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Summary 

Rays from a moving sound source are traced through a regular array of convected vortices (representing a 
turbulent jet) and also through the corresponding mean shear flow. The far-field intensity is compared in the 
two cases and significant differences are found. 

* Cambridge University vacation student during summer 1973. 
t Replaces R.A.E. Technical Report 74001--A.R.C. 35 489. 



LIST OF CONTENTS 

1. Introduction 

2. The Velocity Field of the Convected Vortices 

3. Refraction of the Sound Rays 

3.1 Through the mean shear layer 

3.2 Through the vortices 

4. The Intensity 

4.1 The evaluation of the intensity 

4.2 The intensity distribution produced by the shear layer 

4.3 The intensity distribution produced by the vortices 

5. Conclusions 

Acknowledgments 

List of Symbols 

References 

Appendix A. The ray tracing equations in the case of the vortices 

Appendix B. An approximate expression for the deflection of a ray passing through a vortex 

Illustrations--Figs. 1 to 8 

Detachable Abstract Cards 

2 



1. Introduction 

In obtaining a solution of Lighthill's equation for sound generated aerodynamically, refraction is usually 
allowed for (if at all) by taking account of the mean shear flow in the jet and ignoring the time-dependent part 
of the velocity field (cf. Pao 1 and Lilley z who consider only first-order terms in the time-dependent motion). 
However in general this method predicts an intensity upstream which is less than the observed experimental 

values. 
Experiment has shown that large 'puffs' and turbulent 'slugs' are produced in outlet pipes (I. J. Wyganski 

and F. H. Champagne 3) and it seems reasonable to suppose that these regions of large vorticity are still present 
in the exhaust gas. Woolridge and Wooten 4 report the result~ of measurements in the initial region of a 
subsonic jet. They suggest that the observed pressure field might be produced by vortex rings propagating 
away from the jet lip. Further light has also been shed on the nature of these large vortices by the analysis of 
Damms and Kiichemann, 5 who consider in some detail flow downstream of a splitter plate between two 
streams of unequal velocity where in general the time-dependent terms in the velocity are not small. 

This Report uses ray-theory approximations to present an analysis of the refraction of noise by a regular 
structure of convected vortices and compares the result with the refraction produced by the corresponding 
mean shear flow. The noise producing mechanism itself is not considered here, where for simplicity we merely 
assume the existence of a localised source which is convected with the free stream of the jet. Furthermore the 
jet itself is represented in a very idealised way (a two-dimensional, single shear layer). Nevertheless the 
essential features are believed to be representative" of a real jet, and it is therefore of interest to compare the 
behaviour of the rays through this time-dependent flow containing powerful discrete vortices with that 
through a steady shear layer. 

2. The Velocity Field ot the Convected Vortices 

The analysis is restricted to two dimensions. One half of the jet flow is modelled by an infinite number of 
vortices arranged (as shown in Fig. 1) with their centres lying along the x-axis and at a distance d apart. These 
vortices are considered to be travelling downstream with a velocity (U/2, 0) and are of such a strength that the 
fluid far above them has a velocity (U, 0); hence by symmetry the fluid far below is at rest. This model of a 
turbulent jet is postulated by Lau, Fisher and F u c h s  6 and they show that it agrees well with experimental 
results. In order to study what effect this arrangement has on the noise produced by an aircraft, a simple 
line-source of sound is considered in the fluid, being convected downstream with it at a height d above the line 
of centres of the vortices (there is no special reason for choosing this height although it should be some length 

of this order). 
A single stationary vortex is assumed to produce a velocity distribution of rigid-body rotation inside a core 

of radius a and potential flow outside, so that 

Uo = Kr r <~ a } 

Uo Ka2 r>~a 
r 

(1) 

where K = constant (to be determined) and r = radial distance from the centre of the vortex. 
This velocity distribution implies neglect of compressibility in the basic flow but if the true compressible 

flow-field were known and used, the main features of the results would not be expected to change significantly. 
Relative to a frame of reference moving with the vortex centres, the largest value reached by the local Mach 
number is about 0.5 in the examples given later. 

