local velocity and I is the distance measured along the blade surface. At any point on the blade 
surface u = q cos [3, so that equation (8) can be written as 

or from equation (7), 

At = - cos [3. dl, 
e 

f '°  s cos z fl dO dx. (9) At 
J, e U,,Ub d X  " 

As the blade pitch, s, is reduced, the cascade becomes a many-bladed cascade with the flow angle a equal to the 
blade angle 13 and t3 = 17 tan a. Furthermore,  for the many-bladed cascade the variation of u across the blade 
passage is infinitesimal, so that 

U~Ub = t~ 2 

where 17 is the average value of u in the blade passage. The expression for the time difference At in the 
many-bladed cascade is then given by 

I ' ° scos  2t~ d 
At = 17z . ~---xx(17 tan or). dx, (10) 

¢ 

which is the expression derived by Came and Marsh 2 for incompressible flow through cascades. 
When the flow is compressible, there is a change of density across the cascade and the axial velocity at exit 

may differ from that at inlet to the cascade. If the primary flow is assumed to take place in stream surfaces of 
constant thickness which are normal to the span of the blades, then the passage averaged continuity equation is 

m 

d (pu) = O, (1 1) 
dx 

or approximating ffffby ft. 17 for the many-bladed cascade, 

d 
--;--(t~ • 17) = 0. (12) 
a x  

If the flow at inlet to the cascade is denoted by the subscript 1, then 

p.  u = P l .  u,. (13) 

The axial velocity 17 in equation (10) can now be eliminated to obtain an expression for At in terms of the 
variations of density and flow angle 

- -  - s i n  a cos a dx (14) 
P l  • t h  I~ 

or, integrating the second term by parts, 

A t=  s / f ' ° - - -p  [1 +cos 2a]  da 02 sin 2 a 2  sin 2 a , ]  
u , t  Jlo 01 01 2 t - ~ / "  

(15) 



In general, there is no simple expression for At in a compressible flow, but for incompressible flow, equation 
(15) reduces to 

At = s ( a 2 -  a,), (16) 
ui 

which is the expression derived by Came and Marsh /  
For a cascade with many blades of negligible thickness, the normal width of the blade passage is s cos a, so 

that if the inlet flow angle a, ,  density pt, and Mach number M, are defined, then at any other angle a, the 
density and Mach number may be found from tables of compressible flow functions, such as Ref. 4. Equation 
(15) can then be integrated numerically to determine the time difference At for fluid particles passing over the 
two surfaces of the blades. Fig. 3 shows the effect of inlet Mach number on the time difference At for a 
compressor cascade with an inlet flow angle of 40 degrees, an exit angle of 0 degrees and a gas with 3' = 1.4. For 
this example, the non-dimensional time difference increases rapidly as the inlet Mach number increases above 
0.4. The time difference u~ A t / s  has been calculated for several cascades and it has been found that the effect 
of compressibility is important for compressor cascades, decelerating flows, with a high inlet Mach number. 

The analysis relies on the use of the many-bladed cascade as a mathematical model for the flow in a real 
cascade. In practice, the real blades have thickness, the pitch is non-zero and for an entirely subsonic flow, the 
inlet Mach number must be less than about 0.7. However, in spite of this limitation, the model of a 
many-bladed cascade should provide a useful guide to the way in which compressibility affects the flow in the 
real cascade. 

4. Kelvin's CircuRation Theorem Appfied to Cascades 

So far, Kelvin's circulation theorem has only been applied to the flow in planes which are normal to the span 
of the blades. However, in secondary-flow theory it is necessary to consider the circulation around circuits 
which do not lie in a stream surface. Fig. 4 shows a compressible shear flow which passes through a many 
bladed cascade. Capital letters are used to denote fluid particles upstream of the cascade and small letters are 
the same particles at some later time when they have passed through the cascade. Fig. 4 shows the flow at a 
spanwise position z and the corresponding points on a parallel plane at a position z + 6z are denoted by a 
prime suffix. 

Consider the circulation around the path a d d ' a '  at exit from the cascade. At some earlier time, this circuit is 
A D D ' A '  in the flow upstream of the cascade. For a compressible flow, the circulations around the paths a d d ' a '  

and A D D ' A '  are not equal, the change in circulation being given by equation (3), 

,,re 
D t  = T V  s . dr. 

The line integral may be determined by considering the contour at some intermediate time when it is at a 
position a~d~d~a~. For a compressible shear flow passing through a cascade, there is a variation of entropy along 
the span of the blades, s = s ( z ) ,  but no variation of entropy within the stream surfaces, so that 

and 

I ~' T V s .  d r  = O, 
a~ 

f ~ T V s .  d r  = T~, (sd'. - s~,), 
d, 

f °: T V s .  d r = O  
a~ 

IS ' T V s .  d r  = Ta,(s, ,-s,0.  

