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Summary

Rays from a moving sound source are traced through a regular array of convected vortices (representing a
turbulent jet) and also through the corresponding mean shear flow. The far-field intensity is compared in the
two cases and significant differences are found.
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1. Introduction

In obtaining a solution of Lighthill’s equation for sound generated aerodynamically, refraction is usually
allowed for (if at all) by taking account of the mean shear flow in the jet and ignoring the time-dependent part
of the velocity field (cf. Pao’ and Lilley” who consider only first-order terms in the time-dependent motion).
However in general this method predicts an intensity upstream which is less than the observed experimental
values.

Experiment has shown that large ‘puffs’ and turbulent ‘slugs’ are produced in outlet pipes (I. J. Wyganski
and F. H. Champagne®) and it seems reasonable to suppose that these re gions of large vorticity are still present
in the exhaust gas. Woolridge and Wooten* report the result$ of measurements in the initial region of a
subsonic jet. They suggest that the observed pressure field might be produced by vortex rings propagating
away from the jet lip. Further light has also been shed on the nature of these large vortices by the analysis of
Damms and Kiichemann,® who consider in some detail flow downstream of a splitter plate between two
streams of unequal velocity where in general the time-dependent terms in the velocity are not small.

This Report uses ray-theory approximations to present an analysis of the refraction of noise by a regular
structure of convected vortices and compares the result with the refraction produced by the corresponding
mean shear flow. The noise producing mechanism itself is not considered here, where for simplicity we merely
assume the existence of a localised source which is convected with the free stream of the jet. F urthermore the
jet itself is represented in a very idealised way (a two-dimensional, single shear layer). Nevertheless the
essential features are believed to be representative of a real jet, and it is therefore of interest to compare the
behaviour of the rays through this time-dependent flow containing powerful discrete vortices with that
through a steady shear layer.

2. The Velocity Field of the Convected Vortices

The analysis is restricted to two dimensions. One half of the jet flow is modelled by an infinite number of
vortices arranged (as shown in Fig. 1) with their centres lying along the x-axis and at a distance d apart. These
vortices are considered to be travelling downstream with a velocity (U/2, 0) and are of such a strength that the
fluid far above them has a velocity (U, 0); hence by symmetry the fluid far below is at rest. This model of a
turbulent jet is postulated by Lau, Fisher and Fuchs® and they show that it agrees well with experimental
results. In order to study what effect this arrangement has on the noise produced by an aircraft, a simple
line-source of sound is considered in the fluid, being convected downstream with it at a height d above the line
of centres of the vortices (there is no special reason for choosing this height although it should be some length
of this order).

A single stationary vortex is assumed to produce a velocity distribution of rigid-body rotation inside a core
of radius a and potential flow outside, so that

(1)

where K = constant (to be determined) and r = radial distance from the centre of the vortex.

This velocity distribution implies neglect of compressibility in the basic flow but if the true compressible
flow-field were known and used, the main features of the results would not be expected to change significantly.
Relative to a frame of reference moving with the vortex centres, the largest value reached by the local Mach
number is about 0-5 in the examples given later.

In this reference frame, the total velocity distribution (v,, v,) is obtained by superimposing contributions
from all the vortices. Hence
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Evaluating the summations we find
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In a Lilley’ or Schubert” approximation one considers the path of the ray through the mean shear flow. Since
the strength of the vortices and the convection velocity are invariant with time, a time average in the observer’s
frame is given by an average over the x-component in the frame of the stationary vortices.






where ¢ = local speed of sound, v =local flow velocity, k = wave number, k = [k| and (x,, x,) = (x, y) is a point
on the ray.

In general the frequency will depend on the reference frame; the frequency parameter w is defined in that
frame for which the flow field does not change with time and is connected with the wave number and velocity
by the relation

o = vk, + k. (7)

Lighthill® shows that provided changes in the velocity field are small on a wavelength scale, o is constant along
a ray.

These equations are greatly simplified when the flow variables are functions of only one space co-ordinate.

