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Summary

Non-linear partial differential equations that govern the steady supersonic three-dimensional flow of an
inviscid ideal gas with constant specific heats in an arbitrary curvilinear co-ordinate space are derived. A
special form of these equations is constructed for the case when two families of stream surfaces and one family
of parallel planes are used as co-ordinates. Characteristic equations equivalent to this special form are obtained.
The characteristic equations are suitable for numerical integration of the equations of motion to obtain solutions
of mixed initial and boundary value problems. The characteristic equations are a generalized form of similar
equations used by Walkden and Caine* as the basis of a numerical method of calculating supersonic two-
dimensional and axi-symmetric flow fields.

* Replaces A.R.C. 34 160.
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1. Introduction

The prediction of pressure distributions generated when aerodynamic body shapes move with steady
supersonic speed is an important practical problem which, for complex shapes at least, has not yet been solved
satisfactorily.

The non-linear partial differential equations which describe the motion of an inviscid ideal gas with constant
specific heats have to be integrated numerically, subject to the condition of zero flow through the body surface.
This integration process is often complicated by the existence of numerous shock waves.

When the flow is supersonic everywhere, the equations of steady motion are hyperbolic and the mathematical
problem which has to be solved is a mixed initial and boundary-value problem. If a finite difference method
is used, the ease and accuracy with which boundary conditions can be applied, and the effectiveness with which
shock waves can be treated, depends upon the way in which the equations of motion are formulated prior to
the construction of finite difference equations.!*?

A wide variety of steady supersonic two-dimensional and axi-symmetric flows containing shock waves have
been calculated using a shock-capturing numerical method based on a particular form of the equations govern-
ing two-dimensional and axi-symmetric flow.>* The success with which these mixed initial and boundary-
value problems have been treated indicates that a similar technique ought to be tried for three-dimensional
problems. An appropriate form of the equations which govern the steady supersonic flow of an inviscid ideal
gas in three dimensions is derived here.

In Section 2 the equations of motion which express conservation of mass, momentum and energy are formu-
lated so that two families of stream-surfaces and one family of parallel planes are co-ordinates. Then, in
Section 3, by treating as parameters all partial derivatives with respect to a variable which defines one family
of stream surfaces, it is shown that characteristic curves and corresponding characteristic relations which have
the remaining two co-ordinates as independent variables can be constructed. The equations obtained by
following the procedure outlined here represent a simple generalisation of similar equations® which describe
steady supersonic two-dimensional or axi-symmetric flow.

In Appendix B it is verified that the equations of motion given in Section 3 for three-dimensional flow do
reduce to the equations of Ref. 5 when the flow is two-dimensional or axi-symmetric.

A brief description of the way in which the equations derived here can be used to construct a method for
solving mixed initial and boundary-value problems numerically is given in Section 4.

2. Conservation Law Equations

In this section, starting from an invariant vector form of the equations governing the steady motion of an
inviscid ideal gas with constant specific heats, a representation of the equations of motion in a general system
of non-orthogonal co-ordinates is constructed. Then the special form of the equations, in which two families
of stream surfaces and one family of parallel planes are co-ordinates, is obtained.

If the symbols p, p, v and H are chosen to represent pressure, density, the velocity vector and the total
enthalpy respectively then the equations of motion which represent conservation of mass, momentum and
energy can be written in the following invariant form:

mass: .
div(pv) = 0 (1)
momentum :
pgrad{v.v) — 2pv x curlv = —2gradp (2)
energy:
p(y — V. v + 2yp = 2pH(y — 1) (3)

where y is the ratio of specific heats. In most cases of interest in supersonic flow, the total enthalpy H is constant.

At this point, a digression is necessary. Before writing down the form taken by equations (1) to (3) in an
arbitrary curvilinear co-ordinate system, some useful relationships concerning co-ordinate systems based on
non-orthogonal families of surfaces will be listed. Many results which are only mentioned briefly here are
explained fully elsewhere, e.g. by Stratton.®



Let
EW = EO(x(1) 32 ((3)) i=1,273 4

be three arbitrary functional relationships which describe distinct non-degenerate co-ordinate surfaces &9 =
= constant in terms of co-ordinates x', x®, x'¥ of either an orthogonal Cartesian system or a cylindrical polar
system; and let i, i, and i, be unit vectors in the directions of the axes of the orthogonal system in which the
co-ordinates are represented by xV, x® and x®.