In this reference frame, the total velocity distribution (vl, v2) is obtained by superimposing contributions 
from all the vortices. Hence 

v,(x, y)=  - K y -  ~ Ka2y 
_~ y2+(x -nd)  2 

n # l ' l  a 

if y2+(x -nod)2<~ a 2 

i.e. if (x, y) lies within the noth vortex core 
(2) 

~_ KaZy if (x, y) is outside all the vortex cores, 



v2(x, y) = K(x  - nod) + ~.. Ka2(x - nod) 
_oo y 2 + ( x - n d )  2 

n # r s  o 

_ ~ Ka2(x - n d )  

-o~ y ~ + ( x - n d )  2 

if y2+(x -nod)2<~ a z, 

if (x, y) is outside all the vortex cores. 

Evaluating the summations we find 

KaZy KaZ~  sinh 2"rry/d 
vl(x, y) = - K y  Jr y2 + (x - nod) ~ d cosh 2rcy/d - c o s  2 ~ x / d  

Ka %r sinh 2 rry/ d 

d c o s h 2 7 r y / d - c o s  27rx/d 

Ka  2 (x - nod) KTra 2 
v2(x, y) = K(x  - nod) -~ - -  

y2+(x - n o d )  2 d 

KTra 2 sin 2 7rx/ d 

d c o s h 2 7 r y / d - c o s  27rx/d 

sin 2 ~rx / d 

cosh 2 7ry/ d - c o s  2 zrx/ d 

if y2 + (x - nod)2 <~ a 2, 

if (x, y) is outside all the vortex cores, 

if y2+(x - n,,d)2 <~ a 2, 

if (x, y) is outside all the vortex cores. 

We want 

and 

thus 

as y --> -o0, 

Ka 2° U Ud 
K -  

d 2 '  2rra v 

Hence the velocity field is 

Ud Ud y 
vl(x, y)=2---~a2Y 27r y Z + ( x - n 0 d )  2 

U sinh 2 ~ y / d  

2 cosh 2Try~d-cos  27rx/d 

U sinh 27ry/d 

2 cosh 2Try~d-cos  2rrx/d 
if y2+(x - nod)2 <~ a 2, 

if (x, y) is outside all vortex cores, 

(3) 

u_U_d_d (x_nod)_~ U d ( x - n o d )  U s in2rrx /d  
v2(x, y ) -  2rra 2 7 r y 2 + ( x -  nod) 2 2 cosh 2 t r y ~ d - c o s  2rcx/d 

U .sin 27rx/d 

2 cosh 2 ~ y / d - c o s  27rx/d 

if y2+(x - n,,d) 2<- a 2, 

(4) 

if (x, y) is outside all vortex cores. 

In a Lilley 2 or Schubert 7 approximation one considers the path of the ray through the mean shear flow. Since 
the strength of the vortices and the convection velocity are invariant with time, a time average in the observer's 
frame is given by an average over the x-component  in the frame of the stationary vortices. 
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Hence the mean shear (Vl,  V2) can be determined as follows: 
(i) l y [>a  

U f ~/2 sinh (2Try/d) dx 
~,'ld =-'~ J-d~2 cosh 2"n'y/ d -cos  2 7rx/ d 

U d sinh 27ry/d 
= ~ ~--~2~ Isinh 2~ry/dr 

that is 

U ° 
~1 = ~- sign y. 

U fod sin (27rx/d) dx 
~zd =~- cosh 2~y/ d - c o s  2rrx/ d 

U dqr [log 2Try 2~'x d - (cos v_cosv)]o_-0 

(ii) lyl < a 



where c = local speed of sound, v = local flow velocity, k = wave number, k = [k[ and (x,, x2) = (x, y) is a point 
on the ray. 

In general the frequency will depend on the reference frame; the frequency parameter to is defined in that 
frame for which the flow field does not change with time and is connected with the wave number and velocity 
by the relation 

to = v,k, + kc. (7) 

Lighthill 8 shows that provided changes in the velocity field are small on a wavelength scale, to is constant along 
a ray. 

These equations are greatly simplified when the flow variables are functions of only one space co-ordinate. 
In the case of this shear flow we have v = (v~(y), 0), and, since the flow is considered to be at a uniform 
temperature,  c is taken to be constant over all space. 

