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Summary 
This Report describes an analysis of air resonance in the hover, and the solutions obtained for a helicopter 

with non-articulated blades. It is shown that stability in air resonance depends critically on blade structural 
and aerodynamic parameters that are not easily estimated with the required accuracy, and that a calculation 
technique requires careful, positive correlation with experiment before its accuracy can be accepted. 

The effectiveness of model rotor experiments for checking data is considered, and measurements of rotor 
impedances show promise of providing a useful basis for comparing with theoretical equivalents. 

The effect of an autostabiliser designed to counteract the conventional helicopter instabilities in pitch and 
roll is investigated. It is found that such an autostabiliser destabilises the air resonance mode. 

* Replaces R.A.E. Technical Report 72083--A.R.C. 34 332. 
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1. Introduction 

The 'air resonance' phenomenon is similar to the 'ground resonance' phenomenon, first studied by Coleman. 1 
Coleman showed that instabilities were possible, for a helicopter with articulated blades, due to a coupling 
between airframe body modes involving horizontal translations of the rotor hub, and lagging deflection of the 
blades about the lag hinge. The body modes he considered were those of the body against the elastic restraint 
of the undercarriage with the aircraft on the ground. The term 'air resonance' is used to describe a similar coupling 
between lagging deflection of the blades and airframe body modes when the aircraft is airborne. 

For helicopters with non-articulated blades, the motion in air or ground resonance becomes more complicated 
owing to the fact that there is now significant elastic coupling between body pitch and roll and blade flapping. 
As most body modes involving hub horizontal translations also involve body pitch and roll, blade flapping 
becomes coupled into the motion. Thus the analysis is required to be more complicated than that of Coleman, 
there being a need to consider modes involving hub horizontal translations, body pitch and roll, blade lagging 
and blade flapping. 

Coleman showed in the ground resonance case that, assuming some damping in the undercarriage, the 
instability would be suppressed by dampers across the blade lag hinges. The blade flapping that will be coupled 
into the motion with non-articulated blades is heavily damped by aerodynamic forces, and so one of the 
possibilities to be investigated with non-articulated blades is whether the aerodynamic damping may eliminate 
the need for artificial blade-damping. 

Other investigations 2,3 dealing with non-articulated rotor systems do not reach the same conclusions about 
the need for artificial blade-damping. These other investigations dealt with 'soft in-plane' blades, that is with 
blades with the blade fundamental lagging natural frequency lower than the normal rotor operating speed, and 
they showed that aircraft fitted with such blades were particularly susceptible to the air-resonance instability. 
A rotor with 'soft in-plane' blades is taken in this work. The emphasis in the study is on a critical examination 
of the sensitivities to any lack of precision in the assumptions and input data, rather than on an exhaustive 
analysis of the air resonance phenomenon. The analysis is restricted to the zero forward speed case. 

A helicopter is likely to be fitted with an autostabiliser designed to counteract the conventional helicopter 
instabilities in pitch and roll in forward flight. A typical autostabiliser would apply cyclic pitch to the blades 
according to a law including body pitch and roll displacements and velocities. This coupling between the body 
and the rotor may have an unwanted effect on the air resonance condition, and so its effect is considered. 

2.1. Introduction 

2. Equations of Motion 

The linearised equations of motion are formulated using the 'semi-rigid' representation, in which it is 
assumed that the continuous system may be represented by a finite number of modes of distortion. These 
modes are taken as the basis of a system of generalised coordinates in Lagrange's equations of motion. The 
basic data required to analyse the system are its geometry, mass distribution, and the shapes and frequencies of 
the assumed modes of deformation of the body and the rotor blades. Articulated or non-articulated blades 
may be represented simply by appropriate choice of mode shapes and frequencies. In the semi-rigid representa- 
tion, the choice of the modes of deformation to be included can prove to be fundamental to the accuracy 
achieved. Consequently the sensitivity of the results to the modes chosen, must be determined as an important 
part of the investigation. 

Given the definition of geometry, mass distribution, displacements in the modes chosen and basic aero- 
dynamic assumptions, Lagrange's equations of motion are derived by a formal, analytic procedure, and a 
computer programme written s to evaluate the expressions. The procedure is fully described in a preliminary 
note 4 but, for convenience, the basic assumptions and definitions are repeated here. 

2.2. Choice of Body Modes 

Section 1 indicates that body modes involving hub horizontal translations, pitch and roll are concerned in 
the phenomenon. In this initial work, the fuselage is assumed to be rigid, and the body modes assumed are :- 

(a) rigid body lateral translation, 
(b) rigid body fore and aft translation, 
(c) rigid body vertical translation, 
(d) rigid body roll and 
(e) rigid body pitch. 



The frequency of any instability found would be of obvious importance in deciding whether the assumptions 
of a rigid body were reasonable or whether flexible body modes should be added. 