Now six vectors associated with the surfaces ¢ = constant i = 1,2, 3, can be defined. They are

o'y, ox . el @
ag= (EE‘T’)]' + (W)Iz + (x*2y 280

x3)

)i3 (i=1,2,3) &)

and

a® = (ag"') )i, + (agﬁ) i, +

oxV ox®

1 [0ED), _
(xtz))r{ajm)'a (i=1,23) ©)

where r = 0 if x, x» and x® are Cartesian co-ordinates and r = 1 if x'?, x® and x® are cylindrical polar
co-ordinates.

The vectors a'*), a® and a'® are normal to the surfaces £ = constant, £® = constant and £® = constant
respectively. The vectors a(;), 4., and a,, are directed along the intersections of pairs of surfaces e.g. a,,, is
directed along the intersection of ¢ = constant and £ = constant.

It can be shown that

aV = (a,, x ag)/J, (N
a® = (a, x ag)/J (8)
and

a® = (a,, x a,)/J ©)

where
J =agy,.(ag x ay), (10)

so that
ag.a? = o] (11)

where
6{:{1 if i=j )

0 if i#j

Any vector w can be represented as a linear combination of either the vectors a, (i = 1,2, 3) or the vectors
a"? (i = 1,2, 3). That is the vector w can be expressed in the form

— wl) (2) (3)
W=w"a, +wa, +w ag) (13)
or in the form

- (1) (2) (3)
W= W@+ weoat + owigatt (14)



The quantities w*), w® and w® are called the contravariant components of w and w,y,, w,, and w;, are
called the co-variant components of w.
The co-variant and contravariant components of a vector w are related, e.g.

3

we = 2 (g -agwd. (15)
j=1
It is usual to write
Ay - Ay = &ijs (16)
so that equation (15) takes the form
3 P
w(i) == Z gijWU)‘ (17)
j=1
It is worth noting too that
w.w = w W 4+ wow?® + wiw?® (18)

and the divergence, curl and gradient operators are (see Stratton)

div(w) = ‘l]{a(Jw“’)/éf“’ + AIJWB)/OEP + H(Iw) e} (19)

1
curlw = j{(0w3/6€‘2) — W) /0EPNa 4 (0w fOED — 0w /OE M a, + (0w, /08N — dw ,/0EPa ) (20)

and
grad ¢ = 0¢p/0EMa™) + d¢p/0EPaD + d¢p/0EPa), (21)
Now, clearly, by substituting in equations (1) to (3) the expressions for the divergence, curl and gradient
operators given in equations (19) to (21), and making use of the relationships given in equations (7) to (9),

a representation of equations (1) to (3) in an arbitrary co-ordinate system can be constructed.
The conservation of mass equation takes the form

AT prVYBED + 8(JpuP)YOED + 8(J prv'®)/0E® = 0. (22)

The following three scalar equations are obtained from the vector momentum equation (2):

po(g)*/0E™ — 2Jp(vPwD — pPw®) = —25p/dED), (23)
pd(q)*/08® — 2Jp(Pw — W) = —29p/0E? (24)
and
pAG)?/OED — 20 p( WD — vy = _29p/0E), 25)
where
@) = v + v + P (26)

is the square of the velocity magnitude, and

1
wl) = 3(60(3,/65‘2’ — 0,/ 0E®), (27)



1
w? = j(aum/agm - av(3)/6éf“’) (28)
and

1

W = j(@vu)/af(” = 00,)/6¢?) (29)

are the contravariant components of the vorticity vector curl v.
Equation (3) takes the form

ply — D{g)* + 2yp = 2pH(y — 1). (30)

Simplified forms of equations (22) to (25) and (30) are required in the special case when the surfaces on which
¢V = constant are planes that coincide with the planes x'" = constant, and the surface ¢ = constant and
&3 = constant are stream-surfaces.

If xV = &M then of course 9xV/o¢V = 1 whilst dx'1/0E® = ax /™ = 0.