Equation (6) gives 

kl = constant = Kc (say) 

and so 

k2 = -Kc  tan qJ, 

where ~ is the angle of the wave-normal below the horizontal. 
From equation (7) 

to = ~,K~ + cK~(1 +tan  2 ~0)½, 

- - -  t-secq, (8) 
cK~ c 

and, since to/cKc is constant along a ray, it follows that 9~/c +sec ~O is also constant along a ray. Furthermore 
the ray paths can be traced, using equation (5), to give 

dx ~,~,(y) 
- cosec - c o t  4,, (9) 

dy c 

where q, is determined from equation (8). 
(This illustrates that the ray direction does not lie along the wave-normal when the surrounding fluid is not at 

rest.) 
Equation (9) can be evaluated to give the path of the ray through the shear layer. However any displacement 

of the ray in this layer is unimportant in the far field where the angle at which the ray emerges from the shear 
layer will be of dominant importance in evaluating the x compouents for large negative y. 

For a given ray let ~ = initial angle of wave-normal below the horizontal and A = final angle of wave-normal 
below the horizontal. 

Then equation (8) implies that 

sec A = sec @ + M  (10) 

since, when the ray has passed through the shear layer, it is in a region of still air. In this region 

dx 
- -  = - c o t  A. 
dy 

Therefore at a large vertical distance h below the shear layer (h >> d) 

x = h cot A + 0(d) (11) 

where x is the horizontal distance from the source. 



There is a minimum value of A, corresponding to ~ = 0. For this value h.,~. (say) we have sec h,,~. = 1 + M, by 
equation (10). For M = 0 we have Ami. = 0 and rays from the source reach all values of x. 

For M # 0  

Xmax = h[(1 + M )  2 - 1 ]  -½ 

h (12) 

- (2M + M2) ½' 

and no sound rays are found further downstream from the source than this. 
One further point is that for aircraft noise from a half-shielded source (i.e. noise emitted at the instant of 

crossing the jet exit plane, see Fig. 2) the emerging rays will have wave numbers such that -~r/2 < 4' < ~-/2. 
Hence see h is positive for all rays, and the directions of all rays have a positive downstream component. 

Consequently the only noise heard upstream of the source will be due to diffraction around the lower edge of 
the shielding and hence will be necessarily small. 

3.2. Through the vortices 

In the frame in which the vortices are at rest we have again the case where the dispersion relationship 
w(x, k, t) has no explicit dependence on time t. 

Hence equations (5) and (6) apply, namely 

dxi ki 
dt v, + c-~, 

dk, _ k  Ovj_ k Oc 
d-T = J Ox, Ox,' 

where v is as given by equations (3) and (4), and c is again taken to be constant. 
We introduce non-dimensional co-ordinates 

tc M = -  

d 1 
s = --, K = kd, !¢ = -7;K, 

a 

and the equations for a ray inside the n0th vortex core then became (see Appendix A). 

d X  M s 2 Y  M Y  M sinh 2TrY 
dT  27r 2¢r{Y2+(X-no)  2} 2 (cosh2zrY-cos27rX)  ~-t¢~, 

d Y  Ms 2 M X -  no M sin 27rX 
d--~=-2,rr ( x -no)q  2zr { Y 2 + ( X - n o )  2} 2 (cosh27rV-cos27rX)  

1 dK1 1 dK2\ dK~ = l__ dK~_ r ' K~--~ - - ~  + K2-~ - ~  ), 
dT  K dT  

"[- K2, 

(i = 1, 2) (13) 

1 dK1 [ M Y ( X - n o )  _ s inh2~Ys in27rX ] 
K dT  = - K ' [ T r { ~ ) 2 } 2  UZr{cosh 2 z r Y - c o s  27rX}2J - 

[ Ms  2 M Y 2 - ( X - n o ) 2  c o s h 2 z r Y c o s 2 c r X - 1 ]  
- K 2 [ - - ~ - - 4  2zr {Y2+(X-no)2}2 M~{c--osh 2 ~ - ~ - c o s 2 - - ~ J  

and 

1 dK2 [Ms 2 
K dT=-K'[_2--~ 

-K2[ 
M (X_no)2_  I#2 1 - c o s h  2~rYcos 27rX] 
27r { I12 + (X - n0)2} 2 + MZr{cosh 2~rV-  cos 2~rX}2J 

M ( X - n o ) Y  t- sin 27rXsinh____/27rY "1 
7r { Y~ + ( X -  no)2} 2 M~'(cosh 2 z r Y -  cos 2zrX}2J" 