2.3. Choice of Blade Modes 

2.3.1. Definitions. The definition of the blade modes assumed requires a careful description of the model 
taken for the rotor system. 4 Figs. 1,2 and 3 show axis systems used in the definition of the blade representation. 

(a) In Fig. 1, OX~r are an orthogonal set of axes, of which OX m lies along the rotor shaft, and the set revolves 
with the shaft and thus about OX m . A blade in its undeflected state is represented by a straight reference axis 
passing through the hub centre, 0X82. P is a general part on the reference axis, which is initially along OX~2. 

(b) A representation of 'coning angle rio' and 'collective pitch ~o' is shown in Fig. 1. Coning angle flo is a 
rigid rotation of the reference axis, in the flapping sense, about an axis at the hub centre, about OXB3, in fact. 
Collective pitch ~0 is a rigid rotation of the blade about the reference axis, this rotation taking place after any 
coning has been applied. It is apparent that these representations of coning angle and collective pitch are most 
appropriate to a rigid, articulated blade with hinges at the root. They are, however, still used when blade modes 
appropriate to non-articulated blades (see Section 2.1) are introduced. The reason for this approximation is 
simply the computational simplicity that results, both in the expressions in the equation of motion and in the 
evaluation of ~o and flo for a given rotor thrust. Obviously, if % and fl0 are shown to be important parameters, 
it cannot be concluded that the effects of 'collective pitch' or coning angle have been accurately predicted, but 
it is not unreasonable to assume that their general effects have been indicated. 

(c) Fig. 2 shows a further set of axes PXo,, in which P is now the general point on the distorted reference 
axis, and the position of P relative to P, and the inclinations of axes PXor to PXc~ define the deformation 
coordinates q. The inclinations are described by the Euler angles 4'~ about the carried positions of axes PXD~, 
the angles being applied in the order ~b 3 , 02, ~ .  They have been taken to be: 

ffl 2 

~3 
L 



force and the assumption of a constant length of beam during flapping or lagging deflection) require the retention 
of deflections to order (q2) in order that correct order (q) equations are obtained. For  these terms, the form of 
deflection in equation (2) has to be extended. 

2.3.2. Modes assumed initially for this work. The source of the data for the blade modes was a calculation 
of the blade normal modes using the Holzer-Myklestad transfer matrix method. The equilibrium position of 
the blade at a standard rotor-rotation speed and collective-pitch setting was found, and from this datum position, 
the shapes and frequencies of the blade normal modes were found (Coriolis forces were neglected). Each normal 
mode involved flap bending, lag bending and twist, but modes with predominantly flap bending and pre- 
dominantly lag bending could be identified. The initial choice of modes for the air resonance work was: 

(a) the flap bending part alone from the predominantly flap bending normal mode, 
(b) tile lag bending part alone from the predominantly lag bending normal mode and 
(c) uniform pitch rotation about the reference axis--this was not associated with a deformation coordinate 

but introduced as a computational device required for the representation of cyclic pitch in the autostabiliser 
work--see Section 3. 

2.4. Aerodynamic Assumptions 

Simple assumptions were made. Fig. 4 shows a cross-section of the blade, normal to the blade reference axis. 
Fig. 4 also shows how the lift and drag per unit span of the blade were found from the reference axis velocities 
v 1 and v 3 . The velocities vl and v 3 are found in Ref. 4 by a series of axis transformations, various sets of axes 
being used to define the basic geometry and the distortions allowed (some of these axis sets are shown in 
Figs. 1-3). A constant and uniform induced flow velocity 2 is allowed through the rotor disc. This is assumed 
to be parallel to the rotor shaft. As an example of the application of the assumptions of Fig. 4, in the steady 
state in the hover, Ref. 4 gives 

vx = 2 - r f ~ o  
and 

I)3 : r ~ ) ,  

where r is the distance of the section from the hub, 
f~ is the rotor rotation speed, 
2 is the induced flow velocity 

and s o is the collective pitch, defined in Fig. 1. 
Thus 

O = ½pCCl~[(r~) 2 + (2 -rfl~o)2]. 

2.5. Use of Coleman Transformations 

Section 2.3 describes the definition of the modal deflections for a single blade. When all the blades--of a 
four-bladed rotor in the case taken here--are considered, it is obvious that similar modes will have to be 
assumed for each blade, and that the coupling terms with the body modes must include periodic functions 
describing the position of a blade in azimuth. Coleman 1 shows how, with the terms arising from the mass of 
the rotating system with three or more blades, the periodic terms may be avoided by the use of transformations. 
It is found that these transformations are also successful in avoiding periodic terms in the aerodynamic forces 
at zero forward speed. At finite forward speed, periodic terms remain even after the Coleman transformations, 
but this case is not considered here. 

