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Summary 

An approximate theoretical formula for the distribution of aerodynamic load over arbitrary thick wings in 
incompressible flow is developed by combining three-dimensional results from thin-wing theory with two- 
dimensional results from thick-aerofoil theory. The formula is applied to two wings of identical planform, with 
60 degrees trailing-edge sweepback and differing aerofoil thickness, which have been extensively pressure 
plotted at low speeds. 

After critical analysis of available calculations for the curved-tipped planform by lifting-surface theory and 
exposition of the matching process underlying the approximate formula, it is demonstrated by comparison 
with experiment that the allowance for thickness gives qualitative improvement in the estimation of both 
chordwise and spanwise loading, with particular reference to an increasing effect of thickness near the curved 
tip. Quantitative differences are substantially reduced by considering results for a given lift coefficient rather 
than a given incidence. Inboard of the curved tip the discrepancies can be reconciled with those estimated for 
the two-dimensional aerofoil sections normal to the sweep line. 

For the purpose of wing loading the formula is regarded as a versatile theoretical framework that should be 
capable of extension beyond the field of steady inviscid incompressible flow. A semi-empirical approach to 
problems of unsteady viscous compressible flow is envisaged. 
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Correction 

The four theoretical values of  Xac/g in the last row of  Table 3 require a correction factor 
1.0683 and should read 1.8403, 1.8403, 1.8406 and 1.8409 respectively. 

* Replaces R.A.E. Technical Report 72177--A.R.C. 34 389. 
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1. Introduction 

In the aerodynamic design of aircraft wings the individual pressure distributions on the upper and lower 
surfaces are usually of as much, or greater, importance than the differential load distribution. When the nature 
of the air flow is dependent on the local Mach number or on the severity of pressure gradient, a detailed 
knowledge of surface pressures is indispensable. Under less extreme conditions problems of structural loading 
actions can be envisaged, in which a simple approximate formula for the differential load distribution over 
the planform would suffice. The present aim is, therefore, to provide such a formula by combining three- 
dimensional results for the non-lifting thick wing and from subsonic lifting-surface theory with thickness 
terms from two-dhnensional theory. In particular, a simple method has been applied to two wings of identical 
planform and differing aerofoil section, which have been extensively pressure plotted at low speeds. 

The experimental data 1 (Garner and Walshe, 1960) are for a curved-tipped planform with constant chord 
and 60 degrees of sweepback over the inner 62 per cent of the span. The wings are without camber or twist and 
have streamwise profiles of 5 per cent R.A.E. 101 and 9 per cent R.A.E. 101 aerofoil section, scaled linearly from 
the ordinates of Ref. 2. One of the half-models and its nine pressure plotting stations are illustrated in Fig. 1. 

The planform itself poses quite a challenge to linear lifting-surface theory. In Section 2 it is described how 
alarmingly inadequate the theoretical methods based on Multhopp's3 theory were in 1960, when a study similar 
to the present one had to be abandoned as part of the investigation in Ref. 1. Subsequent improvements in 
Refs. 4 to 7 have practically removed the deficiencies, with certain reservations in the immediate neighbourhoods 
of the wing root and tip. 

The original study of thickness effect was based on Goldstein's 8,9 theory for two-dimensional aerofoils. 
Although this theory seemed a natural choice, since it was used to design the roof-top RA.E. 101 aerofoil, the 
mbre widely-used theory of Weber x°'11 has now been substituted. During the course of the investigation, 
however, it was verified that the two aerofoil theories yielded virtually identical results. The present treatment, 
described in-Section 3, makes use of four special cases as building blocks, namely, the thin-wing results from 
Section 2, a slightly modified form of Weber's theory, the 'RA.E. standard method' of Ref. 12 without the root 
and tip effects, and the pressure distribution measured on the wing at zero lift. An approximate formula for 
the pressure distribution is derived from these ingredients with a sweep factor open to alternative definitions. 
The corresponding formulae for load distribution are then linearized in incidence (and camber and twist), 
but not in aerofoil thickness, to give alternative expressions that are simple to evaluate. 