And for (X, Y) outside all the vortex cores 

d X  M sinh 2~rY 

d T  2 cosh 2~rY-cos  2~-X 

d Y  M sin 2~-X 
"1- K2~ 

d T  2 cosh 2TrY-cos  27rX 

1 dKl 1 dK2~ d K i  1 dg,  KI" ~ - -~-+ (i = 1, 2) 
a T  K d T  K, K2~-d-~- ) ,  

(14) 

1 dKl sinh 2~'Y sin 27rX cosh 2TrY cos 2 7 rX -  1 
K d T  - KIMn{cosh 2~-Y-cos  2~-X} 2 I- K2MTr{cos h 2TrY-cos  27rX} 2 

and 

1 dK2 
- K~Mzr 

K d T  

1 - c o s h  2trY cos 21rX 

{cosh 2TRY- cos 27rX} 2 

sin 2 ~ X  sinh 2TrY 

K2M~ {cosh 2 ~ Y -  cos 2 ~rX} 2" 

These equations (13) and (14) are in a form suitable for numerical integration. To solve them a fourth order 
Runge-Kutta  method was used with a step length in T of 1/000; in most cases the results agreed to three 
significant figures with those obtained with a step length of 1/10. 

The paths for several different rays are sketched in Figs. 3 to 5, with initial conditions 

X = 0 ,  Y = I ,  

x = 4 ,  

K1 = cos 4', K2 = --sin 4' 

for various different values of the Mach number M. From these sketches it is observed that the region of 
potential flow produces very little change in the direction of a ray, but that once it enters a vortex core the ray is 
considerably deflected. Using the approximate value obtained in Appendix B for the deflection produced by 
the flow in a vortex core and neglecting any deflection produced by the potential flow, we obtain 

M d  
,~ = 4 '  - - -  c o s  ( ~  + q,) 

7ra 

where ~b represents the point at which the ray enters the noth vortex core, in the sense that 

x - nod = a cos 

and 

y = a sin 4'- 

This approximate solution agrees well with the results obtained from solving the equations exactly. 
The sketches also show that it is possible for rays to cross, and Fig. 6 shows in detail the paths of intersecting 

rays. The crossing of rays in the far field means that dA/d4' has changed sign, and so between intersecting rays 
there must be some 4' such that 

dh 

d4' 

One further point illustrated by these sketches is that for a half-shielded source (such as in Fig. 2) which 
produces only rays with wave numbers such that - zr/2 < 4' < ~r/2, it is possible for rays to be refracted through 
a sufficiently large angle for them to travel into the upstream region. This is in contrast to the result obtained 
for the mean shear flow, where no sound from the shielded source is refracted upstream. 
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4. The  intensity 
4.1.  The  Evaluat ion of the Intensity 

Along a ray tube EuA = constant (see Lighthill8), where E = density of excess energy per unit length due to 
sound source, u = group velocity and A = cross-sectional area of the ray tube. 

Lighthill points out that there has been much confusion over what to take as E in a moving fluid, and shows 
that a correction factor should be included, giving E as the average of 

cZp-lp2(1 +vi~c ), (15) 

where e = local velocity of sound, p = density of the fluid and ps = excess density due to the sound waves. 
The average of c2p-~p~ is the value of E in a stationary fluid. 
The source is taken to be at a height d above the line of centres of the vortices. Then the velocity of the 

source in the listener's frame of reference is given by U in the mean shear flow and by ½ U(1 + 0(e -2=)) + U/2 in 
the case of flow through the vortices. 

We now apply equation (15) to a ray tube starting at the source between two rays with directions making 
downward angles 0, and 0 + dO with the horizontal and with wave normals making angles ~0, and ~O + d~0. Near 
the source 

E = ~ r  (1 + M  cos ~), 

where P represents the power output per unit length of the source, since in a fluid at rest E = P/2~rr (the source 
in a stationary medium is assumed uniform in all directions), 1 + M cos ~O is the directional factor s caused by 
the moving fluid. Now 

u = { ( U + c  cos q/)2+ c 2 sin 2 qJ}½ 

and 

A = r60. 

Hence 

EuA = 2~ 60{ U ~ + 2 Uc cos ~b + c z}~(1 + M cos qJ). 

The ray direction is given by the resultant of the fluid velocity and velocity c in the direction of the normal to 
the wave, so 

sin (~O - 0) = M sin 0. 