The Coleman transformations for a four-bladed rotor are : 

lq" 

2q 

aq 

4q 

I 

0 

I 

0 

I cos f~t 0 I sin fit 

- l s i n ~ t  I lcosff~t 

- I c o s f ] t  0 - I s i n f ] t  

IsinF2t I - I c o s f ~ t  

q* 

q~ 

q~ 

q* 

(3) 



where [iq] is a (b x 1) column matrix of generalised coordinates for blade i, 
[q*] is a (b x 1) column of generalised coordinates of Coleman modes, 
I is the (b x b) unit matrix, 
0 is the (b x b) null matrix 

and ~t  is the azimuth position of blade 1 from the aft direction, positive anti-clockwise looking down. 
The blades are numbered relative to blade 1 in the direction anti-clockwise looking down. 

It will be seen that, with b modes assumed per blade, there are 4b Coleman modes for a four-bladed rotor. 
However, it is found that, with aerodynamic forces appropriate to the hover, q* and q~ couple only with rigid 
body vertical translation, and vice versa, so that we may separate two systems, with no coupling between them : 

(a) a system with vertical translation, q* and q* and 
(b) the four remaining modes (a), (b), (d), (e) of Section 2.2 with q* and q*. 
The system (a) plays no part in the air resonance phenomenon and is not considered further here. 
With our assumptions for blade modes in Section 2.3.2, b is equal to 2, i.e. (flap and lag bending modes) since 

the blade pitch mode is used as a computational device for obtaining autostabiliser terms. Therefore the system 
(b) above is described in eight simultaneous equations, four corresponding to body modes and four to Coleman 
blade modes. 

Apart from the property of eliminating periodic terms from the rotating inertia terms and from the aero- 
dynamic terms in the hover, the Coleman transformations can be used to describe rotor distortions which are 
physically significant to an observer on the ground. For example, if we start with blade flapping as a blade 
mode, constant values of q* and q* are seen as fore-and-aft disc tilt, and lateral disc tilt. Similarly, starting 
with blade rotation as a blade mode, constant q~ and q* are lateral and longitudinal cyclic pitch (see Section 3). 

2.6. Form of Equations of Motion 

Taking the definitions above, we obtain 4 the expressions for the equations of motion with the following 

simplifications: 
(a) terms of order higher than (q) or (~q) are neglected, q being the generalised coordinates, ~ representing 

collective pitch, coning angle or induced flow and 
(b) some terms factored by the blade chord, c, are neglected where there are similar terms factored by the 

distance of the section from the hub, r. 
The form of the equations of motion is : 

Agl + f~B(1 + DO + f)2Cq + ~Fq + Eq = 0 (4) 

where A, B, C, D, E, F are (8 x 8) matrices, dimensional but scaled to give numerical values of order unity. 
The matrices A to F are of the general form : 

[x] = [Xo] + ~0[xl] +/30[x2] + ~[x3] 

and the contributions towards these matrices [X,] can be conveniently divided into 
(a) rotating mass, 
(b) aerodynamics and 
(c) other (e.g. body mass, blade stiffness, gravitational). 
The computer program 5 is arranged so that the three contributions can be separately called for, and so that 

the coefficients collective pitch %, coning angle/3 o and induced flow 2 can be readily altered. 
The solutions of equation (4) were obtained using a digital computer program 6 written to solve the fixed 

wing flutter equations. This program evaluates the complex roots of the equation for specific values of fL the 
rotor speed, and expresses the imaginary part of each root as a frequency, and the real part as the decay of an 
equivalent one degree of freedom system. 

3. The Introduction of the Autostabiliser 

3.1. The Inclusion of Cyclic Pitch 

The autostabiliser to be included is taken to be a conventional type which applies cyclic pitch, having sensed 
body pitch and roll displacements and velocities, in order to stabilise the conventional helicopter instabilities 
in pitch and roll. Cyclic-pitch parameters can be identified as the Coleman mode equivalents to a particular 
blade mode. The Coleman transformations are introduced in Section 2.5. It is stated therein that only q* and 



q* are retained in this work. From equation (3), 

aq 

2q 

sq 

~q 

I cos f t  

- I sin f t  

- I cos f t  

I sin f~t 

I sin fit 

I cos f t  

- I sin f t  

- I cos f t  

%_I" 

Now cyclic pitch can be similarly described, using i~ as the blade incidence for blade i, and ~1, ct2 as cyclic 
pitch parameters 

2Ct 
3t~ 
4~ 

c o s f t  s i n f t  

= - s i n  f t  c o s f t  

- - c o s  f t  --sin f t  

s i n f t  --cos f t  

I 0~1] . 

