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Summary

Two flat parallel surfaces, oscillating harmonically about a mean configuration are immersed in a uniform
subsonic main stream in a direction parallel to the surfaces. The linearised equations of potential flow are
assumed to be valid, so that the upwash on the surfaces can be related to the loading on the surfaces by means
of a pair of integral equations. This pair of integral equations is solved, by collocation, for approximations to
the loadings in terms of given upwashes and these approximations are used to evaluate generalised airforces.
The results are compared with some results obtained by other numerical procedures and with some experimental
results.

The procedure has been programmed in 1900 FORTRAN.

*Replaces R.A.E. Technical Report 72180—A.R.C. 34 466
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1. Introduction

When two surfaces such as wing and tailplane in close proximity to each other are oscillating in an air-
stream, the airforces on either one of the surfaces can be quite different from those which occur on the surface
when it is oscillating in isolation, because the oscillation of one surface modifies the aerodynamic flow in the
neighbourhood of the other as well as in the neighbourhood of itself. Indeed this modification can cause a
lowering of the flutter speed when the wing and tailplane are moved nearer to each other, as was shown by
Topp, Rowe and Shattuck.!

For flutter calculations of an aeroelastic system, the values of the generalised airforce coefficients at a given
frequency of oscillation in a flow of given Mach number for a number of modes of oscillation of the aero-
elastic system are required. In this report a method is developed for obtaining these generalised airforce co-
efficients for two parallel planar surfaces oscillating harmonically in subsonic flow. In the method, the loading
on each of the two surfaces is represented approximately by a linear combination of given functions each of
which is continuous over the surface, and has the correct behaviour at the edges of the surface. The coefficients
in these linear combinations are determined by ensuring that the upwashes corresponding to these approxi-
mations to the loading, are the same as the known upwash distributions at sets of points on the two surfaces.
These sets of points are the Multhopp? points for each of the surfaces. The generalised airforces are then
obtained by using the so obtained approximate representations of the loading.

Similar types of method have been used by Laschka and Schmid® and by Albano, Perkinson and Rodden*
to solve this problem, but Laschka and Schmid consider only the particular case of the two surfaces being
coplanar. Rodden, Giesing and K4lm4n® have also considered this problem using the doublet lattice method
in which the approximation to the loading by means of continuous functions is abandoned and replaced by
discrete loading along certain lines, the strengths of these discrete loads being adjusted to satisfy boundary
conditions at sets of points on the surfaces. In the few comparisons that have been made, the results obtained
by all these methods generally agree quite well with results obtained from the method of this report.

Experimental work on two rectangular wings oscillating harmonically in subsonic flow has been carried
out at O.N.E.R.A.® and some results obtained are compared with results obtained from the method of this
report.

2. Discussion of Generalised Airforces on the Wing and Tailplane

The wing and tailplane are immersed in an airstream and are assumed to be vibrating in such a way that
the position of any point on the surface of either the wing or tailplane is always near to its mean position
fixed relative to a certain inertial rectangular cartesian frame of reference C. The airflow at large distances
from the wing and tailplane is uniform with speed V relative to the frame C and its density is p. The x-axis of
the frame of reference is taken parallel to the direction of the uniform velocity of the air at large distances
from the wing and tailplane, and positive in the direction of the uniform velocity.

The wing and tailplane are assumed to be very thin and their surfaces nearly plane and orientated in such
a way that the surfaces are at small angles to the uniform-flow direction everywhere except in the neighbour-
hood of their leading edges. Then linearised theory is applicable and the wing and tailplane, including their
wakes, may be replaced by flat surfaces of zero thickness in planes parallel to the x-axis.

The positions of these flat surfaces are such that any point on the wing or tailplane is always near to one
of these flat surfaces, and the orthogonal projection of the wing on the flat surface in its vicinity will be de-
noted by W and the orthogonal projection of the tailplane on the flat surface in its vicinity will be denoted
by T. The planes of W and T will be taken parallel to each other and at a distance h apart. The surfaces W
and T will be assumed to be symmetric about a plane normal to these surfaces. The origin of coordinates of
the frame of reference C is taken at an arbitrary point on the line of intersection of the plane of symmetry and
the plane containing W, and this line of mtersection is automatically the x-axis. The y-axis is taken in the
plane of W in a direction perpendicular to the x-axis and positive in the direction which we henceforth call
starboard. The z-axis is taken in the plane of symmetry, perpendicular to the plane of W, positive in the
direction we call upwards, and forming together with the x and y axes a right-handed orthogonal frame of
reference.

There will be a pressure difference across W and across T at any point on either one of them and this
pressure difference is called the loading at the point. The upwashes on W and on T are discontinuous across
W and across T but can be split up into two parts on each surface, one of which is equal on the two sides of
a surface and the other of which is equal but of opposite sign on the two sides of a surface. The part which
is equal but of opposite sign is associated with the thickness distribution of the wing or the tailplane and is



independent of time. The part which is equal on the two sides of a surface may be split up into two further
parts, one of which is time independent and the other of which is time dependent. The time independent part
is associated with camber and steady angle of incidence of a mean thickness line in the wing or tailplane,
and the time dependent part is associated with vibration of the mean thickness line.

We can separate the aerodynamic problem into three separate problems each one associated with a part
of the upwash described in the preceding paragraph. The three solutions can then be superimposed linearly
to get the complete solution.

In the first problem, the upwash is equal but of opposite sign on the two sides of the surfaces W and T.
This problem can be solved by covering the surfaces Wand T by source distributions whose strengths have to
be adjusted to give the correct upwash distributions. Since the pressure difference across surface distributions
of sources is zero, the loading distribution on W and T must be zero in this problem.

In the second problem, the normal wash is equal on the two sides of the surfaces W and T but is time in-
dependent. A loading distribution on Wand T is now present but it is time independent.

In the third problem, the upwash is equal on the two sides of the surfaces W and T but time dependent,
and consequently the loading is time dependent. We shall be concerned in this report with this problem only
and we shall take the time dependence to be harmonic with circular frequency w. The second problem is the
particular case of » = 0, but we must note that if we take a limit process w — 0 then we get the correct
loading at @ = 0 only if the camber and steady angle of incidence are taken to be limiting cases of displace-
ments which have harmonic time dependence of circular frequency w.

We assume that the wing-tailplane system is capable of vibration in a number of modes of displacement
that can be numbered 1, 2,3,... etc. In the mode p, the displacement in the direction of the positive z-axis
from the mean position of a point on the wing, with abscissae (x, y), is taken to be proportional to Z‘p1 x, v)
and the displacement in the direction of the positive z-axis of a point on the tailplane, with abscissae (x, y),
from its mean position is taken to be proportional to Z!?(x, y) with the same constant of proportionality as
for the wing.

When the wing-tailplane system is oscillating harmonically about its mean position, with circular frequency
m, in the mode p, we may therefore take the displacement in the direction of the positive z-axis of a point on
the wing, with abscissae (x, y), to be

Z(x, y)b, et (1)

at time ¢, and the displacement in the direction of the positive z-axis of a point on the tailplane, with abscissae
{x, y), to be

Z3Px, p)b, e (2)

at time f, where b, i1s a measure of the amplitude and phase of the oscillation and it is to be understood that
only the real part of a complex number corresponds to the physical quantity concerned. The quantity b,
may be complex, but Z\"Y(x, y) and Z!?(x, y) must be real.

Since linearised theory is applicable, the loading at the point (x, y, 0) on W can be written in the form

Lx, y; v, M)b, e™! (3)
at time ¢, and the loading at the point (x, y, h) on T can be written in the form
LP(x, y; v, M)b, e 4)
at time t, where
wl
V= — 5
% ()

is the frequency parameter, [ is a typical length of the wing and tailplane, such as mean chord of W, and M
is the Mach number of the uniform flow at large distances, given by

14
M= (6)
a

where a 1s the speed of sound in the uniform flow.

For dynamical analyses of the vibration of the wing-tailplane combination we generally apply Lagrange’s
equations of motion and to do this we need expressions for the generalised airforces that occur. These air-
forces act on the actual wing and tailplane but within the linearised approximation we can take the loadings



described above as acting on W and T to evaluate these generalised airforces. The expression for P,,, the
generalised airforce in the mode p due to oscillation in the mode g is then given by

qu = bq eiu)r J:[ Z(pl)(xa J’)Lfll )(X, Y, M) dx dy + bq ei‘”' J.J Z;,Z)(x, y)ng](x, yiv, M) dx dy (7)
w T

We introduce reduced displacement functions {{)(x, y) and {{?(x, y) for the wing and tailplane by means of
the formulae

Z M (x, y) = 1LV(x, y) (3)
and
ZP(x,y) = P, y), 9)

and we introduce reduced loading functions A5(x, y; v, M) and 1{?(x, y; v, M) for the wing and tailplane by
means of the formulae

LP(x, y; v, M) = pV2iD(x, y; v, M) (10)
and
LPx, y;v, M) = pVZIP(x, y; v, M), (11)
If we substitute (8), (9), (10) and (11) into (7) we get
P,, = pV?PQ,b, e, (12)
where
qu = qu(vs M)
1 1
= [t i,y My axdy + 3 [ e 2 v M) ax (13)
w T

Our object is to determine the @, (v, M) for the wing-tailplane combination oscillating in given modes, at a
given frequency parameter, in a subsonic flow of given Mach number.
It is customary, for dynamical analyses, to write Q ,, in the form

Qpy=Cpg + V0 (14)

where @', and Q,, are real quantities.
Since the system of wing and tailplane is assumed to be symmetric about the x, z coordinate plane we can
write

5006, 3) = C90x, 3) + L09(x, ), ()
() = L290x,9) + C29(x, ), (1o
A0, 5 v, M) = 25090k, y5 v, M) + A(x, v v, M) a7
and

AP0x, 5 v, M) = A2, 5 v, M) + A29(x, y; v, M), (1)

where
7%, 3) = 370 9) + 26— ), 1)
9, 3) = 35, 3) — 3005, =) 29
(72, y) = HPGe ) + BP0k, - ), D
[29(x, 3) = HP(x,y) — P, — ), 2
2090k, ys v, MY = 2200x, y; v, M) + 3A00(x, —p; v, M), (23)
AL x, y; v, M) = 3A0(x, y5 v, M) — 520(x, —y; v, M), @4
AT, y3 v, M) = 3A2(x, y5 v, M) + 5A0(x, —y; v, M) @)



and
A2Nx, y;v, M) = 3%, y; v, M) — AP, —y;v, M). (26)

The functions 9(x, y), {x, y), AYx, y; v, M) and 2{2(x, y; v, M) are even functions of y, whereas the
functions {{'- "’(x v, “)(x y), AG “)(x y;v, M) and A% “’(x y; v, M) are odd functions of y. The reduced dis-
placement functlons and reduced loading functions have therefore been resolved into symmetric and anti-
symmetric parts in equations (15), (16), (17) and (18). Further it is seen that the loading function corresponding
to a symmetric displacement function is symmetric and the loading function corresponding to an antisym-
metric displacement function is antisymmetric in the variable y.

If we substitute from equations (15), (16), (17) and (18) into equation (13) we get

Q,, = J_[C(IS)X WA, y; v, M) dx dy + JC‘“)X WAZ(x, y; v, M)dx dy +

ffdla)x MRk, y:v, M) dx dy + {ij (2O, PAZDx, v v, M) dx dy. (27)

It is convenient in dynamical applications to use only modes which are either purely symmetric or purely
antisymmetric. If p and g refer to such modes which are not both symmetric or not both antisymmetric then,
according to (27),

0,, = 0. (28)

Hence any dynamical problem concerned with the symmetric wing-tailplane combination can be con-
sidered as two separate problems. In the one all the modes are purely symmetric and in the other all the modes
are purely antisymmetric. To cope with either of these problems we write

{0 —y) = k{(x, y), (29)
{2, —y) = k{PAx, y), (30)
2'(pl)(x’ P AR M) =Ki(p”(X,y;V,M) (31)
and
AP0, —y;v, M) = KAP(x, y; v, M). (32)
Then for purely symmetric oscillations we put k = 1 and for purely antisymmetric oscillations we put k. = — 1.

3. The Integral Equation Relating the Loadings and Upwashes

The boundary condition that the airflow does not penetrate either the wing or the tailplane surface can be
transferred to the flat surfaces W and T where it takes the form that the upwash on W and T takes prescribed
forms when the vibration of the wing and tailplane is prescribed. We are interested only in the time-
dependent contribution to the upwash and in the mode g of oscillation ; these are given by

Wl (x, y)b, e (33)
at time ¢t at the point {x, y, 0) of W, and by

WP (x, y)b, €' (34)
at time ¢, at the point (x, y, h) of T, where

0 .
W‘ql)(xa Y) = V&Zél)(x, J’) + lU)Z;l)(x, J/) (35)
and
{(2), 0 (2), i (2)
Way) = Vo 2206 9) + 10ZeP(x, ). (36)



If we introduce reduced upwash functions o{"(x, y; v) and «{?(x, y; v) for the wing and tailplane by means of
the formulae

Wlx, y) = Vail(x, y; v) (37
and
W(x, y) = ValP(x, y; v), (38)

then by substituting formulae (37) and (38) into equations (35) and (36) and making use of equations (8) and
(9) we get

alM(x, y;v) = (la—a); + iV)CE,“(x, ¥) (39)
and s
A x, y;v) = (l—a; + iV)QZZ)(X ») (40)

If now we apply linearised potential-flow theory we get the following pair of simultaneous integral equations:

lxo,y _l yO,O;v,M) exp {—%I——XO)} dxodyg +

g (x, y;v) =

s J M(xo, o3 v, M)K

- — h iv(x —
+Z?[PW%JM%MW( xﬂyjﬂfwM%m{—ﬂif@}ﬂw% @1
T

[ I

1 — X - h iv(x — x
(xilZ)(xa Y V) = WJ]‘A‘LI)(XOa Yos Vs M)K %ay I yo’-l‘;va M) exXp {—(f())} de dyO +

f Mxo, Yo v, M)K(x_x",y_%,o;v,M) eXp{~Ll_x°)} dxo dy,,  (42)

47Zl2 I} {
where
Xy z @ o W+ y? = 22%) x + MR M(Mx + R)
K ~’~,_; ’M = 12 ‘I‘ lvu/l—————d —
(zzz” ) . W+ y2 1 2 ”HXP{ 1(1—M2 RO+ )% + 29)
i
2M(Mx+ R  22M*(1 —M>)x  222M(Mx+R) iv z?MXMx + R) )
R(x*+y*+22)° R3x*+y?+2%) R(x*+y?+z22)? | R¥xZ+y?+ 29
with

R=/x*+ (1 - M) + 2%, (44)

The formula (43) of the kernel function K(x/I, y/I, z/I: v, M) can be obtained from Ref. 7.
We introduce parametric coordinates &,, #, on W by means of the transformation formulae

1
$o = [xo — X(LI)(YO)]
and il(yo) 45)
Mo = S—J’o

where s, is the semi-span of W, ¢,(y,) is the local chord of W and x{")(y,) is the x coordinate of the leading
edge of W at spanwise position y,. Then W is the region 0 < &, < 1, —1 < g0 < 1 of the &, 5, space.
We introduce parametric coordinates ¢,, {, on T by means of the transformation formulae

= _ 2
fo = X0 ~ *P0ol
and | (46)
o = S‘Z‘)’o

where s, is the semi-span of T, ¢,(y,) is the local chord of T and x{?)(y,) is the x coordinate of the leading
edge of T at spanwise position y,. Then T is the region 0 < g, < 1, —1 < {, < 1 of the &, {, space.



The pair of integral equations (41) and (42) become, on transforming the integration variables by means
of equations (45) and (46),

1 +1 1 . -
A V(x, yiv) = o Sllj‘ f_l_(lXO_) d;]of MV(xg, yoi v, M)K(—ic—o,X yO,O; v,M) exp {—F—V(X—Zji)} déy +

l l

Los, (77 ey(y) Xo ¥V — Yo h
I I S ISR Ee S N B
< oxp {_12(2?_713@} de, 47
and
l s (y) —Xq VY — Yo h ivix — x .
P x, yiv) = a l] oy, f Mxq, vo5 v, MK| ™ l 2, l O,Y;v,M exp § ——— 9% dég +
oV —Y
;ch l f 5 f)f /1( x()s.)’() v, M)K( —— '—l'"_g,OQV,M) x
« exp {_zv(x 1_ 50)} de,. 48)

4. Approximation to the Loading Functions

The solution of equations (47) and (48) is not unique in general, but if Kutta's condition that the flow at
the trailing edges of Wand T is smooth is imposed, then the solution becomes unique. The reduced loading
distributions 2"(x,, v, v, M) and 2(x,,, y,: v, M) then acquire known behaviours near the edges of Wand T,

For the parametric coordinates (é(),u(, ) introduced on Wlet &V, i = 1,2, ...,n,, be a set of n, distinct
points &, in (0,1) and let »{", j = 1,2,...,m, be a set of m, distinct points x, in (— 1, 1). Precise locations
of these points will be given later, see equations (260) and (261).

Let KV(E). i = 1,2, .. n, be the set of n, interpolation polynomials based on the points &', i = 1,2,
.. 1y, and defined by the formulae
£y — &V
RO(E,) = II (5(?) 5(1) =1,2,...,n,. (49)
r#i

The h{"(&,) are a set of n, linearly independent polynomials of degree (n — 1) in &, which have the property

HIED) = 90,,, (50)
where &,, 1s Kronecker’s delta.

Let g"n0), j = 1,2,...,m,, be the set of m, interpolation polynomials based on the points g j=1,2,
,my, and defined by the formulae

1[0 — sy
I)(’?): [I( l(l)] (”),j=1,2,...,m1. (5])
1 yl} 75

4

The g'"(y,) are a set of m, linearly independent polynomials of degree (m, — 1) in #o which have the property
g = 8. (52)

We take an approximation Z‘”(xo,y(,) to AV(xq, yo; v, M), which is given by the formula

m my

S5 AW HOEe0r) 50[ ey (53)

r=1s=1

N ivx
250, po) = (———°
¢ l( ) !
The factor \/(71—_&;)/_&70\/] — 17(, accounts for the known behaviour of the reduced loading at the edges of
W. The factor {exp (—ivxy/l)/c (o) is introduced for convenience since by doing so numerical integration
work is reduced to some extent. The summation

npomy

Z Z Ai,lr)J?‘r”(ifo)ngo)

r=1s=1



is a general double polynomial of degree (n, — 1) in &, and (m; — 1) in 5,. The coefficients Al are, as yet,

undetermined.

For the parametric coordinates (g¢, {) introduced on T let EN i =1,2,...,n,,beaset of n, distinct points
&q in (0, 1) and let 17}2’,j =1,2,...,m,, be a set of m, distinct points {, in (—1, 1). Precise locations of these
points will be given later, see equations (262) and (263).

Let hiP(gy), i = 1,2,...,n,, be the set of n, interpolation polynomials based on the points &, i = 1,2,

., H,, and defined by the formulae

ny - 6(2)
h2e) = [ (5@ s i=12..,n,. (54)
(rt

The h{?(g,) are a set of n, linearly independent polynomials of degree (n, — 1) in &, which have the property
HANEDY = §,,. (55)

Let gP(lo) j = 1,2,...,m,, be the set of m, interpolation polynomials based on the points ), j = 1,2,
, m,, and defined by the formulae

L AT
£2(C0) = H(m),1=1,2,...,m2. (56)
J
s#EJ

The g‘jz’((,’o) are a set of m, linearly independent polynomials of degree (m, — 1) in {, which have the property
g Py = 8. (57)

We take an approximation iff’(xo, Yo) to }t‘ Ax0, Yo v, M), which is given by the formula

i Z Aff,"sh(,z)(ﬁo)g(SZ)(Co)\/l—;—%\/I—T“ZZ)' (58)
0

r=1s=1

X ivx
}‘tzz)(xm Vo) = ( —

{
—eX
¢5(¥o)

The factor \/(1 — &)/go \/1 — {2 accounts for the known behaviour of the reduced loading at the edges of
T. The factor lexp(— ivxo/l)/c (o) is introduced for convenience since by doing so numerical integration
work is reduced to some extent. The summation

na ma

Z Z AEJZI? sh(z) 90)8 2)(50)

r=1s=1

is a general double tolynomial of degree (n, — 1) in g, and (m, — 1) in {,. The coefficients A2)  are, as yet,

undetermined.