(17) 

But the stream surfaces are surfaces of constant entropy, 

sa~ = sa~ = SA' 
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and 

and the complete line integral is then 

Sdj "= Sai "= SA 

c TVs. dr= (%,- Td,)(SA --SX). (18) 

NOW for any process, the change of entropy is given by 

T ds = dh _1  dp 
P 

and if the flow at inlet to the cascade has a uniform pressure and stagnation enthalpy, then 

ds dht 
T'-~z= dz 

= - -  ho- 
dz 

dq, (19) 
=-ql dz 

= _q,~:, (20) 

where ~, is the component of vorticity normal to the flow at inlet. The entropy difference between the particles 
A and A'  is therefore given by 

sA - sA, = 6z (21) 

and is determined by the flow upstream of the cascade. 
The local temperature difference (7",,- Td,) can be determined by applying the steady-flow energy equation 

and assuming that the working fluid is a perfect gas, 

- Tn, = 2-~p (q],-  q2a). (22) T~, 

By combining equations (21) and (22), Kelvin's circulation theorems for compressible flow through a cascade 

becomes 

DF ql~.3z, 2 ~, 
Dt - 2~pT~ (qd,- q d. (23) 

The change of circulation around the path in the fluid is 

/ ro.d,o_r.,oo,A,=q,~.Szl[ 'd 2 (24) 2cpT1 t J,o qa, dt -  q2 dt 

where the two integrals are taken over the time for the circuit to move from ADD'A' to add'a'. It is 
convenient to write the two integrals as 

;'~q~,dt= y;qdfl'e ] 
and D (25) 

ftl a q2idt~-I;  qaidla, J 

7 



where did and dla are elementary distances along the paths followed by the particles, D to d and A to a. The 
change of circulation can then be expressed as 

F"ad'"'--FA°°'a'=q'~3Z{I; [a' dlo} 2cpT1 q~,. die- q,,. (26) 

which is the form of Kelvin's circulation theorem most useful for secondary flow analysis. 

5. Distributed Secondary Vorilcity 

Hawthorne 5 has identified three components of vorticity in the direction of flow at exit from a cascade. One 
component is distributed in the flow while the other two components form the vortex sheet leaving the blade 
trailing edge. The first component is the distributed secondary vorticity derived by Squire and Winter 6 and is 
caused by turning the shear flow in the cascade. Hawthorne has called the second component the trailing 
filament vorticity, this being caused by the stretching of the vortex filaments as they move over the surface of 
the blades. The third component is the trailing shed vorticity which is caused by the variation of circulation 
along the span of the blades. Expressions for the three components of streamwise vorticity can be obtained by 
applying Kelvin's circulation theorem to the flow through a many-bladed cascade. 

Fig. 5a shows a shear flow passing through a many-bladed cascade. As before, capital letters denote fluid 
particles upstream of the cascade and small letters are the same particles at some later time when they have 
passed through the cascade. The particles A, 13, C and D pass through the same blade passage while E passes 
through a neighbouring passage. Fig. 5a shows the flow in a plane at a spanwise position z and following the 
notation used earlier, corresponding points on a parallel plane at z + 6z are given a prime suffix. 

Consider the circulation around the path add'a' in the fluid which lies normal to the flow at exit from the 
cascade, Fig. 5b, 

[circulation],ddw = [~:~< x ad x 6z] (27) 

where ~:~ec is the distributed secondary vorticity in the flow at exit from the cascade• Now from Kelvin's 
circulation theorem, in the form of equation (26), the change in circulation as the circuit ADD'A' moves to 
add'a' is given by 

F,d,~',,'- F aoo'a'- q'~"6z { I;  qd, dld - f~ q,,dlo}. 2cpT1 (28) 

The two integrals can be expressed symbolically as 

and 

ST=S;+ST+S;+U+S; 

SA' = ST+ S.'+ ? S.' 
(29) 

For a many-bladed cascade, there are no variations in the flow upstream and downstream of the cascade, so 
that 

and (30) 

and these four integrals cancel. The remaining five integrals may be obtained as follows, 

j ;  qa,dla = q, . DC, (31) 



I ~-qd, dld = qls sin al,  

I f  qo,dl~ = q2s sin a2 

(32) 

(33) 

and 

qd, dld - qa,dl, = (ud~--u~,) dx, 
e COS 20~ 

and substituting from equation (7) 

I/ Ij f'o de 
qd, d l e -  q,,dl~ = s J,e --dx " dx 

= s(q2 sin a2-q~ sin ~1). (34) 

If equations (30) to (34) are substituted into the two integrals of equations (28) then many terms cancel and the 
change of circulation is given by 

r~ad'a'- F ADo'A' = q21:;6~ (qiDC) 

= ( - ~ ) M ~ Z & .  D C .  6z (35) 

where 3' is the ratio of specific heats for the gas. The change of circulation on passing through the cascade is 
therefore dependent on the gas, the Mach number and normal component of vorticity at inlet, and the 
geometry of the cascade, which determines the magnitude of DC. 

If the flow at inlet to the cascade has vorticity components sos and £, along and normal to the flow, then the 
circulation around the path A D D ' A '  is 

A C  D C  

= [ ~ .  A C + ~ . .  D C ] 6 z .  (36) 

Combining equations (27), (35) and (36), the distributed secondary vorticity at exit from the blade row is given 
by 

=1_1_~ A C + [ I + ( _ ~ _ _ I ) M z ] ~ . . D C } .  
~ a d l  " (37) 

The distances ad, A C  and D C  can be expressed as 

and 

ad = s cos c~2,] 
A C  = s cosat  

D C  -[A---fx]°----c ] 
COS c~1 J 

(38) 

where [Ax]oc is the difference in the x coordinates of C and D. However, 

[ a x  ], ,~ = [ A x  ]o,~ - [ax].~ 
= [Ax]oB --s sin a,  cos a ,  



and 

lAx]o , ,  = u , [ a t ] , , . ,  

where [At]D8 is the time taken for a particle at D to travel to B in the upstream flow. Now the time taken for a 
particle to travel from D to B in the upstream flow is the same as the time taken for the particle d to travel to b 
in the downstream flow, so that 