This gives 

sin ~O 
tan 0 = 

M + c o s  ~b' 

and on differentiating and rearranging we obtain 

dO 1 + M cos 

d$  M 2 + 2 M c o s ~ 0 + l "  

Hence near the source 

p c  dO 
EuA = ~ (M z + 2M cos ~0 + 1)½( 1 + M cos ~0) ~-~ d~0 

pc (1 + M  c°s ~0)2 .d~ 
=~--~ ( M ~ + 2 M c o s  ~b+l) ~ • 

(16) 
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The value of E at the listener's position gives a measure of the intensity of the noise heard there. In the far field 

x = h cot A 

6x = - h  cosec 2 AdA. 

Hence 

A = [6x[ sin A = h cosec A 6A, 

E u A  = Ech cosec A ~A, (17) 

where E = energy density at the listener's position, due to the sound source, A = angle of normal to wave below 
the horizontal after passing through the vortices. 

Equating expressions (16) and (17) we obtain 

P 60 (l + M cos 0)2 sin A 
E = 2~rh 6A ( M 2 + 2 M c o s  0 +  1) ~" (18) 

4.2. The ~ntensi~y Distribution Produced by the Shear Layer 

Equation (10) gives 

sec A = sec 0 + M ,  (19) 

and hence 

dO_  sec A tan A 

dA s e c 0  tan q/ 
(2o) 

From equations (18), (19) and (20) we have 

P (1 + M cos 0) 2 ((M 2 -  1) cos 2 0 + 2M cos 0 + 1) 
E =2Ir~ s i n 0  ( M 2 + 2 M c o s  0 +  1) ½ (21) 

and 

x = h cot A as in equation (11). 

Corresponding to 0 = 0 we have x = h / (2M+M2)  ~ as given by equation (12) and for this value of ~O the 
intensity given by equation (21) is infinite. However the ray with ~ = 0 is the limiting case of rays which can 
pass through the layer. The energy expressed in the form (27rh/P)E is shown plotted against x for different 
values of the Mach number in Fig. 7. 

4.3. The I~ntenslty Dis~ibution Produced by the Vortices 

In the case of the vortices dO/dA has to be evaluated numerically. 
It was observed in Section 3.2 that the rays frequently cross (from the approximate equation (9) one expects 

that crossing is possible at each vortex), and associated with intersecting rays is the existence of a ray such that 
dA/dO = 0. This gives local infinities for the value of E, the excess energy density in the far field, and hence 
these points are of great importance in determining the noise heard. In practice these infinities mean that at the 
singular points neighbouring rays have become parallel in the far field and hence in two dimensions there is no 
attenuation of the energy (other than that due to viscosity and the limitations of ray theory), and so the peak 
value is of the same order as the intensity in the near field. This can be extended into three-dimensions to a 
more realistic model of a jet. Considering an axisymmetric jet flow, these results suggest that along certain ray 
paths an attenuation like 1/r is to be expected instead of the usual 1/r 2 decrease. 
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A further consequence of the crossing of the rays is that rays emitted from the source in different directions 
may arrive at the same point. Since the far-field approximation implies an interest in the behaviour over length 
scales of order d or greater, and since any fluctuations that may arise from differences in phase will be on a 
length scale of 1/k which is small compared with d, energy is conserved on average, and it follows that the 
intensities propagating in the same direction from different initial paths should be added. 

The intensity was evaluated for rays with initial angles ff at intervals of 0.01. The derivative d~b/dA was 
found by taking 8~ = 0.001 and evaluating the corresponding difference 8A. 

The intensity distribution for a partly shielded source of the type illustrated in Fig. 2 is sketched in Fig. 8, and 
the existence of several 'infinities' is observed; it may be noted that these 'infinities' are instantaneous values 
and a fixed observer would hear a succession of peaks as the source and different vortices pass downstream. It 
may be noted also that the intensity is not zero for negative x upstream of the source as it would be for a mean 
shear layer. 

5. Condusions 

There are significant differences between the refraction produced by the vortex core and that produced by 
the shear layer. Firstly the vortices produce a completely different intensity distribution, having a number of 
points in the far field at which the intensity is large, and is, in fact, of the same order as that of the near field. The 
second point of interest is that even for a half-shielded source the vortices refract the sound so that it can be 
heard upstream. The shear layer produces no such refraction. 