The choice of locations of the points &V, i = 1,2,...,n; &2, i = 12,0y 08, j=1,2,...,my; i,
j=12,...,m, will have no influence on the accuracy of the approximatlons (53) and (58), except insofar
as good conditioning of matrices, from which the A{}) and A2} are obtained later in the analysis, may be
affected. The expressions (53) and (58) are always the most general expressions of their kind. The results obtained
would be exactly the same irrespective of the location of these points, provided precise numerical values
at each stage of the calculation were possible. Since we have to work with a relatively small number of significant
figures the results can be different because ill conditioning may lead to loss in accuracy through not retaining
a sufficient number of significant figures. The choice of points we make will be discussed near the end of Section 6.

If we substitute the approximations (53) and (58) for A{"(x,, yo; v, M) and A{P(x,, yo; v, M) into the right
hand sides of equations (47) and (48) and denote the resulting functions on the left hand sides by o‘cg“(x, y) and
&P(x, y) respectively, then we can write

8(x, y) = [z S AD Uy M)+ S Y AD VO, yiy, M)] exp(—”T") (59)
_ R )

2(x, ) [i 'i AV R0y, M) + Z mZ 2 UDAx, p;5v, M)] exp (—-’?) (60)
where

U(l)(x Vi, M) f ggl)(’l /1 — ne d’?of h(”(f / é 50 (X—IX(),,V “l yO,O;V,M) déo’ (61)



1 +1 1 1 —¢
Ux v M) = - 2 f EMNT= Gty | HPMeg)~— 20K
- 0

(x—xoy—
0

=, lyo,O;v,M) dey,  (62)

1 ! 1 —-¢ X—Xg y—1Yo h .
V(rfs)(X,y;V,M)=47E IJ gt0n) 1—’/o¢l'70f R ) Z OK( ; e, ] O,Y;V,M dé, (63)

and

Viix,y;v, M) =

1 +1 1 1 — — — h
i 1) EENT= T [ K EOK(X R AL 7;v,M) dso- (64

We determine the coefficients A{}) and A\2) from the sets of linear equations

q:r.s

+1
f gl m/1 = n? dn f W - o), [ ‘ 2 1906y v) = 87(x, y)x
-1 0 -

i=12...,n
. exp( )dé (65)
Jj=12,...,m
and
[ o= [ aea - oy o - o
£
i=12,...,n,
X exp ( de = 0, (66)
! i=12...,m
where
g 1 (1)
¢ = [x — x{(y)]
c(y)
and : (67)
n= ;y
on W, and
1 2
= [x — x0)]
c,(y)
and (68)
1
{=—y
S2

on T The equations (65) and (66) are obtained in a straightforward manner by applying the Flax variational
procedure, in exactly the same manner as was indicated for a single plane wing in Ref. 8.
If we substitute from equations (59) and (60) into equations (65) and (66) we get

ny  my nz  my
(1) (1) (1 1) (2 (1 2) P — P
9‘1'! Z ZAqu ljrs+ Z ZAqr?s i,jr.s 1—1,2,...,1’11, J*l7za--~am1a (69)
r=1s=1 r=1s=1
and
ny my na m;
(2) (1) (Zl) (2) (22) i — =
gqu Z ZAqrs l]rs+ Z ZAqrs i,jir.s 1—1,2,...,112., _}_laza---5m23 (70)
r=1s=1 r=1s=1
where

+1
04! 5 =f gl/1 =y di?J- hP(1 - ¢) — %
-1

=1,2,..,ny; j=1,2....m, (71)

alM(x, y; v)exp (QIE) dé

+1 1
0, = f ePO/T = de f A — o)
-1 [0}

€ 2 . fvx
% (x,y,v}eXP( ; )dé

10



i=1,2,...,n,, J=12,... m, (72)

o
Yl = f gm/1 — 7 dnJ. Y1 — &) / U“’x y;v, M)dé

1_12 LRy r=12,...,n;
(73)
j=12...om; s=12,...,my,

»
wﬁ?f;f,’s=f ¢P (O czcch KO — )y 2 U,y v, M) ds
i=1,2,...,n,; r=12,...,n;
j=12 my; s=12...,my, (74)

ws‘,frf g/ — 1 cmf B = Oy g Vil vy M) 2

i=12,...,n; r=012...,ny;
J=12,...,m; s=12,...,m,, (75)

and

1
= [ PO T [ = oy ek v e
1
i=1,2,...,n,; r=12,...,n;
j=1,2,0 . ,my; s=12,...,m. (76)

The sets of equations (69) and (70) form together a set of m,n, + m,n, linear simultaneous equations for the
mn, coefﬁments Al r=12,...,n;s=12,...,m, and the m,n, coefficients AR r =12, ny;
s=1,2,...,

The wing—tailplane configuration has been assumed to be symmetric about the xz coordinate plane and
the relations (29), (30), (31) and (32) are valid since we shall consider only purely symmetric or purely anti-
symmetric oscillations. We take the loading points 7" and #'? to be symmetrically distributed about zero.
The number of equations and unknowns in (69) and (70) can then be reduced. The process for doing this is
slightly different for even and odd values of m, and m,. We shall consider here only the case of both m, and
m, being even, and we shall order the points #{" and #{* such that

m
”snlx)-s+l = - ‘sl)’ 5= 112',"-,71’
and a7
m
’75’!22) s+l=_}7(SZ)9 S:1725""72-
It then follows that
m
gml s+170) = g(l)( Hos s = 1,2,~~-,71,
(78)
m
girzz)—s+1(CO) = g(SZ)(_CO)’ § = 1’ 2, .. ~572-

Then, since K(x/l, y/Il, z/l; v, M) is an even function of y/l we get immediately from equations (61), (62), (63)
and (64) that

U(l)(xa =YV, M) = U(lrzu—s+l(x’y;vaM)7 (79)
U(Z)(x -y, M) U£ rzlz s+1(x’.V§V7 M)a (80)
Vg',ls)(x’ -—y,V,M) - Vi‘rzll s+1(X,Y§V’ M) (81)

and

VX, —y;v, M) =V, _ . 1(x,y;v, M). (82)



Further, it follows from equations (73), (74), (75) and (76) that

E,Irr’x:)—j+1;r,m1-s+1 = I[IJ:)S’ (83)
Cermi—s+1 = Ytk v 1o (84)
wfsz) Jtlrma—s+1 = ‘/112]%)53 (85)
'/’Ezjfmz s+1 = E,Zn’:;zl)—j+l;r,s’ (86)
‘//S.Ir;-f)—jﬂ;r,mpsﬂ = glj"f,)s’ 87)
E,lj';f,]mz—sﬂ w;lm?)—1+1 rso (88)
i e trm s+ = W5 (89)
and
e —se1 = Wil i s (90)

The reduced upwash functions a!Y(x, y;v) and a{?(x, y; v) satisfy the relations

e, —y;v) = kol (x, y;v) 1)
and

aP(x, —y;v) = ko{(x, y; v), (92)

which follow from equations (29), (30), (39) and (40).
Therefore, from equations (71) and (72) we get

Oitimy - +1 = 1051, (93)
and
gzzx)mz j+1 = Kgflzl)j (94)

In view of the relationships (79) to (90) and (93) and (94) it follows that the solutions A‘q‘,’s, r=12...,n;;

s=1,2,...,m;,and AEIZ,’S, r=12,...,n,;s=12,...,m,ofequations (69) and (70) must satisfy the relations

Azlzmlvs+1 - KAE]lgs’ (95)
Agz;r?.mz—s+l = KAEZZJS (96)

It now follows that the set of mn; + m,n, linear simultaneous equations (69) and (70) may be replaced
by the set of {m;n, + m,n,) linear simultaneous equations

1 & 1 (11 (1,1) CRRLS AD [yi.2) (1,2) i=12....n,
()L IJJ = z Z A;gs l],,)s -+ K'pi,j‘;r'ml—er]] + Z Z H )\”l NHE + K‘//i,j’;r,mz—s+l] . 1 97
r=1s=1 r=1s=1 j=12,....9m, 97)
and
noim ima o) g2 5 i=1,2,...,n,,
(2 1 2,1 2,1) 2,
E)ql)j— Z Z Ai;r);[‘//f,r)s+’€‘//1,rm,—s+1 + Z Z Aq,r)s l];r.)s+ K¢£]r)Mw s+1] . 1 (98)
r=1s=1 r=1s=1 j:]aza""imZ'
The set of equations (97) and (98) may be written as the single matrix equation
q y g q
ew P g2 400
e | _ q
0w | |wyan yae? A‘Z’ ’ ©9)
q
The column submatrix @ consists of the mn, elements %), i =1,2,...,n; j=1,2,...,5m,. The
column submatrix ©@{? consists of the 1 sm,n, elements 07, i =1,2,...,n,; j = 1,_,.,4,%m2. The column
submatrix 4" consists of the 1 sming elements AL r = 1,2,... 0,5 = 1 2,....3m,. The column submatrix
AP consists of the m,n, elements A2 r=1,2,...,n,;5 = 1, 2,...,4m,.

We must arrange the elements of @\, ©, A‘ql’ and A{?) in some prescribed order. It is convenient to use
the following ordering:

64:) ;is the ny(3m, — j) + 'th element of ©{", 62) ; is the ny(3m, — j) + 'th element of ©2,

AL sis the ny(3m, — s) + r'th element of A\ and A2 is the ny(4m, — s) + r'th element of AP

q;r,s
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The arrangement of elements in Y1), 22 P2 and P must correspond to the arrangement of ele-
ments in O, ®2, A" and AP, The submatrlx Wb is a square matrix of order 3mn, x $mn, with the

element
TR i=12...,n,; r=12,...,n
i,jir.s Ljyramy—s+1 . i i 1
j=12,...,3my; s=12,...,5m,

in the n,(m, — j) + i'th row and n,(4m; — s) + r'th column. The submatrix ¥*? is a square matrix of

order {m,n, + 3m,n, with the element
i=1,2...,n,; r=12...,n:

lp(i,zj);t%,)s + K'pg,zj,;f,)mz—erl ; 1 ? 1 !

]=1,2,_...,7m2; s=1,2,...,5m2,

in the n (zm2 j) + ©’th row and n,(m, — s) + r’th column. The submatrix P2 js a rectangular matrix

of order 3m,n, x %m,n, with the element
(1.2) (1.2) i=1,2,...,n; r=12,...,n,
l//i,j;r,s + Klpi,j;r,m,—s+1 . 1 . 1
j=12,...,9m; s=12,...,3m,,

in the n,(4m, — j) + i'th row and n,(3m, — s) + r’th column. The submatrix P> is a rectangular matrix
of order im,n, x Im;n, with the element
i=12,...,n,; r=1,2,...,ny;

(2.1) (2,1)
w:]rs+’ap11rml —-s5+1 - 1 2 lm . S—l 2 lm
T Ro ey m e ey RITED oty S mes 2000

in the n,(dm, — j) + i’th row and n,(3m; — s} + ’th column.

5. Approximation to the Generalised Airforces

If we transform the integration variables x, y in formula (13) to (£,#) over W and to (g, {) over T according
to equations (67) and (68) we get

+1 +1

Sy

1 Al
N
Qpy =7 Be gy M) h

1
. {2x, pAP(x, y; v, M) de. (100)

-1

If we substitute the approximation A"(x, y) to A{")(x, y; v, M) from equation (53) and the approximation
A(x, y) to AP(x, y; v, M) from equation (58) into formula (100) we get an approximation Q,, to Q,,, given
explxc1t1y by

ny omy na  mz

D0y = ,‘; SZI AR s + ,; s; AR ks (101)
where
x‘;ls=571f ‘)(nJl_—?dnf h(“c“PC‘“(x y)exp(——)d*
r=1,2,...,n5=12,...,my, (102)
and

1= f ‘2>C)\/1—c2dcf DY c‘”xy)exp( )

r=12,...,n,; s=12,...,m,. (103)
It follows, in view of equations (29), (30) and (78) that

Kot —s+1 = KXohss (104)

and

Korma—st1 = KXoms: (105)

{3



If we substitute equations (95), (96), (104) and (105) into equation (101) we get

ny im, ny  4m;
Qpe =2 Zl Zl Aszl;l.sx(pl;:,s +2 21 Zl Aizz;l.sx(pz;:,s’ (106)
r=1g= r=1s=
since k = +1 or k = —1, and then expressing this equation in matrix form we get
A AP
[Q,e) = 2047, 1471 [A‘Z’j" (107)
q

where [qu] is a matrix of the one element qu. The row matrix . is a row matrix of 3m,n, elements with
the element

(1 _ e = 1
s r=L12...,n:5=12_.im,

in the n,(s — 1) + r’th column. The row matrix ¥ is a row matrix of im,n, elements with the element

2 _ e = i
Yome  r=12,n5=12,...,im,,

in the n,(s — 1) + r’th column.
From equations (99) and (107) we get finally

R g 12 -1 o)
[0,,] = [0, 22 [2 2 ] [ ‘ } (108)

g L o
an equation that can be used to determine the approximation qu to the generalised airforce coefficient Q
since all the elements of the matrices on its right hand side can be evaluated.
If we consider k modes of oscillation then there are k2 generalised airforce coefficients Qupsp =12, k;
g=12 ...,k
Let [Q] be the square matrix of order k x k with the element

pq?

Qp.q’ P=1,2,---,k;q=1,2,...,k,

in the p’th row and ¢’th column.

Let x'V be the matrix obtained by arranging the row matrices D, p=1,2,..., k consecutively beneath
each other and let y'*) be the matrix obtained by arranging the row matrices x‘pz’, p=1,2,...,k, consecutively
beneath each other.

Let ®'" be the matrix obtained by arranging the column matrices ®£,”, g =1,2,...,k, consecutively along-
side each other and let ®? be the matrix obtained by arranging the column matrices 0P, q=12,...,k

consecutively alongside each other.

Then we may write
(0] =[xV, 2 PPN g2 -1
XX gl Ly Q) (109)
6. Numerical Integration
6.1. Formulae for ¥¢/

To evaluate the elements in the matrices occurring in formula (109) certain integrals must be evaluated
and we shall now discuss their numerical evaluation.

We obtain the elements of the matrices ¥, -2, W21 and W22 from the formulae (73), (74), (75) and
(76). The functions Ui)(x, y;v, M), UZNx, y;v, M), ViD(x,y;v, M) and V(x,y;v, M) occurring in these
formulae are not known explicitly but have to be obtained from the convolution integrals in equations (61),
(62), (63) and (64) respectively. Since the evaluation of these convolution integrals is rather lengthy it is not
practical to obtain values of Ul)Xx,y;v, M), UZXx,y;v, M), V{)(x,y;v, M) and Vix, y;v, M) at a very
large number of points (x, y) on the surfaces W and T. For this reason the number of integration points used
for the numerical evaluation of the integrals in formulae (73), (74), (75) and (76) must be restricted in number.
The selection of the points is made so that the numerical values of the integrals are as close as possible to
the actual values and to this end we use the techniques of Gaussian integration.

Let [,(¢) be a polynomial of degree » in ¢ which satisfies the relations

! 1 -0
f o'l (o), / do =0, r=0,12,...,n — 1. (110)
° o




Let the zeros of [(c) be denoted by o™ I =1,2,...,n All these zeros are in 0 < ¢ < | and are given by
(see Ref. 9)

21 — 1
a&"’:%—%cos(2n+ln), I=1,2...,n (111)
Let A™(c), I = 1,2,...,n, be the set of n interpolation polynomials based on the points 6, I = 1,2,....n,
and defined by the formulae
e L - R
h(l)(O')=Pl;I1 (m), I= 1,2,...,71. (112)
P+I
The A (o) are a set of n linearly independent polynomials of degree (n — 1) in ¢ which have the properties
Aoy = 6;p (113)
and
v N - _
[ B do = 8, A", (114)
0
where (see Appendix 3 of Ref. 9)
1
~ ~ 1 —
ay = [t [~ do
0 o

1 . X 1 _
=f i), [—— 2 do

0 (2

2n

— ()
S - (115)

and &,p is Kronecker’s delta.
Let y,,(u) be a polynomial of degree m in u which satisfies the relations

+1
f /1 — 2du=0, s=012,....,m— 1L (116)

-1
Let the zeros of 7, (1) be denoted by p§®, J = 1,2,...,m. All these zeros are in —1 < u < 1 and are given
by (see Ref. 9)

,u‘}”)zcos( n), J=12,...,m (117)

m+ 1

Let 3(w), J = 1,2,...,m, be the set of m interpolation polynomials based on the points uim g =1,2,
..., m, and defined by the formulae

m ”_#(Qm)
2w = 11 (ﬁ) J=12..m (118)
“y" — Yo

0=1
o#*J

The 3{™(u) are a set of m linearly independent polynomials of degree (m — 1) in which have the properties

g(Jm)(me) =30 (119)
and
+1 -
f PRS0/ T — 2 dy = 6,00, (120)
-1

where (see Appendix 3 of Ref. 9)

Gimy —
G =

+1
B>/ 1 — p?du
-1
i
f (/1 — ptdu
-1
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= = 2 (121)

We define the numbers H{};”, H{%™, G{'/" and G{>™ by means of the formulae

H™ =fl hﬁ"(é)ﬁ‘;”(é)\/h—l ~ e b (122)
‘ 0 ¢ I=1,2,...,n,
! - 1 —¢ i=1,2,...,n,;
HEZD = | K2 )R" () / de 123
i L CORCON T (123)

j=1325 7m1;

+ 1 PEERES
Giym = f g R =y dy (124)
-1

J=12,...,m,
and
+1 i=L2...,my;
Gi™ =f gPOBTON/ 1T — (2 dt (125)
-1 J=12,...,m
If ‘
nzn.nzn,mzm and mzm,, (126)
the formulae (122), (123), (124) and (125) give respectively
HL™ = hiYg™) B i=12,...,n; I=12_...,n (127)
HZY = B2(e™AY  i=1,2,...,n,; I=12,....n (128)
G =g MGm  j=1,2,...,my; J=1,2,...,m (129)
and
G = gP(uGim =12 ..omy; J=12...,m (130)

In order to apply Gaussian integration techniques to the evaluation of the integrals in equations (73), (74),
(75) and (76) we introduce the further set of points 6, = 1,2,...,n, in (0, 1), defined by

G =1—0,,,. (131)
On the surface W we choose the N, integration points ¢ given by

& =M, I=12,...,N,, (132)
and the M, integration points # given by

n= M, J=12,... .M. (133)
To the point (£ 1) = (&{"), uV) in the transformed variables on W there corresponds the point (x, y)
= (x5}, y19) in the original coordinates, where

y(lA;lJl) = s
and (N, My) (M 1)y =(N )} {1(0, (M) (134)

Xurrt =006 + Xy 01

On the surface T we choose N, integration points ¢ given by
& = gV, I=12,...,N,, (135)
and M, integration points { given by
{ = M2, J=12,...,M,. (136)
To the point (¢, {) = (6]**, 4}?) in the transformed variables on T there corresponds the point

— (o(N2,M (M
(X, y) = (X(Z;IZ,J 2)3 yZ;JZ))
in the original coordinates, where

(M3) _ (M3)
J’2;JZ) = Sy *
and (N2, M 2) (M) =(N2) (2) (M 2) (137)
X5tr Y = (e P + xi (3.7)



The points (132) and (133) are the Gaussian points of integration for the evaluation of equations (73) and
(75) and the points (135) and (136) are the Gaussian points of integration for the evaluation of equations (74)
and (76). If N, = N, and M, = M, these sets of points become identical to each other.