[AX]DB = u i [A t ] ab  

= u ,  [ a x ] . ~  
/,/2 

+ [AxL }. 
/,/2 

The two distances [AX]ae and [Ax]~b can be written in terms of the flow at exit and the time difference At for 
particles which travel over the pressure and suction surfaces of the blades 

[AX]d~ = s sin a2 cos a2 

and 

[Ax],b = u2 At, 

so that 

U l  . 
[ A X ] o c  = S - -  s in  a2  c o s  or2 + ul  A t - -  s s i n  a~ c o s  a , .  (39) 

U2 

Equations (38) and (39) determine the distances ad, AC and DC and substituting into equation (37), an 
expression is obtained for the distributed secondary vorticity, 

_ _  [l+([?-l]/2)M~]~.l u, 1 _~ } cos a~. ~ -t - - - -  - -  
~ = cos a2 cos a~ cos a2 12u2 sin 2 a 2 - ~  sin 2al + At . (40) 

This is a general expression for the distributed secondary vorticity produced in compressible flow through a 
many-bladed cascade. An alternative form of equation (40) is obtained by substituting for the time difference 
At from equation (15), 

cos a te :  -~ [1 +( [7 -1] /2 )M~]~-  / I '° P(1 +cos 2a )dx} .  (41) 
cos  ,,2  osZGZ , o p ,  

When the Mach number is low, M, ~ 0  and O ~'-~- pl, then equation (41) becomes 

c o s  Otl 
~:sec - ~ + {½(sin 2 a 2 -  sin 2a~) + (a2 - a,)}, (42) 

COS ~ 2  COS ~ 1  COS O~ 2 

which is the expression derived by Came and Marsh 2 for incompressible flow. 
When the flow angles al and a2 are small and the streamwise component of vorticity in the inlet flow is zero, 

then 

scsoc = 211 + ( - Z ~ ) M ~ ]  so. ( a 2 -  a,)  (43) 

which reduces to 

~c~oc = 2~. (a2 - a,)  (44) 
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for incompressible flow. Equation (43) is therefore a more general form of the expression derived by Squire 
and Winter 6 for incompressible flow, equation (44). Equation (43) shows that when the flow angles are small, 
the distributed secondary vorticity increases as the inlet Mach number is increased. 

6. Trailing Filament Vorticity 

The vortex sheet leaving the trailing edge of the blade has two components, the trailing filament and the 
trailing shed vorticities. The trailing filament vorticity is caused by the stretching of vortex filaments over the 
surface of the blades while the trailing shed vorticity is associated with the variation of circulation along the 
span of the blades. Fig. 6 shows a path abb'a' around a section of the trailing vortex sheet. The circulation 
around this path can be separated into three parts, 

Fabb'a'  = F,.t,~ - Fb' o'rv + Fa~wra, (45) 

where the points I and l' lie at the blade leading edge. The first two terms represent the change of circulation 
along the blade, the shed circulation. The third term is the difference between the total trailing circulation and 
the shed circulation, namely the trailing filament circulation. 

The circulation around the path alb'l 'a'a can be related to the circulation around the same material curve at 
some previous time, such as A B B ' A '  in the upstream flow and from equation (26), 

q,¢.6z I b q~,dl~]. 
F"'wr"'a--FABB'a'= 2cpT, t fB q~"dlb- l f  (46) 

The fluid particles a and b have passed over the suction and pressure surfaces of the blade respectively. In the 
flow upstream of the cascade, the particles A and B must therefore be separated by a distance q~ At where At is 
the difference in time for particles to travel over the two surfaces of the blade. The circulation around the path 
A B B ' A '  in the upstream flow is then 

F ABB' /V = - q l  At .  ~.6z. (47) 

The two integrals in equation (46) can be expressed symbolically as 

so that 

qb,dlb - qa,dla = dx - qaflla. 
e COS 20~ 

The first integral on the right can be evaluated by substituting for (Ub, -- Uo,) from equation (7), with a~ now on 
the suction surface, 

i,e dx = -s(q2 sin c~2-ql sin a~), (48) 
(Ub, 

e COS 2 

and the second integral is obtained by noting that A B  = q l A l ,  

f l  q~,dla = q~(qlAt). (49) 

11 



The expressions derived in equations (47), (48) and (49) may now be substituted into equatioh (46) to 
determine the trailing-filament circulation, 

Fa,bb','o'a = -~,q,At[ I + (Z~- )M~]  3 z -  

- ( - ~ ) M ~ , [ q ~ 2  sin a 2 - s i n  a l ]  6z. (50) 

The strength of the vortex sheet associated with the trailing filament circulation is thus 

~:..=-~.q,At[1 + (Z~---~)M~]- ~.s(Z-~-~)M~ [q~ sin c~2-sin a,  ], (51) 

and this forms one component of the vortex sheet leaving the blade trailing edge. 
When the Mach number is low, then equation (51) reduces to 

~,l = -~.q,At 

which is the expression derived by Hawthorne 5 and Came and Marsh. 2 

7. Trailing Shed VortlcRy 

The trailing shed circulation is .given by the change of circulation around the blade between the spanwise 
positions z and z + Az, 

trailing shed circulation = Fob,~ - Fo,h,r~. 