More lengthy formulae of similar construction could be devised on the basis of the full 'R.A.E. standard 
method' as set out in Ref. 12, but their complexity would defeat the present objective ; moreover, the particular 
example with a curved tip is thought to lie outside the scope of Ref. 12. Implicitly, it is supposed that there 
is merit in incorporating the effects of aerofoil thickness without allowance for those of the boundary layer. 
Comparisons between calculation and experiment in Section 4 show several respects in which the qualitative 
agreement is improved as a consequence of incorporating the thickness terms. Quantitatively, although the 
comparisons are worsened superficially, many of the results are consistent with the expected pattern of opposing 
effects of thickness and viscosity. 

Finally there is a brief discussion of practicable extensions to the investigation. It is envisaged that the present 
simple formula might play a part in problems of time-dependent wing loading. Some of the terms might be 
adapted empirically or otherwise to evaluate flutter coefficients involving elastic modes, where the effects of 
thickness and viscosity are commonly ignored and could well reinforce each other. 

2. Thin-Wing Theory 

In the present approach to the problem of aerodynamic loading it is essential to start with a reliable linear 
solution for the thin wing in inviscid flow. Under subsonic conditions this implies a solution in which suitable 
numbers of spanwise (m) and chordwise (N) terms are included in the load distribution ; then the mN unknown 
coefficients are normally obtained by collocation such that the downwash condition of tangential flow is 
satisfied at mN systematically chosen points on the planform. Adequate convergence with respect to both m 
and N is necessary at this stage. 

The curved planform, with which we are concerned, is defined in equations (1) to (3) of Ref. 1 and is reproduced 
in Fig. 1. With the leading apex as origin and with root chord CR and semi-span s = 1.825 cR as reference 
lengths, the leading edge and chord are given respectively by 

x~(q)/cR = 3.160993t/ 

= 3-160993t/+ [1 - 1-614665(1 - t/)½] 2 

0 .N< t/~< 0.616438 

0.616438 ~< I /~  1 
(1) 



and 

c(rl)/cR = 1 

= 1 - [1 - 1.614665(1 - q)~]2 

/ 

0 ,N< r/ ~< 0.616438[ 

0.616438 ~< /7 ~< 1 

where r/ = y/s.  Its geometric mean chord and aspect ratio are calculated to be 

and 

e = C(tl) dq = 0.936073cR 

A 2s/e = 3.89927 J 

(2) 

(3) 

while the aerodynamic  mean chord 

= [c(r/)] 2 &l/e = 0.959024cR (4) 

is the reference length for aerodynamic centre. Quite apart  from the curved tip. the combinat ion of high sweep- 
back and moderately high aspect ratio makes considerable demands on m and N, and the central crank must 
bc r~unded. The parabolic outer portion of the leading edge introduces very high sweepback at the tip and 
a discontinuity in curwtture where it joins the straight inner port ion at r/ 0.6164. Both characteristics of the 
curved tip could adversely affect the convergence of  the solutions for the thin wing. 

When ~;olutions were at tempted in 1960 by a straightforward extension of Mul thopp 's  3 theory from N = 2 
to N ~ 4 chordwise terms, therc was no indication of convergence~[he chordwise"in~load distribution with 
respect to al though this was hardl 5 apparent  from the calculated spanwise loadings and local aerodynamic  
centres. The curves labelled N - 3 and N = 4 in Figs. 2 and 3 reveal unsatisfactory undulat ions in the calculated 
chordwise distributions of 

ACp lift per unit area 
. . . . .  , 2 per radian incidence (5) 

c~ ~poUo 

against 

x - xl(~)  
- (6) 

c(~)  

Thc defect, illustrated at ~1 - 0-1951 and 0-9239, was not exclusively associated with the root  junction nor  with 
the curved lip, but it was undoubtedly aggravated by the high sweepback. The fault lay primarily in the method 
of spanwise integration and was largely removed in Ref. 4 (Garner and Fox, 1966) by the introduction of an 
integer q into the calculation of downwash,  so as to increase the number  of spanwise integration points from 
m t o  

= q(m + 1) - 1. (7) 

