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Summary 

Non-linear partial differential equations that govern the steady supersonic three-dimensional flow of an 
inviscid ideal gas with constant specific heats in an arbitrary curvilinear co-ordinate space are derived. A 
special form of these equations is constructed for the case when two families of stream surfaces and one family 
of parallel planes are used as co-ordinates. Characteristic equations equivalent to this special form are obtained. 
The characteristic equations are suitable for numerical integration of the equations of motion to obtain solutions 
of mixed initial and boundary value problems. The characteristic equations are a generalized form of similar 
equations used by Walkden and Caine 4 as the basis of a numerical method of calculating supersonic two- 
dimensional and axi-symmetric flow fields. 

* Replaces A.R.C. 34 160. 
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1. Introduction 

The prediction of pressure distributions generated when aerodynamic body shapes move with steady 
supersonic speed is an important practical problem which, for complex shapes at least, has not yet been solved 
satisfactorily. 

The non-linear partial differential equations which describe the motion of an inviscid ideal gas with constant 
specific heats have to be integrated numerically, subject to the condition of zero flow through the body surface. 
This integration process is often complicated by the existence of numerous shock waves. 

When the flow is supersonic everywhere, the equations of steady motion are hyperbolic and the mathematical 
problem which has to be solved is a mixed initial and boundary-value problem. If a finite difference method 
is used, the ease and accuracy with which boundary conditions can be applied, and the effectiveness with which 
shock waves can be treated, depends upon the way in which the equations of motion are formulated prior to 
the construction of finite difference equations. 1'2 

A wide variety of steady supersonic two-dimensional and axi-symmetric flows containing shock waves have 
been calculated using a shock-capturing numerical method based on a particular form of the equations govern- 
ing two-dimensional and axi-symmetric flow. 3'4 The success with which these mixed initial and boundary- 
value problems have been treated indicates that a similar technique ought to be tried for three-dimensional 
problems. An appropriate form of the equations which govern the steady supersonic flow of an inviscid ideal 
gas in three dimensions is derived here. 

In Section 2 the equations of motion which express conservation of mass, momentum and energy are formu- 
lated so that two families of stream-surfaces and one family of parallel planes are co-ordinates. Then, in 
Section 3, by treating as parameters all partial derivatives with respect to a variable which defines one family 
of stream surfaces, it is shown that characteristic curves and corresponding characteristic relations which have 
the remaining two co-ordinates as independent variables can be constructed. The equations obtained by 
following the procedure outlined here represent a simple generalisation of similar equations 5 which describe 
steady supersonic two-dimensional or axi-symmetric flow. 

In Appendix B it is verified that the equations of motion given in Section 3 for three-dimensional flow do 
reduce to the equations of Ref. 5 when the flow is two-dimensional or axi-symmetric. 

A brief description of the way in which the equations derived here can be used to construct a method for 
solving mixed initial and boundary-value problems numerically is given in Section 4. 

2. Conservation Law Equations 

In this section, starting from an invariant vector form of the equations governing the steady motion of an 
inviscid ideal gas with constant specific heats, a representation of the equations of motion in a general system 
of non-orthogonal co-ordinates is constructed. Then the special form of the equations, in which two families 
of stream surfaces and one family of parallel planes are co-ordinates, is obtained. 

If the symbols p, p, v and H are chosen to represent pressure, density, the velocity vector and the total 
enthalpy respectively then the equations of motion which represent conservation of mass, momentum and 
energy can be written in the following invariant form: 

mass: 

momentum : 

energy : 

div(pv) = 0 (1) 

p grad(v, v) - 2pv x curl v = - 2  grad p 

p(~ -- 1)v. v + 2~p = 2 p H ( ?  - 1) 

(2) 

(3) 

where ? is the ratio of specific heats. In most cases of interest in supersonic flow, the total enthalpy H is constant. 
At this point, a digression is necessary. Before writing down the form taken by equations (1) to (3) in an 

arbitrary curvilinear co-ordinate system, some useful relationships concerning co-ordinate systems based on 
non-orthogonal families of surfaces will be listed. Many results which are only mentioned briefly here are 
explained fully elsewhere, e.g. by Stratton. 6 



Let  

~") = ~(°(x(t}, x t2), x c3)) i = 1, 2, 3 (4) 

be three a rb i t r a ry  funct ional  re la t ionships  which descr ibe  dist inct  non-degene ra t e  co -o rd ina t e  surfaces ~") = 
= cons tan t  in terms of  co-ord ina tes  x ~1~, x TM, x ~a) of either an o r t h o g o n a l  Car tes ian  system or a cylindrical  po la r  
sys tem;  and  let i~, i 2 and  i a be unit  vectors  in the di rect ions  of  the axes of  the o r t h o g o n a l  system in which the 
co -o rd ina te s  are  represented  by  x "), x c2) and  x ta). 

N o w  six vectors  associa ted  with the surfaces ~") = cons tan t  i = 1, 2, 3, can be defined. They  are  

[ Ox°)l. [ Ox'2't. tx(2}~, [ Ox(3)li 
a(i)= [ ~ J l l  + [ ~ ] 1 2  + ,  / Ion ( i ) ]  3 (i = 1, 2, 3) (5) 

and  

1 ~¢(i)/. 1 ~ ( ° 1 .  1 [ ~¢(i) I .  
(i = 1, 2, 3) (6) 

where  r = 0 if x (t), x (2) and  x t3) are  Car tes ian  co -o rd ina tes  and  r = 1 if x (1), X {2) and  x (3) are cyl indrical  po la r  
co-ord ina tes .  