d 
dz (sq2 sin a 2 - s q ,  sin a,)6z 

da2 do~, 
= -s(~2. sin a ~ -  ~,. sin a,)6z -sq2 cos a2-~z6z +sq~ cos a,-~-z6Z (52) 

where ~j, is the component of vorticity normal to the flow. For the many-bladed cascade, the outlet flow angle 
a2 is independent of the spanwise position z, 

da2 
= 0  

dz 

and at inlet, the streamwise component of vorticity is given by 

do~ 1 

~ = - q '  dz 

where the variation of t~l is assumed to be small. The trailing shed circulation is therefore 

F~,~o = -s(~j2. sin a 2 -  ~j~. sin a , )6z -  s~, cos a16z (53) 

and this expression can only be determined after calculating the change in G across the cascade. 
The component of vorticity normal to the flow at exit from the cascade may be obtained by applying Kelvin's 

circulation theorem, equation (26), to the flow shown in Fig. 7. The fluid, particles A and D lie on the same 
streamline and pass through the cascade to a and d. From Kelvin's circulation theorem for compressible flow, 

r o d e o  - r A o o , A  = q' l" Zl fd 2cpr~ IJD q 'dl -fA qo,d*o} 
- ~------Z {q,AD - qzad}. (54) 

12 



The time taken for a fluid particle to pass from D to A is the same as for a particle to pass from d to a, say St, so 
that 

A D  = q~3t 
and (55) 

ad = q23t. 

These two expressions for A D  and ad are also required when evaluating the circulation around add'a' and 
A D D ' A  ', 

F,u~,a,= &, . ad . 8z2 ] 
I 

= ~2.. q23t. 3z2 [ 
(56) ( 

FADD'A' = ~1 . .  A D .  3zl | 
! 

= ,~,.. ql~t. 3zl.J 

If the secondary flow is caused by a weak shear flow, a small perturbation on a uniform flow, then 8z, = 3z2 and 
the primary flow takes place on planes of constant thickness. 

These expressions for the circulations and distances can now be substituted into equation (54) to obtain sG., 

q,g:,. 
q2~2,, - q~¢,, = 2cpT, [ q~ - q2] (57) 

o r  

But with constant stagnation enthalpy, 

q2e2.-qJd'"[ +q~-q~] - cpT----~ q,T, 2 2 ]" 

2 2 

so that the two normal components of vorticity are related by 

q2&. q,~,. (58) 
T2 T1 ' 

or in terms of the inlet and exit Mach numbers 

__M, ,_rl + ( b / -  ]]/2)M,~] ' &. 
£'"M= L1 + ([3' - 1]/2)M~_1 

(59) b 

For compressible flow through a cascade, there can be a large change in the Mach number and this can lead to a 
large change in the normal component of vorticity. Equations (58) and (59) are a generalisation of the analysis 
given by Came and Marsh 2 for the change in the normal component of vorticity in incompressible flow through 
a cascade. 

For the purpose of this report, the more useful expression for ~2. is equation (57) in the form 

e=. = e,o + qq  (60) 
q2 ~ z / uq2 ql] 

and substituting into equation (53) we have 

F s h ~ = - s ~ ' " [ ~ s i n ° ~ 2 - s i n a ' ] 3 z + ( Z ~ - )  M~s~l" sina2[q2--~]3z--s~sLq, q2] c o s a , & .  (61) 
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This equation shows how compressibility affects the trailing shed circulation. 
The ratio of inlet to outlet velocity can be written as 

q l  - -  ~ I  C O S  ~ 2  

q2  U2 COS a l  

and substituting this expression into equation (61), the strength of the trailing vortex sheet caused by the 
trailing shed vorticity is 

s h e d  ~ - -  
COS ~ 1 

[1 + (Z~__I)M~] [ ~ sin 2a22 sin2a,]  + 

+(-~--~)M12s&[~ sin a2-sin a,]-sfs cos a, (62) 

where & is the normal component of vorticity at inlet. Comparison with equations (40) and (51) shows that the 
three streamwise components of vorticity have many terms in common. 

For flows with a low Mach number, the trailing shed vorticity is 

. 
COS O/t 

which is the expression derived by Came and Marsh 2 for incompressible flow. Equation (63) differs from the 
expression for &,.~ which has previously been used in secondary flow theory and this is discussed in detail in 
Ref. 2. It is shown that equation (63), which is based on vorticity dynamics, leads to a calculated secondary flow 
which is consistent with the strength of the trailing vortex sheet. 

When the exit flow angle a2 is zero, then the trailing shed vorticity is 

&.d = -s& sin am - sf, cos a~. (64) 

The inlet Mach number does not enter this equation and for a2 = 0, the trailing shed vorticity is determined by 
the inlet vorticity components and flow angle am. When the flow angles al and a2 are both small, then the 
trailing shed vorticity, as given by equation (62) becomes 

&o,, = - s ~ .  ( a ~ -  o . )  - s~. (65) 

and again, the inlet Mach number does not enter the expression for &ed. The results given by equations (64) 
and (65) suggest that compressibility has little effect on the trailing shed vorticity and this is discussed later in 
more detail. 