From the four solutions with m = 15 and N - 4 in Table 20 of Ref. 5 for our curved planform, it is apparent  
that convergence with respect to q is approached when q = 8. The lower sets of curves in Figs. 2 and 3 illustrate 
how at q = 0.1951 and r/ = 0.9239 the undulat ions in chordwise loading disappear during the process of  
convergence. Moreover .  the three solutions with ~ = 127 in Table 21 of Ref. 5 suggest that convergence with 
respect to N is attainable. Other  indications from Ref. 5 are that convergence with respect to m is impeded if 
there is insufficient rounding of the central crank, but that converged local quantities are expected to be sensi- 
tive to the amount  of artificial rounding that is imposed. One remarkable feature of  the solutions with increased 
q is the elimination of the rapid forward shift in local aerodynamic  centre as the curved tip is approached  
(Table 33 and Fig. 18 of Ref. 5). While this rapid decrease in {,c is the established theoretical behaviour  of  
wings with streamwise tips, for the swept curved tip the trend has practically disappeared according to the 
improved thin-wing theory and is sharply reversed according to experiment. 
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More recently there have been further refinements in the treatment of subsonic lifting-surface theory, 
including the method of Zandbergen et al. 6 (1967) and the extension of that method to oscillatory boundary 
conditions in Ref. 7 (Lehrian and Garner, 1971). The present thin-wing results correspond to Ref. 6, but the 
computations have been carried out by the KDF9 programs of Ref. 7 in the special case of zero frequency and 
will be defined in that notation. Although the origin of coordinates remains at the true leading apex, the planform 
is rounded in accord with Ref. 6 so that in the region 0 < r / <  0.195090 equation (1) is replaced by 

x~(rl)/c R = 0-616679(½ + 22 - ½23) (8) 

where 2 = q/thR and rhR = 0.195090. This is roughly twice the standard rounding of Ref. 4 and facilitates 
convergence with respect to m. The technique of 'regularized' spanwise integration in Ref. 6 is quite distinct 
from that of Ref. 4, but in place of q it does include a similar factor a to control the number of spanwise inte- 

gration points 

= a(m + 1) - 1. (9) 

The load distribution is determined at each section 

cos(  ) 
in the form 

(r = 1, 2 . . . . .  m) (10) 

8s N cos (q - 1)q5 + cos q~b 
= - Z r q ,  , (11) ACp 1,(~) zcc(r/,) q= a sin q~ 

where with reference to equation (6) the angular chordwise variable ~b is given by 

= ~(1 - cos 4)). (12) 

For the given curved-tipped planform at uniform incidence c~ radians and Mach number M 0 = 0, the linear 
simultaneous equations for the m N  coefficients Fqr depend only on the trio of integers (N, m, a), each of which 
needs to be large enough to avoid excessive collocation error. 

The symmetrical solution for Fq,(r/, >t 0) to be used in the present investigation is recorded in Table 1, where 
the subscript r is dropped. Numerical studies of convergence have been undertaken to justify the choice 
(N, m, a) = (4, 31, 4). It proved necessary to take ~ = 127, and the following table suggests that residual errors 
associated with ~ are roughly 1 per cent in ACp. 

N,m, a 

3 , 1 5 , 2  
3 , 1 5 , 4  
3 , 1 5 . 8  

3 , 1 5 . 2  
3, 15, 4 
3 , 1 5 . 8  

0.1951 

0.9239 

F~/~ 

0.3359 
0.3340 
0.3338 

0.2011 
0.2000 
0.1997 

F2/~ 

-0.0275 
-0.0367 
-0.0357 

0.0280 
0.0142 
0.0164 

V3/~ 

-0 .0078 
-0.0119 
-0.0120 

+0.0071 
-0.0042 
-0.0017 

The calculated effects of N and m on the solution are illustrated in Tables 2, 3 and 4, which give the lift and its 
spanwise distribution, the aerodynamic centre and its local values, and the chordwise loading at t / =  0.9239. 
From the above values of F1/c~ and the tabulated local lift coefficients 

CLL(t/____~) = 4sFl(q) (13) 
c(~/)~ 



in Table 2, convergence with respect to N, m and a is more  than adequate. The local aerodynamic cen(res 