In the case of this shear flow we have v=(v,(y), 0), and, since the flow is considered to be at a uniform

temperature, ¢ is taken to be constant over all space.
Equation (6) gives

k, = constant = K, (say)
and so
k,=—K. tan ¢,

where ¢ is the angle of the wave-normal below the horizontal.
From equation (7)
w0 =%K, +cK.(1+tan® ¢)},

w
cK,

=%+sec " (8)

and, since w/cK, is constant along a ray, it follows that ¥,/c +sec ¢ is also constant along a ray. Furthermore
the ray paths can be traced, using equation (5), to give

dx w(y

— = —cosec i )-cot ¥, (9

where  is determiried from equation (8).

(This illustrates that the ray direction does not lie along the wave-normal when the surrounding fluid is not at
rest.)

Equation (9) can be evaluated to give the path of the ray through the shear layer. However any displacement
of the ray in this layer is unimportant in the far field where the angle at which the ray emerges from the shear
layer will be of dominant importance in evaluating the x compouents for large negative y.

For a given ray let ¢ = initial angle of wave-normal below the horizontal and A = final angle of wave-normal
below the horizontal.

Then equation (8) implies that

secA=secyy+M (10)
since, when the ray has passed through the shear layer, it is in a region of still air. In this region

ﬁi_x_ =—cot A
dy )

Therefore at a large vertical distance k below the shear layer (h > d)
x =h cot A +0(d) (11)

where x is the horizontal distance from the source.



There is a minimum value of A, corresponding to s = 0. For this value A, (say) we have sec A, = 1+ M, by
equation (10). For M =0 we have A,,;,= 0 and rays from the source reach all values of x.
For M#0

Xmax = H[(1+ M) —1]%

h
=G

and no sound rays are found further downstream from the source than this.
One further point is that for aircraft noise from a half-shielded source (i.e. noise emitted at the instant of
crossing the jet exit plane, see Fig. 2) the emerging rays will have wave numbers such that —#/2 <y < /2.
Hence sec A is positive for all rays, and the directions of all rays have a positive downstream component.
Consequently the only noise heard upstream of the source will be due to diffraction around the lower edge of
the shielding and hence will be necessarily small.

(12)

3.2, Through the vortices

In the frame in which the vortices are at rest we have again the case where the dispersion relationship
o(x, Kk, t) has no explicit dependence on time ¢,
Hence equations (5) and (6) apply, namely
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dr o, o
where v is as given by equations (3) and (4), and c is again taken to be constant.
We introduce non-dimensional co-ordinates
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and the equations for a ray inside the noth vortex core then became (see Appendix A).
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And for (X, Y) outside all the vortex cores
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These equations (13) and (14) are in a form suitable for numerical integration. To solve them a fourth order
Runge-Kutta method was used with a step length in T of 1/000; in most cases the results agreed to three
significant figures with those obtained with a step length of 1/10.

The paths for several different rays are sketched in Figs. 3 to 5, with initial conditions

X=0, Y=1,
s=4,
K1 = COS ¥, Ky, = —sIin ¢
for various different values of the Mach number M. From these sketches it is observed that thc region of
potential flow produces very little change in the direction of a ray, but that once it enters a vortex core the ray is

considerably deflected. Using the approximate value obtained in Appendix B for the deflection produced by
the flow in a vortex core and neglecting any deflection produced by the potential flow, we obtain

Md
/\=d/——w—afcos(¢+¢]/)

where ¢ represents the point at which the ray enters the noth vortex core, in the sense that
X~ nod = a cos ¢
and
y = a sin ¢.

This approximate solution agrees well with the results obtained from solving the equations exactly.

The sketches also show that it is possible for rays to cross, and Fig. 6 shows in detail the paths of intersecting
rays. The crossing of rays in the far field means that dA/dy has changed sign, and so between intersecting rays
there must be some ¢ such that

D _y,
dip

One further point illustrated by these sketches is that for a half-shielded source (such as in Fig. 2) which
produces only rays with wave numbers such that — /2 < < /2, it is possible for rays to be refracted through
a sufficiently large angle for them to travel into the upstream region. This is in contrast to the result obtained
for the mean shear flow, where no sound from the shielded source is refracted upstream.



4. The intensity
4.1. The Evaluation of the Intensity

Along a ray tube EuA = constant (see Lighthill®), where E = density of excess energy per unit length due to
sound source, u = group velocity and A = cross-sectional area of the ray tube.