8. The Tota| Secondary Circulation in the Downstream Flow 

The theory of secondary flow developed in this report has been based on compressible flow through a 
many-bladed cascade and this has led to formulae for the three streamwise components of vorticity at exit 
from the cascade 

&[1 +( [y-1] /2 )M~] /  Um 1 _ ~ }  &c--COS a~. fsq 
cosa2 co~-s~a~ c~s-~2 LZuzSin 2a2--2 sin zal + (66a) 

- - _ -  At 

- !~.(~-~ )M~[~sin a2-sin al ] (66b) 

and 

 hod____S 
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+ ~.(~--~)M~Z[q~ sin otz- sin a , l  - so. cos a, .  (66c) 

The total secondary circulation per unit pitch in the downstream flow is obtained by considering the circulation 
around the circuit acc'a' which lies normal to the flow at exit from the cascade, as shown in Fig. 8, 

1F,cc,o, = ~soc cos a~ + ~n_2+ ~hod = 0 (67) 
S S S 

In the flow downstream of the many-bladed cascade, the total secondary circulation is always zero and there is 
no secondary flow. This result is consistent with the mathematical model in that for a many-bladed cascade, the 
pitch is infinitesimal, there is no variation of outlet flow angle along the span of the blades and there can be no 
secondary flow. Although it is possible to identify three streamwise components of vorticity at exit from a 
many-bladed cascade, the theory predicts that there is no net secondary circulation in the downstream flow. A 
similar conclusion was reached by Preston 7 in 1954 for a row of impulse blades, a2 = - o ~ ,  and Came and 
Marsh 2 have shown that for incompressible flow through a many-bladed cascade, the total secondary 
circulation is always zero. 

9. The Calculation of Secondary Flow in a Real Cascade 

The analysis given here predicts that the total secondary circulation in the flow downstream of a 
many-bladed cascade is always zero and there is no secondary flow. Many experiments with cascades have 
shown the existence of secondary flow and the theory must therefore be re-examined to see whether it is 
possible to remove the restrictions imposed by the many-bladed-cascade model. 

The concept of flow through a many-bladed cascade has been used when determining At, the time difference 
for particles to travel over the pressure and suction surfaces of the blades, and also in the derivation of the 
trailing shed vorticity where it was assumed that a2 does not vary along the span. The general formula for the 
time difference is 

where the integral is taken from the leading edge of the blade along the suction surface to the trailing edge and 
then back along the pressure surface. It is only for the many-bladed cascade that the time difference can be 
expressed by equation (15), but this should remain a reasonable approximation for a real cascade with 
non-zero pitch which has the same inlet and outlet flow angles. It can therefore be argued that equations (66a) 
and (66b) should give reasonable approximations for ~Jsoc and ~:~, in a real cascade, with the time difference At 
defined by equation (68). If the integral in equation (68) cannot be evaluated, then the time difference At can 
be estimated from equation (15). 

When deriving the trailing shed circulation, equation (53), it was assumed that there was no variation of 
outlet flow angle, ct2, along the span of the blades, an essential feature of the many-bladed cascade. In a real 
cascade, the pitch of the blades is not zero and there may then be a variation of a2 along the span of the blades. 
When the outlet flow angle varies with z, then the strength of the trailing shed vortex sheet is 

[ sin 2a, ] + £shoa= ~ . [ I+( [T-1] /2 )M~]  u, sin2o~2 
s cosa ,  /2u2 2 J 

+ ~ j . ( - ~ ) M ~  [ ~  sin a 2 -  sin a , ]  - 

doL2 
-~:, cos a , - q 2  cos a2 d-T" (69) 

The trailing shed vortex sheet is therefore dependent on the variation of exit flow angle produced by the 
secondary flow. 

A consistent method for calculating the secondary flow in a real cascade is obtained by using equations (66a) 
and (66b) to calculate £sec and £~ and equation (69) for £sh~d. In Fig. 8, the total secondary circulation around the 
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path acc'a' in the downstream flow is then 

rocc,°. = [~sooS c o s  o~2 + &, + ~s.o.],~z 

da2 
= -sq2 cos az d-----z" 6z. (70) 

If the secondary velocity components are v, normal to the primary flow and w along the span of the blades, the 
circulation around the path acc'a' is 

dO. 
F.cc,., = - s  cos az d--z" 6z (71) 

where 5. is the mean value of v, across the blade passage. From the geometry of the outlet flow, if 5, << q2, then 

dO. da2 
dz - q2 dz 

and equations (70) and (71) are therefore consistent with each other. 
Following the work of Hawthorne and Armstrong 8 and Loos, 3 the secondary velocity components v. and w 

in the plane normal to the downstream flow, Fig. 8, satisfy the first order continuity relationship 

Ov.+Ow= 0 (72) 
Ot, Oz 

and are related to the distributed secondary vorticity by 

OW O~n 
Oy. dz = Csec. (73) 

The secondary velocity components are therefore determined by the distributed secondary vorticity together 
with the boundary conditions on w and v, which are imposed by the cascade geometry. As first shown by 
Loos, 3 the problem of determining v, and w is the same for both compressible and incompressible flows. The 
secondary velocity components calculated from equations (72) and (73) are consistent with the strength of the 
trailing vortex sheet as given by equations (66b) and (69). 