1 [ r~(.)] 
~,,c(r/) = ~ 1 F - ~ J  (14) 

z 

have probably converged with respect to N and a to an accuracy of about 0.001, except close to the tip. The 
convergence with respect to m in Table 3 is relatively slow, and the nature of the difficulty is shown in Fig. 4. 
There is a marked tendency for the values of ~ac at successive collocation sections to alternate above and below 
a smooth curve against q. This trend is seen to be somewhat less pronounced than that obtained from the 
(N, m, q) = (4, 15, 8) solution by means of Ref. 4, probably because that solution involved only half the central 
rounding defined in equation (8). The same trend persists in the wavy curve of¢,c against q for (N, m, a) = (4, 31, 4), 
but with the increase in m the uncertainty appears to be reduced to the order of _+ 0.001 in the range 0.2 < q < 0.9. 
At q -- 0.1951, some further error due to the aerodynamic effect of the rounding is likely, while at q = 0.9239 
and further outboard, the convergence is less complete. Further appraisal of the results at these sections follows 
from the graphs of the modified chordwise loading 

ACp{~I½_ 8s ~ Fq(q) c o s ( q -  1)~b+cosq~b 

ct t 1 - ¢ 1  nc(q) q=l ~ l + c o s ~ b  (15) 

in Figs. 5 and 6, where each curve is a polynomial in ~. Fig. 5 is evidence of convergence with respect to N and 
of much larger changes through increasing m from 15 to 31 than through increasing N from 4 to 5. However, 
the discrepancies are barely 1 per cent in the important region ~ < 0.4, and elsewhere (N, m, a) = (4, 31, 4) is 
regarded as the most reliable of the solutions at q = 0.1951. In both Table 4 and Fig. 6 the effects of m and N 
on the wing loading at q = 0-9239 are displayed ; it is possible that the solution for N = 5 suffers from deficiency 
in a, whose minimum acceptable value is known to increase as N increases. Although (N, m, a) = (4, 31, 4) is 
again the preferred solution, its accuracy near the tip is probably no better than 2 per cent, but this is adequate 
for the present purposes. The original theory (q = 1) from Figs. 2 and 3 produces the wild curves of small dashes 
in Figs. 5 and 6, which serve to underline the improvements that have taken place in the past decade during 
the postponement of the present investigation. 

In what follows, no further account is taken of the particular theoretical method by which the thin-wing 
solution is derived. Any version of lifting-surface theory of acceptable accuracy could be used. A convenient 
facility of the computer programs of Ref. 7, is the option for tabulating ACp at arbitrary sections q and at the 
chordwise positions used in Weber's I 0.11 two-dimensional aerofoil theory, namely 

= Cv = 1 + c o s - -  

for arbitrary integral values of V. 

(v = 1,2 . . . . .  V) (16) 

3. Allowance for Wing Thickness 

Given a wing loading ACp(~, 7"1) for the case of zero thickness, we proceed to clothe it with thickness terms 
compatible with two-dimensional aerofoil theory and with the pressure distribution on the wing without 
incidence, twist or camber. The formulae are derived for incompressible flow, but linear compressibility factors 
are included in Appendix A. 

The two-dimensional theory of Weber 1° (1953) is expected to be of good reliability for aerofoil sections of 
thickness up to 20 per cent in incompressible flow. For  a cambered aerofoil the pressure distribution takes the 
form of equation (2.14) of Ref. 11 

Cp = 1 - [cos a[1 + Stn _+ S t4)] + sin ~[(1 - ~)/~]~[1 + St3)]} 2 
1 + [S (2) _ S(5)] 2 ' (17) 

where the symbol _+ denotes positive for the upper surface and negative for the lower surface. In terms of the 
aerofoil ordinates 

z (¢) /c  = ~(~) = C(~) + ~,(¢), (18) 



the functions S (~) are defined as 

and  

l f~d~t d~' 
s~ ' (~)  = -~ d¢' ~ - ~" 

s{~)(~) = d~,/cl¢, 

La¢' 2¢ G: ¢') ¢ - ¢" 

S{s)(¢) = dG/d~. 

(19) 

S (1), S (2) and S ¢3) have  been computed  f rom the summat ions  in Ref. 10 th rough  32 intervals along the chord,  
f rom interpolated values of  ~t for the symmetr ica l  10 per cent R.A.E. 101 aerofoil  of  Ref. 2 ; the values, given 
in Table  5 for the posi t ions ¢ corresponding to V = 16 in equat ion (16), are reasonably  consistent  with scaled 
results for a 12 per cent R.A.E. 101 aerofoil  f rom Table  13 of Ref. 10 summed  through  16 chordwise intervals. 