The  vectors  a (t), a c2) and  a (3} are no rma l  to the surfaces ~(1) = cons tant ,  ~2) = cons t an t  and  ¢c3) = cons t an t  
respectively. The  vectors  at1 ), at2 ) and  a(3 ) are  directed a long  the intersect ions  of  pairs  of  surfaces e.g. a , )  is 
directed a long  the in tersect ion of  ~t2) = cons t an t  and  ~(3) = cons tant .  

It can  be shown  that  

and  

where  

so that  

where  

a ' 1 '  = (a(2) × a(3))/J, (7) 

a ( 2 ) =  (a(3) x a¢l))/J (8) 

a TM -- (a(1) x at2))/J (9) 

J = a(s) .  (a(2) x at2)) , (lO) 

acl). a°)  = 3i  (11) 

1 if i = j  

6 ~ =  o if i v ~ j .  
(12) 

Any  vec tor  w can  be represented as a l inear c o m b i n a t i o n  of  either the vectors  a(i ) (i = 1, 2, 3) or  the vectors  
a ") (i = 1, 2, 3). Tha t  is the vec tor  w can  be expressed in the fo rm 

or  in the fo rm 

W = wO)a(1 ) + w(2)a(2) + w(3)a(3) 

(1) "l- w(2)a (2) + W = w(1)a w(3)a (3). 

(13) 

(14) 



The quantities w (~), W (2) and w (3) are called the contravariant components of w and W(1), W(2 ) and w(3 ) are 
called the co-variant components of w. 

The co-variant and contravariant components of a vector w are related, e.g. 

3 
w(i ) = ~ (a(0. ao))w t/). (15) 

j = l  

It is usual to write 

at/)- ao) = gij, (16) 

so that equation (15) takes the form 

3 
w(i ) = ~ giSw ~0. (17) 

j = l  

It is worth noting too that 

t l) -t- . (2) + W. w = w(1)w w(2)w w(3)w (3) 

and the divergence, curl and gradient operators are (see Stratton) 

div(w) = l {d(Jw(1))/t3~(1) + O(Jw(Z))/O~ ~z) + O(Jw(3))/O~ (3)} 

1 
curl w L~(Ow3/O¢ (2) (3) a ,,- ~¢3) (1) = j ,  - 0w(2)/63~ ) (1) + (0w(1) / °g  - 0w(3) /0~ )'/1(2)+ (0wt2)/t;3~(l) - 63Wtl)/63~(2))a(3)} 

and 

grad ~b = Ot, b/O~(l)a Ca) + 6qt~/63~t2)a(2) + 0~b/0~(3)a ¢3). 

(18) 

(19) 

(20) 

W(1) = 1(0/)(3)/(~(2)  - -  0U(2)/0~(3)), 

- -  (1) + 0(2)0(2) + V(3)U(3) (q)2 v(1)v 

is the square of the velocity magnitude, and 

where 

and 

pc')(q)2/O~ t3) - 2Jp(vt l )w (2) - v(2)w(1)) = - 20p/O~ (3), 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

a(Jpv(l))/O~ cl) + d(Jpo(2))/9~ (2) + O(Jpv(3))/d~ TM = O. 

The following three scalar equations are obtained from the vector momentum equation (2): 

p a ( q ) Z / a ~  ¢1) - 2 J p ( v t 2 ) w  (3) _ / ) ( 3 ) w ( 2 )  ) = _ 20p/bet1), 

p a ( q ) 2 / ~  (2) - 2 J p ( v ( a ) w  ¢1) - -  v(1)wt3)) = - 2 a p / a ~  (2) 

Now, clearly, by substituting in equations (1) to (3) the expressions for the divergence, curl and gradient 
operators given in equations (19) to (21), and making use of the relationships given in equations (7) to (9), 
a representation of equations (1) to (3) in an arbitrary co-ordinate system can be constructed. 

The conservation of mass equation takes the form 

(21) 



and 

W(2) = 1 ( 0 / 3 ( 1 / ~ ( 3 )  - -  (~V(3)/O~ (1)) 

w(3~ = ~(0%)/0~( '-  Ov.)/O~ (2)) 

are the cont ravar ian t  componen t s  of the vorticity vector curl v. 
Equat ion  (3) takes the form 

P ( ? -  1)(q) 2 + 2 7 p =  2pH(y - 1). 

(28) 

(29) 

v .  a (2) = O, 

i.e. 

if v TM = 0. 

Similarly surfaces ~ ( 3 )  = constant  will be s t ream surfaces if and only if 

V TM = O. 

S u b s t i t u t i n g  x (1) = ~{1) and V (2) ---- /)(3) = 0 in equat ions  (22) to (25) and in equat ion (30) yields the required 
equat ions  of  motion.  They  are 

and 

where 

and 

O(Jpv(1))/O~ " ) =  O, 

pqOq/  8~ " ) = _ Op/ O~( a ), 

pqOq/~3~ (z) + p/3~a)(8/3t2)/8~(1) - Ovtl)/O~(z)) = _0p/~3~2),  

pqOq/8~ ~ 3 ) -  pv(1)(Ovta)/8~ (3) - Ov(a)/8~ ~1)) = --Op/O~ TM 

p(y - 1)(q) 2 + 2?p = 2 p H ( ?  - 1), 

(q)2 = v(~)v.), 

V[1 ) ~ g11 /3  (1), 

/3(2 ) = g12 /3  (1) 

v(3 ) = g ~ 3  v(1).  

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

Simplified forms of equat ions (22) to (25) and (30) are required in the special case when the surfaces on which 
~tl) = constant  are planes that  coincide with the planes x ~1) = constant,  and the surface ~t2) = constant  and 
~ta) = constant  are stream-surfaces.  

If x ")  = ~(1)then of c o u r s e  Ox(1)/O~ (1) = 1 whilst Ox~a)/t~ (2) = 8 x " ) / 8 ~  TM = O. 