If we approximate to U')(x, y; v, M) by the double polynomial of degree (N, — 1) in ¢ and degree (M, — 1)
iny

N1 M,

UDGeyiv M) = 3 Y USENEI, 0405 v, MRS o (1 = EZ() (138)

I=1J=1
substitute this into equation (73), integrate and make use of the relations (122), (124), (127) and (129), we get

Ni M,

1,1y __ (1) (N) [(N1) (D MINGM ) (1) =(N M (M) .

ijirs = Z Z Ry oN,'- 1+1)HN,1 1+18; (w5 )G, U,’S(xl;,', y”‘ v, M)
I=1J=1

i=1L2,...,n; r=12,...,n
j=L2,...om; s=12,...,m,. (139)

The formula (139) is exact if gl (M1 — U Nx, y; v, M) is a double polynomial of degree <(2N, — 1) in
¢and <(2M, — 1) ing. Otherwise it is only an approximate formula.
Similarly we get

2

N2
(2,2) (2 (N Yoty 2), (Ma)yFHM 2)(=(N2,M2) (M
‘ﬁi,j;rs = Z Z h; )(0-5\122)1+1) §v22)1+ g; ( (J 2))6(1 UL )("(2121 )9)7‘2 JZ)v‘ M)

I=1J=1
i=12,...,n; r=12...,n,;
J=12,...,my; s=12,...,m,, (140)
Ny M,
1,2) _ 1) AN N 1), (M M) (2 (NM),M)
i =3 > 1)1+1)H§v]')1+185 MOGM OV 2R,y v, M)
I=1J=1
i=12,...,n; r=12,...,n,;
j=12,....m; s=12,...,m,, (141)
and
N2 M;
(2,1) _ 2)( (N (N ), (MaNFHM2) 171y =(N2. M) (M
l/Ii,j;r,).s - Z Z h{ )(O-glell+1)Hsz)I+ g} )( 2))GJ z)Vr,s)(XZ;[z,J 2): ,VZ Z) aM)
I=1J=1

i=1,2...,n,; r=12,...,n;
J=1L2 .,my; s=1,2...,m,. (142)
The formula (140) is exact if g2(OhP(1 — e)U'2Xx, y; v, M) is a double polynomial of degree <(2N, — 1)

in ¢ and <(2M, — 1) in {, the formula (141) is exact if g{"(mh{" (1 — &V2(x, y: v, M) is a double polynomial
of degree <(2N; — 1)in{and <(2M, — 1)in#,and the formula (142) is exact if g >(OR>(1 — &)Vi(x, y; v, M)
is a double polynomial of degree <(2N, — 1) in ¢ and <(2M, — 1) in {. Otherwise the formulae are only
approximate ones.

If we take M, and M, to be even numbers, take into account the properties in equations (79), (80), (81) and

(82) and note that

s gy = —ui, (143)
then from formulae (139), (140), (141) and (142) we obtain
N1 M,
Uik + ki —cer = X 2 BPORD VAR L {8 P0) + kgi(— pM )G x
I=1J=1
X AURAERE, Y005 v M)+ kUG, (R0, 400 v, M)
i=1,2,...,n; r=12,...,n.;
=12 5m; s=12,...,im,, (144
N2 tM, . -
WG bl s = X Y PR AT 1 {gPM?) + kgD — M) GMD x
I=1J=1

(2) —(N M M 2 No.M M
{Urs( i 2)>,V(2 Jl)av M) + KU£,7312“S+1(X(2fJ Z)’y(ZJZ)’v M)}
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i=12...,n,; r=12...,n
: 1 . 1
J=L12,.. . ,5m,y; s=12,...,3m,,

Ny M,
(1.2) (1,2) (DGl (N 1y,,(M 1 Mo FHM
l//i.j;r.s + Kl/’ljl’mz s+1 = Z Z hi )6N11)1+1)HN|I11+1{g1 (/J 1)) + Kg‘] )(_,ufl 1))}G.l 0 X
I=1J=
(2 (N M M (2 (N1 M M,
{V )( i & y(l J') v, M) + xV; )z s+1(x(11'1 1),,V(u]"’ M)}
i=12...,n; r=12,...,ny;
. 1, . 1
i=12,...,9my; s=1,2,...,3m,,
and

N2 iM,

2 2 Mo FM
WG+ T e = X T BPOR2 1 AR {8 ) + kg = uf ) GR x
I=1J=1

D gN2M2) (M (N2.M2) (M)

X {Vis)( JZ) }’2JZ)vV M)+KVrm|—s+1(x212JZ Vv, M)}
i=12,...,n,;, r=012...,n;
; L, . 1
]:1,2,...,7m2, S=1,2,...,7m1.

Lptah Lp(.2) LY 9 Ul @
lii‘l’(z‘” ;xy(z,z)]zl:o L(2)1|[V(1) U(z)]‘

We can now write

(145)

(146)

(147)

(148)

The matrix appearing on the left-hand side of equation (148) occurs in formula (108) and has elements which

are one half of those in a related matrix appearing in formula (99).
The submatrix U'" is a rectangular matrix of order M N, x im,n, with the element

1 (NM) (M) (N1, M) (M)
U, ’( RS AR M)+KUrm1 s+1(x111J1’y1.11’VM)

of order {M,N, x im,n, with the element

2y = 2 =(N2.M32) (M
Ut )(X yZJ ;v M) + KUSJ.Z—sH(xz i ayzf)’v M)

in the N,(;M, — J) + I'th row and n,(3m, — s) + r’th column. The submatrix V? is a rectangular

of order $M N, x im,n, with the element

2) = M 2 (N M) (M
V(r,s)(x(l R y( div, M) + KV(r,)zAerl(x it > V1, Jl) v, M)

m

of order §M,N, x im,n, with the element

VIR 97 v, M) + RV, (RS 585 v, M)

in the N,(AM, — J) + I'th row and n,(}m, — s) + r’th column. The submatrix L) is a rectangular

of order 3m,n;, x 1M N, with the element

i=1,2....n: I=12..,
j=12.. 3 m;; J=12,..

F(M
%h‘i”(o-st‘lll+I)H(}\IlvlllJrl{gsn( (Ml)) + Kg(l)( ‘M‘))}G(J 1)

in the n(3m, — j) + i'th row and N,4M, — J) + I'th column. The submatrix L‘® is a rectangular

of order im,n, x 1M,N, with the element
PR L AR ) + g~ )

in the n,(3m, — j) + i’'th row and N,(AM, — J) + I'th column.

18

I=12...,Ny, r=12...
J = 1,2,...,7M2; s=1,2,...

I=1,2...,N; r=12...
J=1,2,... M, s=1,2,..

in the N, (M, — J) + I'th row and n,(3m, — s5) + r’th column. The submatrix V'V is a rectangular

I=12,...,N,; r=12,..
J=1,2,...,iM,; s=1,2,...

i=1,2...,n; I=12..
=12 my J=1,2,...

I=12...,N;; r=12...,n
J=12,....iM,; s=1,2,...

in the N;(3M, — J) + I'th row and n,(3m; — s) + r’th column. The submatrix U® is a rectangular

1
>7m17

matrix

,nz;
1
simZa

matrix

’nz;
L
-y2M,,

matrix

'anl;
1
> 7M.

matrix

Ny

1
'97Mla

matrix

'aNZ;

1
’EMZ’



6.2. Equivalent Reduced Upwashes and Displacements

For the evaluation of the integrals in equations (71) and (72) we note that the functions oc‘”(x y;v) and
o P (x, y; v) are known explicitly and we can, possibly, carry out these integrations analytically. Otherw1se we
can carry out the integrations numerically to as high a precision as we desire. Also for the evaluation of the
integrals in equations (102) and (103) we note that the functions {{")(x, y) and (?Xx, y) are known explicitly
and we can, possibly, carry out these integrals analytically. Otherw1se we can carry out the integrations
numerically to as high a precision as we desire.

Let us write

1 1 V ng,m
Wil = Foogen SXP 9y~ X X e 005, (149)
i Yj
2 1 v 2
%) = = —exp — x4 mz) p2 (150)

l LHYE

asi.j H(nz)G(plz)
i J

[
G = i exp{ 7 &":?“}x;l:s (151)

sHOGm i
and
C(Z,e) - l~ exp Q_’x(znz.mz)}y(l) (152)
HaN n kS WPir.s?
P sHGm) l P
where
{m) {(m)
y H = Sl:us
(153)
X5 = e (el + XD
and
Yo = s (154
XG0 = (V5o + xPOE).

If o!V(x, y;v), aP(x, y;v), {P(x, y) and {P(x, y) are sufficiently smooth we can apply Gaussian numerical
integration techniques to evaluate 0{11,’1, G‘Z’J, Xt %02 , from equations (71), (72), (102) and (103) respectively.
To evaluate numerically the integral in equation (71), we approximate to oc“’(x y; v)exp (ivx/l) by the double

polynomial of degree (N, — 1)in ¢ and (M, — 1) iny

Ny M, i _
o4, v; v)exp( ) Y T R el TrEFLA L0 - o) sy

I=110=1

and substitute into equation (71) to get 6%} ;. Then from equation (149) we get

Ny M, N (Ml) ;
(l.e) _ (D) Hg? o gD Weci® M0 _ ctngmor () stNGE D (Mo
Uiy = IZ JZ R oR 1 ) ;i (15 1)G""‘)CXP{7[X“;'JI = Xy e X VMY )
1 1

i=1,2,...,n; j=12,...,m. (156)

The formula (156) is exact if g (iphi*™(1 — &)l (x, y; v) exp (ivx/l) is a double polynomial ofdegree <@2N,-1)
in £ and <(2M, — 1) in 5. Otherwise it is only an approximate formula.
Similarly we get

N, M I';"I_ITI G(Mz) iv

(2,e) _ (2) N2) Na—I+1 (2),(M2) —uv M, ( ) (2 uv M (M

Ugiilj = Z] JZ H20F2 4 ) 218 g 1y Z)G(mz) Xp l[xz J = XGmT alP NP,y v
I 1 i

i=12...,n; j=12,...,m,. (157)

The formula (157) is exact if gi™(OhP(1 — e)l?(x, y; v)exp (ivx/l) is a double polynomial of degree
<N, - 1)in e and <(2M, — 1) in {. Otherwise it is only an approximate formula.
To evaluate npmerically the integral in equation (102) we approximate to {'1(x, y)exp (—ivx/l) by the
double polynomial of degree (N, — 1)in ¢ and (M, — 1)in #,

. Ni My .
C(l)(X, y) exp (___) Z Z C(l)(x(Nl M.) '))exp {_%x JIWI }I,Z(Nl)(f)g(Ml) (158)

I=1J0=1



and substitute into equation (102) to get x'}) . Then, from equation (151) wegget

Ni M, llNl) G(Ml] iv o o
“(1e) (gt (4P (Ny.5) om0 (N LF ()
Cpirs = Z Z B o) wim gl ’)a;;r,e p —7[3( = X OO, )

r=12,....n:; s=12,...,m,. (159)

The formula (159) is exact if g\')(n )”:"(é){‘p‘ (x, y)exp (—ivx/l) is a double polynomial of degree <(2N, — 1)
in £ and <(2ZM, — 1) in 5. Otherwise it is only an approximate formula.
Similarly we get

N2 H(Nz) _ f[Mz) v o _
"(2 )y (2) (N) (2)¢, (M3) (N3.M») {ny,m3) (2) (N2.M>) (M)
prLs - Z Z h : H("l)gs (/JJ : ): 2 EXp§ — 7 [XZ;IZ,J : x22rsz] C (XZ 1.J }’2:]2)
I=1J=1 r
r=12,...,n; s=12,...,m,. (160)

The formula (160} is exact if gZ(Oh ()P (x, y) exp (—ivx/l) is a double polynomial of degree <(2N, — 1)
in ¢ and 2M, — 1)in {. Otherwise it is only an approximate formula.

If we take
N, =n,,
N,=n,,
_2 z (161)
M,=m,
and _
M, =m,
in formulae (156), (157), (159) and (160) they respectively reduce to
0‘:,1{.{,) — a(l)( (m ml)’ y(lmj‘)’ )’ (162}
OC{(1:_2{1]) — OC(2)( lnz mw)’ylmzl ‘,) (163)
v'plr(s) _ C(l)(,c(lnul;m)7 y(ml)) (164)
and
C(plres) _ Ctpl)( nz mz)’ y(mz)) (165)

We call %1} the equivalent reduced upwash in the mode g at the upwash point (¥{1+", "%, 0) on the wing,
224 the cquwdlem reduced upwash in the mode ¢ at the upwash point (5372, ¥3*2, h) on the tailplane, {0\,
the cquivalent reduced displacement in the mode p at the displacement pomt (x‘{"l;"", ¥, 0) on the wing

and {129 the equivalent reduced displacement in the mode p at the displacement point (x‘z"z, m2) y§) h) on

the tailplane. If the formulae (156), (157), (159) and (160) are of acceptable accuracy when the conditions (161)
are satisfied, then formulae (162), (163), (164) and (165) show that the equivalent reduced upwashes can be
taken equal to the actual reduced upwashes at the upwash points and the equivalent reduced displacements
can be taken equal to the actual reduced displacements at the displacement points.

6.3. Formula for generalised Airforce Coefficient Matrix

Let o' be the column matrix of ym n, elements with the element

(1 e)

. L 1
Oy 5 i=1012,...,n j=12,...,5m,,

in the nl(zm1 — j) + i'th row.
Let !> be the column matrix of 3m,n, elements with the element

(2, : . . 1
a‘i;ij’ l:1’2""’n2’ J"1525~"72m2’

in the ny{3m, — j) + i'th row.
Let £ be the row matrix of 3m,n, elements with the element

(1.e _ e {
[qh r=12...,n s=12,...,im,

in the n,(3m, — s) + r’th column.
Let {2 be the row matrix of im,n, elements with the element

2. _ A L
g r=1,2,...,n; s=12,...,5m,,

in the n,(5m, — s) + r'th column.
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Let D'V be the diagonal matrix of order im,n, x $m;n, with the element
f{n)Giima) v wni,m1) ; 1.2 L 1.2 1
Hi GJ exp 7x1;i,j t=1, a"'7n1’ ]: 3 a---afml’

in the n,(3m; — j) + i’th row and column.
Let D® be the diagonal matrix of order im,n, x m,n, with the element

o iv _ . .
HGm exp{Tx‘z"fi;;-"”} i=12...,ny; j=12,...,3m,,

in the n,(3m, — j) + i’'th row and column.
Let BV be the diagonal matrix of order 4mn, x imn, with the element

S1 menn iv
—;H‘,"”G;”“’exp {—Tx({’;‘,‘f;“’} r=1,2,...,n,; s=12,...,%m,

in the n,(4m, — s) + r’th row and column.
Let B? be the diagonal matrix of order 3m,n, x 3m,n, with the element

1
1,2,...,7}’}12,

At

Sy i iv
TZH‘J'”G(S"“’ exp {-—Tx(z"z""z’} r=1,2,...,n s

in the n,(3m, — s) + r’th row and column. Then from equations (149) and (150) we get

@Ll) D(l) 0 fxfll’e)
[@(2):| = I:O D(Z):| |:a(2,e)]’ (166)
q q

and from equations (151) and (152) we get

( 5 BM 0
(1) (27 l.e) r(2.e)
s xp ] = [0, (5 ][O Bm]. (167)
The matrices denoted by [0] are matrices with zero elements and with order appropriate to the position they
occupy.

If we substitute from equations (148), (166) and (167) into equation (108) we get

R BV ¢ LM 0 y®m 27"t rpm oo o1
[0,,] = [C4-2, (3] ol (168)
pa p 14 0 B® 0 L2 vy y® 0 D2 “S;Z'e)

Now let {® be the matrix obtained by arranging the row matrices (9, p = 1,2, ..., k consecutively
beneath each other and let {'*© be the matrix obtained by arranging the row matrices {7, p = 1,2,... .k,
consecutively beneath each other. Let «"*? be the matrix obtained by arranging the column matrices o},
g =1,2,..., k consecutively alongside each other and let «'>® be the matrix obtained by arranging the
column matrices ocff’e’, g =1,2,...,k, consecutively alongside each other. Then we get immediately from

equation (168)

N (1.e) #(2.e) BY 0 LY 0 Uy e -1['pv g f(1:9
[Q] = [0, ¢ ]0 g |llo L@y pym o p@||g2e ]| (169)

If, in formulae (139), (140), (141) and (142) we take

N, =ny,
N, =n,,
2o (170)
M, =m,
and
M,=m, ,
then the matrices L'’ and L'® of formula (148) reduce to diagonal matrices.
The matrix LY becomes a diagonal matrix of order 4mn; x im;n, with the element
A6 i=1,2,...,n,; j=1,2,...5m,, (171)

in the n,;(4m, — j) + i"th row and column

21



The matrix L'* becomes a diagonal matrix of order im,n, x im,n, with the element
HMGm = 1,2,..,n,; j=12,...,3m,, (172)

in the n,(3m, — j) + i’th row and column.
The formula (169) then reduces to

0 (1.e) #(2.€) BY 0 g y@-irpm g e
Q=["¢ ]0 g2 || yy y@ 0 E® || g0 (173)

where E'" is the diagonal matrix of order m,n; x im n, with the element

exp{l;x(,n:;"n} =12 n =12 4m,, (74

in the n,(3m, — j) + i’th row and column and E® is the diagonal matrix of order im,n, x im,n, with the
element

exp{%x‘"zml’} i=1,2...,n; j=12.. . Lm,, (175)

in the n,(3m, — j) + ’th row and column.

6.4. Evaluation of U'"), U

r.s*

The methods of evaluation of UL(X(HY", v v, M), UZGENGY2, yM2 5 v, M), VE(EN MY y v, M)
and VIO, y M5y, M) are still to be dlscussed We consider the evaluation of U‘“ (VM) You, M
Y2 y

Xy
first. We can rewrite equation (61) in the form

(1) /
Ultdx, y;v, M) = f "0) ’701‘”5 7,
-1

) flos v, M) dng (176)
0

where

I(”(f B 105 v, M) = SI("I - Uo)zf hm(éo),/ 60 ( yo ,05v, MY dE,. (177)

We have immediately from the definition of K{(x/!, y/I, z/I; v, M) given in equation (43) that

lim — K( 0 v, M) = (178)

yoo EOVDT 0 ifx<0
and therefore it follows that

IOE s v, M) = f KO / 5" s (179)

The function IV(, 1, 14; v, M) is finite for any 5, in the range (—1, 1). For , = # its numerical value is
obtained from formula (179) but for 4, # # the complete formula (177) must be used and numerical integration
carried out. For z = 0 we can write, from equation (43),

2 -
y Xy © . du M(Mx + R)) iv
—SK|=,>,0;v, M| = ival i 2 _by 0
e (l T ) g Lle A T S (180)
where
R, = /x* + (1 — M?)y? (181)
and
—x + MR,
Xi=——5— 182
T - MY (182)

We can further write
© o du Tfiv]y] ivlyl iyl viyl
2 ivu/l —_— H K | - I .
y J;(l € (uz + yZ)% 2( ] -1 l - I 1y
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X1/l . do
_ —iviylv/l S — 183
L © (@ + 1% (183)

where I, and K, are modified Bessel functions of the first order and respectively of the first and second kinds
and H_, is a Struve function of order —1.

The numerical evaluation of y?/(I2)K(x/l, y/I,0:v, M) for u # 0 can now be carried out using equations
(180) and (183), so the integrand in the integral on the right-hand side of equation (177) can be evaluated and
the numerical evaluation of that integral carried out.

However we observe that when y is very small, X,/|y| can become very large and the numerical evaluation
of the integral on the right-hand side of equation (183) can become a lengthy process. In this case we can
evaluate the integral on the left-hand side of equation (183) by a different but more rapid process.

If X /Iyl is very large and positive we write

© du © * (Zn + 1) fvp| 22, vX,
2 ivufl — ot 77 - | = I —_— 185
y fXx © (u2 + ,Vz)% fX1/|Y| ¢ (U + 1 n; 22n(n!)2 ( l e l ( )

where
. © g
1,,(a)=f e—wv—f. (186)

The rapidly convergent series (185) must be summed to get the value of the integral. The I («) satisfy the re-
currence relation
1

Lo =~ ) (187)

| S
—e
o

which enables the I,(2), n > 3 to be obtained from a stable process from I,(a).
We evaluate I ,(x) from

, 1 imy 1 Ui 32 (=i
=y + T+ 21 L. T 188
L) 2(”2) 2 0BT o Ty 4+,,§‘1n(n+2)! (188)

for « positive, except when « is very large and positive, in which case we use the asymptotic expansion

R 1 3 34 n! .
I(0) ~ .. —— .. e 189
0~ | o g T 1)
If X',/|yl is very large and negative we write
y? fw e—ivu/z__iu__ = on e—ile!v/lLi _ le/M e—iVI}‘IvHL
X @ +y Jog (CAIE S VLR @* + 1)}

V|}’|) foo iviyloft dv
e et — (190)
! a0+

and we can evaluate the integral on the right-hand side of equation (190) in a similar way to the way the
integral in equation (185) was evaluated, the only difference being that the sign of i must be changed.