Equa t ion  (17) is easily generalized to give the pressure dis tr ibut ion on an infinite sheared wing. Thus,  by 
equat ion (3-1) of  Ref. 11 

Cp 1 - c 0 s Z ~ s i n 2 A  - {cos~ [cosA  + Scl) _ S c4)] + since[(1 - ~)/¢]~[1 + S(3)secA]} z 
= 1 + [S c2) _ StS)] 2 sec2A ' 

(20) 

where A is the angle of  sweepback  and  the incidence ~ and ordinates  (~(¢) and  ~s(¢) to be used in equat ions  (19) 
are all defined in a s t reamwise plane. There  is some evidence for cambered  aerofoils that  the factor [1 + S TM sec A] 
in the n u m e r a t o r  can be applied to +_ S c4) cos ~ as well as the other  lifting term, wi thout  detract ing f rom the 
accuracy and with the possibility of improv ing  it. Since this modif icat ion will result in considerable simplifi- 

cation, we replace equat ion  (20) by 

Cp = 1 - cos 2 ~ sin 2 A - {cos ~[cos A + S (l)] _+ IS (4) cos ~ + {(1 - ~)/~}~ sin c~] [1 + S (3) s e c  A]}  2 (21) 
1 + [S c2) _ St5)] 2 sec2A ' 

where the second square  bracket  in the n u m e r a t o r  is p ropor t iona l  to the thin-wing loading. Thus  with 
S ~1) = S (z) = S c3) = 0 and to first order  in e, S ~4) and S c5) 

(ACp)~=o = 4 cos A S c4) -~ ~ (22) 

which can be identified with equat ion (11). Hence  equat ion  (21) m a y  be writ ten as 

C v = 1 - sin 2 A - {[cos A + S ~1)] _+ ~(ACv),=o see A [1 + S ~3) sec A]} a 
1 + [S t2) _+ StS)] 2 s e c  2 A 

(23) 

Fur ther  adjus tment  to the basic equat ion is suggested by certain terms f rom the R.A.E. s tandard  me thod  in 
the special case of  incompressible  flow according to equat ion (3) of  Ref. 12, wi thout  its par t icular  terms for the 
centre and tip effects. The  non-lifting terms for the finite wing will be concentra ted into a single generalized 
quant i ty  S t 1 j to replace the two-dimensional  one in equat ion  (19) or  Table  5, and  the lifting terms will be handled 
in accord with equa t ion  (23) to first order  in incidence. Thus  we take  

Cp = 1 - sin 2 A - 1 + [S Cz) + SC5)] 2 sec 2 A - 1 + [S {2) ___ S(5)] 2 sec 2 A 

x [{1 + $cx) cos A'_+ 4x(ACp)t=o[1 + S ta) secA']} 2 + 

+ {S {1) sin A' +_ ~ACp),=o tan A' [1 + S TM sec A']}2], 

(24) 

where the angles of  sweepback A and A' will be discussed later. 



In the special case of zero incidence, twist and camber, equation (24) reduces to 

Cv ' = COS2 A cos2A + 2S [1) cos A' + [~(1)]2 
- 1 --~ I S  (2) sec A] 2 ( 2 5 )  

Similarly, to first order in (ACp)t= 0 and S ~5) it follows that 

ACp = (ACp),=o[1 + gm sec A'] [1 + S (3) sec A'] - 4(1 - Cp~ sec 2 A)St2)S (5) 

1 + IS (2) sec A] 2 (26) 

To use this expression for the aerodynamic loading, it is necessary to eliminate the generalized quantity S ~1) 
by substituting 

1 + S (1) sec A' = sec A' {(cos 2 A' - Cpt)+ (cos 2 A - Cv,)[St2)sec A]2} ~ (27) 

from equation (25). In the present application StS) = 0; but, in general, the second term in the numerator of 
equation (26) can be ignored, unless the wing has large leading-edge camber, e.g. nose droop. With this proviso 
the final equation for the loading is 