Lighthill points out that there has been much confusion over what to take as E in a moving fluid, and shows
that a correction factor should be included, giving E as the average of

k;
27! 31 i l)
cp p( +ukC , (15)

where ¢ =local velocity of sound, p = density of the fluid and p, = excess density due to the sound waves.

The average of ¢’p~'p? is the value of E in a stationary fluid.

The source is taken to be at a height d above the line of centres of the vortices. Then the velocity of the
source in the listener’s frame of reference is given by U in the mean shear flow and by ;U(1 +0(e ™))+ U/2 in
the case of flow through the vortices.

We now apply equation (15) to a ray tube starting at the source between two rays with directions making
downward angles 6, and 8 + dé with the horizontal and with wave normals making angles ¢, and ¢ + di. Near

the source

P
=—(1+
E 27rr(1 M cos i),

where P represents the power output per unit length of the source, since in a fluid at rest E = P/2ar (the source
in a stationary medium is assumed uniform in all directions), 1+ M cos  is the directional factor® caused by
the moving fluid. Now

u={(U+c cos ¢)*+c>sin’ y}*
and
A =158,

Hence

P .
EuA =E;T—86{U‘+2Uc cos ¢ +c’P(1+M cos ).

The ray direction is given by the resultant of the fluid velocity and velocity ¢ in the direction of the normal to
the wave, so

sin (y — @)= M sin 8.
This gives

sin
tan @ =-—————,
M +cos
and on differentiating and rearranging we obtain

dé _ 1+Mcosy
dy M*+2Mcosyp+1

Hence near the source

EuA =_P_C(1V12+2M cos z/x+1)%(1+Mcos c[/)—@ddl
2 di
_Pc (1+Mcos y)

" 27 (MP+2M cos + 1)
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The value of E at the listener’s position gives a measure of the intensity of the noise heard there. In the far field

u=c,
x=hcotA
8x =—h cosec® A dA.

Hence

A =|8x|sin A = h cosec A 8A,
EuA = Ech cosec A 82, (17)

where E = energy density at the listener’s position, due to the sound source, A = angle of normal to wave below
the horizontal afier passing through the vortices.
Equating expressions (16) and (17) we obtain

P 8¢ (14 M cos ) sin A

= - 1. 18
27h 8A (M*+2M cos ¢+ 1) (18)
4.2. The Intensity Distribution Produced by the Shear Layer
Equation (10) gives
sec A =sec ¢y + M, (19)
and hence
diy _secAtan i
dA  secy tan ¢ (20)
From equations (18), (19) and (20) we have
E= P (1+Mcos ) ((M*>—1)cos® ¢y +2M cos y+1) 1)

2wh sin ¢ (M?*+2M cos ¢ + 1)
and
x=hcotA as in equation (11).

Corresponding to ¢ =0 we have x = h/(2M + M) as given by equation (12) and for this value of  the
intensity given by equation (21) is infinite. However the ray with ¢ = 0 is the limiting case of rays which can
pass through the layer. The energy expressed in the form (2arh/ P)E is shown plotted against x for different
values of the Mach number in Fig. 7.

4.3. The Imtensity Distribution Produced by the Vortices

In the case of the vortices dif/dA has to be evaluated numerically.

[t was observed in Section 3.2 that the rays frequently cross (from the approximate equation (9) one expects
that crossing is possible at each vortex), and associated with intersecting rays is the existence of a ray such that
d)\/dy = 0. This gives local infinities for the value of E, the excess energy density in the far field, and hence
these points are of great importance in determining the noise heard. In practice these infinities mean that at the
singular points neighbouring rays have become parallel in the far field and hence in two dimensions there is no
attenuation of the energy (other than that due to viscosity and the limitations of ray theory), and so the peak
value is of the same order as the intensity in the near field. This can be extended into three-dimensions to a
more realistic model of a jet. Considering an axisymmetric jet flow, these results suggest that along certain ray
paths an attenuation like 1/r is to be expected instead of the usual 1/r* decrease.