Therefore, if we introduce a blade 'mode' qc with uniform blade incidence, that is, Fdr ) = 1, then, from equation 
(1), we have 

[/2 ~ at:,  

But the blade incidence i~ as defined above is the same as ¢2, defined in equation (1). Therefore it may be seen 
from above that the cyclic pitch parameters ~1 and ~2 are, in fact, the Coleman equivalents of the 'mode' qc. 
Therefore, byaddinganart if icialmode,  withF¢(r) = 1 as its only deflection, to the general calculation procedure, 
we can evaluate the effects of cyclic pitch. This raises the order of the matrices in equation (4) to 10, but we are 
not interested in the generalised forces corresponding to these artificial modes and so the two equations corre- 
sponding to them may be removed. Also we are only interested in constant values of the artificial modes and 
thus in matrices C, F and E in equation (4). Finally, we take the extra columns of C, F and E due to the artificial 
modes, and these are found to contribute additional terms to (4) : 

[Q] =[~2[x ] -k-~[Y] ] [~ ]  
0¢ 2 (5) 

where [X] and [Y] are of order (8 x 2). 

3 . 2 .  I n c l u s i o n  o f  t h e  A u t o s t a b i l i s e r  L a w  

The autostabiliser law used in this analysis gives cyclic pitch applied to the rotor in terms of fuselage pitching 
and rolling angles and velocities. 

[~,]=r sinv - c o s y  1 k'+l+t,-----~ k_____~s (6) 

0~ 2 L--Cos v --sin v_l 0 k3 + 1 + tzs 

where 0 is fuselage pitching angle, 
is fuselage rolling angle, 

v, kl ,  k2, k3, k4, t l ,  t 2 are autostabiliser constants and 
s is the Laplace operator. 

0 and gb can be expressed in terms of the generalised coordinates q describing body motion (see Section 2.2) 

= 4,~, [q]" (7) 



[ 2 ; ]  = [k - cosSinVv -- c°s v~ [ k O - -  sin v A kOl [ : : 1  [q] 

° ]E::] k4s . [q] 
1 + t2s_] 

k2 s 

+ 
- c o s  v - s in  0 

Only the second term requires special attention. It may be put 

(8) 

1 I sinv -cosv~[k2s(1 +t2s) 0 l I ~ , l [ q ]  tat2 
ttt2 - c o s  v - s i n  vd 0 k~s(1 + t~s) 4)R (1 + taS)(1 + t2S)" (9) 

It has been shown 7 that if we now define new coordinates 0 by 

= [0] (1 + tls)(1 + t2s) I sinv - c o s v - ] l  t :2  
- cos  v - s i n  v 3 k4s(1 + tls) [q] 

t i t 2  

where 0 is a (2 x 1) matrix, 
then (9) becomes simply 0. 

txt2 
(lO) 

Now it may be seen that combining (5), (8) and (10) we obtain for additional terms to (4) 

[ sinv - - c o s v ] I k  I Ol[(oVl[q] + [0] 
[Q3 = [n:Ex]  + f)[Y]3 

- c o s  v sin v]  0 k 3 ~)R 
(11) 

[q] 

and we have extra equations from (10). Expanding (10) 

-0) [ ]  [sin  
- c o s  v - s i n  v_l 0 k4s (oR - c o s y  

I l l2  

+ I l l2  ] [~13 = 

- - S  --F S 2 
0 + txt2 

and interpreting sq as O, and s2q as/~, (12) becomes 

+ (t, + tz I + ( 1 [0] 
1 ~/ 0 - -  0 

I o] 1 t i t2  ~- sinv - c o s  v-~ 4~, [0] 
= k4 4'R L--cos v --sin vA 0 t~t~ z 

+ 
k--cosy --s invd (ka) ~)R --~2 

--COSYllk2s2] f~ !? )Iq~£1 
- sin v A ~. v k4s2t2 

Equations (6) and (7) must be combined with equation (5) to yield the extra terms in the equations of motion 
(equation (4)), but the terms involving the Laplace operator require special attention 7 for the form of equation 
(4) to be maintained. 

Combining equations (6) and (7), and rearranging 

(12) 

(13) 



Equation (13) is now in the general form of equation (4), and solutions may be obtained in a similar way- - see  
Section 2.6. 

4. Solutions Obtained---No Autostabiliser 

4.1. General Procedure 

It is explained in Section 2.6 that the computation for the equations of motion was arranged so that the 
contributions from various sources and with various values of the parameters, coning angle flo, collective pitch 
~0 and induced flow 2, could be readily obtained. This procedure was used to obtain solutions with various com- 
binations of parameters in order to explore the sensitivity of the results to these parameters. This procedure 
often resulted in the obtaining of solutions for unrealistic combinations of parameters, for instance, finite 
coning angle with zero collective pitch. This was regarded as unimportant compared with the advantages of 
the procedure in enabling the sensitivities of the system to reasonably well defined physical parameters to be 
found. 