In the numerical evaluation of the integral on the right-hand side of formula (177) one should note the
rapid change in values of (7 — o)*K((x — xo)/1, (¥ — yo)/l, 0; v, M) when y, is near to y and x,, passes through
x. A number of subintervals in the range (0, 1) of £, are taken, which together cover the whole range (0, 1),
and over each of these subintervals a Gaussian numerical integration is carried out. These subintervals should
be smaller where (1 — 70)*K((x — xo)/l, ( — ¥o)/I, 0; v, M) has a rapid change in its values than they are
elsewhere, so that the subintervals can be larger as x, moves away from x. Also when y, is far from y fewer
subintervals can be taken than when y, is near to y.

The integral on the right-hand side of equation (176) is an improper integral, the integrand at 5, = 5 having
a singularity which is dealt with according to Hadamard’s method of finite part integration. We could ap-
proximate to Y&, 1,745 v, M) for n, in (—1,1) by means of a polynomial in #, in order to perform this
integration. We note, however, that in the neighbourhood of n, = 5 the function I'*X¢, n, 5, ; v, M) may be
developed into a series of the form

o

I, 1,105 v, M) = Z ECNE, n5v, M)(n — 1ol + (1 — no)* log In — 1l Z FUXE n5v, M)(n — no)P  (191)

p=0 p=

23



and that an improvement in the accuracy of the integration can be effected by subtacting the lowest order
logarithmic term from I{(&, ,7,; v, M) before making the polynomial approximation. To do this the co-
efficient F{!)(&, n: v, M) of the lowest order logarithmic term must be known, and, according to Ref. 9 this is

given by
1 s,! d 1 -¢ ive,(y) 1 — ¢
F M - MA)—t K/ 2—2hE)
oS v, M) = (y){ (1 )dé[ (9 z } + s : +

ZC‘I—Zy)L WD) udu}. (192)

We now write

2 M) EE, 1,105 v, M) = gDFUNE, n3v, M)(n — no)* log ln — nol +
+ L8N E, 1,105 v, M) — g VMFUYE 15 v, M)(n — no) logln — nol]  (193)

and approximate to the expression in square brackets by means of a polynomial of degree (i, — 1) in #,.
We take this polynomial to be the interpolation polynomial with the same values as the expression in square

brackets has at the points n, = uf™, Q = 1,2,...,m,, where p{™ is defined by formula (117), and on doing
this we get

g mE 1 ng5 v, M) = gD(FUYE 15 v, MY(n — n)* log I — 1ol + Z [ G IIINE, n, uG) 5 v, M) —

— gMFYCE niv, M) — pG) logly — """I]gg"”(ﬂo) (194)

where the interpolation polynomial g™(x), J = 1,2,...,m, has been defined in formula (118).
If we substitute the approximate expression (194) for g‘”(no)l‘”(é 1, 110; v, M) into equation (176) we get

Ux, yiv, M) = gPmFO(E, n; v, M) f logln — nol /1 — nddny + Z (WG HINE, 0, uG 5 v, M) —

-~ _ +1 F(m1) 1 —
g, v, M) — 15 log g — ugy) [ BEON — 16 (195)
-1 (n — 1)
and therefore

U“’(X(N‘M“ y(ll\'{ll)’v M) = g ( (Ml))Fll)(O.(Nx) “(Ml) v, M)

o
X U | log M — ol /1 — ng dno — Z (" — gy log |u§ — pgil x
XfH 85mo\/1 — n5 ]

+ Z g(l) (ml))I(l)( FN1) 'u(Ml) ,u(é"‘) v, M)X

S (W — e =
TLETme)/ 1 — '10 196
L g2 e (196)
Now, we know that, (see Ref. 2 or Ref. 9),
—g(m + 1) 0=1J

f T g Mo/ 1 = 1g '10 2n {1 — (g’

W —m? T [+ 1) (7 — g
0 (—1)2* = 1,0 £ J.

We can make use of formula (197) in equation (196) if

(-2 = —1 (197)

my+ 1 =q,(M; + 1) (198)

for some positive integer gq,, for then all the gV, J = 1.2,..., M, are included among the u(g‘), Q=12
,m;. We shall henceforth take m, to be given by the relation (198) for some gq,, and we shall evaluate
U‘”(x""1 F, MY v, M) from formula (196). To do this we need the result

+1
f log 1 — nohy/T — 13 dny = 520 — 1) — S1og, 2 (199)
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The technique leading to the formula (196) for evaluating U3, y147 5 v, M) was first advocated in
Ref. 10 for isolated wings oscillating at low frequency and later applled 1n Ref. 11, to isolated wings oscillating

at general frequency.
We note that

+1
f_ (j)'"(no a1 —medne =0, J=12...m, (200)

where 7,,(1,) is obtained from relations (116). It follows that the formula (196) is exact provided that the ex-
pression in square brackets in formula (193) is a polynomial of degree <m, in #,.

The formula analogous to (196) for evaluation U@(xP2-Y2, yM», v, M) is

2 N> .M Mj) — 2 M 2)¢=(N M2).
UL,y v, M) = gP(uP)FEEN, uf™ 5 v, M) x

+1 2
x [ [ g — Co T=Tdly — X (4 — ) tog g —
-1

1 F(2) /
y J~+ MC{CO} + Z g(2) (mz))I(Z)(o.(Nz) (Mz) /.L(sz) v, M) x

-1 (N(MZ) ‘:o) o=1
+1 (mz)
go>(C )\/1 —C
« | BN (01)
where
IMe, (,loiv, M 15 (2) — & Xo V= Vo .
& 8 Cos v, M) = 4 I(C—C h (€0) K|Z T ,0;v, M de, (202)
0
and
FOe, (;v, M) = ln CS?; ){ 1 - MZ)%[h‘,z’(a)\/ L;—S] + 2ivc2§y Jhorey /! :8 +
2
1 —
+ 7 cli(y hi”(u),/—-l;idu}. (203)
0
We take

i, + 1 = g,(M + 1). (204)

6.5. Evaluation of V'’

We can rewrite formula (64) for V{%(x, y; v, M) in the form

+1
Vi M) = [ g2Co/T = GBI Loi v M) dlo (205)
-1
where
(2) 132 e 1 —&5 [X—Xo y— Yo h
J (é ’17 CO sV, M) r (80) K s s -3V, M dSO . (206)
4r | N l l {

The function J{2X¢&, y, {,; v, M) is finite for any {, in the range (—1, 1) since the tailplane is assumed not
to be in front of the wing in the plane of the wing. To evaluate K(x/l, y/l, h/l; v, M) from equation (43) we need
to evaluate

© o (u?+ y? — 2h%)
lzf ivu/l -
a4 du (207)
where
—x + MR
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and

R=/x*+ (1 = M}(y? + h?). (209)

We can write

12 Jmo e ivull (wuj.iﬂ?
x W + y* + h?)E

wl? iv 5 5 v 5 2i v 5 5 v 5 5
= _é(yMZ-FhZ){T\/y + h }{H_l(—l y + h _;Kl “l y + h —11 A +h —
nl?h? v 16 v 5 2 v 3 v 3
—'m 7\/_)1 + h H_ZT y +h _EKZ_I y +h +l]2 ?\/y +h —

-2 fxe—ivu/l (uz + y2 - th)

35 du, 210
o (u? + y* + K23 “ (210)

where I, and I, are modified Bessel functions of the first kind and of the first and second orders respectively,
K, and K, are modified Bessel functions of the second kind of the first and second orders respectively and
H_, and H_, are Struve functions of orders —1 and —2 respectively.

The numerical evaluation of the integral (207) can now be carried out using the formula (210) so that
K(x/1, y/I, h/l; v, M) can be determined from formula (43) and then the numerical evaluation of the integral
on the right-hand side of equation (206) can be carried out using Gaussian integration over a number of
subintervals.

However we observe that when X/./y? + h? is very large the numerical evaluation of the integral on the
right-hand side of equation (210) can become a lengthy process. In this case we can evaluate the integral {207)
by a different more rapid process.

We take X/,/y* + h? to be very large and positive and write

© . 2 2 _ 2 2 had il znA
o e T m I =0 ¥ (—U"M(E) 12"+3(v_?£)_
n=0

x (u® + y* + h*)? 25(n1)? \ 1 !
h? = (2n + 3)! vr| 2t 2, vX
_ 2l I B L S A DA
v r2 n§=:0( 1) 22n+1n!(n + 1)] l 12n+5 l H (211)

where
r=./y! + h2 (212)

The quantities I (a) can be evaluated as before and the rapidly convergent series in equation (211) summed
to get the value of the integral.

We could consider the case of X/,/y* + h* being very large and negative but this is not likely to occur
in a practical wing-tailplane configuration.

We now approximate to g?((,J &, 1, {y; v, M) by means of the interpolation polynomial of degree
(F, — 1)in {,

ity
g(sZ)(CO)‘]s‘Z)(éa 7], CO’ V, M) = Z g(sZ)(/’l(sz})JSZ)(én 7’], :u(QMZ) 3V, M)E(QMZ)(CO}o (213)
Q=1

where the interpolation polynomial gy(u), J = 1,2,...,m, has been defined in formula (118).
If we substitute the approximation formula (213) for g{®((o ¢, 1, Ly, v, M) into (205) we get

my
V3x, y;v, M) = QZ G uG W (E, 1, u&5 v, M) (214)
=1

and this formula can be used for evaluation V{2(x{7}-10, y{10 .y M).
The formula (214) is exact provided that g{*({)JP(E, 1, {o; v, M) is a polynomial of degree <(27, — 1)
in {,.

6.6. Evaluation of V")

The function V{!)(x, y; v, M) is defined by formula (63). We note that if the tailplane is in the plane of the
wing, behind the wing, the kernel function K{((x — x,)/I, (y — yo)/l, h/l; v, M) can become infinite as Yo — ¥
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If the tailplane is nearly in the plane of the wing the kernel function can become very large as y, — y and
this feature can lead to difficulties with subsequent numerical integration. We can separate the kernel into
two parts, one of which is well behaved for all values of h/l and the other of which becomes infinite if
h/l = 0, or becomes very large if #/l « 1 when y, — y. This second part will occur in integrals which can be
evaluated analytically so that no numerical difficulties are experienced.

Thus we can write, from equation (43),

xyh _g[2E #[X 2 h
K(l’l’l’v’M)_K(l i )+K oL Y’V’M (215)
where
=¥ h 2 [© o+ ¥? = 207
K—'—; =] lvu/___—_
(l’l v) w W + y* + 1)}
217 v o5 3 vV o5 5 200 v T A 5
=m—l y+h Kl?/y + h m AaY + h szl\/y + h
v d 2%y
N T e e B
and
xyh oo (W + yr = 2h?)
K*— =~ —: — 2} . ivui A\ T )
(l’l’l’v’M) l[ f_we (u2+y2+h2)%du+

+ exp (_z_vz){ MMx +R)  R*MMx + R MYl - M*)x
I LR +y* + BY) R(x* +y* + 1% R(x* + y> + i)

2H*M(Mx + R) iv h*M*Mx + R)

- R(xz + y2 + h2)2 - 7 Rz(xz + yZ + hZ)}:|

(217)

In the above, K, is the modified Bessel function of the second kind and zero order and X and R are defined
in formulae (208) and (209).

The function K*((x — xo)/l, (¥ — yo)/L, k/l; v, M) is well behaved as y, — y when x is a point on the tail-
plane and x, is a point on the wing.

We now write for V{1(x, y; v, M) given in formula (63)

V(x, y; v, M) = V() + V(x, y; v, M), (218)
where
_ly — h
P = = 2 [ e/ P e [ e TR o e @19
+1
Vi v M) = [ 6000 /T = 13006, Lo v M) i, (220)
and
. 1 s, (! f ¢ —Xo V— Yo h
(1) . i (1) 0K o o Z.
0% M) = - 3 [ e 1 B[ 20 ) (21
To evaluate K*(x/l, y/l, h/l; v, M) from equation (217) we need to evaluate
X 2 2 2
oo+ yt — 2h%)
2 ivafl — du. 222
l f.me W+ (222

We can write (c¢f. equation (210))

2 fx o il (* + y* — 2% u
o u? + y* + W)
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o ¢ ? + y* + W) “ =

The numerical evaluation of the integral (222) can now be carried out using the formula (223) so that
K*{z/l, y/I, h/l; v, M) can be determined from formula (217) and then the numerical evaluation of the integral
on the right-hand side of (221) can be carrled out using Gaussian integration over a number of subintervals.

Again we observe that when X/\/ y? + h* is very large the numerical evaluation of the integral on the
right-hand side of (223) can become a lengthy process. In this case we can evaluate the integral (222) by a
different more rapld process.

We take X/\/y* + h? to be very large and negative and write

e ) Qn + 1)![wr vX
2 iva/l VT — 2 . A — _
l fﬁ . € (u T y + h )_ Z ) 22n(n|)2 ( ) 12n+3( l )

f 2n+2_ X
‘r) Ims( —-v—) (224)

h? i v (2n + 3)!
r? & 22"“n'(n+ Dt I

where 1,(%) is the complex conjugate of !_(,l and these can be evaluated as before.

We could consider the case of X/ /v + h? being very large and positive but this is not likely to occur
in a practical wing-tailplane conﬁguratlon.

We now approximate to g{0(no)/ e, {, n0; v, M) by means of the interpolation polynomial of degree

(m, — 1}in gy,

g Ve, Cong s v, M) = Z g e, &, 10 v, MYEE (o), (225)

where the interpolation polynomial 3 (u), J = 1,2,...,m, has been defined in formula (118).
If we substitute the approximation formula (225) for gs”(nO)J‘”(s ¢, Mo v, M) into (220) we get

Vi0c, yiv, M) = Z G g g e, L g5, M), (226)

and this formula can be used for evaluating V‘”(x“"2 FER Iy, M),

The formula (226) is exact provided that g“' (H0) f“’(z {.1o: v, M) is a polynomial of degree < (2m, — 1)
in .
6.7. Evaluation of M,

If

n <N, (227)
then the formula
1 é Ny ) -
[ a2, = § o, (228)
I=1

where the af" are given in equation (111) and the AY are given in equation (115), is exact and may be used
in equation (219).

In equation (219) we also need to evaluate

M,

h +1 h
%‘Z;V) =f g"(no) \/1 - (ZJK( lJ’o V) dng. (229)

-1

We shall write, in the integrand of the integral on the right-hand side of equation (229) (assuming s, < s,),
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Mo = €08 ¢

and (230)
y/s; = cos ¢
and put
. 2 hz
(y__:‘i__)__+_. (231)
s7
Until now the positions of the points #{", j = 1,2,...,n, in (=1, 1), introduced in Section 4 has not been
specified. If we take these points to be given by the formulae
jn .
ni' = °S(m1+1)’ j=12..,m, (232)
then we can use the expansion
2 sin ¢, =
(1) s 233
g (o) = 1) sn é, ,Z sin b, sin jo (233)
where
Y
=— 234
b= s (34)

If we use the formula (216) and the expansion (233) in equation (229) we get

l

M(Z ﬁ-v)_ il —————sin ¢, Zsm¢fsmq§sm¢K ‘SI\/ d¢p ’ 4
AT T m + 1) JPs J9Po ool 7V X 0+Sf(ml+ljx

X sin @, Z sin job, sm]¢0d¢ {I(V_Slr\/j)(cos ¢o — cos ¢)K1(VS_‘I\/Z}d¢o
i 0

2 4
= e X
sf (m, + 1)

2

4
) :_ 1)sm o, Z sin job, . squb0 sin d)oKo(vsl\/,()

< sing, 3 jsinjé, f z(ill\i;t)(cos b0 — COS P) COS j({)OKI(VSll\/;{) dé,. (235)
0

i=1

We shall write the modified Bessel functions of the second kind of order zero and one respectively in the
forms

Kox) = — {y + log (;) }+ Ko.1(x) (236)
and
1 x 1 X
Kl(x)=;+5{y -—§+log (5) }—I— xK, ((x) (237)
where y is Euler’s constant and
Ko (%) §C122, Fiog [ 5 (L) e 238
pound x —_— ) —_
0,1 = r 2'7"! Y Og 2 ,.21 2’7’! X, ( )
i) = = ¥ dysgr——x? + 1y + log (5]} ¥ i (239)
bl S22 e ) 200 & 27+ 1)
"1
¢, = Z - (240)
s=1 N
and
1
d —
r 2r + 1) (241)



Then we can write

y h 4v2 T R . 2 . my
Ms(7a7;v) = (m’ i 1){'}) + lOg ( 21)} sin ¢5 Z Sln]d) o Sln]¢0 sin ¢0 d¢0 + msln (l)sj;l X
2 4 . _
x sin jb, f log () sin j sin ¢, depy — el 1)smtib Z Jsin j, L"Mx
" X

X €Os jpo depg — mzi sin ¢, { — + log (%)} E Jjsin jo, (cos $o — cOs ) x

1

X €08 jo dpo — m D) sin ¢, ) jsinjo, | log(x)(cos ¢ — cos @) cos j, dpy —
0

1 j=1

4y? ’”K vsl\/— o p 4y? . mo
o E D) sin ¢, Z sin jo, oa| T V1 sin jo sin ¢, dep, —msmd)sj;]x
x sinjcbsf Kl‘l(”{—lﬁ)(cos $o — cos §) cos o dd
(4]
2mv? ny? 1
~m ¥ 1){y +1og(zz)}sm R 1){'—§+1 g(zz)} sin” ¢, +
2v? 2
+ D) sin ¢, Z sin je, log(;()sm](bosmqbod(/)o g 1)smq& Z j %
. ) I 4 .
x sin jg, f lo8 (1)(c0s o — cos)cos jp ddy — 1y =" psing, . J x
1 1 ji=1

X sin je, f W) S jpo dpy — 4 —————sin ¢, Z sm]d)SJmKO,l(v—jl\/}) x

L+ D)
X sin jgbo sin o dpy — A o, mz jsin jo, K1 1(”Sl\/}) x
(m, + 1) ~ ]
x (cos ¢, — cos ¢)cos jo, dg. (242)

In formula (242) the last two integrals are to be evaluated numerically. The range of integration is divided
into a large number of subranges over each of which a Gaussian numerical integration is carried out. This
process should have good accuracy even though logarithmic functions occur in formulae (238) and (239) for

Ky.1(x)and K ,(x) because the logarithms do not lead to infinite values of these functions in the integrands.

The other integrals in formula (242) can be evaluated analytically but the present writer has not succeeded
in obtaining general formulae valid for all j. They are evaluated by using a combination of reduction formulae,
numerical integration and analytical integration as shown below.