If surfaces £'* = constant are stream-surfaces then the component of velocity normal to them will be zero.
The vector a'? is normal to £® = constant and, in terms of its contravariant components, the velocity vector
v=1"a, +vPa, + v¥a, . It follows that the surfaces £® = constant will be stream surfaces if, and
only if,

v.a® =,
ie.
if v®=0.
Similarly surfaces ¢*) = constant will be stream surfaces if and only if
o™ = 0.

Substituting x'” = £V and v® = +*¥ = 0 in equations (22) to (25) and in equation (30) yields the required
equations of motion. They are

AT prV)/oED = 0, €2y
pqdq/o¢'V = —op/aE™, (32)
Pp4dq/oE® + pv'" (B o) /88N — Ovy/0EP) = — dp/aE?, 33)
pqdq/oE® — po™(v, JOE® — vy /0EM) = —Bp/oE (34)

and
ply — (@) + 2yp = 2pH(y — 1), (35)

where

@) = vy, (36)
vy = 8110, (37)
V) = &120"" (38)

and
Uy = &30 (39)



If transformation elements tﬁj.)), (i, j = 1,2, 3) are defined, so that

19 = 0x9/0g9, (40)
and if

63 = a, (41)
and

1) = ay (x2Y (42)

then, from the definition of g;;, 8, and a, it can be seen that

g1 =1+ @) + (@)% (43)
812 = 0pt(3) + o3 (xPY 13, (44)
813 = “24%; + “3(x(2))r18;s (45)
8= tfiz))t{f)) + (x(z))z'tf%)tg)), (i,j=2,3) 46)
and
J = (x2Y (B3 — 133)- (47)

In view of equations (36) to (39) and (43) to (47) equations (31) to (35) and (41) to (42) can be regarded as a
system of seven equations for the unknowns p, p, v, a5, o3, x@ and x®. The equations of this system will
now be expressed in a convenient form for use in Section 3.

By differentiating (35) with respect to &1 and combining the resulting equation with (32) it is seen that

dp/0E™ = (p/yp)dp/oL™. (48)

Existence of all second derivatives of x?, (i = 1,2, 3) involving partial differentiation with respect to the
independent variables &V, &2 and ¢® in pairs is assumed throughout this report. Relations

aY/E® = of/oE?  (i=1,23) (k=123 j#H (49)

connecting the transformation elements defined in equation (40) are a consequence of the existence of second
derivatives of x®, (i = 1,2, 3).

For equation (31), writing J = (x®Y(£Z)3} — #3)13)), carrying out the differentiation with respect to &),
eliminating the dp/0&" term by using equation (48), and making use of certain of the relationships given by
equation (49) shows that equation (31) can be replaced by the equation

(1)
TpBoPJBE -+ pu (XY 8,08 — 1300E7) + = p/0E"
_ e O[rBERRED — (2IxDI0E) + 130050 — (Y F00fOEV) (50)

Similarly for equations (32) to (34); writing q = g“v‘.”, vy = 8110, vy = &1, vy = g50'; sub-
stituting expressions for g, ,, 8,2, &3 in terms of transformation elements and the quantities «, and a ; carrying
out appropriate differentiation operations; and making use of certain of the relationships given by (49) shows
that equations (32) to (34) can be replaced by the equations

g, 0V OED 4 (oD, B0,/0ED + (VD orydots/OEY + (1/p)Op/OED = O, (51)

21,00/BED + (0 OPAZ00,/0E + XDV 13300 /8ED + (1/p)ap/OE?

— 172 2)4(3 2
=~y (B3 — ) (52)



and

£130W0V/0ED + (0 D)2 12B00,/0ED + (V)XY 13)00,/0ED
= —(1/p)op/ot® — rw Py () — (). (53)

Equations (50) to (53), (48), (41) and (42) are a system of seven equations for the dependent variables p, p,
o™V, a,, ay, x® and x). These equations are in a convenient form for use in Section 3.

3. Characteristic Equations

For hyperbolic partial differential equations in two independent variables, characteristic curves exist and
along these curves relations connecting rates of change of different dependent variables can be found.

Here, terms containing partial derivatives with respect to & in equations [(50) to (53), (48), (41) and (42))
are treated as parameters. Then it is shown that under a condition which can be expected to hold in a variety
of practical cases, the equations of motion derived in Section 2 are hyperbolic partial differential equations
in the two independent variables £ and ¢, Expressions for both the slopes of characteristic curves and the
characteristic relations for the equations of motion given in Section 2 are constructed in this section.