If surfaces ~2) = cons tant  are stream-surfaces then the componen t  of  velocity normal  to them will be zero. 
The  vector a ~2) is no rmal  to ~(2) = constant  and, in terms of its cont ravar ian t  components ,  the velocity vector  
v = v")a~) + v~2)a(z) + v~a)a~3). It follows that  the surfaces ~(2) = constant  will be s t ream surfaces if, and 
only if, 

(30) 



If transformation elements ~(i) ( i , j  = 1, 2, 3) are defined, so that "(j),  

t(i) = Ox(O/cg~(j), 
(J) 

(40) 

and if 

t(2) (1) = 0~2 
(41) 

and 

(3! _____ ~ 3 / ( X 2 f  
(1) 

(42) 

then, from the definition of g~, a(0 and at/} it can be seen that 

g ~  = 1 + (a2) ~ + (a3) 2, (43) 

~(2) + tx3b~ ] ~(2), g 1 2  = ~ 2 t ( 2 )  

~(2) iv (~A2)~r t(3) 
g 1 3  = t~2t(3) "{- ~ 3  ','~ ! ~(3)~ 

#(2)t(2) (y(2)~2rt(3)t(3) 
g i j =  ~(i)'(j) + w~ ~ " ( i ) ~ ( j ) ,  (i, j = 2, 3) 

(44) 

(45) 

(46) 

and 

j = (x ,2 , )r ( t l~I t~l_  tl~Itl~l). (47) 

In view of equations (36) to (39) and (43) to (47) equations (31) to (35) and (41) to (42) can be regarded as a 
system of seven equations for the unknowns p, p, v (1), ~2, a3, x(z) and x (3). The equations of this system will 
now be expressed in a convenient form for use in Section 3. 

By differentiating (35) with respect to ~(1) and combining the resulting equation with (32) it is seen that 

Op/O~(1) = (p/Tp)Op/3~(1). (48) 

Existence of all second derivatives of x ((), (i = 1, 2, 3) involving partial differentiation with respect to the 
independent variables ~(1), ~(2) and ~(a) in pairs is assumed throughout this report. Relations 

3,(~)/~(k) Ot}~/O~u) (i = 1, 2, 3) (j, k = 1, 2, 3 j # k) (49) 

connecting the transformation elements defined in equation (40) are a consequence of the existence of second 
derivatives of x (°, (i = 1, 2, 3). 

(v(2)wd2)d3) ~(2)t(3)-~ carrying out the differentiation with respect to ~('~, For equation (31), writing J = ~ ~ v~2)-~3) - ,(3)-(2v, 
eliminating the Op/O~(') term by using equation (48), and making use of certain of the relationships given by 
equation (49) shows that equation (31) can be replaced by the equation 

/~,~(1)[(v(2)~rt(3)~tv /~ ) : (3 )  (2) (2) Jpv(1) 
JPOV(1)/3~ (1) + v~ tv  ~ i ~(3)~2/'~ -- t (3)0~3/0~ ] -}- OP/O~(1) 

?P 
g2)~,  /,~y(3) tx(2)~,t(3)3o ~ /~,~(3)1 (50) --  r~'l(1)F~'t(2)[f(2)~'c(3)/r~Y(3) t(3)t~v(2)/tq}g(3)~ "~ " ( 2 ) ~ 3 / ~  - -  ~ ! (2) 2 /  "~ J" 

- -  - - p u  L.V(1)k-(2)v~ / v ~  - -  . ( 2 ) ~  /~'-~ ) 

Similarly for equations (32) to (34); writing q = x / ~ l  v(1), v(x) = g ,~v  (1), v(2) = glzV (1), v3 = g,3v(1); sub- 
stituting expressions for g~ 1, g~ 2, g~ a in terms of transformation elements and the quantities az and a3 ; carrying 
out appropriate differentiation operations; and making use of certain of the relationships given by (49) shows 
that equations (32) to (34) can be replaced by the equations 

gllV(I)Ov(I)/O~(1) + (V(1 ) )2~293~2 /3~(1 )  + (V(1))2~300~3/0~(1) + (1/p)Op/O~ (1) = 0, (51) 

tt)(1)~2t(2)30 ~ /O.~(1) [V(1)'~2[X(2)~'t(3)O0~ /O~(1) (1/p)Op/3~ (2) glzV(~)Ov(X)/O~ (~) + t ~ (2) 2 /  ~ + ~, ! ~ I (2) 3 /  "-1" 

~t,,(1)~2,.. /t(2)~,(3) t(2)t l3) ' t  (52) 
= - - t ~ , v  ! ~ 3 ' , ' ( 1 ) ' ( 2 )  - -  "(2)~(1)] 



and 

gl31)(1)~3t)(l}/o~(1) + (V~))2tl21OCt2/O~ 0~ + (t)(l))2(X(2))rt~31630~3/O~(1) 

= _(1/p)Op/O~t3) .t.,O}X2~, (1(2)t(3) f(3lt(Z)'t (53) 
- -  # lv  ] ~3~,'{1)~(3} - -  ~(1)~(3)1. 

Equations (50) to (53), (48), (41) and (42) are a system of seven equations for the depende~it variables p, p, 
vtl), ~2, 0%, x ~2) and x ~3). These equations are in a convenient form for use in Section 3. 

3. Characteristic Equations 

For hyperbolic partial differential equations in two independent variables, characteristic curves exist and 
along these curves relations connecting rates of change of different dependent variables can be found. 

Here, terms containing partial derivatives with respect to ~t3~ in equations [(50) to (53), (48), (41) and (42)] 
are treated as parameters. Then it is shown that under a condition which can be expected to hold in a variety 
of practical cases, the equations of motion derived in Section 2 are hyperbolic partial differential equations 
in the two independent variables ~11) and ¢~2~. Expressions for both the slopes of characteristic curves and the 
characteristic relations for the equations of motion given in Section 2 are constructed in this section. 