4.2. Solution with no Aerodynamic Forces and Zero Collective Pitch 

This solution could be regarded as the solution in a vacuum and in a zero gravity field. Fig. 5 shows, for a 
range of rotor speeds, the roots of equation (4), expressed as frequencies (relative to an axis set fixed to earth) 
and decays (see Section 2.6). Apart from the roots shown, there are six zero roots. The roots marked A and B 
can be identified from their associated vectors as predominantly lag bending modes. The roots marked C, D 
and E are best identified by the solutions of subsidiary systems. Fig. 6 shows the solutions for the four body 
modes only, i.e. with the rotor behaving as a rigid disc. As with Fig. 5, apart from the root shown, there are 
six zero roots. Fig. 7 shows the solutions for the blade-flap bending modes only, and Fig. 8 shows the solutions 
for the body modes with blade-flap bending. Comparing Figs. 5 and 8, there can be little doubt that roots D 
and E are combinations of a body mode, with the body inertia being reacted by the gyroscopic property of the 
rotor, and of blade-flap bending. 

Figure 5 indicates that instabilities occur for rotor speeds at which the frequency of the lower frequency lag 
bending mode coalesces with those of modes involving body motions. This is a well-known property of systems 
in ground resonance and air resonance--see  Refs. 1, 2 and 3. The frequencies of the instabilities are well below 
the lowest structural frequency of the fuselage. There is, therefore, no urgent reason to change the assumption 
of a rigid fuselage made in Section 2.2. It may be seen from Fig. 5 that there is instability for a range of rotor 
speeds around the standard scaled operating value of 3-33, and that this rotor speed range could be shifted by 
changing the zero rotor speed lag-bending-mode frequency. These results are similar to those found 2,a for 
similar systems with a 'soft' lag bending mode, i.e. one with a lag-bending-mode frequency lower than the 
standard operating rotor speed. 

4.3. Solutions Including Aerodynamic Forces 

Figure 9 shows the solution for the system with aerodynamic forces and with values of %, flo and 2 that are 
consistent with the assumptions of Section 2.3.1 and are appropriate to a rotor thrust equal to the weight of 
the aircraft at the standard scaled rotor operating speed, 3.33. Strictly these values should only be used for the 
solution at a scaled rotor speed of 3.33. [A constant value of ~o leads to a rotor thrust varying with ~z. With 
this thrust variation, a constant value of flo is appropriate, but the induced flow 2 should then vary with [~. 
Therefore, our solution values of %, flo and 2 cannot be strictly matched to a physically realistic combination 
except at the scaled rotor speed 3.33.] 

Apart from the roots shown on Fig. 9, there are two zero roots and two very low frequency oscillations. 
Comparing Figs. 5 and 9, it can be seen that the aerodynamic forces result in very large damping in the modes 

D and E, and large damping in mode C. In Section 4.2 it was shown that these modes involved body modes 
and blade-flap bending. The frequencies of modes C and E are not greatly changed, but mode D is so heavily 
damped that at scaled rotor speeds above 1.9, the oscillation becomes a pair of subsidences. The lag modes 
A and B attract little aerodynamic damping, so that the instability of Fig. 5 with no aerodynamic damping 
still exists on Fig. 9, and the rotor speed range for the instability is wider. 

For further solutions, the presentation of Figs. 5 and 9 is changed so that all that is shown is the decay of 
the lower frequency lag mode A. The frequencies of all the modes and the decays of the modes other than mode A 
are changed by small amounts in these further solutions. The presentation of decay of lag mode A is also changed. 
The fraction of critical damping shown in Figs. 5 and 9 is directly related to the cycles to half or double amplitude. 
At rotor speeds close to 1.6 the lag mode frequency (referred to earth axes) is close to zero, and is changing 



rapidly with rotor speed. Therefore, if the decay of the mode is described by the cycles to half amplitude, the 
large proportional frequency variations with rotor speed will manifest themselves in the large changes in the 
decays shown in Fig. 9 for rotor speeds just below 2.0. This effect is avoided if the decays are presented as the 
t ime to half or double amplitude, and Fig. 10 gives the reciprocal of these times. 

On Fig. 10 the solutions with various aerodynamic or mass effects included are shown. These solutions were 
obtained by including, in the equations of motion, various combinations of collective pitch %, coning angle fl0 
and induced flow 2, the numerical values of these being the standard values appropriate to a scaled rotor speed 
of 3.33. 
Curve (a) is the result with no aerodynamic forces, zero collective pitch %, zero coning angle fl0--it is the 

equivalent of Fig. 5. 
Curve (b) has aerodynamic forces, zero collective pitch, zero coning angle and zero induced flow. 
Curve (c) is as curve (b) with the mass and aerodynamic contributions associated with coning angle fl0. 
Curve (d) is as curve (c) with the aerodynamic contributions only of collective pitch ~0 and induced flow 2. 
Curve (e) is as curve (d) with the additional mass contributions of collective pitch %. This curve is the equivalent 

of Fig. 9. 
Also shown on Fig. 10 is a line labelled '0-5 per cent blade damping'. The value refers to the structural damping 

of a blade when non-rotating, and it has been checked that a rough indication of the effect of blade structural 
damping in the lag mode can be obtained by taking this line as the datum rather than the horizontal axis. For 
other values of blade structural damping, other lines may be drawn at proportional distances from the horizontal 
axis. 