First it is noted that equations (50) to (53) and (48) can be represented in the form

Adw/dED + Bow/oE® = D, (54)
where A = {a;;} and B = {b,;} are four by four matrices and u = {1} and D = {d;} are column vectors which

have four elements.
The elements of u are

u =, u, =0,

Uy = o3, U, = p. 55)
The elements of D are
dy = —rppMAER3) — 133 + pv‘"(x‘”)’t‘”aaz/aé“’ pv V100, /0E,
d, =0,
dy =~V (B3 — B

and
dy = —rlo Mo (i34 — 15U — (1/p)ap/oe™. (56)

The elements of 4 are

1= JP,

a3 =0, = JPU(”/VP (57
ay; = g1, ay, = (") a,

ay; = ()%, azs = 1/p (58)
a3, = g0, as (Dm)ztm }

a33 = (u“))z(x(z))'tg;, =0 (59)
ayy = g™, a4, = )3 }

a4y = (MP(x2y13), =0, (60)



and finally the elements of B are

by, =0, by, = pr'V(x?)3) }

by = —pri@, b,=0 (61)
byy =0, by, =0

by; =0, by =0 (62)
by, =0, by, =0

bss =0, bsa=1/p } 63)
b41 =0, b42 =0 }

by; =0, by, = 0. (64)

It ought to be remembered that r = 0 if x!¥, x@, x® are Cartesian co-ordinates and r = 1 if x(", x'?, x3 are
cylindrical polar co-ordinates.
Characteristic curves associated with equation (54) can be found by introducing a transformation

n(l) o '1(1)(5(11)5(2))s

7@ = @ (65)
and
7 = &),
so that equations (54) may be written in the form
an(l) 611(” ou ou
(aéu)A t e gy T Banm =D. (66)

A finite number of characteristic curves can pass through a given point in space. For equations of the form
(54), the characteristic curves through an arbitrary point have slopes A = —(d7V/0&/anV/0E@), which
satisfy the quartic polynomial equation represented by the characteristic determinant

|B — 14 = 0. 67)

Note:—It must be remembered that the characteristic curves lie in the (£V, ¢®) plane and 1 = d&@/de®
is the slope of a characteristic curve in this plane.

When the system (54) is hyperbolic, equation (67) has four real roots. In the case being considered in this
report, (67) has the form

(/'{)2{(”2(1 - (M)Z/gu)(l)z — 2(g43823 — 8128334 + (811833 — (gls)z)} = 0, (68)

where M = {pg,,(v'"")*/yp}? is the local Mach number.

Clearly 4 = 0 is a real root of (68) which is repeated twice and, since the quadratic expression in (68) has
two distinct real roots if (M)> > g,,, it follows that with elements of U, D, 4 and B as defined in equations
(55) to (64), equations (54) are hyperbolic if (M)? > g,,.

The condition (M)* > g,, will be satisfied easily for supersonic flow past highly streamlined shapes when
811 is close to unity. In other cases, the condition will always be satisfied provided the local Mach number of
the flow is high enough.

The two characteristic relations corresponding to 4 = O are, trivially, the second and fourth of equations (54)
Le. equations corresponding to (51) and (53) which contain no partial derivatives with respect to &2,

Let A, and A_ be the non-zero roots of the quartic equation (68), so

i = (813823 — 812833) \/{[g13g23 — 812833]° — VY[l — (M)*/g,,112, 1833 — (g13)2]} (69)
o I — (M)*/g,,)



The characteristic relations corresponding to the characteristic curves whose slopes in a (£, %‘2’) plane are
4, and A _ respectively are derived by replacing the elements of the first column of the characteristic determinant
|B — AA| by elements of the column vector C = Bdu/on® — D. The determinant obtained is evaluated putting
A =4, and A = A_ in turn, and the results equated to zero are the desired characteristic relations.