First it is noted that equations (50) to (53) and (48) can be represented in the form 

AOlI/O~ (1) + BOII/O~ (2) = D, (54) 

where A = {ao} and B = {b~j} are four by four matrices and u = {ui} and D = {di} are column vectors which 
have four elements. 

The elements of u are 

The elements of D are 

Ul = /)(1), U2 = g2  

u3 = ~3,  u4 = p. (55)  

da _r,~t2(1)t(2)lt(2)t{3) f(2)~(3)~ ,a~(1)iv(2)]rf(3)~tv /By{3) ~t j( t ) / (2)Og /63,~(3) 
P (l)X (2)'(3) - -  ~(3)v(2)! q- P ~  x ~ ! ~ (2 )v~2 /~b  - -  P' (2) 3 /  b , 

d 2 = O, 

d3  _ ,.(,,(t)~2~, (t(2)f(3) t{2)t(3)~ 

and 

d 4 =  

The elements of A are 

" ~  ! ~3x ' (1) ' (3)  - -  ~ ( 3 ) ' ( 1 ) ! -  ~,llpIWF/w% (56) 

al l  = JP, 

£113 ~ O~ 

a21  ~ g l l v  (1), 

a23 = (v") )%,  

a31  ~--- g12 / )  (1}, 

a33 = (vll))2(x{Z~)'t1231, 

a41  = gl3u{1)~ 

a,,~ = (v"')Z(xC~)~t~3 i, 

a12 -~ 0 ] 

a14 JpvU)/Tp 

a22 = (v"~)z~z 

a24 = 1/p 

a 3 2  ~ ~v ! t(2) 

a34 = 0 

/',,(1)'12~(2) } 
a 4 2  ~ v-" ,' ~(3) 

a44 0, 

(57) 

(58) 

(59) 

(60) 



and finally the elements of B are 

b l l  = O, b12 = t -~rll~(1)/v(2)]rt(3)x ~ ; t(3) t 

b13 . . . . .  (i)d2) b14 0 t.'~ "(3), (61) 

b21 = 0 ,  b22 = 0 

b23 = 0 ,  b33 = 0  (62) 

b31 = 0, b32 = 0 

b33 = 0 ,  b34= 1/p (63) 

b41 =0, b42 = 0 

b4a = 0 ,  b 4 4 = 0 .  (64) 

It ought to be remembered that r 
cylindrical polar co-ordinates. 

Characteristic curves associated with equation (54) can be found by introducing a transformation 

~(1) = ~,/(I)(~(i)~(2)), 

and 

= 0 i fx  (~), x (2), x TM are Cartesian co-ordinates and r = 1 i fx  m, x ~2), x TM are 

?/(3) ~ ~(3), 

so that equations (54) may be written in the form 

(65) 

( Oq (1) O~I(~)RI Ou Ou 
A + I + 8 = o. (66) 

A finite number of characteristic curves can pass through a given point in space. For  equations of the form 
(54), the characteristic curves through an arbitrary point have slopes 2 = -(at/m/d~m/at/m/a~(2)), which 
satisfy the quartic polynomial equation represented by the characteristic determinant 

IB - 2A[ = 0. (67) 

Note:--It must be remembered that the characteristic curves lie in the (~m, ~2)) plane and 2 = d ~ t 2 ) / d ~  {lj 

is the slope of a characteristic curve in this plane. 
When the system (54) is hyperbolic, equation (67) has four real roots. In the case being considered in this 

report, (67) has the form 

( / ~ ) 2 { ( J ) 2 ( 1  - -  ( M ) 2 / g l l )  (~)2 --  2(g13923 -- g12933) } '̀ + (g l lg33 -- (g13)2)} = O, (68) 

where M = {Pgl l(vm)2/?P} ½ is the local Mach number. 
Clearly 2 = 0 is a real root of (68) which is repeated twice and, since the quadratic expression in (68) has 

two distinct real roots if (M) 2 > gl 1, it follows that with elements of U, D, A and B as defined in equations 
(55) to (64), equations (54) are hyperbolic if (M) 2 > g11- 

The condition (M) 2 > gl 1 will be satisfied easily for supersonic flow past highly streamlined shapes when 
gx x is close to unity. In other cases, the condition will always be satisfied provided the local Mach number of 
the flow is high enough. 

The two characteristic relations corresponding to 2 = 0 are, trivially, the second and fourth of equations (54) 
i.e. equations corresponding to (51) and (53) which contain no partial derivatives with respect to ~(2). 

Let 2+ and 2_ be the non-zero roots of the quartic equation (68), so 

~+ ---. (g13g23 - -g12g33)  -'l- 4{ [g13g23  - -g12g33]  2 -- (J)2[1 - ( M ) 2 / g l l ] [ g l l g 3 3  - (g13)2]} 
(J)2(1 - ( M ) 2 / g l l )  (69) 

9 



The characteristic relations corresponding to the characteristic curves whose slopes in a (~(1), ~(2)) plane are 
2+ and 2_ respectively are derived by replacing the elements of the first column of the characteristic determinant 
IB - 2AI by elements of the column vector C = BOu/Oq (2) - D. The determinant obtained is evaluated putting 
2 = 2+ and 2 = 2_ in turn, and the results equated to zero are the desired characteristic relations. 