It may be seen that, relative to the amount of structural damping that may be expected in a non-articulated 
blade (0-5 to 1 per cent of critical damping), there is a large variation in the degree of stability or instability 
due to the effects introduced in Fig. 10. The biggest effects found are those due to the aerodynamic contributions 
only of~o and 2 (Curve (c) to Curve (d)), and those due to the mass contribution only of~o (Curve (d) to Curve 
(e)). A study of the coefficients of the equations of motion arising from these effects resulted in a comparatively 
simple physical picture of the working of these effects, and these are described below. 

4.4. The Consequences of Collective Pitch and Induced Flow in the Aerodynamic Terms 

The introduction o f% and 2 in aerodynamic terms results in a change from Curve (c) to Curve (d) in Fig. 10. 
Section 2.4 and Fig. 4 describe the assumptions made in the derivation of the aerodynamic terms. A detailed 

study of the coefficients of the equations of motion shows that the major aerodynamic terms dependent upon 
~o and 2 can be explained by the restricted case shown in Fig. 11. In Fig. 11, the total lift on the blade section 
is made up of 

(a) the steady lift pcl~[r2f~z~ o - rf~2] and 
(b) the perturbation lift - pcl~ rf~ 

The most important term is the generalised aerodynamic force in the lag bending mode and, ignoring the small 
term due to the aerodynamic drag of the section, this is derived from the work done in a small displacement fix, 
that is from 

or, from 

L e f x  

pcl~[r2~22% - rf22 - rD2] [~o rf~ r-f~ fix. (14) 

The linearised equations of motion (see Section 2.6) retain only the terms 

(~o26X) and (2~6x), 

and equation (14) shows that there are two contributions to these terms; 
(a) one due to the steady lift pcl,(rZf~2Oto - rf22) being inclined by the effect of the perturbation velocity 

on the inclination of the airflow relative to the lag bending direction 6x,  and 
(b) the other due to the perturbation lift pcl,  r ~  being inclined by ~0 and 2 relative to the lag bending 

direction 6x. 
In order to check that this simplified analysis revealed the basis of the sensitivity, full solutions, corresponding 

to Curve (e) of Fig. 10, were obtained with the modified assumption that the steady-lift direction was not 

10 



changed by the perturbation velocity :~ but remained normal to the steady airflow. It is emphasised that the 
magnitude of the lift remained constant, but its assumed direction was changed. Obviously a change in the 
magnitude of the lift would have important effects as well. This solution is shown in Fig. 10 as Curve (f). It 
should be compared with Curve (e), for which the same assumptions apply except the assumed direction of the 
steady lift. The differences between Curves (e) and (f) are significant relative to blade structural damping. Thus 
the general accuracy of representation of the effects shown on Fig. 11 is important, and attention is drawn to 
the accuracy likely to have been obtained in this work, bearing in mind 

(a) assumptions made for computational simplicity (constant spanwise % and uniform induced flow 2) and 
(b) basic difficulties in ensuring accurate representation of the component of the lift in the lag bending 

direction. 

4.5. The Consequences of Collective Pitch in the Mass Terms 

The introduction of ~o in mass terms results in a change from Curve (d) to Curve (e) in Fig. 10. The physical 
effects of % in the mass terms can be seen from the shapes of the blade normal modes. 

The equations in this work are of a form for which blade normal modes exist, if the blade coning angle/~o 
is taken as zero. The deflections at the blade tip in the normal modes at a scaled rotor speed of 3-0 are shown 
in Fig. 12. Fig. 12 shows the blade deflections in the vertical and horizontal directions, and the steady position 
of the blade-section datum-line is also shown. It may be seen that the collective pitch angle ~o results in small 
differences of about 0.03 radians in the inclination of the blade tip in the normal modes. These differences are 
the main cause of the differences between Curves (d) and (e) in Fig. 10. Such a sensitivity casts immediate 
doubts about the accuracy that can be achieved with the assumptions for mode shapes made in Section 3.2. 
There it is explained that the flap and lag modes assumed are the flap and lag parts only of the predominantly 
flap and lag normal modes. Obviously, in view of the sensitivity of the results to lag-mode shape, the datum- 
normal modes should be represented more carefully. This could be done simply in this work by introducing 
the datum-normal modes, at a rotor speed in the instability range, as coupled flap and lag modes. However, 
this process would achieve only the accuracy of the mode shapes at the standard rotor speed chosen for the 
computation of the blade-normal modes, and not for the range of rotor speeds for which results are presented. 
For this reason, results with a more accurate handling of the blade-normal modes are not presented. It is 
considered that the main conclusion from this part of the analysis is that the stability in air resonance is very 
sensitive to the small amount of flap bending in the predominantly lag-bending mode. 