Application of this to the noise produced by a real aircraft in three-dimensions with an axisymmetric jet 
suggests that there are directions of large intensity in the far field where the intensity is only decaying as 1/r. A 
further consequence is that methods considering only the mean shear and ignoring large-scale turbulence 
would be expected to predict a lower upstream intensity than is actually observed. 
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APPENDIX A 

The Ray Tracing Equations in the Case off the Vortices 

At a point inside the noth vortex core y2 + (x - nod) 2 <~ a 2, and 

Ova Ud ( x - n o d ) y  UTr sinh21ry/d s in2~x/d 
Ox ~ {y2+(x-nod)2} 2 d {cosh 2Try~d-cos 27rx/d} 2' 

Ov~ Ud Ud ( x - n o d ) 2 - y  2 Uqr 1-cos27rx /d  cosh27ry/d 
Oy 27ra 2 2rr { y 2 + ( X - n o d ) 2 } 2  d {cosh27ry/d-cos2rcx/d}  2' 

Ova Ud Ud y2_ (X -- nod) 2 Urr cosh 2~y /d  cos 27rx/d - 1 
3x 27ra 2 27r {y2q-(x-nod)2} z d {cosh 27ry/d-cos  27rx/d} 2 

and 

Or2 Ud (x - nod)y UTr sin 27rx/d sinh 27ry/d 
Oy ~r {y2+(x-  nod)2} 2 d {cosh 2Try~d-cos 27rx/d} r 

At a point (x, y) outside all the vortex cores: 

Or1 UTr sinh 2rcy/d sin 27rx/d 
Ox d {cosh 2Try~d-cos 27rx/d} v 

Ov~ U~" 1 - cos  27rx/d cosh 2~ry/d 
Oy d {cosh 2"rry/d - cos  27rx/d} v 

Or2 UTr 1 -cosh  27ry/d cos 2~rx/d 
Ox d {cosh 2Try~d-cos 27rx/d} 2 

and 

Or2 U1r sinh 2¢rx/d sinh 27ry/d 
Oy d {cosh 27ry/d-cos  2~'x/d} ~" 

Hence one obtains the equations: 
(i) for a point (x, y) inside the noth vortex, i.e. (x - nod)2+ y2<~ a 2 

dx Udy Ud y 
dt 27ra 2 27r {y~+(x-nod)  2} 

U sinh 2rry/d k~ 
t-~ {cosh 27ry/d - c o s  2qrx/d} t-c-~, 

d___yy = Ud(x - nod) ~ Ud (x - nod) 
dt 2zra 2 27r {y2 + ( x - n o d )  2} 

U sin 27rx/d k~ 
2 {cosh 27ry/d - cos  21rx/d} I- c-~, 

dkl 
dt 

Ud y ( x - n o d )  UTr sinh 27ry/d sin2~rx/d ] 
kt -~ {y2 +(X_  nod)2}2 -~ {co--~-2---~2_~os2- xx/d}2j- 

- k 2 [  Ud z Ud y 2 - ( x - n o d )  2 UTr c o s h 2 r r y / d c o s 2 ~ x / d - 1 ]  
- - ~ a  ~-~ 2~ {y2+(x-nod)2} "-' d {~2-~y /dCcos~f f~x /~SJ  

and 

dk2 [ 
[2~a  27r (x - nod)2} 2 

- kl Ud 
dt {y2+ 

U'rr 1 - cos_ 27rx/d cosh 27ry/d ] _ 
Ud ( x -  nod)2- y z ~ d -  {cosh 2zry/d-cos  2zrx/d}2J 

-k2[ Ud (x-nod)y UTr 
-----~- {y2jl_( x --nod)2} 2 } d -  

sin 27rx/d sinh 27ry/d ] 
{cosh ~ - - ~ o s ~ } : J "  
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(ii) Outside the vortices 

dkl 
dt 

dx U sinh27ry/d , k~ 
- - = - -  - -  "tO--, 

dt 2 {cosh 2¢ry/d-cos 2~rx/d} k 

d y _  U sin 27rx/d 1_ck2, 
dt 2 {cosh 27ry/d - c o s  27rx/d} 

kl Uar sinh 2ary/d sin 27rx/d k2UTr cosh2~ry/dcos 27rx/d- 1 
d {cosh 2~ry/d - c o s  27rx/d} s d {cosh 2ary/d - c o s  27rx/d} s' 

dk2 kl UTr 1 - c o s  27rx/d cosh 27ry/d ksU~r sin 2~rx/d sinh 2¢ry/d 
dt d {cosh 27ry/d-cos 2rrx/d} s d {cosh 27ry/d-cos 27rx/d} s" 