10



A further consequence of the crossing of the rays is that rays emitted from the source in different directions
may arrive at the same point. Since the far-field approximation implies an interest in the behaviour over length
scales of order d or greater, and since any fluctuations that may arise from differences in phase will be on a
length scale of 1/k which is small compared with d, energy is conserved on average, and it follows that the
intensities propagating in the same direction from different initial paths should be added.

The intensity was evaluated for rays with initial angles  at intervals of 0-01. The derivative dy/dA was
found by taking 8y = 0-001 and evaluating the corresponding difference 8A.

The intensity distribution for a partly shielded source of the type illustrated in Fig. 2 is sketched in Fig. 8, and
the existence of several ‘infinities’ is observed; it may be noted that these ‘infinities’ are instantaneous values
and a fixed observer would hear a succession of peaks as the source and different vortices pass downstream. It
may be noted also that the intensity is not zero for negative x upstream of the source as it would be for a mean
shear layer.

5. Conclusions

There are significant differences between the refraction produced by the vortex core and that produced by
the shear layer. Firstly the vortices produce a completely different intensity distribution, having a number of
points in the far field at which the intensity is large, and is, in fact, of the same order as that of the near field. The
second point of interest is that even for a half-shielded source the vortices refract the sound so that it can be
heard upstream. The shear layer produces no such refraction.

Application of this to the noise produced by a real aircraft in three-dimensions with an axisymmetric jet
suggests that there are directions of large intensity in the far field where the intensity is only decaying as 1/r. A
further consequence is that methods considering only the mean shear and ignoring large-scale turbulence
would be expected to predict a lower upstream intensity than is actually observed.
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LIST OF SYMBOLS

Radius of a vortex core
Velocity of sound
Distance between adjacent vortices
Excess energy density due to sound source
Vertical distance of listener below turbulent layer
Wave-number vector
Non-dimensional wave-number vector
Mach number of the jet
Power output per unit length of the line source
Polar co-ordinate
Ratio d/a
Time
Non-dimensional time
Group velocity
Jet velocity
Fluid-velocity vector
Mean-fluid-velocity vector
Cartesian co-ordinate
Cartesian co-ordinate
Non-dimensional cartesian co-ordinate
Non-dimensional cartesian co-ordinate
Angle of ray direction below the horizontal
1
I
Final angle of wave-front normal below the horizontal
Initial angle of wave-front normal below the horizontal
Frequency
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APPENDIX A

The Ray Tracing Equations in the Case of the Vortices
At a point inside the noth vortex core y*+(x —nod)*< a?, and

ov, _Ud  (x—ned)y Ur sinh2wy/d sin 2wx/d

ox  w {y*+{x —nod)? d {cosh 2my/d —cos 2wx/d}”
dvi_ Ud Ud (x—nod)’~y> Um 1—cos2mx/d cosh2my/d

ay—2wa2—’% {(y*+(x—nod)?y d {cosh2wy/d—cos2mx/d}”
év,  Ud +Ud y?—(x—nod)*  Umr cosh 2mry/d cos 2mx/d — 1

ox  2ma’ 2@ (Y +(x—nod)?* d {cosh2my/d~cos2mx/d}

and

0v,_Ud _ (x—nod)y _I_&r sin 2wx/d sinh 27y/d
oy a {y’+(x—ned)’Y d {cosh2wy/d—cos2mx/d}*

At a point (x, y) outside all the vortex cores:

dv, _ _Uwm _sinh 2my/d sin 27x/d
dx d {cosh2wy/d—cos 2mwx/d}*
dv, _ Um 1-cos 2mx/d cosh 2my/d

day d {cosh2my/d—cos2mx/d}”’

dv, _ Um 1—cosh 2my/d cos 2wx/d
dax d {cosh2my/d—cos2mx/d}

and

dv, _ Usmr sinh 27x/d sinh 2my/d
dy d {cosh2wy/d—cos2mx/d}

Hence one obtains the equations:
(i) for a point (x, y) inside the noth vortex, i.e. (x —nod)*+y’<a’

dx_ Udy Ud y LU sinh 277y/d Lk

dt 2ma® 2w {y*+(x—ned)?} 2 {cosh2my/d—cos2wux/d} Kk’