For the equations derived in Section 2, the characteristic relations obtained by following the procedure 
outlined above have the form 

[~(1)~2/v(2)~r'(3)F 1 q F 052 1 052 ] 
_w ,,~ ,,(3)L(J)2 q_ ~(g12g33- ga3gz3)JLa-~ + # ~ j  + 

,.,.),z,~z~r 1 ] F a53 1 a% ] 
+ #g1 g33- + - 

1' [-(M) 2, 21 [ c~p 1 0 p l  
P L gl--~l g12g33 -- g,3g23) + g33/ . - , , - '~  + -~-~(i3] + 

-3-(2~, + -- + (2)~j + 
I_ 611 

+ p ~ [ ( j ) 2  1 g 1 3 g 2 3 ) ]  + 2~g12g33 -- 

- c~31)[(Mg~)l~ g12g33 - g13g23) + g~323- ] =0  (70) 

where 

~I.,(1)'~2N tt(2)t(3) t(2)t(3)'l 1 ~3p 
C 4 : .~v I ~3~.'(1)'(3) - -  ~(3)'(1)1 "~ - - - -  (71) p 04 TM 

C(31) ~/,,(1)'~2N ft(2)f(3) ~,(2)t(3)'h 
= r~v I ~3~(1) ' (2)  - -  ~(2)~(2)1 (72) 

and 

dl . . . . .  (1),(2)~,(z),~3) - -  ,,(2)f(3)'~ _1_ r11~(1)/v(2)'~e~.(3)~, /.q,~(3) - -  pV(1)t121C353/d~(3). 
: .p.~ ~(1)~(2)-{3) ~(3)~(2), ' b.~ ~ i - (2)~2/~ ' .~  (73) 

Substituting in equation (70), 2 = 2+ from equation (69), yields the characteristic relation corresponding to 
the characteristic curve whose slope is 2 = 2+. Similarly, substituting 2 = 2_ in equation (70) yields the 
characteristic relation corresponding to the characteristic curvewhose slope is 2 = 2_. 

Although the derivation of equations (69) and (70) is simple in principle, the analysis is fairly complicated. 
The analysis is given in Appendix A. 

4. Discussion 

The object of the investigation described in this report was to derive a version of the equations which govern 
the supersonic inviscid flow of an ideal gas. These equations were required in a form suitable for applications 
in the construction of numerical solutions to mixed initial and boundary-value problems associated with 
hyperbolic partial-differential equations. 

For the seven dependent variables v (1), 5 2 ,  5 3 ,  p, p, x ~2) and xt3): 

(70) with 2 = 2+ (see (69)) (74) 
(70) with 2 =  2_ (75) 
(48) (76) 
(51) (77) 
(53) (78) 

~X (2) 
~ ( 1 )  - -  52 (79) 

10 



and 

OX(3) 

0 ~ ( 1  ) = 0~3/(X(2)) r, ( 8 0 )  

form a suitable system for solving mixed initial and boundary-value problems numerically. 
A detailed account of the construction of a numerical method of solving equations (74) to (80) will not be 

given now. Here, it is noted simply that, 
(1) when derivatives with respect to ~(a) that appear in equations (74) to (80) are replaced by finite difference 

approximations, (74) to (80) yield a system of simultaneous equations in two independent variables 
(~(1) and ~(2)), and 

(2) the system of equations obtained by replacing ~(3)-derivatives by finite difference approximations is 
hyperbolic when (M) 2 > g11. 

It follows then that when (M) 2 > gl 1, the discretisation method used by Walkden and Caine 4 to solve mixed 
initial and boundary-value problems associated with systems of hyperbolic partial-differential equations 
with two independent variables can be applied to the equations obtained from (74) to (80) by introducing 
finite difference expressions for ~(3)-derivatives. 

For two-dimensional flow, when r = 0 so that x (~), x (2), x (3) are co-ordinates in Cartesian space, or when 
r = l, so that x °), x (z) and x (3) are cylindrical polar co-ordinates, the characteristic slopes 2+ and 2_ given 
by equation (69) together with the characteristic relations derived from equation (70) can be reduced to the 
form given by Poole and Walkden. 5 Appendix B contains the analysis which verifies that both the two- 
dimensional and axi-symmetric flow forms of equations (69) and (70) are equivalent to the forms given in 
Ref. 5. 

APPENDIX A 

A.1. Derivation of  Equation (69) 

In order to obtain equation (69) the determinant [B - 2A[ has to be evaluated for the case when the elements 
of the matrices B and A take values given in equations (57) to (64). In this case 

IB - kAI = 

- J p 2  pv  (~)(x(2))"t131 _ pv(a)tl2~ _ 2 J p v  (a)lyp 

- - g 1 1 1 ) ( 1 ) 2  - -  2(13(1))2~ 2 - -  2(/-)(1))2(~ 3 --2/p 

- - g l  2 / ) (1)2  - -  ]G~(1)~2t( 2 ) "~,~ ,' "(2) --2(l)(1))2(x2)rt131 1/t0 

- -  ~[1~(1)~2t(2) --2(V(1)~2(X(2)~rI(3) 0 - - g 1 3  v (1 )2  - ~  I "(3) ~ y (3) 

= A 1 + A 2 + A 3 , (A-l) 

where 

A 1 - 
Jp(o(1))6(2) 4 

7P 

gl 1 6(2 (x-(O~32)]r ~ '(3 ) 

~(2) x ~ ! v(2)l g l  2 "(2) 

t(2) (y(2)~rt(3) 
g~ 3 ~(3) , '*  ! "(3) 

JP(v° ) )6 (2)#  I-/v(2)~r#(2)t(3) (x.(2)hrt(3)~(2) ] (2) r (3) +(2)] ~ ['N J'v(2)r#(3) (2) 
-- {gllL~-~ J~(2)~(3) ~'~ :'(2)'(3)J g12[~2( x )t(3) + - - - ~ 3 t ( 2 ) 3 }  - -  (~3 ~(3)-I fi, 1 3L~21, "~ ~(2) 