For the equations derived in Section 2, the characteristic relations obtained by following the procedure
outlined above have the form

@Oy 1 do; 1 du
-——J——ﬂ JP + Z(gugss — £13823) a_é(—i) + If(zl) +

()42 1 oo 1 du
—T@ J) + I(gngz,s — £13823) '(—y(% + If(:;) -

1 a2 AN
~; Tg:—(gugsa — £13823) + 833/1] [W + jaé(l) +

J(M)?
b "M ey — o) + 82 4 B3|
g1 A A

d 1
+ p—}[(-])z + z(gmgss - g13g23)] -
(M) g
- C(al)[g—(gugss — £13823) + % =0 (70)
11
where
N2y ((20,3) _ 230 4 L 0P
C4 = r(U ) a3(t(1)t(3) d t(3)t(1)) + ;@ (71)
& = oINS — 123 )
and
dy = —rppWiPER3) — 133 + pr DX DY 1300, /08 — pr V1 da, 06, (73)

Substituting in equation (70), A = A, from equation (69), yields the characteristic relation corresponding to
the characteristic curve whose slope is 4 = A, . Similarly, substituting 4 = A_ in equation (70) yields the
characteristic relation corresponding to the characteristic curve -whose slopeis A = A_.

Although the derivation of equations (69) and (70) is simple in principle, the analysis is fairly complicated.
The analysis is given in Appendix A.

4. Discussion

The object of the investigation described in this report was to derive a version of the equations which govern
the supersonic inviscid flow of an ideal gas. These equations were required in a form suitable for applications
in the construction of numerical solutions to mixed initial and boundary-value problems associated with
hyperbolic partial-differential equations.

For the seven dependent variables v'V), «,, a5, p, p, x® and x®:

(70) with 1= A, (see (69)) (74)

(70) with A= A_ (75)

(48) (76)

(51) (77)

(53) (78)
(2)

%m=% (79)

10



and

(3)
%ﬁ = oy (x, (80)
form a suitable system for solving mixed initial and boundary-value problems numerically.
A detailed account of the construction of a numerical method of solving equations (74) to (80) will not be
given now. Here, it is noted simply that,
(1) when derivatives with respect to £ that appear in equations (74) to (80) are replaced by finite difference
approximations, (74) to (80) yield a system of simultaneous equations in two independent variables
(&Y and ¢?), and

(2) the system of equations obtained by replacing ¢®-derivatives by finite difference approximations is
hyperbolic when (M)? > g,,.

It follows then that when (M) > g, ,, the discretisation method used by Walkden and Caine* to solve mixed
initial and boundary-value problems associated with systems of hyperbolic partial-differential equations
with two independent variables can be applied to the equations obtained from (74) to (80) by introducing
finite difference expressions for £®-derivatives.

For two-dimensional flow, when r = 0 so that x*, x®, x® are co-ordinates in Cartesian space, or when
r = 1, so that x'V, x'® and x*® are cylindrical polar co-ordinates, the characteristic slopes A, and A_ given
by equation (69) together with the characteristic relations derived from equation (70) can be reduced to the
form given by Poole and Walkden.> Appendix B contains the analysis which verifies that both the two-
dimensional and axi-symmetric flow forms of equations (69) and (70) are equivalent to the forms given in
Ref. 5.

APPENDIX A

A.l. Derivation of Equation (69)

In order to obtain equation (69) the determinant |B — 14| has to be evaluated for the case when the elements
of the matrices B and A take values given in equations (57) to (64). In this case

B — id| =
—Jpl pr Py — pr VAR —AJpv'V/yp
B —g 04 — Moo, — AMv'V)2a, —Alp
~g1,0'VA — A3 ~ AP (x*) 13 1/p
—gtVh —AMHE VRPN 0
=48y + A, + A, (A-1)
where
g1 ) oy
Jp(")°(2)* .
g =T e ey
& 13 Pl
Jp(V)8()* . r r r
= T{gu[(x‘z’) (33 — (<PYBR] — gr2loaxPY 3 — ast3)] + g13laa(x7e3) — a3}

= @Y (DH(g1; — (@) — @)*1)*0")p/rp}

= (MY /gy

(A-2)



2 3 2
I e

— ('OYA D)2
8, =T e @ e
S
= — @D — OO g LG + (1321 — g1 [@) i3] + (2}
= — (M)A )? - (U(l))4(}h)3{g 12833 — £13823) (A-3)
. Jp pr' VY13 — po' i)
Ay =— g11v(l) ‘(U“))Zaz'l _(v(l))2a3l
g130" —(vm)ztg;/l —(u‘”)z(x‘z))'tg;i
(104 3 (2)y74(3) (2) (U(l))4(;l')2 (2))2r (32 (2)2 (2)yr¢(3) (2)
= — (")) {oy(x Yiz — a3t} — T{Pgu[(x Y (53) + (tE3)*] — pg1alas(x®)tE) + o t3)}
= ‘(U(l))4('1)3{g12g33 — 813823} — (U(l))4(’1)2{gl 1833 — (g13)2}~ (A-4)
Now