We introduce non-dimensional co-ordinates 

c d' K~=k~d and s = -  
a 

Hence we have inside the noth vortex core: y2 + (X-no )S<  1/s ~ 

dX  MsSY M Y  M sinh 2TrY Ki 
d--T = 27r 2¢r{Y2+(X-no) s} ~ 2 (cosh 2TrY-cos 27rX) ~ K '  

d Y  MsS(X-  no) + M ( X -  no) M sin 27rX Ks 
d---T = 2Ir 2~r {Y2+(X-no)S} 2 ( c o s h 2 7 r Y - c o s 2 7 r X ) + K  -' 

dK~ K [ M  ( X - n o ) Y  M, sinh27rYsin27rX ] 
dT = - 1[~- {yz--~-Z~o)2}2 7r{cosh 27rY-cos  2~-x}sJ - 

.~. [ Ms s M Ya- (X-no)2  M c o s h 2 1 r Y c o s 2 r r X - 1 ]  
-ax2[ --~-~---~ 27r {Y2+(x - no)2} s 1r{cosh 2TrY-cos  27rX}~J ' 

Ms M ( X - n 0 ) 2 - Y  2 _ 1 -cosh27rYcos27rX]  dK2= -Ka .~--~ 2~" { 
dT  yz + ( X -  no)2} 2 ~- MTr{cosh 2~rY- cos 2 ~rX}~J - 

-1(2[ M ( X - n o ) Y  _ sin2zrXsinh27rY 1 
7r { y2 + ( X -  no)2} 2 + MTricos-h ~ s  ~-X}2J- 

For (X, Y) outside the cores of any of the vortices 

d X = M  'sinh 2~-Y ~__~, 
dT 2 (cosh 2TrY-cos 27rX) 

d Y  M sin 27rX K2 
d---T = 2 (cosh 2TrY-cos 27rXi+-K -' 

dK1 . sinh 2TrY sin 27rX cosh 2TrY cos 2z rX-  1 
dT = K'M~'{cosh 2 TrY- cos 2 7rX} 2 + K2MTr~oS-h ~ ~  -~--Xff 

and 

dK2 1 - c o s h  2~rY cos 2~rX sin 2~rX sinh 2 TrY 
dT = -K1M~r{cosh 27rY-cos  2qrX} 2 K2MZr{cosh 2TrY-cos 27rX} 2" 

15 



The magnitude of (K~, K2) is eliminated from these equations by introducing K = (1/K)(K~, K2) and hence 

dT d-T\-K/ 

1 dKi K, dK 
K dT  K 2 dT  

1 dK, K~(K1 1 dK1 f[~2 1 dK2~ 
g d r  K \ K  K d r  K K -d-T~" 

Thus we have finally; for a point (X, Y) inside the noth vortex X2+(Y-no)2<~ 1/s 2 

dX Ms2Y M Y  M sinh 2TrY 
- -  F - -  + ' K l ,  

dT 2zr 2 z r {y2+(X-no)  2} 2 (cosh2~'Y-cos2zrX) 

_ 

dY M X no M sin2~rX 
dT ( X - n o ) q  21r { Y 2 + ( X - n o )  ~} 2 (cosh21rY-cos2~rX) 

dK, 1 dK, 
dT  K dT  dT  K2-~ --d--T] 

~- K2~ 

(i = 1, 2), (13) 

1 dK, 
K dT  

Y ( X -  no) sinh 2trY sin 2~-X -1 
K'[ M { y~ + ( X -  no)~}~- M~r{cosh 27rY-cos  27rX}~] - 

Ms 2 M Y 2 - ( X - n o )  2 c o s h 2 7 r Y c o s 2 r r X - l q  
- K2 - ~ + 2rr { y2 + ( X -  n,,)q 2 M1r{cosh 2 ~ r g -  cos 2~rX}~] ' 