7P 

= ( v l ) ' ( 2 ) ' { [ g l ~  - (~2)~  - (~3)  2] (S)2(vl)~p/~,p} 

= (v") )4(2)4(M)Z(S)2 /g l  1, (A-2) 

11 



A 2 - 

-(v"))4(2)  2 
jp ¢){v(2) ' ff t(3)  -(2) 

r ~ ' "  ! "(3) - -  P l ( 3 )  

_ _  t ( 2 ) 2  __ (v (2 )~r t (3 )  .1 
g 1 2  "(2) "~ ~ ! ~(2),~ 

_ _  t(2),~ __ { ~(2)~lr t(3)~ 
g l  3 "(3) "~ ~ ] -(3) ,~ 

= - - ( v ° ) ) 4 ( 2 ) 4 ( J ) 2 -  ( v o ) ) 4 ( / ~ 3 f o  rtx(2)x2rQ(3h2 (t(2)'t2"l o r ( y ( 2 ) ~ 2 r , ( 3 ) , ( 3 )  t(2)t(2)'l~. 
] t 6 1 2 L K  ] ~. (3) /  + I.r(3)! J - -  6 1 3 L  ~-~ ! ~(3)~(2) -}- " ( 2 ) ' ( 3 ) d J  

= - -  ( / ) ( 1 ) ) 4 ( ~ ) 4 . ( j ) 2  _ ( i ) (1 ) )4 (~ . )3{g  1 2 g 3 3  - -  g 1 3 g 2 3 }  (A-3) 

~ s f .(1) 
pl)(1)(X( 2 ))r tl 3 ~ 

/- '~ ~(3) 

A 3  = p ~,1~ - - ( / ) ( 1 ) ) 2 ( Z 2 2  - - ( U ( 1 ) ) 2 ( Z 3 2  

g 1 3 / ) (  1 ) - - / , , ( 1 ) ' t 2  f ( 2 ) ]  ,~ , ,,3).~ -(o('))~(x(2))*tl~l,~ 

= __ (D( I ) )4 j (~ )3{OC2(X(2 ) ) r t I 31  __ ,(2).1 ( 1 ) ( l ) ) 4 ( ~ ) 2 { p g  1 [ ( X ( 2 ) ) 2 r ( t ( 3 ) , 2  D-(2)'~2-1 (2) 0~3~(3)'(, (2) r (3) 1 (3) /  -~- ~*(3)1 J - -  Pg13[O~3( X ) t (3)  + (~2 / (3) ]}  
P 

= - - ( v ( ' ) ) 4 ( 2 ) 3 { g 1 2 g 3 3  - -  g 1 3 g 2 3 }  - -  (v(l))4(2)2{g, lg33 -- (g13)2} • (A-4) 

N o w  

IB - 2AI = A 1 + A 2 + A 3 

[-/(M)2 - l/-] - 2( v( ~))4(2)3(g] 2g33 - g ,  3gz3) - (v"))4(2)2(gl ,g33 - (gl 3)2) • (v ( 1 ) ) 4 ( , ~ ) 4 ( j ) 2  

Lg11 A 
(A-5) 

Since v (a) ~ 0, it fo l lows that the characteristic equat ion  IB - 2AI can be expressed in the form (69). 

A.2.  Derivation o f  Equation (70) 

In order to obtain equat ion  (70), the e lements  of  the first co lumn of  the matrix (B - 2A) will be replaced 
by the e lements  of  the c o l u m n  vector 

C = ( B ~ a / ~ n  (2) - -  D )  

and the determinant  of  the resulting matrix will be evaluated and equated to zero. 
First it is noted  that, 

and 

where 

and 

= n ~ ( 1 ) / v ( 2 ) ~ r t ( 3 ) r ~  / r ~ ( 2 )  ~l~(1)t(2),~tv / , ~ ( 3 )  dl 
C 1 / . .v ~ ; ~ ( 3 ) ~ 2 / ~ , !  - -  p ,~  ~ ( 3 ) v ~ 3 / ~ , !  - -  , 

C 2 = O, 

c 3 = (1 /p ) (~p /~ t l  (2) + c(3 a) 

v{~,(1)~2~ / t ( 2 ) t ( 3 )  t (2)t(3)~ 
C 4 = . ~  ! ~ 3 ~ ( 1 ) ' ( 3 )  - -  . (3)~(1) /  -~- (1/p)ap/O~ (3) 

C(31 ) ~[ . , (1)32~ ( t (2) f (3)  f(2)t(3)~ 
= r(u ) ~ 3 ~ ( 1 ) ~ ( 2 )  - -  t ( 2 ) ' ( | ) !  

dl _ _ p n , ~ ( l ) t ( 2 ) / f ( 2 ) t ( 3 )  t(2)f(3)~ ~ l ( 1 ) ( v ( 2 ) ~ r f ( 3 ) ~  / ~ ( 3 )  ~ ( 1 ) f ( 2 ) ~ N  /,~):(3) 
---- . i . ,  ~ ~(1)~(2)~(3) - -  ~(3)~(2)/ + ~ ~ ! " ( 2 ) ~ 2 / ~  - -  F, ~ ~ ( 2 ) ~ 3 / ~  • 

(A-6) 

(A-7) 

(A-8) 

(A-9) 

(A-10) 

(A-11) 
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It follows that the required characteristic relations are given by 

,~,,{1)(~.(2)~r~(3)1) . . . .  (I)~(2)/) _ jpvtl)/ypl 
C 1 //,., ~.~ ! ~(3)/.~ t~ ,  ,(3)/.~ 