IB—2dl=A, + A, + A,

My

= (U(l))4(/1)4('])2|:g ] B 2("“))4(/1)3(&2&3 = 813823) — (U“))4('1)2(311g33 - (gl3)2)' (A-5)

11

Since v'" 3 0, it follows that the characteristic equation |B — 14| can be expressed in the form (69).

A.2. Derivation of Equation {70)

In order to obtain equation (70), the elements of the first column of the matrix (B — A4) will be replaced
by the elements of the column vector

C = (Bowon® — D)

and the determinant of the resulting matrix will be evaluated and equated to zero.
First it is noted that,

¢ = po Dy i300,/00> — poVi0us/on — dy, (A-6)
¢y =0, (A-7)
¢3 = (1/p)op/on® + (A-8)

and
ca = Vo (363 — 318 + (1/p)op/oc™ (A-9)

where

) = oD Pa B — ) (A-10)

and
d, = ——rpu“’t}f;(tg}zgg — tg{tg;) + pu<1>(x(2))'t§;;;aa2/a¢‘3) - pu‘”t}%}&o@/éé‘”. (A-11)

12



It follows that the required characteristic relations are given by

¢ po DY — pv 32 —Jpvyp
c — ()% — ("% -1
: ( (1))2 (z) ( 1 2) 23r (3) P =0, (A-12)
C3 — (")) =@z 1/(p2)
Ca — ()13 — (M) (xPy ) 0
ie.
1 dp
A, + ————+c‘”)A —c Ay =0 (A-13)
154 (p o 3185 486
where
("o, (v')a, —1/p
A, =| ()3 O P(xPyd3 1fpd)
(v(l))zdg} (U(l))Z(x(Z))rtgg; O
@ ., 1
— - CL 6 — GOV + s —
()y* 1
= - PY; | + 1(812333 — 813823}, (A-14)
—po DY LSA potiEa Jpv'Dfyp
Ag = — ("), (Mo, 1/p
(v(ll)ztg; (U(l))Z(x(z))rtg; 0

—JIpo P yp{ e o (DY) — agt @} + Yp{— o0 P IGPPURYA + (1))}

(M)
= —@")? }:—(gugw — £13823) + &33/4), (A-15)
— DY e Jppp
Ao = —| @)a, (1), p
23 PO~ 1/pd

il

—Jpo D /yp{(v V) oy (xPY 1) — oy 1307} —
(”(”)3 2N\2r (3) 43 2) 42 (1))3
——A{CPPEE) + 343 -

2 3 2
{os (X283} + o,13)

__(v(l))a (J(M)Z[ (2))r (3) d3l(2}] + g_2§ + &:”_ (A-16)

g1 @ Ty ) ?
Substituting in equation (A-13) the expressions given in this appendix for c,, c§, ¢y, Ay, As and A, yields the
equation,
() Dyi)
J
_ @Y My
e

da ()42 1 ot
{(J)z + *(gugsa g13g23)}57§—) + 7 (3){(J)2 + 1(3128’33 - glagzs)}gn(-;) -

g33) Op | d)
— (812833 — £13823) + 33}617‘2)+ o] ) + (gugas 813823) ( —

13



M) J(M)? ‘
- C(sl)(v(l))S{( )(812833 — 813823 t &} + e (0 {_(““)“[“Z(X(Z))rtgg - “34%;] + £a3 + g—132 =0.
811 A 811 A (4)
(A-17)
Equation (70) follows if equation (A-17) is divided by (v'")?, and the operator 8/6n® is replaced wherever it
appears in (A-17) by the operator 8/0&® + (1/4)9/0&1,