Let us define

N'(X, ﬁ) = [0 28D o, iy (243)
i 0 X
and
h n
L,-([X,?) = f log (x) cos jo, doy,. (244)
0
Then
" . . 1 h h
f log (y) sin j, sin ¢g dpy = 5{%—1(%7) - Lj+1(%77)} (245)
o
and

i 1
f log (1)(cos ¢ — cos ) cos jeby dpo = 5 {LH( (246)

~|=
~ >
—_—
+
t~
~—
+
——
o~
| =
—
e —t
[
(2]
o}
]
<
c~
-
—_—
~ '
—
—_—

30



Now, for j # 0,

h

h 1" d .
,-(%7) = ;L log (X);ld)—o(smj%) ddg
I d
= —;J Slnj¢0rﬂ){10g (x)} doo

2
= jJ;) sm;d)g( 0S8 o — COS @) sin g d,

1 y o yh
_j{Nj_l(l,l) NJH(I z)} (247)

To evaluate N(y/l, h/l) we write, instead of formula (243),

N (y h) _ J"(cos ¢y — €Os )
0 X

h
= (cos jbo — cos job) depo +cosj¢No(% )

l

dpy + cos joN,

_ Jm (cos o — cos ¢)* sinJj(¢o + @) sinjdy — @)
0 I

X sin 3(¢o + @) sin H{do — P)
Now, (cos ¢, — cos ¢)?/y is a continuous function, even as k — 0, and it is multiplied by a continuous function

in the integrand of the integral in equation (248). The integral can therefore be evaluated numerically by
Gaussian integration to a high degree of accuracy. We note that

”) (248)

sin nf _ {2{cos (n—1)0 +cos(n— 3)0 + ...+ cos 8} neven (249)

sin 8 2{cos(n — 1)8 + cos(n —2)8 + ... + cos260} +1 nodd.
It now only remains to determine N(y/l, /l) and Ly(y/l, h/l). Tractable expressions for these are deter-
mined analytically in the appendix and the results are:

/{ /u4+H2+u2—H2}
N(yh) 7 H w* -1 1+ H? 1 + H?

y o (250)
N 22 /1 + HE Jut + H? ,  fut+ H?
w+ [ ——
1+ H
and
y B} _ \/1+H2\/u4+H2 H(1+u 1
Lo(l 1) 27 log TN T +1+\/’ , (251)
/{\/eruZ—HZ}
1+ H? 1 + H*
where /

1 — y/s, h/s,
= | , H= . 252
1+ y/s, 1+ y/s, (252)

As a matter of interest the analytical formulae for the first few N(y/l, h/l) are:

Nl(l }l’) = 7t () + No(l 7) cos ¢ — tho(%,?)tl(qS), (253)

W3] = s+ o3, 5)(eos20 = Znio) - ZEm 2. (254
N3(%,—IIZ) = 7mt;(¢) — 4’Irh2 t,(g) + No(l ’;) (COS 3¢ — §£1—2-t2(¢)) ( )( (b)) (255)
N4(J7)?) @) - 127th2 ) + No(l ’l’) cos 4 — 126(8) + 40,0 + S </>>)

h? h
- ;%—Po(%;) (4r4(¢) - 16?2(45)) (256)
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and

2

h h
Ns(}[i,«-l) = (@) — 7 5 [2443(¢) + 12,(@)] + 167: z(¢

h n? h
/. l)( c0s 5 — 5 [200,(6) + 100(9)] + 403—4rz<¢))
ST 1

+ N,
h? h h? h*
- =P Y2 5t5(@) — —[40t5() + 20t ()] + 16—51,(0) (257)
st o\l s s
where
1(¢) = Z‘:}"d‘f’ (258)
and

v h ™1 \/ +H2\/{\/u + H? uZ—HZH u4+H2}
Pol=o) = 1 L 259
"(z’z) LX v\/z hV u* + H? I +H?> 1+ H? Vi H (259)

6.8. Location of Loading Points

Once the points &V, i = 1,2,.. a0\, j=1,2,...,m; &P, i=1,2,...,n,; and P, j=12,...,m,,
have been specified, all the elements of the matrices appearing on the right- hand side of formula (169) or the
simplified formula (173) may be evaluated so that the matrix @ of the generalised airforce coefficients may

be obtained. We specify these points by means of the formulae

éﬁ":;(l—cos(;—;lﬁ =1,2,...,n, (260)

it = cos m]jnT1 j=12,...,my, (261)

éjﬁz’zil—cos%iz—;_{:l—)lir i=1,2,...,n, (262)
and

7o = cosmzﬁi—l j=12...,m,. (263)

As mentioned earlier, the location of these points is not crucial to the accuracy of the final results for 0
but we note that we have used the locations (261) already in formula (232).

A program has been written in 1900 FORTRAN (see Ref. 15) to evaluate the generalised airforce co-
efficients from formula (173), and taking g, = 1 in equation (198) and q, = 1 in equation (204). Results ob-
tained using this program are described in the next section.

pq’

7. Examples
Example 1

As a first example we shall consider the wing-tailplane configuration of Laschka and Schmid (see Ref. 3).
The wing and tailplane are swept-back tapered wings as shown in Fig. 1. The typical length ! of the con-
figuration is taken to be the root chord 0A of the wing and its value can be taken to be unity. The con-
figuration is immersed in a subsonic flow of free-stream Mach number M = 0 and is assumed to be oscillating
with a frequency parameter v = 1.0 in onc of four symmetric modes of oscillation defined by

[Py =1 {PAx,y) =0, (264)
{Hx,p) =0 (Px,p) =1, (265)
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0,y =x/1 {Px,y) =0 (266)

and

{Px,y) =0 {Px,y) = (267)

ol
]

[\ AU

where the origin of coordinates is at the apex of the wing.

The configuration with k # 0 is obtained from the configuration when the wing and tailplane are coplanar
simply by translating the tailplane a distance 4 in the direction of the z-axis.

We present results for the elements qu of the matrix [Q] of the approximations to the generalised airforce
coefficients Q,, (equation 13) for a number of values of h, the vertical separation of the planes of the wmg
and tailplane, and for a selection of combinations of the integers m,, n,, m,., n,. We write the quantities qu
in the form

0,, =0, +ivd,,. (268)

Laschka and Schmid?® obtained values of Q;q and Q;q for h = 0 only, using an integral equation approach.
The values of m,,n,,m,, n, used for obtaining these values are not quoted in Ref. 3.

Mykytow, Olsen and Pollock have also reported results for the wing-tailplane configuration of Laschka
and Schmid with & = 0 in Ref. 13. Results have been obtained by the integral equation approach of Albano,
Perkinson and Rodden,* by the doublet-lattice method of Albano and Rodden'? and by the later doublet-
lattice method of K4lmdan, Rodden and Giesing.” In the application of the integral equation method there
were 15 collocation positions across the total span of the wing and tailplane and there were 3 collocation
points at each spanwise position. In the application of both doublet-lattice methods an array of 9 boxes along
the semi-span and 5 boxes along the chord of the wing, and 6 boxes along the semi-span and 5 boxes along
the chord of the tailplane were used. All the results have been converted to the notation of the present report
and are given in Table 1 together with results from the present theory with m, = 10,n, = 3, m, = 10,n, = 3.
The results are seen to be in generally good agreement although there are a few instances of large discrepancies,
for example in @), and %, where the results from the doublet-lattice methods differ by up to 10 per cent
from the results from the present method.

Results from the present theory are given in Table 2 for a number of values of 4 and for a selection of com-
binations of the integers m,, n,, m,, n, so that convergence of the results with increase of the values of the
integers m,,n,,m,,n, may be observed. With n, = n, = 2, the values of the QU seem to be converging as
m, and m, are increased. With n, = n, = 3 only the values m, = m, = 10 of m, and m, are considered, and
in each case the value of Q,-j is not greatly different from the corresponding value when m; = 10, n; = 2,
m, = 10,n, = 2.

We note that when h = 0, airforces on the tailplane caused by wing motion only, e.g. §,,, are comparable
in magnitude with airforces on the wing caused by wing motion only, e.g. 8,,. This is due to the influence
of the wake from the wing which, in inviscid linearised theory, is carried downstream with undiminished
strength in the plane of the wing. The actual values are 0,, = 0-6671 + i0-1921 (m, = 10, n, = 3, m, = 10,
n, = 3)and Q,, = 0-5305 — i1.947 (m, = 10, n; = 3, m, = 10, n, = 3). As h increases from zero the mag-
nitude of §,, decreases, that is the interference effects of the wing on the tailplane decrease, and for h = 2
we have 0,, = 0.03655 + i0-01088 (m, = 14, n, = 2, m, = 14, n, = 2). The magnitude of @, also decreases
as h increases, but only to a limited extent.

We also note that airforces on the wing caused by tailplane motion only, e.g. @, ,, are of small magnitude
compared with airforces on the wing caused by wing motion only,e.g. 0,,. Ath = Owe have §,, = —0.01824
—i0-06486 (m, = 10, n, = 3, m, = 10, n, = 3) and at h = 2 we have @,, = 0002399 + i0-009830 (m, = 14,
n, = 2, m, = 14, n;, = 2). The magnitudes of both these values are small compared with the value of 9, for
h = 0, which was given above.

Example 2

As a second example we shall consider the wing-tailplane configuration shown in Fig. 2. This is the con-
figuration which A.G.A.R.D. specified for calculation of generalised airforces and for which some preliminary
results appeared in Refs. 5, 13 and 14. The wing and tailplane are again swept-back tapered wings. The semi-
spans of the wing and tailplane are both of unit length and the typical length [ is taken equal to the semi-span.
The origin of coordinates is at the apex of the wing.
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The configuration is immersed in a subsonic flow of free-stream Mach number M = 0.8 and is oscillating

with a frequency parameter v in the range 0 to 1-5 in one of two antisymmetric modes of oscillation, defined
by

(x,y) = ylx — 225lyl — 085),  [PAx,p) =y, (269)
(%, 9) = ylyl and {PAx,y) = (x — 3-35)sgn y. (270)

The configuration with & # 0 is obtained from the configuration when the wing and tailplane are coplanar
simply by translating the tailplane a distance A in the direction of the z-axis.

Mykytow, Olsen and Pollock have reported results for the A.G.A.R.D. wing-tailplane configuration in
Ref. 13. Results have been obtained by the integral equation approach of Albano, Perkinson and Rodden*
when h = 0 and h = 06 and by the doublet-lattice method of Albano and Rodden!? when h = 0. In the ap-
plication of the integral equation method there were 15 collocation positions across the total span of the
wing and of the tailplane, and there were 4 collocation points at each spanwise position. In the application
of the doublet-lattice method an array of 8 boxes along the semi-span and 6 boxes along the chord of the
wing and of 8 boxes along the semi-span and 4 boxes along the chord of the tailplane were used. Four modes
of oscillation were used but these could be combined together in pairs to give the modal shapes (269) and
(270). The results given in Ref. 13 could then be combined appropriately to give the corresponding general-
ised airforces. The results are given in Table 3 together with the results from the present theory with m; = 16,
n, =4, my, =16 and n, = 4. Also included are the results of the later doublet-lattice method of Rodden,
Giesing and Kalman, which are reported in Ref. 5 in the same form as those given in Ref. 13. Only the case
h = 0, from this reference, are quoted in Table 3 since for h = 0-6 the tailplane was moved aft. The results,
again, are seen to be in generally good agreement with each other, although in most cases the results from
the integral equation approach are nearer to the results from the present theory than are those from either
of the two doublet-lattice methods.

Tables 4a, 4b, 4c, 4d give results for the generalised force coefficients for (v, ) = (0, 0), (1-5, 0), (0, 0-6) and
(1-5,0-6) for a selection of combinations of values of m,, n,, m, and n,, so that the nature of convergence of
results may be observed when m,n,,m, and n, are increased. With n, = n, = 3, the values of Qij seem to
be converging as m; and m, are increased. With n, = n, = 4 the values of Q;; seem 1o be convergirlg as m,
and m, are increased but to values that are different, but not greatly different, from the values of Q;; when
ny = n, = 3. With n; = n, = 5 only the values m, = 12, m, = 12 of m, and m, were considered and in each
case the value of Q,.j was not greatly different from the corresponding value when m, = 12, n, = 4, m, = 12
and n, = 4.

Table 5 gives results with m; = 16, n; =4, m, = 16 and n, = 4, for v= 0 and v = 1.5 and a number of
values of & in the range 0 to 0-6.

Table 6 gives results with m, = 16, n;, =4, m, = 16 and n, = 4, for h = 0 and h = 0-6 and a number of
values of v in the range 0 to 1-5.

Example 3

As a third and final example we shall consider the wing and tailplane to be identical rectangles of chord
¢ = 0098 metres and semi-span s = 0-1515 metres as shown in Fig. 3. The reason for choosing this example
is that experimental work has been carried out at O.N.E.R.A. (see Ref. 6) to estimate the values of lift and
pitching moment on a configuration of two rectangular wings in tandem oscillating harmonically in heave
and in pitch, and so theoretical values could be compared with experimentally determined values.

The leading edge of the tailplane is at a distance ¢/ metres downstream of the trailing edge of the wing and
the plane of the tailplane is at a distance CH metres from the plane of the wing. The position of the tailplane
relative to that of the wing is then characterised by the non-dimensional separation parameter 2 and height
parameter H.

Models of a half-wing and half-tailplane were mounted on a wall and immersed in a subsonic flow. Either
the wing or the tailplane could be excited in heave or in pitch about the mid-chord line and measurements
of total lift or total pitching moment could be made on either surface. The wall acts as a reflecting plate so
that the values of lift and moment relevant to a complete wing and tail are obtained by doubling the values
obtained experimentally for the half-wing and half-tailplane.

The models may therefore oscillate in one of the following four symmetric modes

P

{Pxp) =1 {Px,y) =0, 271
(x,9) =0 P,y =1, (272)
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{5, y) = (%, y) = @73)

GIX

1
T2
and
x 3
(x,5) = 0 (P =2~ 1+, 274)
where the origin of coordinates is at the centre of the leading edge of the wing.

Approximate values Qij were evaluated with m; = 6, n; = 2, m, = 6 and n, = 2, for a number of values
of Mach number M and frequency parameter v. The low values of m,, n,, m, and n, were considered adequate
for the high semi-span to chord ratio of wing and tailplane and the low values of v taken, bearing in mind
that the values of 0, ; were only required for comparison with experimental results.

In the experimental work either the wing or the tailplane was restrained elastically in pitch about the mid-
chord line, and it could be excited by applying an external pitching moment which was harmonically time
dependent. The other surface was restrained to be at rest, but both the total lifting force and pitching moment
induced on it, as a result of the vibration of the first surface, could be measured.

With an airflow of Mach number M relative to the wing and tailplane one of the surfaces was excited in
pitch by applying an harmonically time-dependent external pitching moment and the frequency of the har-
monic excitation was adjusted, without changing its amplitude, until resonance in the motion of that surface
was observed. The aerodynamic pitching moment acting on the excited surface could then be deduced from
measurements made of the response of that surface and also the lifting force and pitching moment on the
surface not being excited were measured at the resonance frequency. The resonance frequency changed sig-
nificantly with change of Mach number but not significantly with change of 4 or H at a fixed Mach number.
In the numerical calculations, therefore, the frequency parameter was taken to be dependent on M only with
a value close to that obtaining at resonance in any of the tests at that Mach number. This dependence is given
by the following set of associated numbers.

M =030 0-45 0-65 0-80
v = 0-3856 0-2436 0-1513 0-1112

The partlcular quantltles Q,] that could be compared with experimentally determined values from these
tests were Qs3, 034,045,044, Q1 sand @,,. The 0, ; are expressed as in formula (268). Numerical values of
QU and Q" for H = 0 and H = § were obtained at a number of values of A from A = 0 to A = oo and are
recorded in Tables 7 to 18. The values at A = co were obtained by applying a computer program for a single
isolated surface, or by deducing that the values were zero, as appropriate.

Graphs of these numerical values have been drawn in Figs. 4 to 15 and also on these graphs are shown
the experimental values obtained by O.N.E.R.A. The O.N.E.R.A. values were obtained by personal com-
munication to the present author. They were expressed in a different notation but could easily be adapted
for our notation simply by multiplying by proportionality factors.

When H = 0, 4 = O the tailplane leading edge abuts on the wing trailing edge. The analytical conditions
at the tailplane leading edge and wing trailing edge assumed in the theory are then not correct and the results
obtained may not be good approximations to the actual linearised values. Otherwise the analytical con-
ditions are correct, and we may expect the results to be good approximations to the actual linearised values
except when both 4 and H are very near to zero, in which cases the values of n, = 2 and n, = 2 taken in the
calculations would not be high enough.

There is a good deal of qualitative agreement between the numerical and experimental results, as can be
seen from Figs. 4 to 15, but these are d1screpanc1es in the magnitudes of the results. The best comparisons
are for the direct aerodynamic moment coefficients Q3 ;and Q,,, as we might expect because the interaction
of one surface on the other is dominated by the action of a surface on itself. There is less interaction of the
tailplane on the wing than of the wing on the tailplane and in conformity with this we find that the numerical
and experimental values are closer to each other in the case of {0 than in the case of §,,. Furthermore com-
parison of experimental and theoretical values is no worse for H = Othan it is for H = §, so that the theoretical
model does not appear to be invalidated when the tailplane lies in the wake from the wing.
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8. Conclusions

A method has been developed for calculating generalised airforce coefficients on two parallel lifting surfaces
using continuous functions as approximations to the loading. Results have been obtained for a number of
configurations and comparisons of the results have been made with results obtained by other workers. The
comparisons show generally good agreement.

The results were obtained using a computer program in 1900 FORTRAN.!? This computer program was
constructed to use only the lowest value unity of the integration parameters g, and q,. An improvement in
accuracy of the results for given values of m,,n,,m, and n, should result if higher values than unity for g,
and g, were taken.

Comparison of O.N.E.R.A. experimental results® for two rectangular wings oscillating harmonically in
subsonic flow has been made with results obtained using the method of this report. There is qualitative agree-
ment in the behaviour of the results for the different cases considered, but there are discrepancies in the actual
magnitudes between the experimental and theoretical values.
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Generalised coordinate for mode p. See equations (1) and (2)
Diagonal matrices defined above equation (166)
Chord of wing at spanwise station y
Chord of tailplane at spanwise station y
Diagonal matrices defined above equation (166)
Diagonal matrices defined below equation (173)
Expansion coefficient appearing in expansion (191)
Expansion coefficient appearing in expansion (191)
Defined by formula (192)
Defined by formula (203)
Interpolation polynomials defined by formula (51)
Interpolation polynomials defined by formula (56)
Interpolation polynomials defined by formula (118)
Quantities defined by formula (121)
Quantities defined by formula (124)
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Interpolation polynomials defined by formula (49)
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Complex conjugate of I ()
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Mach number. See equation (6)

Number of spanwise basis functions appearing in equation (53). (Taken to be even in
this report)

Number of spanwise basis functions appearing in equation (58). (Taken to be even
in this report)
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Number of spanwise integration points used in the evaluation of 6{2);
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Generalised aerodynamic force, defined in equation (7)

Function defined by formula (259)
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Generalised aerodynamic force coefficient. See equation (13)
Defined in equation (14)
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a matrix consisting of one element in formulae (107) and (108)

Defined in equation (268)

Square matrix defined above equation (109)
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Time

Orthogonal projection of tailplane onto the plane z = 0
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Rectangular matrices defined below equation (148)
Speed of free stream

Function defined by formula (63)

Function defined by formula (64)
Function defined by formula (219)

Function defined by formula (220)

Rectangular matrices defined below equation (148)

Orthogonal projection of the wing onto the plane z = 0

Upwash function on the wing in mode ¢, defined in equation (35)

Upwash function on the tailplane in mode g, defined in equation (36)
Cartesian coordinates with respect to the mean wing-tailplane configuration
Cartesian coordinates with respect to the mean wing-tailplane configuration
x-coordinate of the leading edge of W at spanwise station y

x-coordinate of the leading edge of T at spanwise station y

Numbers defined by formula (153)

Numbers defined by formula (154)

Numbers defined by formula (134)

Numbers defined by formula (137)

Defined in formula (208)

Defined in formula (182)

Numbers defined by formula (153)
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Displacement of the wing in mode p in the direction of the positive z-axis
Displacement of the tailplane in mode p in the direction of the positive z-axis
Reduced upwash function on the wing in mode ¢, defined in equation (37)
Reduced upwash function on the tailplane in mode g, defined in equation (38)
Approximation to a{(x, y; v). See equation (59)

Approximation to a{?(x, y; v). See equation (60)

Numbers defined by formula (149)

Numbers defined by formula (150)

Column matrices defined above equation (166)

Rectangular matrices defined above equation (169)

Euler’s constant

See equation (116)

Parametric coordinate on T, defined in formula (46)

Parametric coordinate on T, defined in formula (68)

Parametric coordinate on T, defined in formula (46)

Parametric coordinate on T, defined in formula (68)

Reduced displacement function on the wing in mode p, defined in equation (8)
Reduced displacement function on the tailplane in mode p, defined in equation (9)
Symmetric contribution to {{"(x, y). See equation (19)

Antisymmetric contribution to {{(x, y). See equation (20)

Symmetric contribution to {{?(x, y). See equation (21)

Antisymmetric contribution to {{?(x, y). See equation (22)

Numbers defined by formula (151)

Numbers defined by formula (152)

Row matrices defined above equation (166)

Rectangular matrices defined above equation (169)

Parametric coordinate on W, defined in formula (45)

Parametric coordinate on W, defined in formula (67)

Set of m, distinct loading points in (—1, 1). See formula (261)

Set of m, distinct loading points in (— 1, 1). See formula (263)

Numbers defined by formula (71)

Numbers defined by formula (72)

Column matrices defined below equation (99)

Rectangular matrices defined above equation (109)

k = + 1 for symmetric oscillation, x = — 1 for antisymmetric oscillation
The separation parameter in Example 3

Reduced loading function for the wing in mode p, defined in equation (10)

Reduced loading function for the tailplane in mode p, defined in equation (11)
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Frequency parameter

Parametric coordinate on W, defined in formula (45)
Parametric coordinate on W, defined in formula (67)

Set of n, distinct loading points in (0, 1). See formula (260)
Set of n, distinct loading points in (0, 1). See formula (262)
Density of the air in the free stream

Numbers defined in formula (111)

Numbers defined in formula (131)

Defined in formula (231)
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Numbers defined by formula (103)

Row matrices defined below equation (107)

Rectangular matrices defined above equation (109)
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APPENDIX
Evaluation of Some Integrals

In this Appendix we obtain analytical expressions for the integrals (259), and (243) and (244) with j = 0,

yh_ (1
P25 = [ Las. (A1)
h
No(%}’?) =j (cos ¢po — cos ¢)d¢0 A2
0 X
and
y h "
LO(?’Y) :f log (x) do, (A-3)
¢}
where
- 2 2
X=(y yol +h (A-4)
51
Yo = §1 €08 ¢ (A-5)
and
(A-6)

y = 5§, cOS ¢.