10. The Variation of Pressure along ~he Span in the Downstream F~ow 

It has already been assumed that in the flow upstream of the cascade, the pressure is uniform, so that 
equation (20) is obtained 

ds~ 
T,-~- z = - q ,  ~,.. (20) 

At exit from the cascade 

ds2 dh2 1 dp2 
T2-~z = dz 02 dz 

and for a flow with constant stagnation enthalpy 

ds2 dq2 1 dp2 
T2 -~z =-q2  d---z P2 d z " (74) 

Now if the flow takes place in planes which are normal to the span of the blades then 

ds ~ ds2 

dz dz 
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and eliminating the entropy gradients between equations (20) and (74), we have 

qt~l.=q2~z._~ I dp2 (75) 
7'1 T2 p2G dz ' 

or, introducing equation (58), which follows from Kelvin's circulation theorem, then 

dp____~z = O. (76) 
dz 

The analysis assumes that the flow takes place in planes normal to the span of the blade, and there is then no 
variation of pressure along the span in the downstream flow. The theory predicts that for the flow downstream 
of the cascade, the pressure is uniform. 

11. Comparisons with Previous Work 

The first paper to consider in detail the effect of compressibility on secondary flow was that of Loos. 3 Loos 
derived an equation for the distributed secondary vorticity in the form 

¢~°~= ¢ ~ + 2  f~[c"VT°-T°VS]da 
Pzq2 ptql )~ " ~  (77) 

and showed that ff the stagnation temperature is uniform throughout the flow and the flow takes place on 
parallel planes, then equation (77) reduces to 

~se~= + 2q,~ 1+ M~ da (78) 
02q2 plql 

By introducing the continuity relationship for a many-bladed cascade 

pq cos a = constant, 

the equation for £,oc can be written 

~:oc= c°s cYl ~:s + 
COS 0~2 

[1 + ([ 'y-  1]/2)M~]~. f te ---Otl 
+cos 2a) da, ! k 

COS 011 COS 012 "he 191 

which is identical with equation (41) of this report. Loos evaluated the integral by expressing the product pq in 
terms of the Mach number and then assuming that M1 << 1, he used a binomial expansion in M1. The analysis 
given by Loos is very different to that used here, but the two approaches lead to the same general expression 
for the distributed secondary vorticity. Loos did not consider the trailing filament and trailing shed vortex 
sheets. 

More recently, Lakshminarayana and Horlock 9 have given general expressions for the secondary vorticity in 
both incompressible and compressible flow. They have shown that the growth of secondary vorticity is 
governed by the equation 

p2q2 p,ql .11 ppoqZ\dz ] d01 (79) 

where po and po are the stagnation density and stagnation pressure. However, for any thermodynamic process 

To ds = d h o - 1  dpo 
po 

and when the stagnation enthalpy is constant, then 

1 dpo ds 
po dz =-T°dzz" 
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If the flow takes place in planes which are normal to the span of the blades, then 

ds 
- -  = constant, 
dz 

and from equation (20) 

ds q,l~ 
dz T1 

so that 

1 dpo To 
po dz = ~  q'~" 

(80) 

If this expression for the gradient of stagnation pressure is substituted into equation (79), then we have 

~see----- COS 0:1 ~s "+ ~.[1 +([T-- I]/2)M~] C|'~ P ( 1  +cos 2o~) da, (81) 
COS 0:2 COS 0:t COS 0:2 31e 101 

which is again identical with equation (41). It is thus seen that the analysis given in this report is consistent with 
the general expression derived by Lakshminarayana and Horlock for the distributed secondary vorticity. 

11.1. Numerical Solutions for the Distributed Secondary Vorticity 

When there is no streamwise component of vorticity at inlet to the cascade, then the distributed secondary 
vorticity is given by 

(~o~)M = ~.[1 + ([~/-- 1]/2)M 2] I '" P ( 1  + cos 20:) do: 
COS 0:1 COS O~ 2 e P l  

(82) 

and for incompressible flow this becomes 

ire - ~" (1 +cos 2a) do:. 
(~:~o~),t cos 0:, cos 0:~ 

(83) 

The effect of compressibility can be shown by comparing (~:~oc)M and (~c)o and forming the ratio 

2 te 
(~:se~). = [1 + ([y - 1]/2)Mr] lte (0/01)( 1 +COS 20:) do: 
(~oc)o It'~ (1 + cos 20:) do: 

(84) 

or integrating tlie denominator, 

2 te 
(£~.c)M [1 +([y--  I] /2)M,]I ,  e (O/p,)(l +COS 20:) do: 

(~sec),, 0:2-0:1 +½(sin 20:~-sin 20:1) 
(as) 

For any cascade geometry, defined by at and 0:2, and inlet Mach number Mr, the integral in equation (85) can 
be calculated by using tables of compressible flow functions, Ref. (4), to determine the variation of p with 0: for 
the cascade. This calculation has been made for several cascades with a range of inlet Mach numbers and the 
results are described below. It is convenient to divide the cascades into those for decelerating flows and those 
for accelerating flows. The impulse blade row, where 0:2 = -0:1, is an example where there is no net change of 
velocity and this forms a limiting case for both decelerating and accelerating flows. 
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11.1.1. Decelerating flows. When the flow is turned from an inlet angle a~ to an outlet angle a2 where 
< I ,l, then the net result is a deceleration of the flow. The ratio (~o¢)u/(~:~o~)o has been calculated for a wide 

range of cascades with 

at = 20, 40, and 60 degrees 

--0~i ~ Or2 ~ 0~i 

and 

M~ = 0.6, 0.8 and 1.0, 

and the results are shown in Figs. 9, 10 and 11. For a decelerating flow, the distributed secondary vorticity 
increases as the inlet Mach number increases. The effect of inlet Mach number can be inferred from equation 
(84) in that for a decelerating flow, the density is always greater than the density at inlet and hence 

(~o¢)M> 1. 
(~soo)o 

This confirms the general conclusion reached by Loos, 3 that compressibility has a significant effect on a 
decelerating flow, such as the flow in a compressor cascade. For example, with an inlet Mach number of 0.8, an 
inlet angle of 40 degrees, and an outlet angle of 20 degrees, the distributed secondary vorticity is 1.28 times the 
value for incompressible flow. 