5. Solutions Obtained-With Autostabiliser 

The autostabiliser with the law described in Section 3 is introduced into the case with no autostabiliser that 
is shown on Fig. 9 and as Curve (e) on Fig. 10. The frequencies and decays with autostabiliser are shown on 
Fig. 13, and, when these are compared with Fig. 9 it is seen that 

(a) the frequency of body mode E has been appreciably increased by the autostabiliser, 
(b) the decay of body mode E has been considerably reduced by the autostabiliser and 
(c) the decay of body mode D has been reduced by the autostabiliser, the mode remaining a heavily damped 

oscillation in Fig. 13, rather than the subsidence in Fig. 9. 
Fig. 14 shows that the stability of air resonance has been made significantly worse by the autostabiliser. 

The autostabiliser was not added to the other cases of Fig. 10 because there is no reason to believe that the 
sensitivities discussed in Section 4 with no autostabiliser will not be present with the stabiliser. It is fair to 
conclude, therefore, that the autostabiliser with a law of the form of equation (6) will be destabilising, but that 
the absolute stability of the aircraft with autostabiliser will depend upon the action of the blade structural and 
aerodynamic parameters discussed in Section 4. 

6. Discussion of Accuracy Being Achieved 

Section 4.5 and Fig. 12 show how the stability in air resonance depends critically on the small amount of 
flap bending in the predominantly lag-bending (fundamental) mode of the blades. The blade may be regarded 
as a twisted beam, the twist being either built-in or due to the steady forces acting on it, and the coupled 
flap-lag motion of such a beam is not easily represented. Sophisticated calculation procedures exist for the 
determination of the modes of the blade, but it is thought that, while there is general satisfaction at the accuracy 
with which these predict modal frequencies, the much more difficult determination of accurate mode shapes 
has been put to few checks against experiment due to the difficulties in measuring mode shapes of rotat- 
ing blades. Therefore, in view of the significant variation in stability brought about by small changes in the 
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lag-bending-mode shape, it is difficult to find adequate confidence in the accuracy of blade mode representa- 
tion to accept without reservation any calculation showing freedom from air resonance instability. 

Section 4.4 and Fig. 11 show that there is also critical dependence on the accuracy of aerodynamic data. 
The inclination of the steady lift due to blade perturbation velocities, and the inclination of perturbation lift 
due to induced flow, as well as the magnitude of the lift, all depend, for accurate estimation, on accurate distri- 
butions of steady lift, induced flow and perturbation lift over the rotor disc. It certainly cannot be taken for 
granted that adequate accuracy is achieved with the assumptions made here of strip theory and uniform 
induced flow. 

With doubts about the accuracy of blade-structural and rotor-aerodynamic data, it must be concluded that 
a calculation for air resonance cannot be relied on with the confidence necessary with a potentially dangerous 
instability, until some experimental evidence supports the accuracy of the data or until the overall results of the 
calculation have been correlated satisfactorily with an experimental check on the stability of the aircraft, or of 
a dynamically similar model. 

A practical alternative would be the fitting of lag dampers to the blades so that the total blade damping would 
be greater than the worst instability predicted by calculations--see Section 4.3 and Fig. 10. 

Artificial lag damping may not always prove necessary, 2,3 and it has been shown 2 that it is possible to calculate 
with good accuracy and obtain good, positive correlation with flight tests. 

7. Checking of Data or Technique by Model Experiments 

Section 6 refers to the need for experimental checks before the accuracy of a calculation can be relied upon. 
It is useful, therefore, to discuss the possibility of making experiments on dynamically similar models to provide 
the required checking of calculation data or technique. 

The simplest model test would be one on a single dynamically similar blade with a fixed shaft, if a suitable 
test parameter could be identified. The total structural and aerodynamic damping in the blade-lag mode would 
be comparatively simple to measure. The correlation between air-resonance stability and the aerodynamic 
damping in the blade lag mode was found from this study and is shown in Fig. 15. On Fig. 15, 'air-resonance 
stability' is represented by the real part of the root corresponding to A of Fig. 9 at a scaled rotor speed of 3-0. 
This quantity is inversely proportional to time to half amplitude, for instance. It may be seen that the correlation 
is not unreasonable, but that this correlation is not of the intuitive type, in that the higher the lag-mode aero- 
dynamic damping, the worse the air-resonance stability. With blade-structural damping, it has been established 
that, approximately, the level of air-resonance stability is increased by the amount of blade-structural damping 
introduced. Obviously the role of aerodynamic damping is much more complicated than this, and, for this 
reason, the aerodynamic damping in the lag mode is not considered to be a suitable criterion for air-resonance 
stability. 

The most complicated model would be a dynamically similar rotor system mounted on a fuselage with body 
freedoms. A fuselage reasonably representative in mass but made unrepresentatively stiff would suffice. Such a 
model could be tested for air resonance stability, but for adequate correlation with calculations using the model 
data, it would be necessary to measure the lag-mode damping, or to arrange parameters so that critical stability 
boundaries were observed. A simple comparison of a stable model with stability in the calculations would not 
be adequate. 