The analytical expressions to be obtained have been quoted in formulae (259), (250) and (251) of the main
text.
If we put
¢0 (A-7)

Uy = tan —
0 2

and
¢ 1 — y/s,
= = A-8
u = tan 2 1 + y/s, (A-8)

in the integrands of the integrals on the right-hand sides of (A-1), (A-2) and (A-3) we get,

yhl 1 o [ (1 + ug)dug
P"(z’ 1) =+ fo (g — u®)* + HX(1 + ud)’)

1 b [ (1 + ud)du,
=+ f_m 2 =7 B 1) (A-9)

J’“ (u? — ud)du,

[(ug — u*)* + H*(1 + ud)’]

1 a (u? — ud)du,

=5t )f_w [wd — u? + H¥(1 + ud)? (A-10)

o]

NO(){?) = (1 + u?)

and
y h © 4{ud — u?y + H(1 + ud)*} | du,
Lol7.5 :2J lo 332 273 2
171 . (1 + w1 + ) 1+ ul
© (ud — u®)? + H*(1 + ud)?| du, J‘“’ duy
= -2 R
.[_wlog[ 1+ H? 1+ ud . 10g(1+”°)1+ué
+ {10 1+ B - 210g |11 r dity (A-11)
g 8\ LIt )
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where

his,
Now, we can write
Wd — u? + H¥(1 + ud)? = (1 + HY)[(u — 0)* + B (4o + @)* + B7] (A-13)
where
1 ut + HY  u* — H?
“=ﬁ\[{V1+H2+1+H2} (A-14)
and
IR NEYE (uZ—Hﬂ} :
B_ﬁ\/{ ;T a (A-13)
Then we get
P y By L+ WPt + D) 1 1 e+
\0T) T 166+ B + B J_, \[wo — 07 + B7] | [l + @0 + ﬁﬂ}‘“"
(I +u?Pe® + B2 - 1) F o~ (4o +a "
16a(a® + pA(1 + H?)J_ {[(uo — @) + B [uo + ) + m}‘ °
A+ + A+ D) _yfuo — « _yfuo + o} |
~ 6B + 1 + HZ)[“‘“ B ) o ( p Hm !
(1 + u2)2(a2 + ﬁ?. _ 1) o {(”0 - OC)Z + /))2} + oo
32a(x® + B(1 + H?) (up + @)* + B2
ol + u) e + B2+ 1)
8B + B + HY
JT+ H (1 +4?) \/ fut + B2 H /u“ffﬁ}
4\f H i+ H? [+ 2 " 1+H2 1+ H?
T s, \/1+H2\/{\/u“+H2 ul-HZH1 u“+H2} A
2\[h/u+Hz T+ B "1 T T E (A-16)
and
y B\ (1 + W))W —o® = f 1 1
N °(7’7) T8+ (I + HY f.w {[(uo ] I (A ﬁz]} o~

MRS CRS Y oYy L NNUEL. }du
Soda + PO+ HY) ) Tlwo — o0 + F7] [lwg + 07 + F1f
Al + ) — o — )
48 + BAH(1 + H?)

\/{ /u4+H2+u2-—H2}
o H w* -1 1+ H* 1+ H?
- Pl I 2 2 2
22 /1 +H Ju* + H {MZJF /u1:52}

In order to obtain an analytical expression for Ly(y/l, h/l) using equation (A-11), we must obtain an analytical
expression for the integral I, where

«© 2 4,252 HZ 1 232
I = J log (uo U ) + 2( + uo) dUO _
. 1+ H 1 4 uj

(A-17)

dug

- fm log {[(uo — 2)” + B*l(uq + &) + f2])
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We do this by resorting to the calculus of residues in the complex u, plane.

Let us put
g —a — iff =r, e <0, <m, (A-19)
ug + a — iff = r, el -n<0, <m, (A-20)
ug — o + iff = rye'® —-n<f;<m (A-21)
and
ug + o + iff = r, e <, < (A-22)
wherer ,r,,ry,r,,0,,0,,05,0, are real numbers. Let us, further, take
log(uy — o — iff) = logr, + i0,, (A-23)
log (uy + o — if) = logr, + i0,, (A-24)
log (uy, — o + i) = logry + i0, (A-25)
and
log (ug + o + iff) = logr, + i6,. (A-206)
Then

log {[(ug — a)? + B*1[(uo + @)* + A1}
= log {{ug — o — if)(uy + o — if)(ug — a + if)(uy + o + if)}
= log {{ug — a — if)(ug + o — if)} + log {(ug — o + if)(uy + o + if)). (A-27)

By taking the contour integral of the function

log {{ug — o — if)uy + a — i)}
1+ g i(u B)lug B
around a contour consisting of the real axis and infinite semicircle, centre origin, in the lower half-plane
Im (1) < 0, and noting that the only singularity of the function within the contour is a simple pole at u, = —i,
we get, on applying the calculus of residues

x I
J log {(uy — o — if)ug + & — i[})}T‘fOuz = nloglo? + (1 + p)?] — in>. (A-28)
- 0

By taking the contour integral of the function
L log {(ug — a + if)(uy + a + if)}
b+ ud 0 !
around a contour consisting of the real axis and infinite semicircle, centre origin, in the upper half-plane

Im (u,) > O, and noting that the only singularity of the function within the contour is a simple pole at u = +1,
we get, on applying the calculus of residues

foo log {{ug — o + if)(uy + o + 1'[3)}-~1 ‘f:‘ouz =rnlog[a® + (1 + B)?] + in% (A-29)

0
Therefore, on noting equation (A-27), we get from equations (A-18), (A-28) and (A-29),

I =2nloga? + (1 + B)21. (A-30)
Further, we have

© du,, w2
f log (1 + ud) = f log (sec? ¥q) dif
- 1 + MO —n/2

n/2
-—4{ log (cos yrg) dirg
0

Il

n/2
-2 j log (cos ¥ sin Yry) difr
0
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n/2

=nlog2 — 2f log (sin 2y/4) dif,
0

=nlog2 — j log (sin ¥q) diy
0

wf2

=nlog2 — ZJ log (sin ) dif

0

dug

1+ ud’

1 s}
=rnlog2 + Ef log (1 + u?)
and therefore
® duyg
f—w log(l -+ ué)m =2n lOg 2.

0

Also

©  du
J i
—o 1+ ug

If we substitute from equations (A-30), (A-32) and (A-33) into equation (A-11} we get

m(%?) = 21:108{[“2 /e HZ}

21 + )
o \/1+H2(\/u“+H2 l_l_ﬁH(l—l-uz) 1
SR iy W+ H? (1L + H?)

\/{ /u4+H2+
1 + H?

(A-31)

(A-32)

(A-33)

(A-34)

The requisite analytical expressions have now all been obtained and are given in formulae (A-16), (A-17)

and (A-34).
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TABLE 1

Values of Generalised Airforce Coefficients for the Wing Tailplane Configuration of
Laschka and Schmid for # = 0, v = 1.0, M = 0 as Obtained by Different Workers

Albano Giesing

Laschka Perkinson Albano Kalman

Schmid Rodden Davies Rodden Rodden

0., 0-515 0516 0-531 0-498 0-478
0., -0012 - 0018 —0-018 —0016 -0016
0., —1-559 -~ 1-561 —1-568 —1-591 —1.587
Qs — 0077 — 0076 — 0078 —0:080 —0-080
01, — 1929 —1933 —1:947 —1:966 —1952
01, —0-066 - 0-064 —0-065 —0-068 —~0-068
01 —2:508 —2:512 —2.544 —2.547 —-2:519
01, —0:024 —~0-019 —0019 —0025 —0:025
0, 0659 0-655 0-667 0-668 0-699
0> 0-140 0-140 0-144 0-131 0131
0., 0-785 0-789 0813 0-808 0813
04 —0-825 —0-828 —~0-832 —0-864 —0-864
03, 0-175 0-183 0-192 0-184 0-189
03, —0-889 — 0892 —0.897 0925 0926
Q55 ~0:525 —~0:512 0516 — 0519 —0518
0% —0.752 —0.753 —0762 —0-775 0775
0, 0-437 0-436 0-448 0-412 0-404
04, —0:008 —0:011 —0-011 —-0010 —0:010
04, —0-845 —0-847 —0-843 —0911 —0-908
0% —0-059 — 0058 — 0059 ~0:061 — 0061
D%, — 1204 — 1206 —1-207 —1.259 —1-255
4 —0052 —~0:051 —0:051 —0053 —0053
iy — 1879 —1-882 —1-898 —1913 — 1901
054 — 0022 0018 — 0018 ~0:022 — 0022
Qu, 0278 0276 0280 0292 0292
0., 0079 0079 0081 0073 0074
04, 0-334 0-336 0-341 0-353 0-355
0.s ~0329 —0-330 —0-330 —0-359 —-0359
0s, 0-069 0-073 0075 0-074 0-076
05, —0-338 —0-373 —0-373 —0-399 ~0-399
04, —0219 —0214 —0217 —0-227 —0-227
0. —0-378 —0-375 —0-378 —0-360 —0-381
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TABLE 2

Values of Generalised Airforce Coefficients for the Wing-Tailplane Configuration of

Laschka and Schmidv = 1.0, A/ = 0

A

m n My P 011 012 013 Q4 11 12 Q1s 14
h=0 6 2 4 2 05391 — 001815 —1.573 —0:07757 —1.962 —0-06422 —2-573 —0-02007
6 2 6 2 0-5398 —0-01787 —1.572 —0-07857 —1.961 —0:06531 —2.573 —0:02045
8 2 6 2 0-5276 —0-01776 —1-566 - 007803 —1:947 —0-06485 —2-548 —0-02029
8 2 8 2 0-5272 —0-01767 —1.566 —0:07747 —1.947 —0-06438 —2.548 —0-02001
10 2 8 2 0-5156 —0-01757 —1-560 —0-07695 —1.934 —0-06394 —2.524 —0-01985
10 2 10 2 0-5152 —0:01751 —1.561 —007629 —1.934 —0-06337 —2.524 —0:01960
12 2 10 2 0-5076 -0-01742 —1.556 —0-07589 —1.925 —0-06304 —2.507 —0-0194%
12 2 12 2 0-5073 —0-01736 —1.556 —0-07545 -1.925 — 006267 —2.507 —0-01934
14 2 12 2 0-5032 —0-01729 —1-552 —0-07518 —-1920 —0-06245 —2-496 —0:01929
14 2 14 2 0-5031 —0-01726 —1.552 —0:07497 —-1.920 —0-06229 —2.496 —0-01921
16 2 14 2 0-5012 —0-01721 —1-550 —-0-07479 —1917 —0-06214 —2:491 —0-01918
16 2 16 2 0-5012 —0-01719 —1.550 —0:07473 -1.917 —0-06211 —2-490 —0-01915
10 3 10 3 0-5305 —0-01824 —1-568 —0-07789 —1.947 —0-06486 —2.544 —0-01923
h =025 10 2 10 2 0-4920 —0-01625 —1.577 —0-06074 —1.932 —0-04901 —2.496 —0-01313
12 2 12 2 0-4845 —001612 —1.572 —0-06006 —1.923 —0-04846 —2-479 —0-01295
14 2 14 2 0-4805 —0-01603 —1.568 —0:05966 —-1.917 —0.04814 —2.469 —0-01285
16 2 16 2 0-4787 —0-01598 —1-566 —0-05946 —1.914 —0-04799 —2.463 —001280
10 3 10 3 0-5064 —0.01667 —1-585 —0-06168 —-1.944 —0-04988 —2:515 —0:01290
h=05 10 2 10 2 0-4746 —0-01249 —1.594 —-003237 —-1.932 —0-02362 —2.479 —0-002686
12 2 12 2 04673 —0-01241 —1-588 —0-03201 —1.923 —0-02333 —2.462 —0:002605
14 2 14 2 0-4635 —-0-01235 —1.584 —0:03179 —1.918 —0-02317 —2.452 —{0-002562
10 3 10 3 0-4885 —0-01247 —1-602 —0-03255 —1.945 — 002381 —2:497 —0-002723
h=10 10 2 10 2 0-4649 —0-004469 —1.603 0-002400 —1.931 0-005385 —2.468 0-006994
12 2 12 2 0-4578 — 0004457 —1.597 0-002355 —1.922 0-005333 —2-452 0-006955
14 2 14 2 0-4541 —0-004449 —1.593 0-002332 -1.917 0-005305 —2.442 0006933
10 3 10 3 0-4788 —0-004332 —1-611 0-002569 —1.944 0-005507 —2-486 0006855
h =20 10 2 10 2 0-4651 0002426 —1.601 0-01173 —1930 0-009999 —2-467 0-003800
12 2 12 2 0-4580 0-002411 —1.595 0-01161 —1.921 0-009892 —-2:451 0003753
14 2 14 2 04543 0002399 —1.591 0-01154 —1915 0-009830 —2441 0003728




0s

TABLE 2 (continued)

m, ny m, ) 05, Q3> Q33 [ 035, 03 Q3 Q34
h=0 6 2 4 2 0-6813 0-1436 0-8336 —0-8448 0-1971 —0-9106 —0-5275 —0-7700
6 2 6 2 0-6768 0-1476 0-8293 —0-8381 0-1965 —0:9047 —0-5243 —-0-7725
8 2 6 2 0-6730 0-1475 0-8269 —0-8381 0-1968 —0-9047 —0-5192 —0-7724
8 2 8 2 0:6701 0-1439 0-8201 —0-8337 0-1927 —0-8988 —0-5200 —0-7658
10 2 8 2 0-6667 0-1438 0-8160 —0-8337 0-1917 —0-8988 —-0-5167 —0-7657
10 2 10 2 0-6664 0-1404 0-8101 —0-8297 0-1884 —0-8936 —0-5169 —0-7591
12 2 10 2 0-6612 0-1403 0-8052 —0-8298 0-1867 —0-8936 —0-5151 —0-7590
12 2 12 2 0-6592 0-1380 0-8013 —0-8267 0-1847 —0-8899 —0-5147 —0-7542
14 2 12 2 0-6575 0-1379 0-7975 —0-8268 0-1833 —0-8899 -0-5139 —0-7541
14 2 14 2 0-6562 0-1369 0-7954 —0-8249 0-1824 —0-8877 —0-5133 —-07512
16 2 14 2 0-6554 0-1367 0-7930 —0-8249 0-1814 —0-8877 —0-5132 —0-7512
16 2 16 2 0-6547 0-1361 07922 —0-8238 0-1812 —0-8865 —-0-5125 —0-7495
10 3 10 3 0-6671 0-1444 0-8131 —0-8319 0-1921 —0-8973 —0-5160 —0-7621
h =025 10 2 10 2 0-4350 0-1308 0-5730 —0-8332 0-1523 —0-8917 —0-2918 —0-7479
12 2 12 2 0-4318 0-1286 0-5672 —0-8301 0-1499 —0-8880 —0-2904 —0-7432
14 2 14 2 0-4299 01274 0-5635 —0-8282 0-1484 —(-8858 —0-2896 —0-7403
16 2 16 2 0-4289 0-1268 0-5614 —-0-8271 0-1476 —0-8847 —0-2891 —0-7386
10 3 10 3 0-4370 0-1344 0-5746 —0-8355 0-1545 —0-8955 —0-2915 —0-7506
h=05 10 2 10 2 0-2860 0-1233 0-3906 —0-8373 0-1092 —0-8915 —0-1769 —0-7399
12 2 12 2 0-2840 01212 0-3869 —0-8341 0-1076 —0-8878 —0-1761 —0-7353
14 2 14 2 0-2827 0-1200 0-3845 —0-8322 0-1066 —0-8855 —0-1756 —0-7325
10 3 10 3 0-2874 0-1267 0-3917 —0-8397 0-1106 —0-8953 —0-1768 —0-7425
h=10 10 2 10 2 0-1325 0-1190 0-1849 —0-8393 0-05191 —0-8908 —0-07889 —0-7351
12 2 12 2 0-1315 0-1170 0-1832 —0-8361 0-05115 —0-8871 —0-07854 —0-7306
14 2 14 2 0-1310 0-1159 0-1821 —0-8341 0-05071 —0-8849 —0-07832 —0-7278
10 3 10 3 0-1332 0-1224 0-1856 —0-8417 0-05265 —0-8946 —0-07881 —-0-7377
h=20 10 2 10 2 0-03700 0-1191 0-04905 —0-8388 001119 —0-8903 —0-02565 —0-7349
12 2 12 2 0-03672 01171 0-04857 —0-8356 0-01099 —0-8866 —002553 —0-7304
14 2 14 2 0-03655 0-1160 004827 —0-8336 0-01088 —0-8844 —0-02544 —0-7276