ACp = (ACp)t=° [1 + S (3) sec A'] 
1 + IS (2) sec  A] 2 

sec A' {(cos 2 A' - Cp,) + (cos z A - Cp,) [S ca) sec A]Z} +, (28) 

where the quantities Cp,, A and A' remain to be determined. However, if we can write A' = A, the formula 
simplifies to 

1 - Cp, sec 2 A / ~ 
AC, = (ACp),=o[1 + S(3)sec A] k 1 .~ [ ~ 5  s~c)k-~2 / . (29) 

In the alternative equations (28) and (29) the function S ( 2 }  continues to be defined as the surface slope 3( t /~  in 
the streamwise direction. Likewise S °) is taken from equation (19) according to the thickness distribution of 
the streamwise section and is evaluated by means of equation (3.33) of Ref. 10. An alternative derivation of 
equation (28) is given in Appendix B by means of approximations to the recent second-order theory of Weber 13. 
As regards the symmetrical pressure distribution due to thickness alone, there are several possible procedures. 
Rather than evaluate Cp, by second-order theory 13, it is more appropriate, in view of the initial approximations 
in equation (24), to identify the term Scl) cos A' with the non-dimensional streamwise velocity perturbation 
u/Uo, via, 

u l f f O z ,  x - x ,  
- -  - -  - -  - -  . t x 2 1 & z  dx' dy', (30) S ") cos A' Uo 2n 3x' [(x - x') 2 + (y y ) j 

S 

where z,(x, y) denotes the distribution of semi-thickness over the planform S. The evaluation of this integral is 
discussed by Ledger in Ref. 14. An attempt was made to obtain Cp, by means of an existing computer program 
corresponding to Ref. 12 with all lifting terms removed, but this proved to be unreliable for the curved-tipped 
planform. In the absence of suitable calculations, the distribution of Cp,(¢, t/) in the present work is taken as 
the mean of the experimental data in Ref. ! for the three Reynolds numbers R x 10 - 6  = 1.3, 2.2 and 3.9. Thus 
the results for e = 0 in Tables 2, 3 and 6 ofRef. 1 provide the values of Cp, in the present Table 6 for the wing with 
5 per cent RA.E. 101 section, while similarly the present Table 7 of Cp, for the thicker 9 per cent RA.E. 101 
section is derived from the averages of data in Tables 7, 8 and 9 of Ref. 1. 

There are strong indications that the Riegels factor in the denominator of equation (28) or (29) should involve 
the local sweepback, especially near the leading edge where it matters most. Therefore for the curved-tipped 
planform, apart from the central rounding, we take from equations (1), (2) and (6) 

1 Ox 1 dxl ~ dc 
tan A - = - - -  

s &l s drl + - -  s drl 

= 1.732051 

= 1.732051 + 0.884748(1 - 0[(1 - q)-½ - 1-614665] 

0 . 1 9 5 0 9 0 ~ q ~ 0 - 6 1 6 4 3 8  

0.616438 ~ q < 1. 

(31) 



The region 0 ~ q < 0-195090 cannot be handled convincingly by the present approach, not only because of 
the likely aerodynamic influence of the imposed rounding, but also on account of the uncertainties in assigning 
an appropriate value to A near the central crank. The R.A.E. standard method ~z should be more promising in 
this region, but there are no results for comparison from the experiments of Ref. 1. Elsewhere on the planform, 
where there is extensive pressure plotting, it remains to choose A'. Clearly, while the chord remains constant, 
equation (29) can be used. But as t/increases from 0.6164, the chordwise variation of the sweep factor sec A 
grows more and more rapidly. From the consideration of the non-circulatory flow past an inclined yawed 
ellipsoid, Lock 15 has shown that there is an argument for taking A' to be constant along each section and 
equal to the value of A at the position of maximum thickness 

A' = Ame. (32) 

Away from the leading edge the non-linear terms in S TM can often be neglected, so that equations (28) and (32) 
combine to give 

ACp = (ACp),=0[1 + S (3) sec Amt ] (1 - Cpt sec 2 Amr) ~. (33) 

Near the leading edge it is necessary to examine in Section 4 whether equation (28) with A' = Am, has significant 
advantage over the simpler equation (29) in the region of the curved tip. 