C 2 - -  (/)(1))2¢Z 2 - -  (0( I ) )2~ - -  l / p  I =  3 

[. (1)'i2,(2) I. l 't21~2~r,(3) 10 ] c3  - w  ~ ,(2) - ~  ~ ~ ~ ,{2) /(02) 

C4 ~ / ~(3) --~v ! ~,'~ ! ~(3) 

, (A-12) 

i.e. 

c , A ,  + + - c , A .  = 0 (A-13) 

where 

= ( v ( ' ) 2 ~ 2  

A 4 (-(1)]2t(2) ~ ,t "(2) 

(~(1)12t(2) 
w x ~(3) 

(v{1))2~ 3 - lip 
(,,(1)X21~(2)'~r,(3) Y ~ ~'{2> 1/(02) 
I)( 1 ))2(,r(2)'lrf(3 ) 

~ ~ -' "(3) 0 

Lt~(2)YV ~ Y ~(3) -- ~ P °(2)~(3)J + ,~L~2W " Y "(3) -- 6(3t(3) 

(v{'))4[(j) 2 1 g13g23)), 
PJ ~ + 2-(g~2933 - (A-14) 

__ ,a~( 1 )/'v( 2)~r ~,( 3 )/,] n1~(1)f(2)/] t.~ ~-~ J "(3)/'~ w ,{3>/-~ Jpvm/~p 
A 5 ~--- - -  (/)(1))20(2 (/)(1))20( 3 lip 

(v{~))2t~ I (v{~))2(x(2))'t~31 0 

= _Jpv(l>/yp{(v(a))4[otz(x(2)ftl31 (2) - -  a3t(3)] } + 1/p{-p(v{l')3[(x{2))2"(tl~l)2/2 + (t{2>~2/2'~ (3)] / l/ ' 

= - - ( V ( 1 ) ) 3 [ ( - - - ~ ( g 1 2 g 3 3  - g 1 3 9 2 3 ) +  g 3 3 / / ~ ) ,  

~ 6  ~ N 

__ n,,( 1)[~(2)~r+(3)/] nn (1 ) t (2 ) / ]  t',' v~ j ,(3)~.0 ~,~ ,(3)/.~ Jpv(1)/yp 
(v(1))2~2 (v(1))2% 1/p 

( ''{ a)'12d2) (1)(1)~2(X(2)]rt(3) - 1/(p2) 
/ ~(2) J ~ J (2) 

= __Jpv(1)/yp{(v(1))4[o~2(x(2))rt~31 (2) 
- -  t z 3 / ( 2 ) ]  } - -  

(~(1)13 
~ ! /(v(2)~2rf(3)t(3) ~(2)t(2)] " 

/l (x ~ Y "(3)'(2) -F "(3)'(2)~ - - -  
(U(1))3$'0~ [v(2)~rt(3) tv f(2)~ 

22  ( 3~ ~ I "(3) + ~2"(3)J  

(A-15) 

j 2 ~ 3  g13 / = _(V(1))3 [J(M)2[t~_(x(2)~.t(3) .(2)q (A-16) 
g , ,  ~ , {2) - ~ 3 , ( 2 ,  + - -  + ( - ~ / .  (,~)2 

Substituting in equation (A-13) the expressions given in this appendix for cl,  c (1), c4, A4, A s and A 6 yields the 
equation, 

( l~(1)'lS/~e{2)~rt(3) ( 1 g,,(i)~5~(2) ( 

1 (o(I))3 ( ( M ) 2 ,  _ + g 3 3  T Op dl(V(1))4 {(J) 2 +  ~ ( g 1 2 g 3 3 -  g 1 3 g 2 3 ) }  - -  
p ~T~-lltg12g33 g13g23) .t JOt/(2) + 
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2 } M 2  ~ 3  
P ( l ) ' " t l ) x 3 f ( M ) "  4 l g x l  2, ! (2) rv t(2)l -- ~3 tv J l - - g l l t g '  2g33 - -  g13g23) q - ~  + C ( v (1 ) )3 ; J (m)e[o t  {x(2)~rt(3) __ ~3~(2) J + _ _  + (~;~--'g13] 0. 

(A-17) 

Equa t ion  (70) follows if equa t ion  (A-17) is d ivided by (v'l)) 3, and  the ope ra to r  ~3/Orl '2) is replaced wherever  it 
appears  in (A-17) by the ope ra to r  c3/0~ '2) + (1/2)c3/c3~ '1). 

A P P E N D I X  B 

B.1. Character is t ic  Slopes for Two-dimensional  and Axi -symmetr ic  Flow 

W h e n  the flow is ax i - symmetr ic  or  two-d imens iona l ,  the surfaces ¢,3) = cons tan t  can be chosen  to be planes  
such that  X (3) = ~ ( 3 ) a n d  then X (2) = - x t 2 ) ( ~  '1), 3(2)). 

It follows that  

and  

The  s t reamline slope is 

j = ty(2)]r{t(2),(3) __ f(2)1(3)] (v(2)]r/(2) 
t ~ ! ~'(2)'(3) ~(3)~(2); ' = ' ~  J ~(2), 

g13  = 0, 

g33  = (X(2)) 2r' 

g23  = 0, 

gal = 1 + (0~2) 2 

= t(2),(2) 
g12 "(1)'(2)" 

t121 = 0~ 2 

---- t an  0 

in this appendix .  
N o w  the quadra t i c  equa t ion  

(2)2(j)2( 1 - (M)2/gla) - 22(g13g23 - g12g33) + (gl lg33 - (g13) 2) = 0, 

for the character is t ic  s lopes 2+ and  2 _ ,  reduces to 

(x'2))2r(t121)2(1 - (M)2/(1 + tan  2 0))(2) 2 + 2(x'2)) 2r t an  0t12212 + (x'2))2r(1 + tan  2 0) = 0. 