Another possibility is the measurements of model rotor 'impedances'. A rig has been described 8 in which a 
model rotor system can be forced in prescribed body freedoms, one at a time, and the forces corresponding to 
all the body freedoms measured. These force measurements which vary with rotor speed and with the impressed, 
or excitation, frequency, can be assembled in matrices of ~stiffness coefficients' or 'impedances'. The model 
rotor to be tested in such a rig would be as comprehensive as that required for an air-resonance model, but it 
is possible that the comparison between calculated and measured impedance values could be more conducive 
to empirical modifications to the calculations for better agreement than the comparison of calculated and 
measured air-resonance stability boundaries or lag-mode dampings. In order to assess this possibility the 
impedances associated with the various rotor representations in this study were found. Of the impedances, it 
was found that some, in particular, showed larger differences between the different cases. One of these is shown 
as a complex quantity in Fig. 16. The curves are identified by the same letters that identify the cases in the 
stability results of Fig. 10. The excitation frequency for these cases varied from just below to just above the 
rotor lag-mode frequency at a scaled rotor speed of 3-0. It may be seen that there are considerable differences 
between the impedances for the different cases, and it may be concluded that these impedances are sensitive 
enough to be a basis for checking a theoretical representation against measurements. Whether any differences 
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between theoretical values and measurements can be interpreted so that improvements can be made to the 
theory must await a set of measurements. 

8. Conclusions 

The equations of motion for a helicopter in the hover were set up, for an assumed set of rigid body modes 
and of blade-flap and lag-bending modes. The use of the Coleman transformations 1 resulted in a set of equations 
with no periodic coefficients. Simple blade aerodynamic assumptions were made; in particular, strip theory 
was used and induced flow was taken as uniform over the disc. 

Solutions indicated that the stability of the motion described 2'3 as air resonance was very sensitive to para- 
meters describing collective pitch and induced flow. Similar parameter variations were made in intermediate 
solutions, in order to try to establish some connection between stability and physical properties of the system. 

It has been concluded that, although blade structural damping alleviates instability, the expected level of 
structural damping is not significant in regard to the degree of instability that may occur, and that blade 
structural damping cannot be relied upon to stabilise the system. 

It has been shown that the stability of the system is very sensitive to 
(a) the small amount of flap bending in the predominantly lag bending normal mode of the blades, and 
(b) the inclination of the blade lift to the lag bending direction, and the distribution of the lift. 
Item (b) requires accurate data for the blade incidence distribution (built-in twist, steady twist and induced 

flow) and for the basic aerodynamic theory. 
It has been concluded that, in view of (a) and (b) above, a calculation for air resonance cannot be relied on 

until some experimental evidence supports the accuracy of the data, or until the calculation technique has been 
checked by a positive correlation with full scale flight model tests. In the absence of either of these, an alternative 
would be the fitting to the blades of artificial lag damping, which could possibly be reduced or removed after 
quantitative measurements of the damping in flight of the predominantly lag-bending mode. Artificial damping 
is not necessarily required for stability, a'3 but the seriousness of the potential instability and the relative 
ineffectiveness of natural blade damping require a cautious interpretation of theoretical work until experimental 
results have provided a good, positive correlation with the theoretical work. 

An assessment has been made of experimental data checks that could be made before an aircraft is available 
for flight testing. The testing of a dynamically similar model has obvious value. It has also been shown that 
impedance measurements on a dynamically similar rotor system show promise of providing a useful basis for 
checking the accuracy of a theoretical representation. 
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LIST OF SYMBOLS 

Matrices of coefficients in equations of motion (4) 

Number of blade modes assumed 

Blade chord 

Drag coefficient 

Drag per unit length of blade 

Deflections--see equation (1) and Fig. 2 

Unit matrix 

Autostabiliser constants 

Lift curve slope--see Fig. 4 

Lift per unit length of blade 

Generalised coordinate for blade i 

Generalised coordinates associated with Coleman modes--see equation (3) 

Generalised coordinates used in autostabiliser representation--see equation (10) 

Radius of blade section from hub 

Laplace operator 

Autostabiliser constants 

Components of velocity of blade section 

Blade section deflection in lag direction--see Fig. 11 

Matrices used in autostabiliser representation--see equation (5) 

Blade section velocity in flap direction--see Fig. 11 

Orthogonal set of axes in Fig. 1 

Orthogonal set of axes in Fig. 2 

Orthogonal set of axes in Fig. 2 

Collective pitch, defined in Fig. 1 

Cyclic pitch 

Coning angle, defined in Fig. 1 

Angle defined in Fig. 11 

Fuselage pitching angle 

Induced velocity 

Autostabiliser constant 

Density of atmosphere 

Fuselage rolling angle 

Euler angles defined in equation (1) 

Scaled rotor rotational speed 

d 
Denotes dt 

d 2 
Denotes 
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