It is interesting to note that for a given inlet angle al,  the ratio (£~o~)M/(£~o~)o is exactly the same for cascades 
with a2 = 0 and a2 = - a ~  (impulse). The calculations therefore show that the effect of compressibility is 
extremely important for a cascade of impulse blades. For example, if a cascade of impulse blades has an inlet 
angle of 60 degrees and an inlet Mach number of 1.0, then at outlet from the cascade, the distributed 
secondary vorticity is 1.76 times the value for incompressible flow. 

When the cascade deflects the flow through a very small angle, then there is a negligible change in density 
and 

lira /(~°~)M/= + / 3 ~ - 1 \  2 

Figs. 9, 10 and 11 show that this limiting value for (~:s~c)~/(~ec)o sets a lower bound on the effect of 
compressibility on a decelerating flow. 

11.1.2. Accelerating flows. Loos 3 suggested that compressibility would have very little effect on the 
distributed secondary vorticity produced at exit from a cascade of turbine blades, an example of an 
accelerating flow. Calculations of the ratio (~:~eo)~/(sc~)0 have been made for several cascades with accelerating 
flow, l a2l > ]oql, and some results are shown in Fig.,. 12. For convenience, the results are plotted for a constant 
exit flow angle of - 6 0  degrees, a variable inlet flow angle al  and three values for the exit Mach number M2. It is 
seen that for a wide range of inlet flow angles, - 4 0  degrees < al < +40 degrees, compressibility has very little 
effect on the distributed secondary vorticity at exit. For a cascade of turbine blades with very small deflection 

lim [(~s°c)~/= ( Y - ~ )  . . . . .  l(~:~oJo J 1 + M] 

which agrees with the corresponding result for a compressor cascade with small deflection. 
When the inlet flow angle approaches +60 degrees, then the blades become an impulse design with 

a2 = - a l ,  the ratio (~¢soc)M/(~%o)o rises and for an exit Mach number of unity (corresponding to an inlet Mach 
number of unity) the ratio is 1.76. This is the same value for (£~oc)M/(~:soc)o as that obtained by considering the 
cascade of impulse blades as the limiting case for decelerating flows. 

11.2. A Comparison with the Calculations of Loos 

Loos 3 calculated the effect of compressibility on the distributed secondary vorticity for a cascade where the 
passage width varied linearly with turning angle and the ratio of inlet to outlet width was l-0 to 1-4. This 
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example is equivalent to a compressor cascade which turns the flow from an inlet flow angle of 44.2 degrees to 
an outlet angle of 0 degrees. Loos calculated the ratio (~o~)u/(~:~¢)o and Fig. 13 shows a comparison with the 
values obtained from equation (85) of this report. Loos used a binomial expansion in terms of the inlet Mach 
number which required that M1 << 1, so that his calculations are likely to be less reliable as the Mach number 
increases toward unity. Fig. 13 shows that at low Mach numbers, there is close agreement between the results 
of Loos and those obtained from equation (85). However,  as the inlet Mach number increases, the theory 
developed in this report  shows a more rapid increase in the ratio (~so~)M/(~o~)o. For an inlet Mach number of 
0-8, the distributed secondary vorticity is increased by 34 per cent compared with the value of 24 per cent 
quoted by Loos. However, in view of the approximation introduced by Loos, this level of agreement at a high 
Mach number is satisfactory. 

12. The Effect of Compressibility on the Traifing Vortex Sheet 

The trailing vortex sheet contains the trailing filament and trailing shed vorticities and for a many-bladed 
cascade these are given by 

and 

1 - ~J~ 1 + M~ 2u2 
s ~:~h~ = cos 0/i 

sin o -s,o o1], 

where it is assumed that there is no streamwise component of vorticity at inlet to the cascade. These two 
expressions for ~:~ and £shed can be used to show the effect of compressibility on the trailing vortex sheet. Fig. 14 
shows the variation of ~:~, and ~:~e~ with inlet Mach number for a many-bladed cascade where al = 40 degrees, 
and 0/2 = 0 degrees. For this cascade, £sh~d is independent of the inlet Mach number and compressibility 
therefore affects only ~:soc and ~nj. From Fig. 14, it is seen that the trailing filament vorticity increases rapidly as 
the inlet Mach number approaches unity. 

A similar conclusion for the effect of compressibility on the trailing vortex sheet is obtained considering the 
three streamwise components of vortieity at exit from a many-bladed cascade where 0/1 and a2 are both small, 

and 

1 
--~Tfil = - -~n  (O~2 - -  O/1)[1 ")l- (O/ - -  1)M~] 
S 

1 ~shod = --~n (a2  -- 0/1). 
S 

These three equations suggest that the inlet Mach number has little effect on the trailing shed vorticity and that 
compressibility has more effect on the trailing filament vorticity than on t.he distributed secondary vorticity. It 
is also seen that the effect of compressibility is greater for a gas with a high value for y, the ratio of specific 
heats. 