IS

TABLE 2 (continued)

m, n my ny 05, 03, 0s; Qs 03, 32 33 034
h=0 6 2 4 2 0-4544 —0-01089 ~0-83502 —0-05797 —1.221 —0-04959 —1.911 —0:01869
6 2 6 2 0-4548 —0-01065 —0-8494  —0-05865 -1-220 —0-05035 —1.911 —0-01898
8 2 6 2 04422 —0-01081 —08600  —0-05853 —1.220 —0.05014 —1-899 —0-01868
8 2 8 2 0-4419 —001077 —0-8603 —0-05808 —1.220 —0-04975 —1-899 —0:01844
10 2 8 2 0-4308 —0-01086 —0-8680 —0-05788 —1.220 —0-04949 —1.885 —0-01819
10 2 10 2 0-4305 —0-01083 —0-8684  —0.05737 —-1.220 —0-04905 —1-885 —0:01797
12 2 10 2 0-4231 —0-01086 —0-8717 —0:05716 —1-219 —0-04883 —1.873 —0-01781
12 2 12 2 0-4229 —0-01083 —0-8720  —0-05683 -1.219 —0-04854 —1.873 —0-01768
14 2 12 2 0-4186 —0-01082 —0-8725 —0:05664 —1.217 —0-04837 —1.865 —0-01759
14 2 14 2 0-4185 —0-01080 —0-8726 —0-05648 —-1.217 —0-04824 —1-865 —-0.01753
16 2 14 2 04162 —-0.01078 . -0-8719 —0:05634 —-1.215 —0-04812 —1.860 —0-01748
16 2 16 2 0-4162 —0-01077 —0-8718 —0-05629 —1.215 —0-04809 —1-860 —0:01746
10 3 10 3 0-4480 —001132 —0-8426 —0:05912 —1.207 —0-05073 —1.898 —0-01804
h =025 10 2 10 2 04123 —-0-01028 —0-8825 —0:04503 —1.219 —0-03742 —1.864 —0-01224
12 2 12 2 0-4050 —0:01027 —0-8857 —0-04460 —1.217 —0-03702 —1-853 —0:01212
14 2 14 2 0-4008 —0:01024 —0-8861 -0-04432 —1.215 —0-03678 —1-845 —0:01190
16 2 16 2 0-3985 —0-01021 —0-8852 —0:04416 —1.213 —0:03665 —1-839 —-0.01185
10 3 10 3 0-4289 —0-01048 —0-8574  —0-04590 —1.206 —0-03828 —1:876 —0:01229
h=05 10 2 10 2 0-3989 —0-008112 —0-8962 —0-02284 —-1.220 —0-01712 —1.851 —0:002984
12 2 12 2 0-3917 —0-008109 —0-8991 —002264 —1.218 —~0-01693 —1.840 —0-002882
14 2 14 2 0-3876 —0-008094 —0-8994 —002250 —1216 —0-01681 —1-832 —0-002825
10 3 10 3 0-4149 —0:007933 —-0-8716 —-0:02271 —1.207 —-0-01709 —1-863 —0-003110
h=10 10 2 10 2 0-3918 —0-002982 —0:9027 0-003005 —1.220 0-004949 —1-844 0-005435
12 2 12 2 0-3847 —0-002979 —0:9056 0-002953 —1.218 0-004900 —1.833 0-005407
14 2 14 2 0-3807 —0-002978 —0-9058 0-002927 —1.216 0-004873 —1.825 0-005391
10 3 10 3 0-4078 —0-002775 —0-8782 0-003370 —1.207 0-005208 —1.856 0-005316
h=20 10 2 10 2 0-3921 0-001611 —0:9016 0-008609 —-1219 0007430 —1-843 0-003038
12 2 12 2 0-3850 0001614 —0:9045 0-008535 —1.217 0-007360 —1-832 0-002994
14 2 14 2 03810 0-001612 —0-9047 0-008486 —1215 0-007316 —1-824 0-002969
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TABLE 2 (concluded)

m, n, n, 2 Q4 Qi Qi3 Qua Q4 Q2 Q43 Qia
h=20 6 2 4 2 0-2885 0-08347 0-3527 —0-3375 0-07883 —0-3819 —0-2239 —0-3823
6 2 6 2 0-2854 0-08384 0-3478 —0-3328 007629 —-0-3769 —-0:2229 —0-3827
8 2 6 2 0.2831 0-08390 0-3480 —0-3327 0-07735 —0-3768 —-0-2187 —0-3828
8 2 8 2 0-2841 008131 0-3472 —0-3343 0-07547 —0-3770 —0:2214 —0-3806
10 2 8 2 0-2825 0-08130 0-3465 —0-3343 0-07568 —0-3770 —-0-2190 —0-3806
10 2 10 2 0-2832 0-07904 0-3459 —0-3355 0-07438 —0-3771 —0-2209 —0-3780
12 2 10 2 0-2820 0-07900 0-3442 —0-3355 0-07395 —-0-3771 -0-2197 —0:3779
12 2 12 2 0-2821 007752 0-3435 —0-3359 0-07316 —0-3768 —0-2206 —0-3759
14 2 12 2 0-2814 007748 0-3422 —0-3359 0-07272 —0:3768 —0-2200 —0-3758
14 2 14 2 0-2812 007664 0-3416 —0-3357 007230 —0-3764 —0-2202 —0-3743
16 2 14 2 0-2809 0-07661 0-3408 —0-3357 0-07203 —0-3764 —0-2200 —0-3743
16 2 16 2 0-2806 0-07617 0-3403 —0-3354 0-07185 —0-3759 —0-2198 —-0-3733
10 3 10 3 0-2801 0-08144 0-3414 —0-3295 0-07445 —0-3725 —-0:2174 —0-3776
h =025 10 2 10 2 0-1852 0-07464 0-2379 —0-3373 0-05666 —0-3765 —0-1304 —0-3730
12 2 12 2 0-1845 0-07316 0-2364 —0-3377 0-05580 —0-3762 —0-1303 —0-3709
14 2 14 2 0-1840 0-07231 0-2352 -0-3375 0-05524 —0-3757 —0-1301 —0-3694
16 2 16 2 0-1836 007186 0-2343 —0-3371 0-05489 —0-3752 —0-1300 —0-3684
10 3 10 3 0-1832 0-07695 0-2347 -0-3313 0-05649 —0-3719 —0-1284 —-03726"
h =205 10 2 10 2 0-1214 0-07141 0-1599 —0-3390 0-03960 —0-3763 —0.08115 —0-3695
12 2 12 2 0-1210 0-06997 0-1589 —0-3393 0-03903 —0-3760 —0-08116 —0-3674
14 2 14 2 0-1207 0-06914 0-1581 —-0-3391 0-03866 —0-3755 —0-08108 —0-3660
10 3 10 3 0-1201 007370 0-1577 —0-3330 0-03942 —0-3717 —0-07992 —0-3691
h=10 10 2 10 2 0-05618 0-06966 0-07542 —0-3397 0-01888 —0-3759 —-0-03641 —0-3675
12 2 12 2 0-05600 0-06823 007496  —0-3400 001861 —0-3756 —0-03643 —0-3654
14 2 14 2 0-05584 006742 007460 —0-3398 0-01843 —0-3751 —0-03641 —0-3640
10 3 10 3 005554 007196 007444 —0-3337 0-01883 —0-3713 —0-03580 —0-3671
h=20 10 2 10 2 0-01562 0-06971 002021  —0-3395 0-004205 —0-3757 —0-01131 —0-3674
12 2 12 2 0-01557 0-06868 002008 —-0-3398 0004125 —0-3754 —0-01131 —0-3653
14 2 14 2 001552 0-06747 0-01997 —0-3396 0-004075 —0:3749 —0-01130 —0-3639




TABLE 3

Values of Generalised Airforce Coefficients for the Agard Wing-Tailplane
Configuration as Obtained by Different Workers

Albano Giesing

Perkinson Albano Kalman

Davies Rodden Rodden Rodden

v=20 h=20

0-4403 04425 0-4554 0-4401
—06202 —06121 —0-6655 —0-6557
—0-1046 —0-1054 —0-1107 —0-1044
—0-1759 —0-1954 —0-2237 —02126
—0-5425 —0-5420 —0-6052 —0-5875
—0-4611 —0-4476 —0-4557 —04735
—0-5127 —0-5166 —0-5784 —0-5553
—0-6649 —0:6398 —0-6538 —0-6758

v=15 h=0

Q:'u 1.106 —1-1208 10215 10231
01, —0-07195 —0-0568 —0-0436 —0-0757
05, 0-3716 0-3688 0-3122 0-3337
05, 0-5367 05104 04876 0-4943
) —0-7583 —0:7633 —-0-7768 —0-7929
—-0-6101 —0-5928 —0-6047 —0-6310

—0-6220 —0-6268 —06718 —0-6645

—0-7780 —07524 —0:7415 —0-7813

Albano Albano
Perkinson Perkinson

Davies Rodden Davies Rodden

v=20 h =06 v=15 h =06

014 0-1470 0-1490 05713 0-5814
le —0-6402 —0:6312 —0-3558 —0-3450
le1 —0-2404 —0-2405 0-1262 0-1226
05 —0-1619 —0-1817 04568 —0-4278
—0-5492 —0-5505 —-0-6274 —0-6382

—0-6181 —0-6070 —0-7180 —0-7053

—0-5308 —0-5329 —0-5989 —0-6026

—0-7565 —0-7306 —0-8729 —0-8464

53
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TABLE 4a
Generalised Airforce Coefficients for the Agard Wing-Tailplane Configuration

v=0,M=081=0

m ny my U] Q1 01, 05, Q3 01 01, 0%, 03

4 2 4 2 0-4701 —0-6531 —0-1243 —-0-1213 —-0-5102 —0-5287 —0-4895 —0-7065

8 3 8 3 0-4554 —0-6246 —0-1128 —0-1557 —0-5332 —0-4787 —0-5099 —0-6835
10 3 8 2 04314 —0-5932 —0-09012 —0-1987 —0:5149 —0-4790 —0-5192 —-0-6734
10 3 10 3 0-4450 —0-6244 —0-1065 —0-1686 —0-5385 —0-4698 —0-5109 —0-6727
12 3 12 3 0-4344 —0-6235 —0-1014 —0-1800 —0-5420 —0-4653 —0:5111 —0-6645
14 3 14 3 0-4263 —0:6222 —0-09750 —0-1889 —0-5444 —0-4625 —0-5120 —0-6584
16 3 16 3 0-4198 —0-6213 —0:09475 —0-1951 —0-5463 —0-4606 —0-5122 —0-6538
18 3 18 3 0-4163 —0:6207 —0-09319 —0-1988 —0-5482 —0-4583 —0-5125 —0-6506
20 3 20 3 0-4153 —0-6202 —009258 —0-2006 —0-5500 —0-4560 —0-5129 —0-6486
10 4 10 4 0-4456 —06213 —0-1091 —0-1612 —0-5314 —0:4730 —-0-5121 —0-6746
12 4 12 4 0-4466 —0-6212 —0-1085 —0-1654 —0:5372 —0-4657 —0-5126 —0-6713
14 4 14 4 0-4442 —0-6207 —0-1068 —0-1705 —0-5404 — 04627 —0-5127 —0-6681
16 4 16 4 0-4403 —0-6202 —0-1046 —0-1759 —0-5425 —0-4611 —0-5127 —0-6649
12 5 12 5 0-4389 —0-6206 —0-1057 —0-1712 —0-5395 —0-4640 —0-5136 —0-6647
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TABLE 4b

Generalised Airforce Coefficients for the Agard Wing-Tailplane Configuration
v=15M=08h=0

At

A

my ny my 1y 0 01 05 052 Q14 01, 21 22

4 2 4 2 1-128 —0-04327 0-3058 0-5396 —0-6116 —0-5990 —0-5328 —-0-6398

8 3 8 3 1-154 —0-07985 0-3670 0-5535 —0-7485 —-0-6172 —0-6146 —0-7826
10 3 8 2 1.104 —0-01444 0-3718 0-4505 —0-6986 —0-5858 —0-6332 —0-7178
10 3 10 3 1-111 —0-08074 0-3756 0-5342 —0-7442 —0-6152 —0-6154 —0-7715
12 3 12 3 1-068 —0-08279 0-3786 0-5116 —0-7380 —0-6168 —0-6136 —0-7629
14 3 14 3 1.037 —0-08516 0-3784 0-4944 —0-7342 —0-6177 —0-6132 —0-7569
16 3 16 3 1-013 —0-08732 0-3769 (04818 —0-7322 —0-6183 —0-6125 —0-7527
18 3 18 3 0-9977 —0-08793 0-3745 04752 -0-7319 —0-6178 —0-6124 —0:7503
20 3 20 3 0-9896 —0.08752 0-3717 04732 —0-7330 ~0-6166 —-0:6127 —0-7493
10 4 10 4 1.144 — 008091 0-3689 0-5528 —0-7546 —-0:6113 —0-6224 —0-7842
12 4 12 4 1-113 —-0.07524 0-3690 0-5512 —0-7574 —0-6092 —0-6219 —0-7830
14 4 14 4 1-120 —0-07265 0-3702 0-5451 —0-7581 —0-6093 —-0-6217 —0-7809
16 4 16 4 1106 —-007195 0-3716 0-5367 —0-7583 —0-6101 —-0-6220 —0-7780
12 5 12 5 1-110 —007567 0-3650 0-5391 —0-7576 —0-6116 —-0-6233 —0-7787




9¢

TABLE 4c

Generalised Airforce Coefficients for the Agard Wing-Tailplane Configuration

v=0,M=08h=06

my n, m; U] Q1 01, 05, 05, Q1 01, 21 03

4 2 4 2 0-1789 —0-6788 —0-2412 —0-1092 —0-5519 —0-6838 —0-5385 —0-7934

8 3 8 3 0-1599 —0-6499 —0-2439 —-0:1390 —0-5549 —0-6297 —0-5371 —0.7715
10 3 8 2 0-1506 —-0-6488 —0-2388 -0-1784 —0-5510 —0-6090 —0-5484 —-0-7416
10 3 10 3 0-1505 —0-6457 —0-2413 —0:1544 —0-5503 —0-6253 —0-5333 —-0-7641
12 3 12 3 0-1410 —0-6426 —0:2395 —-0-1671 —0-5460 —0-6227 —0-5294 —0-7580
14 3 14 3 0-1337 —0-6405 —0-2382 —0-1768 —0-5428 —0-6201 —0-5268 —0-7533
16 3 16 3 0-1281 —0-6389 —-02372 —0-1834 —0-5407 —0-6183 —0-5244 —0-7496
18 3 18 3 0-1250 —0-6379 —0-2368 —0-1874 —0-5397 —0-6165 —0-5229 —-0-7471
20 3 20 3 0-1240 —0:6372 —0-2367 —0-1893 —0-5394 —0-6147 —0:5223 —0-7455
10 4 10 4 0-1536 —0-6439 —0-2412 —0-1446 —0-5529 —0-6229 —0-5362 —0:7636
12 4 12 4 0-1534 —0-6422 —0-2414 —0-1500 —~0-5520 —0-6200 —0-5345 —-0-7614
14 4 14 4 0-1507 —0-6411 —0-2410 —0-1559 —0-5507 —0-6188 —-0-5326 —0-7589
16 4 16 4 0-1470 —0-6402 —0.2404 -0-1619 —0-5492 —0-6181 —0-5308 —0-7565
12 5 12 5 0-1447 —0:6419 -0-2419 —0-1557 —0-5503 —0-6185 —0-5328 —0-7559
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TABLE 4d

Generalised Airforce Coefficients for the Agard Wing-Tailplane Configuration

v=15M=08h=06

my "1 m, iy Q1 Q%2 05 05 11 12 0% 03

4 2 4 2 0-5679 —0-3555 0-09538 0-4878 —0-5329 —0-7096 —0-5453 —07178

3 3 8 3 0-5869 —0-3595 0-1253 0-4954 —0-6280 —0-7291 —0-6042 —0-8790
10 3 8 2 0-5186 —0-3645 0-05802 0-3483 —0-5978 —0-6424 —0-5948 —0-7443
10 3 10 3 0-5646 —0-3651 0-1298 0-4594 —0-6157 —-0-7215 —0:5936 —0-8060
12 3 12 3 0-5406 —0-3706 0-1309 0-4262 —0-6040 —0-7163 —0-5835 —0-8536
14 3 14 3 0-5214 —0:3741 0-1301 0-4020 —0:5961 —0-7120 —-0:5767 —0-8446
16 3 16 3 0-5073 —0:3763 0-1290 0-3847 —0-5913 —0-7089 —0:5717 —0-8385
18 3 18 3 04987 —0-3773 0-1273 0-3752 —0-5889 —0-7063 —0-5689 —0-8351
20 3 20 3 0-4950 —0:3775 0-1253 0-3716 —0-5882 —0-7042 —0-5679 —0-8336
10 4 10 3 0-5873 —0-3558 0-1244 0-4883 —-0:6353 —0-7241 —0-6070 —0-8813
12 4 12 3 0-5857 —0-3550 0-1253 04812 —0-6337 —0:7211 —0:6043 —0-8794
14 4 14 3 0-5796 —0-3550 0-1260 0-4700 —0-6307 —0-7195 —0-6016 —0-8764
16 4 16 3 05713 —0-3558 0-1262 0-4568 —0-6274 —0-7180 —0-5989 —0-8729
12 5 12 5 0-5685 —0:3574 0-1183 0-4639 —0-6318 —0-7204 —0-6026 —0-8738




TABLE 5

Generalised Airforce Coefficients for the Agard Wing-Tailplane Configuration
M=08(m, =16,n =4, m, =16,n, = 4)

v h Q/ll Q’IZ 05, 05 11 12 21 22
0 04403  —0-6202 —0-1046 —0-1759 —0-5425 —04611 —0-5127 —0-6649
001} 04199 —0-6242 —0-1162 —0-1786 —0-5467 —0-4742 —-0-5176  —0-6733
0041 03786 —0-6312 —0-1386 —0-1827 —0-5533 —0-4981 —-0-5268  —0-6886
01 03223  —0-6387 —0-1674 —-0-1839 —0:5586 —-0-5263 —-0-5354 07067
0 | 02 | 02591 06423 —-0-1976 —0-1774 —0:5588 —0-5562 —-0-5378 —0.7256
03 | 02163 —06420 —0-2158 —0-1702 —0-5560 —0-5780 —0:5359 —0-7380
04 | 01859 —0-6410 —0-2273 —0-1655 —0-5531 —0-5949 —0-5338  —0-74064
05 | 01636 —0-6404 —0-2350 —0-1630 —0-5508 —0-6079 —0:5320 —0-7523
06 | 01470 —0-6402 —0-2404 —0-1619 —0-5492 —0-6181 —0-5308  —0-7565
0 1-106 —0-07195 0-3716 0-5367 —0-7583 —0-6101 —0-6220  —0-7780
0-01 | 1064 —0-09692 0-3471 0-5235 —0-7532 —-0-6188 -06233 —0-7853
004 09767 —0-1473 0-2986 0.5001 —0-7389 —0-6351 —06253  -—-0-7994
0-1 08590 —0-2096 0-2390 04774 -0-7141 —0:6546 —-06241 —0-8169
1.5 02 | 07394 —-0-2679 0-1856 0-4660 —0-6821 —-0-6754 -06162  —0-8359
03 | 06687 —0-3020 0-1585 0-4638 —0-6601 —0:6906 —0-6090 —0-8494
04 | 06235 —0-3253 0-1430 0-4623 —0-6451 —0-7022 —-0-6041  —0-8594
05 | 05928 ~0-3425 0-1331 04600 —0-6348 —-0-7112 —0-6010 —0-8670
06 | 05713 —0-3558 0-1262 0-4568 —0-6274 —0-7180 —0-5989  —0-8729
TABLE 6
Generalised Airforce Coeflicients for the Agard Wing-Tailplane Corfiguration
M=080m, =16,n =4, m, = 16,n, = 4)
h v Q1 Q12 071 0% 1 12 21 22
0 04403 —0-6202 —0-1046 -0-1759 —0-5425 —-0-4611 -0-5127 —0-6649
01 04436 —0:6176 —0-1025 —0-1728 —0-5433 —-0-4617 —0:5130  —0-6653
02 | 04533 —-0-6099 —0-09631 —0-1635 —0-5457 —0-4637 —0-5142  —0-6666
04 | 04925 —0-5794 —0-07141 —0-1264 —0-5557 —-04714 —-0.5188 —06716
0 |06 05576 —05290 —0-02959 —-0-06420 —0.5734 —0-4840 —0-5270 —0-6802
08 { 06475 —04591 0-02946 002351  —0-5998 —0-5017 -0.5391 —06927
1.0 | 07596 —0-3702 0-1060 0-1373 —-0-6350 —-0-5246 —0.5557 —0-7097
12 1 08895 —0-2629 0-1998 0-2775 —0-6788 —0:5535 -05775 —07320
1.5 1-106 —0-07195 03716 0-5367 —0-7583 —0-6101 —-06220  —0-7780
0 0-1470 —0-6402 —0-2404 —0-1619 —0-5492 —0-6181 —0:5308 —0-7565
0-1 0-1490 —0-6388 —0-2388 —-0-1592 —0-5495 —0-6185 —05311 —0-7569
02 | 01548 —0-6346 —0-2341 —0-1511 —0-5504 —0:6198 —-0-5318 —0-7580
04 | 01779 -06179 —02154 —0-1187 . —0-5533 —0-6248 —0-5348  —0-7628
06{ 06 | 02164 —0-5905 —0-1840 —0-06443 —0-5608 —-0:6331 —0-5400 —0-7709
08 | 02701 —0-5528 —-0-1395 001235 —-0-5702 —0:6446 —0.5473  —-0-7830
1.0 | 03387 —0-5053 —0-08154 01121 —0-5824 —0-6597 —-0-5573  —0-8001
1.2 | 04217 —0-4493 —0-009303 0-2347 -0-5977 —0-6793 —-0:5705 —-0-8234
1.5 | 05713 —0-3558 0-1262 0-4568 —0-6274 —0-7180 —0-5989  —-0-8729
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Valuesof 0;; for H = O(m, = 6,n, = 2, m, = 6,n, = 2)

TABLE 7

for Onera Wing-Tailplane Configuration

M =03 M = 045 M =065 M = 080

A v = 0-3856 v = 02436 v = 01513 y = 01112
033
0 1-3078 1-3700 1.5315 17779
L 1-3048 1-3646 1-5218 17618
& 1-3047 1-3631 1-5175 1-7531
4 1-3087 1-3656 1.5167 1.7462
5 1-3146 1-3711 1.5200 1-7453
1 1-3208 1.3772 1-5248 1.7470
3 1.3322 1-3890 1-5349 17526
! 1.3414 1.3989 1-5439 1.7586
3 1.3543 14136 1-5578 1.7685
i 1-3622 1.4232 1-5671 1.7755
3 1-3699 1-4339 1-5780 1.7833
2 1-3724 1-4389 1.5834 17868
0 1-3875 1-4379 1.5843 17826
33