1 dK2 [Ms'- M ( X - n o )  2 - Y 2  
K d T -  K'L~ 2rr{Y2+(X-no)2} 2 

1 - cosh  2~Y cos 27rX] 
{cog GVT - 7X-  - 

M (X-no)  Y 
- -  K2 rr { y2 + ( X -  no)2} 2 ~- M~ 

sin 2~rXsinh 2TrY ] 
{cosh ~-Y----~os 2-~}2j-  

For (X, Y) outside all the vortex cores we have 

d X  M sinh 2~Y 
- -  F K 1 ,  

dT  2 (cosh 2TrY-cos 27rX) 

d Y M sin 2~rX 

dT 2 (cosh 2 t rY-cos  2~'X) 

dK, 1 dK~ 
dT  K dT  

1 dK, 1 dK2~ 
(i = 1,2), 

1 dK, sinh 2zrY sin 2zrX cosh 2zrYcos 2~rX- l 
K dT  - K'M'n'{cosh 2zrY-cos  2zrX} 2+ K2MZr{cosh 2zrY-cos  2zrX} v 

1 dK2 
K dT  

1 - cosh 2zrY cos 21rX 
K, M1r {cosh 2 ~-Y- cos 2 ~'X} 2 

sin 2rrX sinh 2trY 
K2Mq'r- 2" 

{cosh 2TRY- cos 2 rrX} 
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APPENDIX B 

An Approximate Expression for the Deflection of a Ray Passing Through a Vortex 

The exact velocity field inside a vortex is given by: 

Ud U sinh 2~ry/d Ud y 
vl = 2---~a2y + ~  cosh 21ry/d-cos 27rx/d 2zr x2 + yV 

that is 

and similarly 

va 27ra 2L +0  ~-~ , 

(a2)] Udx 1 +0 
v2= 2zra 2 ~ • 

Hence a reasonable approximation inside a vortex is 

and 

Then the equations for ray tracing give 

where 

Udy 
/31 2 ,/.ra 2 

Udx 
Vz = 2,r ra2.  

dx k~ 
-~= py +--~c, (B-l) 

dy k2 
-~ = -px  +-~c, (8-2) 

dk~ 
dt = kzp, (B-3) 

dk2 
dt =-k tp ,  (B-4) 

Ud 
p = 2zra 2. 

It now follows that by multiplying equation (B-3) by kl and equation (B-4) by k2, that dk2/dt = 0 and hence 
k = constant. 

Let q = elk which is therefore constant. 
If we write 

z = x + i y  and l--kl+ik2, 
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then  equa t ions  ( B - l ) ,  (B-2) ,  (B-3) and (13-4) lead  to 

dz 
dt 

and 

Hence  

and 

- -  - - ipz + ql 

dl 
-~ = - i p t  

l = A exp (- ipt)  

z = D exp (- ipt)  + tqA exp (-ipt).  

Suppose  a ray  en te rs  the vor tex  at a t ime t = 0 and at a po in t  (a cos ¢,  a sin ¢ )  and with the  wave norma l  

mak ing  an angle  a be low the hor izonta l .  
Then  

and 

and so 

hence  

and 

W h e n  x~+ y2= (/2 we have  

giving 

D = ae'* 

A = ke '~, 

z = a exp i(q5 - p t ) + q k t  exp  i ( - a  -p t ) .  

x = a cos (& - p t ) + q k t  cos ( - a  - p t )  

y = a sin (& - p t )  +qkt sin ( - a  -p t ) .  

2aqkt[cos ( ~ - p t )  cos (-ce - p t )  + s i n  ( o k - p t )  sin ( - a  -p t ) ]+  qZk2t 2= O, 

2a 
t = o  o r  t = - ~  cos ( 6  - , ~ ) .  

Hence  the ray  leaves the  vor tex  core  at a t ime 

2a 
t = ---:-  cos ( 6  +~). 

q• 
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Hence on exit we have 

kl +ik2=k exp {i(-a+~P cos(dp+a) } 

and so the angle of the wave normal below the horizontal on leaving the vortex is 

Ud 
a -  c o s ( ~ + a ) .  

19 
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FIG. 2. Half shielded source. 
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FIG. 3. Paths of rays through the vortices. 
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FIG. 4. Paths of rays through the vortices. 
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FIG. 5. Paths of rays through the vortices. 

1 m S O U r ~  

FIO. 6. Enlargement showing detail of rays between A and B in Fig. 4. 
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