dy _ Ud(x—ned) Ud (x—nd) U sin 27x/d +c}—{3
dt 2wa® 27 {y*+(x —ned)’} 2 {cosh2mwy/d—cos2mx/d} ~k’
flﬁ=_ [g@ y(x—nod)  Us sinh 27ry/d sin 27wx/d ]_

dt ‘Lo {y2+(x—noed)* d {cosh2wy/d—cos2wx/d}

" 2ma’ 2w {y*+(x —nody’y¥ d {cosh2my/d—cos 2ax/d}’

f [ Ud N Ud y*—(x—nody Um cosh2wy/d cos wa/d—l]
—k, _um

and

ﬂ(_zz_k [ Ud Ud (x—ned)'—y* Us 1—cos2mx/d cosh2'n-y/d]“
dt "W27a® 27 {y*+(x—nod)?y® d {cosh2wy/d—cos2mx/d}
—k [_;U_d (x —nod)y Un _ sin2wx/d sinh 27ry/d ]
L 7 {y*+(x—ned)¥  d {cosh2wy/d—cos2mx/d})
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(i) Outside the vortices

dx_U sinh 27ry/d ky
dt 2 {cosh2my/d—cos2mx/d} "k’
dy U sin 2mx/d k,

dt 2 {cosh 27ry/d —cos 2arx/d} %

k.U cosh2wy/deos 2mx/d —1

dki _k.Umw sinh2wy/d sin27wx/d
d {cosh2wy/d—cos 2mwx/d}”’

dt d {cosh 2ary/d —cos 27x/d}

dk; _k,Um 1—cos2@x/d cosh2wry/d  k,Um  sin27x/d sinh 27ry/d
dt  d {cosh2my/d—cos2mx/d¥ d {cosh2my/d—cos2mx/d}

We introduce non-dimensional co-ordinates

x=% M=Y 1= K=kd and s=2
d c d a

Hence we have inside the noth vortex core: Y*+ (X —n)*<1/s”

dX_Ms’Y MY M__ sinh2rY K
dT 27 2#@{Y’+(X—n¢* 2 (cosh2wY—cos27X) K’
gz *MSZ(X—no)_*_M_ X-n) M sin 27X +£<3
dT 2m 20 {Y?*+(X—noy)?} 2 (cosh2wY~cos2aX) K’
dK, __ [M (X—nyY _ sinh 27Y sin 27X ] B
dT "Lar (Y24 (X —no)?P “{cosh 27Y —cos 2 X}
—K[—M82+M Y’ —(X—no)” cosh27chos27rX—1]
L 27 20 {Y’+(x—no)P “{cosh 27Y —cos 2 X 2]’
dK2=_ [Ms’_ﬂ (X—n-Y? N 1—cosh27Y cos 27wX|
dT 120 20 {(Y+(X—n) " "{cosh 2wY — cos 2mXV

_K[_I\_/I (X—ny)Y M sin 27X sinh 27wY ]
L m {Y?+ (X =no)P “lcosh 27Y —cos 22X

For (X, Y) outside the cores of any of the vortices

dX M sinh 27Y K,

ar 2 (cosh 27rY —cos 27rX)+_K"
dY_ M sin2eX K
dT 2 (cosh27Y—cos2nX) K’
dK;, sinh 27Y sin 27X cosh27Y cos 27X —1
= K\M + K, M-
*cosh 27Y —cos 27 XY

dr T {cosh 27rY —cos 27X}

and

@= K 1—cosh27Y cos 21-rX_K sin 27X sinh 27wY
daT M cosh 2wY —cos 2aX T {cosh 27Y —cos 2#X}*
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The magnitude of (K, K5) is eliminated from these equations by introducing i« = (1/K)(K,, K;) and hence

éﬁ__d_(ﬁ)
dT dT\K

“KdT K*dT

1 dK, K,(Kl 1 dK, K, 1 dKz)