0 —0.2297 —0-3000 —0-4905 —09106
& —0-2647 —0-3438 —0-5570 —1.0172
L —0-2898 —0-3752 —0-6043 — 10922
L —0-3241 —0-4182 —0-6693 —1-1961
& —0-3479 —0-4481 —0.7151 —1.2697
1 —0-3666 —0-4716 —0.7511 ~1-3277
3 —0-3958 —0-5087 —0-8077 —1-4176
| —0-4190 —0-5380 —0-8520 — 14865
3 — 04547 —0-5832 —~09189 —1.5884
1 —04810 —0-6168 —0-9678 —~1-6614
3 —0-5168 —0-6632 —1-0348 —~1.7602
2 —0-5390 —0-6933 —1-0785 —18239
o0 —06304 —~1-1859 —1:9466

—-0-7602
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Values of O, for H = L (m, = 6,n, = 2,m, = 6,1, = 2)

TABLE 8

for Onera Wing-Tailplane Configuration

M = 030 M = 045 M = 065 M = (-80

A v = 0-3856 v = 0-2436 v =0-1513 v=~01112
Q33
0 1-2955 1-3551 1.5104 1.7501
s 1-3026 1-3619 1.5156 1.7502
" 1.3076 1-3666 1.5188 1.7494
5 1-3156 1.3741 1.5239 1.7488
& 1-3223 1-3808 1.5289 1-7501
3 1-3283 1-3868 1.5339 1.7523
3 1.3382 1.3974 1.5432 17577
) 1.3460 1.4059 1.5510 1.7628
3 1.3566 1-4181 1.5626 17711
1 1:3630 1-4260 1.5703 1-7768
3 1.3691 1-4347 1.5792 1-7832
2 1-3711 1-4388 1-5836 1.7861
o 1-3875 1-4379 1-5843 1.7826
Q33

0 —0-3601 —0-4557 - 06929 — 11675
35 —0-3573 —0-4553 —0:7032 —1:2065
i% —0-3613 —0-4626 —0-7215 —1.2487
3 —0-3755 —0-4832 —0-7604 —1-3230
i —0-3905 —0:5035 —0:7948 —-1-3826
3 —0-4042 —-0-5216 —0-8242 —1-4314
2 —0-4276 —0-5521 —0-8720 -~ 1-5080
% —0-4467 ~0.5767 —0-9096 —1-5666
3 —~0-4763 —0-6147 —0:9662 —1-6524
1 —0-4980 —0-6427 —1.0071 —1.7132
3 —0-5273 —0-6811 — 10626 —1.7946
2 —0-5454 —0-7058 - 10984 —1-8468
@0 —0-6304 —0:7602 —1.1859 —1.9466
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Values of 0, , for H = 0 (m, = 6,n, = 2, m, = 6,1, = 2)

TABLE 9

for Onera Wing-Tailplane Configuration

M = 030 M = 045 M = 0-65 M = 080

i v = 03856 v = 0-2436 v=0-1513 v =01112
Q34
0 0-1181 01125 00810 0-0183
5 0-1224 01197 00929 00367
5 0-1227 0-1219 00982 0-0468
% 0-1178 0-1191 00996 0-0549
= 0-1100 0-1125 00957 0-0558
4 0-1017 0-1047 00899 0-0539
3 0-0860 00895 0.0775 00471
i 00727 00762 0-0660 0-0397
3 0-0526 00558 0-0480 00271
1 0-0390 00417 0-0353 0-0180
3 0-0228 0-0246 0-0198 0-0070
2 0-0141 0-0152 0-0113 0-0013
o0 0-0000 0-0000 0-0000 0-0000
Q34

0 —0-3541 —0-4860 —0-7625 —1-1550
35 —0-3099 —-04317 —0-6834 —1.0339
T5 —-0:2779 —0-3923 —0-6264 —0:9476
{ —0-2347 —0-3384 —0-5477 —0:8274
= —0-2062 —0-3021 —0493] —0-7427
i —0-1852 —0-2747 —0-4511 —-0-6767
3 —0-1549 —0:2342 —0-3876 -0-5765
4 —-0-1331 —0-2043 —0-3401 —-0-5016
3 —0-1026 —0-1616 —-0.2716 —0-3944
] —0:0820 —0-1321 —0:2239 —0:3198
3 —0:0561 —0:0940 —-01614 —0-2213
2 —0-0407 —00706 -0-1222 —0-1586
o) 0-0000 0-0000 0-0000 0-0000
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Valuesof O, for H =} (m, =6, n, = 2,m, = 6,n, = 2)

TABLE 10

for Onera Wing-Tailplane Configuration

M = 030 M = 045 M = 065 M = 080

p v = 0-3856 y = 0-2436 v = 01513 y = 01112
034
0 0-1469 01492 0-1228 00571
& 0-1373 0-1399 0-1159 00572
&= 01306 01335 01119 00586
L 0-1196 01233 0-1052 00596
3 0-1098 0-1140 0-0983 00580
L 0-1007 0-1051 00912 00549
3 00847 00891 00777 00472
L 00715 00757 00659 00396
3 00518 00553 00477 00269
1 00384 00413 00351 00179
3 00225 00243 00196 00069
2 00140 00151 00112 00012
% 00000 0-0000 0-0000 0-0000
4

0 —0-2401 —0-3663 —0-6382 ~1-0410
_ —0-2455 —0-3675 ~0-6241 —0.9892
X —0-2405 —0-3574 —0-5987 —0:9327
L —0-2215 —0-3286 — 05446 —0-8323
3 —0.2015 —0-3006 —0-4970 ~07514
1 ~0-1839 —0-2762 —0-4568 —0-6854
3 —0-1555 —0-2368 —0-4929 —0-5831
1 —0-1338 —0-2066 —0-3442 —0-5062
3 —0-1030 —~0-1630 —0-2738 —0-3964
1 — 00821 —0-1328 —0.2251 —0-3206
3 —0-0560 —0.0941 —0-1617 —-0-2213
2 —0.0407 —0-0706 ~0.1222 —0-1584
% 0-0000 0-0000 0-0000 0-0000
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Values of 0, for H = 0(m, = 6,n, = 2,m, = 6,n, = 2)

TABLE 11

for Onera Wing-Tailplane Configuration

M =030 M = 045 M = 0-65 M = 080

A v = 0-3856 v = 0-2436 v = 0-1513 v=01112
Qi3
0 —0-5680 —-0-6077 —0-7267 —0-9295
+ —0-6636 —0-7064 —0-8335 —1.0459
&+ —0-7281 —~0-7736 —0-9059 —1.1242
L —0-8043 —0-8553 —09952 —1.2222
) —0-8435 —0-9006 —1-0470 —1-2806
i —0-8639 —-0-9277 —1-0798 —1-3188
3 —0-8763 —0-9544 —1-1169 —1.3635
1 —0-8692 —-09627 —1-1345 —1.3862
2 —0-8275 —0-9547 —1-1438 —1-4025
1 —07670 —09311 —1.1377 —1-4017
3 —-0-6171 —0-8626 —1-1071 —1-3812
2 —0-4438 —0-7776 — 1-0648 —1-3500
Qs

0 00175 00252 00572 01432
> 0-0925 01102 0-1739 0-3245
= 0-1705 01974 0-2897 04970
L 0-3185 0-3619 0-5037 0-8076
& 04516 0-5100 0-6944 1-0804
1 0-5719 0-6445 0-8670 1-3249
3 07846 0-8842 1-1735 1.7523
1 09703 10961 1-4432 2-1208
3 1-2868 1-4656 19116 27461
1 1.5510 1.7867 23196 32799
3 19676 2-3372 3-0324 42007
2 2-2640 2-8022 3.6623 50133
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Valuesof O, for H = } (im;, = 6.n, = 2. m, = 6, n, = 2)

TABLE 12

for Onera Wing-Tailplane Configuration

M = 030 M = 045 M = 065 M = 0-80
A v = 0-3856 y = 02436 vy = 01513 y = 01112
Qi3
0 ~0-7202 —07419 —08183 ~0:9462
i — 06977 — 07327 — 08226 —09725
M —0-6985 —0.7379 —0-8378 — 10018
! ~ 07103 — 07570 —0-8696 —1:0493
& —0:7203 — 07731 —0-8935 —1.0817
! ~0:7252 —0-7838 —09100 —~1-1036
2 —07232 —07934 ~0:9284 — 11288
! —0:7109 —0-7933 — 09358 ~1-1405
3 —~0:6701 —0-7790 — 09352 — 11458
1 —06175 —0:7554 —09255 —1.1407
3 — 04926 —0-6953 —0-8957 —1.1194
2 — 03511 —0-6243 ~0-8590 ~ 10920
043
i 0-1894 0-2002 02510 0-3636
& 02114 02314 0-3019 0-4601
L 0-2489 0-2756 0-3667 0-5683
! 0-3367 0-3768 0-5064 0-7848
4 0-4269 0-4796 0-6433 09868
! 0-5139 0-5784 07725 1-1721
3 0-6739 0-7608 1-0076 1-5008
! 0-8170 09253 12176 17871
3 10639 12151 1-5855 22768
L 12715 1-4686 1.9079 2.6980
3 1-6003 19051 24743 3.4299
2 1.8342 22748 29769 40799

64



TABLE 13

Values of 0, for H = 0(m;, = 6,n, =2,m, = 6,1, = 2)
for Onera Wing-Tailplane Configuration

M =030 M = 045 M = 065 M = 080

A v = 0-3856 v = 02436 v = 01513 v=01112
Qis
0 0-6909 07371 0-8579 1-0547
15 0-8237 0-8693 0-9941 1-1950
i 09181 09631 1.0895 1.2921
: 1-0409 1.0854 1-2139 1-4187
% 1.1167 11616 1-2921 1-4991
i 1-1683 1.2140 1.3465 1.5552
3 1-2342 1.2821 1-4177 1.6283
i 1.2745 1.3244 1-4620 1.6731
3 1.3197 1-3730 1-5131 1.7232
1 1-3428 1-3991 1-5403 1-7490
3 1-3632 1.4239 1.5666 1.7727
2 1.3703 1-4344 1.5779 1.7822
o0 1-3875 1-4379 1.5843 1.7826
Qus

0 ~0-0355 —0-0590 —0-1085 —-02102
75 —0:0610 —0-0946 —0-1702 —0-3242
15 — 00883 —0:-1302 —0-2280 —04262
i ~0-1386 —-0-1933 -0-3267 —0-5968
% —0-1806 - 12451 —-0-4068 —0-7349
i —0-2158 —-2835 —0-4738 —0-8503
3 —0:2726 —0-3584 —0-5814 —1-0339
3 —0-3169 —04131 —0-6649 —1-1736
3 —0-3824 —0-4938 —0-7862 —1.3707
1 —0-4280 —0:5504 —0-8696 —1-5021
3 —0-4860 —0-6232 —09755 — 1-6649
2 —0-5199 —0-6672 — 10392 —1.7611
oC —-0-6304 —0-7602 —1-1859 — 19466
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Values of 0, for H = } (m, = 6,n, = 2,m, = 6,n, = 2)

TABLE 14

for Onera Wing-Tailplane Configuration

M =030 M = 045 M = 065 M = 0-80

A v = 0-3856 v = 02436 v = 01513 v=01112
n
0 10968 1-1195 1.1928 1.3232
35 1.0868 1-1168 1-2090 1-3677
s 1-0998 1-1351 1-2402 1.4157
i 1-1424 1.1842 1-3039 1-4964
= 11829 1-2282 1.3552 1.5553
i 1.2159 1-2635 1.3948 1.5988
3 1.2629 1.3138 1-4498 16572
5 1.2936 1.3468 1-4852 1-6935
3 1.3291 1.3857 1.5266 1.7344
] 1-3475 1.4067 1.5487 1.7554
3 1-3638 1-4268 1-5700 1.7747
2 1-3695 1-4351 1.5792 1.7823
x 1.3875 1-4379 1.5843 1.7826
a4

0 —0-2487 —0-3049 —0-4197 —0-6148
5 —0-2289 ~0-2886 —0-4190 —0-6571
i —0-2268 -02914 —0-4385 —0-7161
% —0-2425 —0-3168 —0-4943 —0-8381
& —-0-2657 —0-3486 —-0:5513 —0:9478
i —0-2893 —0:3795 —-0:6032 —1-0428
3 —0-3315 —04336 —0:6905 —1-1960
] —0-3665 —-04777 —0-7595 —-1.3127
2 —-04191 —0-5437 —0-8600 — 14766
1 —0-4560 —0-5900 —0.9288 —1.5850
3 —0-5029 —0-6495 —1.0156 —-1.7184
2 —0-5303 — 06852 —1-0675 - 17966
x© —0-6304 —0-7602 - 11859 — 19466
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Values of O, for H = 0(m, = 6,n, = 2, m, = 6,n, = 2)
for Onera Wing-Tailplane Configuration

TABLE 15

M =030 M = 045 M = 065 M = 0-80

A v = 0-3856 v = 0-2436 v = 01513 v=01112
Qll4
0 —3.0222 —3-0165 —2.9480 —-2.7610
5 —2.5093 —2:5086 —2.4426 —2-2673
&% —2:1369 —2-1423 —2-0837 —19222
& —1.6407 —1-6548 —1-6081 — 14653
& —1-3256 —1.3437 —1-3027 —1-1698
i —1-1056 —1.1249 —1.0863 —09598
3 —0-8142 —0-8326 —07957 —0-6797
5 —0-6278 —0-6443 —0-6087 —0-5030
3 —04043 —04171 —0.3857 —0-2987
1 —0-2785 —0-2886 —0:2615 —0-1893
3 —0-1496 —0-1559 —-0-1353 —0-0829
2 —0-0891 —00929 —-0-0765 —0-0360
9] 0-0000 0-0000 0-0000 0-0000
14

0 —-0-0521 0-5109 1.6823 35719
s 0-1476 0-6758 1.7918 3-5796
15 0-2648 0-7626 1.8233 3-5128
B 0-3767 0-8268 1.7921 3-3101
& 04166 0-8309 1.7182 3-0912
3 04274 0-8126 1.6335 2-8814
3 0-4149 07540 1.4659 2-5090
4 0-3871 0-6897 1.3150 2.1999
3 0-3257 0-5734 1-0708 1-7312
1 02723 0-4804 0-8886 1.3995
3 0-1948 0-3497 0-6427 09673
2 0-1450 0-2657 0-4875 0-6992
oo 0-0000 (0-0000 0-0000 0-0000
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Valuesof O, for H = } (m, = 6,n, = 2. m, = 6,n, = 2)

TABLE 16

for Onera Wing-Tailplane Configuration

M =030 M = 045 M = 065 M =080
; v = 0-3856 v = 0.2436 v = 01513 y = 01112
Q'
0 — 15328 — 16893 —1.9237 —2.0953
5 — 16087 —1.7248 — 18692 — 19208
o — 15648 — 16536 — 17399 — 17239
! — 13767 — 14354 — 14611 —1-3840
2 — 11838 —1.2282 —12272 —1-1283
! ~1.0200 — 10563 —1.0421 —0.9352
3 —0.7746 —08016 —07760 — 06684
1 — 06055 —06271 —0-5980 —0-4966
] —0-3947 —0-4099 —03811 —02957
| ~02735 ~0-2848 —02590 —0-1876
3 ~0-1477 —0-1544 —01343 — 00823
2 —0.0883 —0.0922 —0.0760 — 00357
o 00000 0-0000 00000 0-0000
Ta
0 04746 09467 2.0315 3-9061
4 04841 09609 2.0314 38311
b 04911 09621 2.0045 37193
) 04978 09448 19160 3-4622
A 04933 09124 18117 32068
! 04808 08733 17066 2.9704
3 04448 07913 15127 2-5633
! 04053 07141 13462 22340
3 03333 0-5849 10857 17456
1 02756 0-4862 08962 1-4057
3 01954 0-3513 06448 0-9680
2 0-1449 0-2661 0-4879 0-6986
x 00000 0-0000 00000 0-0000
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Values of 0,, for H = 0 (m, = 6,n, = 2,m, = 6,1, = 2)

TABLE 17

for Onera Wing-Tailplane Configuration

M = 0-30 M = 045 M = 065 M = 0-80

A v = 03856 v = 02436 v = 01513 v=01112
Qs
0 1:.9745 21014 2-4799 3-1000
3 2.2888 24247 2.8265 3-4718
= 2-5048 2.6488 3-0656 37262
& 2.7668 2.9293 3-3691 4.0527
&= 2.9077 3-0916 3-5518 4.2542
i 2-9858 3-1933 3-6726 4.3905
3 3-0438 3-3028 3-8173 4-5584
3 3.0317 3-3467 3-8936 4.6510
3 2.5044 3-3417 3.9509 47317
1 2-7034 3-2748 3-9476 4.7481
3 2:1856 30532 3-8647 4.7048
2 1.5759 27644 3.7324 46169
23

0 —0-3366 —0:3345 —0:3081 —0-1469
+5 —-0-5902 —-06121 —0:6623 —0-6457
Tz —-0-8509 — 08960 —1.0181 —1-1345
5 —1-3441 — 14332 —1.6843 —2-0382
5 —1.7892 —-19203 —~2.2872 —2.8515
i —2-1943 —2.3667 —2-8401 —3-5935
2 —2.9168 —31713 —3.8368 —4.9168
s —3-5548 —3-8924 —4.7286 — 60815
3 —4-6545 —5-1664 —6-3029 —8.0982
1 —5:5818 —6-2865 —7-6941 —9.8517
3 — 70554 —8.2253 —10-1536 —12.9246
2 —8.1094 —9-8746 —12-3477 —15.6708
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Values of 0, for H = { (m, = 6,n, = 2,m, = 6,1, = 2)

TABLE 18

for Onera Rectangular Planforms

M =030 M = 045 M = 065 M = 080

A v = 0-3856 v = 0-2436 vy = 01513 v =01112
03
0 24223 25178 2.7537 31319
5 23836 24949 27742 32208
L 2.3926 25185 2.8299 3.3197
! 2.4434 25940 29465 3.4846
2 2.4873 26594 3.0378 36018
! 2.5135 27063 31040 3.6848
3 25224 27574 3.1860 3.7883
L 24926 27723 3.2274 3.8438
3 23679 2.7448 3.2500 3.8866
I 21936 26774 3.2338 3.8872
3 17621 2.4835 31520 38392
2 12615 2.2419 3.0372 37619
03

0 —0:9285 —0.9388 —0-9642 —09153
L —0:9990 ~ 10274 —1-1101 —1-1809
L ~1-1156 —1-1638 — 13043 — 14874
1 —1-3998 — 1-4870 — 17351 — 21165
2 — 1-6983 ~1.8225 — 21662 ~27172
1 — 19894 ~2-1492 —2:5790 —3.2785
3 —2.5327 —2.7613 —3.3434 —4.2948
! ~3.0251 ~33221 —4.0384 ~5-1988
3 — 3.8865 —4.3254 —52782 - 67793
! —4.6198 ~52150 — 63827 — 81662
3 —5.7925 — 67644 — 83493 —10-6192
2 ~ 66337 —8.0884 —10-1135 —12-8280
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F1G. 2. Agard wing-tailplane configuration.
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FiG. 3. Plan and side views of Onera wing-tailplane configuration.
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F1G. 4. Values of Q5 for H = 0 for Onera wing-tailplane configuration.
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F1G. 5. Values of §,, for H = § for Onera wing-tailplane configuration.
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FIG. 6. Values of 0, for H = 0 for Onera wing-tailplane configuration.
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FiG. 7. Values of §,, for H = } for Onera wing-tailplane configuration.
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FIG. 8. Values of §,, for H = 0 for Onera wing-tailplane configuration.
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FiG.9. Values of §,, for H = £ for Onera wing-tailplane configuration.
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FiG. 10. Values of 0, for H = 0 for Onera wing-tailplane configuration.
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FiG. 1. Values of Q,, for H = } for Onera wing-tailplane configuration.
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FiG. 12. Values of §,, for H = 0 for Onera wing-tailplane configuration.
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F1G. 13.  Values of §,, for H = } for Onera wing-tailplane configuration.
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FiG. 14. Values of @, for H = 0 for Onera wing-tailplane configuration.
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F1G. 15. Values of 0,, for H = & for Onera wing-tailplane configuration.
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