13. Conclusions 

The new approach to secondary-flow theory developed by Came and Marsh 2 has been extended to deal with 
the effect of compressibility. Kelvin's circulation theorem for compressible flow has been applied to a material 
circuit passing through a cascade and from this, expressions have been derived for the three streamwise 
components of vorticity at exit from the blades. It has been shown that for the many-bladed cascade, the total 
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secondary circulation in the downstream flow is always zero. The behaviour of a real cascade with non-zero 
pitch has been considered and a consistent secondary-flow theory is obtained by modifying the trailing shed 
vorticity to allow for the variation of exit flow angle along the span of the blade. 

The comparisons with the work of Loos 3 and Lakshminarayana and Horlock 9 shows that the expression 
derived for the distributed secondary vorticity is entirely consistent with earlier attempts to derive equations 
for the development of streamwise vorticity in compressible flow. The advance which has been made is that the 
new expression for ~:,oc can be integrated numerically to show the effect of compressibility on secondary flow in 
any cascade. In addition, the application of Kelvin's theorem for compressible flows leads to expressions for 
the strength of the trailing filament and trailing shed vortex sheets. These two components of the trailing 
vortex sheet are particularly important when considering the flow in a turbomachine, where it is n6cessary to 
calculate the streamwise and normal components of vorticity at entry to the following blade row. 

The numerical results show that compressibility can lead to a significant increase in the distributed 
secondary vorticity at exit from a compressor cascade, or more generally a cascade with a decelerating flow. 
For a cascade with an accelerating flow, such as a row of turbine blades, the calculations show that for a wide 
range of inlet flow angles, compressibility has very little effect on the value of ~o. With a cascade of impulse 
blades, the effect of compressibility is large and for an inlet angle of 60 degrees and an inlet Mach number of 
unity, the distributed secondary vorticity is 1.76 times the value for incompressible flow. The overall 
conclusion is therefore that compressibility can have a significant effect on the secondary flow produced at exit 
from a cascade of blades. 
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LIST OF SYMBOLS 

Enthalpy 

Stagnation enthalpy 

Mach number 

Pressure 

Stagnation pressure 

Local velocity 

Distance around a material circuit 

Entropy 

Time 

Temperature 

Stagnation temperature 

Velocity components in x and y directions 

Passage-averaged velocity components 

Secondary velocity components 

Coordinates 

Coordinate normal to the flow at exit 

Flow angle 

Blade angle 

Ratio of specific heats, cJc.  

Deflection 

Density 

Stagnation density 

Normal vorticity component at inlet 

Streamwise vorticity at inlet 

Trailing filament vorticity 

Distributed secondary vorticity 

Trailing shed vorticity 

Upstream 

Downstream 

Abbreviations 

le Leading edge 

te Trailing edge 
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APPENDIX 

The Effect o[ a Spanwise Variation in Siagnation Enthalpy 

The analysis developed in this report assumes that the stagnation enthalpy is uniform, but it is not difficult to 
remove this restriction and allow a spanwise variation of stagnation enthalpy. It is assumed that the variations 
in flow and gas state are such that they can be regarded as small perturbations on a uniform flow and the 
primary flow then takes place on planes which are normal to the span of the blades. For this more general flow, 
equation (26) becomes 

F ~ u a . , , , -  F a O D a  = 2c e \dz / ,  (A-l)  

and applying this form of Kelvin's circulation theorem to the cascade flow, the three streamwise components of 
vorticity at exit are 

esoo= cos [~.-(ql/2cp)(ds/dz)l] [ Ut sin 2a2-=1 sin 2o~, + u'At I, (A-2) 
cos ~-----~ ~os ~ co-~a2 t 2 u2 z s , 

1 At _ 2_q~. (dd~S) [qq2 sin a2 _ sin a , ]  _¢. ,=_q,s[~5 _ q, ( ds] 
s 2cp\dz]~] p z , q, 

(A-3) 

and 

1 
--~Tshed= 
S 

[~"-(ql/2Ce)(ds/dzh][-~u2Sincos a, 2 a 2 - ~  sin 2 ~ , ] -  

q, (ds~[q2 ] daz 
2cp k-~z/,L~ sin a~- s in  a, - ¢ .  cos ~ , - q ~  cos ~ d--z- (A-4) 

When there is no spanwise variation of stagnation enthalpy then equation (20} is valid, 

ds) q~. 
TI 

and equations (A-2), (A-3) and (A-4) are then identical with equations (66a), (66b) and (69). 
An alternative expression for ~:~e¢ is obtained'by using the relationship 

=(dho) eq, 1 
7"1 -~z 1 \ dz / l - q' dZ p, dz ' 

so that with no spanwise variation of pressure, equation (A-2) becomes 

COS £~ 1 

COS 0/2 

{~:.[ 1 + ([y - 1] /2)M~]-  (q,/2cpT,)(dho/dz),} × 
COS Ot i COS 012 

x /  u, sin 1 u~At t 2 a 2 - ~ s i n  2o~1 + 
t2u~ s , 

(A-5) 

This expression shows more clearly the effect of a spanwise variation of enthalpy on the distributed secondary 
vorticity. 
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