T KdT K

Thus we have finally; for a point (X, Y) inside the noth vor

K K dT K K 4T

tex X2+ (Y —noy’<1/s’

sinh 27wY

dX _Ms'Y MY M

- +— +
AT 2@ 2w Y  +(X—no)’} | 2 (cosh2mY —cos 27X) "

dyY  Ms’ M X —ng

M sin 27X

aT 2w (X = no) +

de; 1 dK, ( 1 dK, 1 dK2>

dT" K a1 “\"'K 4T "k a1

— —— +
27 {Y*+(X—no)} 2 (cosh2nwY —cos2wX)

K2,

(i=1,2),

1 ii_1_<.l.:_ [M Y(X"‘no)
KdT ©

sinh 27Y sin 27X ] 3

P Y+ (X - no)z}zw *{cosh 27Y —cos 27X}

__ [_MSZ+M YQ—_(}{—H())2
e 20 {Y*+(X —ny)’}

I dK, Ms* M (X—n)—-Y*

cosh 27Y cos 27X — 1]
i w
? {cosh 27Y —cos 27X} 3’

K dT ~ "“[ﬁ_'i}? (Y2 (X —no)p

+ M7

1 —cosh 27Y cos ZwX] B
"{cosh 27Y —cos 27X}

B [_M (X—n)Y
aE 7 {Y’+(X —n,)Y

For (X, Y) outside all the vortex cores we have

dX M sinh 27Y

sin 27X sinh 27Y ]

"{cosh 2mwY —cos 27XV

il +
dT 2 (cosh2wY —cos27wX) K

dy M sin 27X

— +
dT 2 (cosh 27Y —cos 27X) 2

dr,_ 1 dK; ( 1 dK,
dT K ar "\

1 dK, sinh 27rY sin 27X
K1

= +
K dT Mm {cosh 27 Y —cos 2wX} 2

1 dK, 1—cosh27Y cos 27X

K dT = “*K dT

c2) =12,

cosh2wY cos2mX —1
“{cosh 27Y —~cos 27X}

sin 2aX sinh 27wY

K dT M {cosh 27rY —cos 27X}

16
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APPENDIX B

An Approximate Expression for the Deflection of a Ray Passing Through a Vortex

The exact velocity field inside a vortex is given by:

Ud +£J sinh 27y/d _Uud _y
27a’ " 2 cosh 2my/d—cos2wx/d 2w x*+y”

L =

that is

Udy a’
YT [1 +O(_c_l_5>]’
and similarly

Udx a’
”2=‘m[1+°(a*z)]-

Hence a reasonable approximation inside a vortex is

Udy
Y o ra?
and
__Udx
vz 2ma”
Then the equations for ray tracing give
dx k
b A -1
P72 (B-1)
dy ks
g DX + X c, (B-2)
dk, _
e k.p, (B-3)
dk,
F7 kip, (B-4)
where
_ Ud
P oma®

It now follows that by multiplying equation (B-3) by k, and equation (B-4) by k,, that dk?/dt = 0 and hence

k = constant.
Let g = ¢/k which is therefore constant.

I we write

z=x+iy and [=k,+ik,,

17



then equations (B-1), (B-2), (B-3) and (B-4) lead to

dz .
;- pz +ql
and
% =—ipl.
Hence
1= A exp (—ipt)
and

z = D exp (—ipt)+1gA exp (—ipt).

Suppose a ray enters the vortex at a time ¢ =0 and at a point (a cos ¢, a sin ¢) and with the wave normal
making an angle « below the horizontal.

Then
D =ae*
and
A=ke™,
and so
z=a exp i(¢ —pt)+ gkt exp i(—a —pt).
hence
x =a cos (¢ —pt)+ gkt cos (—a — pt)
and

y = a sin (¢ — pt) +qkt sin (—a — pt).
When x*+y° = a® we have
2agkt[cos (¢ — pt) cos (—a — pt) +sin (¢ — pt) sin (—a —p)]+¢°k** =0,
giving

t=0 or t=—22]§cos(¢—a).

Hence the ray leaves the vortex core at a time
2a
t=——cos(¢p+a).

gk

18



Hence on exit we have
. . 2ap
kit+ik,=kexpiil —a +;k—cos (p+a

and so the angle of the wave normal below the horizontal on leaving the vortex is

o —Ld cos (¢ +a).
mea
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F1G.6. Enlargement showing detail of rays between A and B in Fig. 4.
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