The approximate theoretical load distributions on the thick curved-tipped wings have been calculated from 
equation (28). The thin-wing loading (ACp)t= 0 is evaluated in Table 8 from equation (11) and the solution in 
Table 1 : the thickness terms S ~z) and S ~3) are obtained from Table 5 with the scaling factor 0.5 or 0-9 according 
as the aerofoil section is 5 per cent or 9 per cent RA.E. 101 : the local sweepback A is evaluated from equation 
(31), and A' is its value at the 15osition of maximum thickness ~ = 0.3087, which happens to coincide with one 
from equation (16) when V = 16: the pressure coefficients due to thickness Cpt are taken from the averaged 
experimental values in Table 6 or-7 as interpolated at the required chordwise positions corresponding to V --- 16. 
The results for six of the pressure plotting stations ~/= 0.195, 0.383, 0-556, 0.707, 0.831 and 0-924 are recorded 
in Tables 9 and 10 respectively for the streamwise 5 per cent R.A.E. 101 and 9 per cent R.A.E. 101 sections. 

4. Discussion and Comparison of Results 

In addition to its interest as a problem in lifting-surface theory (Section 2), the curved-tipped planform has 
particular advantages in the context of the effect of aerofoil thickness. The high angle of sweepback A helps to 
ensure that the influence of aerofoil section is large everywhere and especially near the tip, because the effective 
sheared-wing profile has the scaling factor sec A. Moreover, it may be anticipated that the availability of 
experimental data in Ref. 1 for the two models with different streamwise thickness ratios of 5 per cent and 
9 per cent will establish a consistent pattern in the comparisons between calculation and pressure plotting. 
Furthermore, as the wing tip is approached, the chordwise variation of sec A is so important that the relative 
merits of equation (29) and the combination of equations (28) and (32) can be judged. 

The calculated load distributions at the inboard and outboard stations t / =  0.195 and 0-924 are plotted in 
Fig. 7 to show the theoi'etical influence ofaerofoil thickness. The most significant feature is the greater thickness 

. effect at the outer section due to the high local sweep factor sec A = 3.65 at the leading edge as compared with 
the value 2 inboard of the curved portion. Over most of the chord the loading increases due to thickness and 
the effect is approximately linear. Rearward of about 70 per cent chord the sign of the thickness effect changes 
roughly in accord with the quantity (S (~) + S ~3)) in the two-dimensional case (Table 5). Near the leading edge the 
non-linear Riegels factor (1 + [S ~2) sec A] 2) in the denominator of equation (26) becomes dominant, so that 
ACp tends to zero instead of the infinite limit for a thin wing. In order to reproduce the peak loading, as for the 
thicker wing in the lower diagram of Fig. 7, it is necessary touse additional small values of ~ corresponding to 
eqhation(16) with V = 32 and v odd. 

Experimental data for the curved-tipped wings are derived from the tabulated results in Ref. 1 for ~ = -I-2.08 ° 
after correction for tunnel-wall interference. The differential loading 

AC v 
= 27.55[(Cv)~ =-2"°8 ° _ (Cp)~=2.oso](rad- 1) (34) 

is calculated at 28 chordwise positions from the measured pressure coefficients Cp on the upper surface; like 
the quantity Cvt in Tables 6 and 7, values for the three Reynolds numbers R x l 0  - 6  = 1.3, 2.2 and 3-9 are 



averaged. The chordwise distributions of ACJc~ at the secifion r / =  0.707 are compared in Fig. 8, which shows 
systematic differences between the experimental points and the theoretical curves for both thicknesses of 
aerofoil and at all chordwise positions. The calculated and measured results both show small discontinuities 
in slope where the aerofoil roof-top ends at ~ = 0.30 ; the position is characterized by discontinuous gradients 
in S I'~ and S ~3j in Table 5 and likewise in Cp~. With the increase in aerofoil thickness from 5 to 9 per cent RA.E. 
101 the peak loading is reduced by about 30 per cent both theoretically and experimentally. The deficit in each 
experimental value of ACJe is readily attributable to the influence of boundary layers. 