The  roots  of  this equa t ion  are 2+ and  2_ where  

1 ,,2) tan  0 -T- ~/{(1121) 2 tan  2 0 -- (1(2)~2 ~(2) '~(2)! s ec2  0(1 - ( M ) 2 / s e c  2 0)} 

~+_+= s e c  2 0 

_ (2) " _ 0x /{ tan  2 0 -- (sec 2 0 -- cosec 2 p)}) -- --t(E)(Sm 0 cos 0 + COS 2 

= -- tlEZl COS 0/sin #(sin 0 sin kt +_ cos 0 cos p). 

In equa t ion  (B-3), p = s in -  1(1/M). 

(B-l)  

(B-2) 

(B-3) 
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From equat ion (B-3) it is clear that" 

- sin/~ 
2+ = ,(2) c 0(sin 0 sin # + cos 0 cos #) - t(2 ) OS 

s e c  2 0 s i n / ~  

= ~ ,(2) c.c~ s ~(2) w /~(1 + tan 0 tan/~) 

gl i tan 
T (B-4) 

' (2)(1 + t 2 tan #) '  ~(2)', - -  

The  expressions for 2_ and 2+ obtained from (B-4) are identical to those given in Ref. 5 for the slopes of the 
left and right hand characteristics respectively. 

B.2. Characteristic Relations for Two-dimensional or Axi-symmetric Flow 

If (q)2 = g~ :(v(~,)2 then when the flow is two-dimensional or axi-symmetric equation (70) reduces to 

"(2~sa'(2)" 1 + 2+, ~ _  , ~(ar(2)j La~(=) + ,t± a~(') 

|)'"} ~__C ~(ty(2) + + 
PL g,, ~ _ +  J O-~  2+ ac~(')J 
r ( ~ 2 ~ ( 2 )  t(2) 

V t )  ~ (1y(2)  F tx (2 )~2r t ' t (2h2  d 2 ) d 2 ) ( ~ ' ( 2 ) 1 2 r / ~ ]  = 0 
, ~ , ~ i D ,  ! ~, (2)) -{-"(1) '(2p, ~ ..' / '~J 
61 lk "~" ) ~(2) 

q2.r,(2) t(2)/2 IF a~2 __I ao~ 2 ]__ 
g11,,(2, + (1), +JLo~:(2, + 2+ ~">d 
r/~,~2 +(2),(2) 

~.~J) "(1)'(2)Ft(2) + (2) 
- - - - -  t . ) 1 2 + ] .  g I  1(X(2)) r "L (2) 

This equat ion can be expressed in the form 

1 dLf,..,2.,2,.(2, 
g , ,pL" " '  o.).(2) + L-+_ J + 2_+ 

(B-5) 

q2F,(2) ~ t ( 2 ) q F 0 0 ~ 2 ~  ~ X 2 ]  LUILC'I2t(2)d2)2~ +gll]I OP ~P ] 
• °(~r± + ~(1).La~(2).~_+ + a¢('] + p " " '  ,,)°(2r± ~--~-~_+ + 

Now 

~[~2#(2)t(2) 
- -  "~'~/) ~(i)'(2) 2 r , (2)~ t(2)l (B-6) tx(2)~----7~ ) + t~(2).~_+ + .(~)j. 

,(2) tan/~ + ,(2) tan #(M)Zgl g l i  -T-gila(t) -- "(1) a 
t(2) + tan/~ (1) - -  

= gl l [1  T t(1)(2) tan/~ + t~lzl tan #(M) 2] 
÷(2) + tan #] t (1)  - -  

= g l l [  1 + tl21cot/~] 
,(2) + tan #] t ( 1 )  - -  

= _+g,, cot  #. 

Therefore,  for two-dimensional  flow (r = 0) or axi-symmetric flow (r = 1), the characteristic relation (70) 
takes the form 

1 ]-(~0~2 ( 2 ) ( 2 )  n ~ 2  ] c ° t#FOP ( 2 _ _  _ _  ) ,(2, 8p ] 
g-~l L0-~i5'(2)(1T '(1)ta - -g l l  tan/ ) -+ .,,, t a n # ) +  o~(_-q-g,,  tan#) 

_ ~.,(2),(2) tan i~/(x(Z))L (B-7) - -  T °~(1)~(2) 
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Equation (B-7) is equivalent to 

~a2 ] L~F 00~2 t12}tl12},, "~ "[1)'(2) tan #) + ~ -t-g1 1 tan/~) L'tl)r'(2} +_ tan/t] + 

1 F  Op t(2}tl ,tZ}tan t~) + Op 1 +p(q)2L63~(1)(2}, ~ "~1} ~ - - + _ g ,  t t a n p )  x [g~x +glxtanla+tlZltan!a(M)2gla] 

= ~,~2},~2}. tan ,,r,(2) + tan la]/(x(2}) ". 
" ' { 1 ) ® ( 2 ) 6 1 1  / ~ L ~ ( I }  - -  

On dividing this equation by '- t,c2) + tan/~) it is seen that 6 1  l l , ~ ( 1 )  - -  

1 [ -  O~ 2 tt2) q O~ 2 + ] g,,L~¢,,, (~,, ~ tl2]tan#) + ~-~(_g:, tan/O + 

] t(2) tan/~ + ¢2) tan/~(M)2gl 1] 1 ~ Op ,t2} *-n #) + -t-g I tan  kt) x [gl 1 -T- gl it(l} - -  "11) + p(q)Zg------~lLt~,ltI21(1 -T- o~i} "- 1 [t121 _+ tan/~] 

" ~ ( 1 )  ~ ( 2 )  . . . .  

Equation (B-9) can be compared directly with the characteristic relations given by Poole and Walkden. 5 

(B-8) 

(B-9) 
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