APPENDIX B

B.1. Characteristic Slopes for Two-dimensional and Axi-symmetric Flow
When the flow is axi-symmetric or two-dimensional, the surfaces £&* = constant can be chosen to be planes

such that x¥ = &2 and then x'? =.xP(EW), ¢@),
It follows that

2 2) A3 2)4(3 2Nr A2
J = (x®Y 33 — 131 = Y3,
813 =0,
833 = (x(Z))Zr,

823 =0,

g1 =1+ (az)z

and
g2 = I3
The streamline slope is
13 = o,
= tan @
in this appendix.
Now the quadratic equation
(DAL — (MY /gyy) — 2813823 — 812833) + (§1:833 — (£13)°) = 0, (B-1)

for the characteristic slopes 1, and A_, reduces to
P EE*(1 — (M)A + tan® O)(A)* + 2(xP)" tan 0621 + (x)*"(1 + tan? ) = 0. (B-2)
The roots of this equation are A, and A_ where

1 Ban0 T {0E)* 1an® 0 — (Z)? sec? 6(1 — (M)*/sec? 0)}
T sec? 0

= —13)(sin 0 cos  + cos? f)\/{tan2 6 — (sec® 0 — cosec? w)})

H

= —3) cos /sin p(sin Osin p + cos O cos p). (B-3)

In equation (B-3), & = sin™ '(1/M).
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From equation (B-3) it is clear that:
—sin p
cos B(sin O sin u + cos 8 cos p)

Ay = #2)
()

2
sec” @ sin u

+ 1) cos u(1 + tan 0 tan y)

g tanpu
e (B-4)
31 £ ¢ tan p)

The expressions for 2_ and 1, obtained from (B-4) are identical to those given in Ref. 5 for the slopes of the
left and right hand characteristics respectively.

B.2. Characteristic Relations for Two-dimensional or Axi-symmetric Flow

If (9)* = g, ,(v'")? then when the flow is two-dimensional or axi-symmetric equation (70) reduces to

(@) , 1 , On i oo
| R + PR || 5 + |

13y
IR Rt e | R A S N
p g11 Ay o&® =~ 4y 0&m

MDD - anzreanz £ (@22
¥, v I
- ((2))rt(2)[(x (1) + (i) (x*)* /A1 =0
811X 2)

ie.,

qz dat, 1 Oa, 1 g4 p 1 op
- gl—l—[t%%; + tff;/li][aé(z) + zaé(l) - g“p[(M)ztg;tg; + Z 2 + ZW

242
_ q) tglgtg;[t(l) + t(z)//li]‘ >

- (2) (1)

g1,y

This equation can be expressed in the form

dot dor 1 \ ap op
1A + Zfﬂ][—‘—aééﬂi + 55—(%:' + ;[(M)thﬁt{%h + g11][5‘f—(2—)’1: T e
g (22
= Sy el i (B

Now
811 + gnt% tan u + t}f? tan p(M)*g,,

13 + tan

_ gull F ) tan u + 1) tan u(M)*]
[t + tan 1]

_gull 13) cot u]
[12) + tan p)

= tg;cotpu.

Therefore, for two-dimensional flow (r = 0) or axi-symmetric flow (r = 1), the characteristic relation (70)
takes the form

1| O — Oa
5[5‘5‘%[{%«1 F tg; tan y) + 'ag%(igu tan lu)] +

cotu[ op @)

— p
p(q)?| & a1 F tg; tan u) + W(ig“ tan ,U):’

= Frifid tan p/(x?y.  (B-7)
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Equation (B-7) is equivalent to

o _ da
[aé(f)tg;(l T @ tan p) + fé)(ig“ tan /,t)] (13 + tanp] +

1 dp _ dp B
+ p(q)Z[aé(l)tg;(l F i tanp) + aé(z)(ign tan Il)] x [g11 F &11 tan p + 1) tan p(M)’g,,]

= FriBe,, tan u13 + tan WAxDy.  (B-B)

On dividing this equation by g,,(¢{}} + tan p) it is seen that

1{ Ou _ Ot
e [ag(fﬂfii(l F 1) tan ) + b’g%(igu tan u)] +
11

g F gu(Ef% tan y + tfﬂ tan ,u(M)Zg“]
[1$3) + tan y]

= Fridid tan pf(x?)".  (B-9)

1 [éop . .
WO [66“’@(1 F 1 tan ) + oo tan u)] x

Equation (B-9) can be compared directly with the characteristic relations given by Poole and Walkden.?
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