The qualitative effect of aerofoil thickness is better illustrated in the style of Figs. 5 and 6, where from equation 
(15) the modified chordwise loading on the thin wing becomes a simple polynomial in 4. For  the same sections, 
r /=  0.195 and 0-924, the calculated loadings for the three thicknesses tic = 0, 0.05 and 0.09 are so presented in 
Fig. 9. The radical changes in shape due to increasing thickness, already discussed in relation to Fig. 7, are 
greatly amplified. The experimental points in Fig. 9 show special clarity near the leading edge, but they become 
meaningless close to the trailing edge on account of the factor (1 - 4) -½ : to avoid confusion, not many points 
have been plotted. It is noteworthy that, while the measured data at r /=  0.195 are subject to somewhat greater 
percentage deficit than that found for r /=  0.707 in Fig. 8, there is evidence of excess experimental loading in the 
region of mid-chord at r /=  0-924. It is abundantly clear that the full thin-wing curves are quite unrepresentative 
of practice. This state of affairs must also arise in problems of time-dependent flow in the loading actions and 
flutter fields, where great reliance is placed on thin-wing theory with or without empirical correction factors. 

The distributions of (ACp/a)¢~(1 - ~)-~ at the section t / =  0-924 provide a practical test of the choice of 
sweepback angles in Section 3. There are three possibilities to consider: 

(i) equation (28) with A' = A,~ in accord with equation (32), 

(ii) equation (28) with A' = A giving equation (29), 

(iii) equation (29) with A = A,m in the numerator. 

For the R.A.E. 101 aerofoils all three are identical at ~ = 0.3087. The first two are considered as alternatives 
in Fig. 10, which contains virtually all of the averaged experimental data at q = 0-924 for both aerofoil thicknesses 
and ~ = 2.08 degrees. The theoretical curves can thus be judged against the background of experimental scatter. 
The full curves corresponding to (i) are rather more convincing than the short broken curves from (ii). The third 
possibility leads to results that would be barely distinguishable from the full curves. However, the second term 
of equation (24) is incorrectly represented in (iii), which has a consequent tendency to delay the rapid fall in 
ACp as ~ --, 0. Against this drawback (iii) has the merit of simplicity; even as near the curved tip as rt = 0.924' 
and throughout the range ~ ~> 0-038, (iii) departs from (i) by at worst 2 per cent when tic = 0.05 and 4 per cent 
when t/c = 0.09. Nevertheless, for the elliptic nose fairing of the R.A.E. 101 aerofoils, the supremacy of the com- 
bined equations (28) and (32) is apparent. A fourth possibility, based on equation (B-6) of Appendix B and 
illustrated by the long broken curves in Fig. 10, is considered in Section 5. 

One aspect of the present method that calls for comment is the use of experimental values of Cp~ in the basic 
equation (28). This expedient could be interpreted as one step towards the incorporation of viscous effects, but 
these are not expected to be large under conditions of zero loading. At the section r /=  0.556, where Cpt is unlikely 
to be greatly affected by the central crank or the wing tip, it is interesting to compare the distributions from 
Tables 6 and 7 with those calculated from equation (25) with sec A = sec A' = 2, and S ~1) and S c2) from Table 5 
with scaling factor 0.5 or 0-9 according to the aerofoil section. The results are given in Fig. 11, and it remains 
a matter for speculation as to whether the larger experimental values of -Cp ,  could result from the influence 
of the leading-edge curvature at r />  0.616. When ACJe is re-calculated with the theoretical values of Cp, for 
the two-dimensional sheared wing, there are small reductions of the order 2½ per cent, which bring the results 
slightly closer to experiment. The modified chordwise loadings for the two thicknesses in Fig. 12 show that the 
changes are small by comparison with either the theoretical effect of thickness or the experimental discrepancy 
associated with boundary layers. 

The spanwise distributions of AC~/e are plotted in Fig. 13 at local positions ~ = 0.010 and 0.146, where the 
influence of thickness is in opposite senses; in the latter case the experimental points are interpolated. In most 
respects the trends predicted by thin-wing theory are borne out in the calculated and measured results. Near 
the curved tip, however, the tendencies for the measured loading to fall more steeply at ~ = 0.010 and to rise at 

= 0.146 are better represented in the calculations that embody aerofoil thickness. The changes in ACJc~ due 
to the variation in aerofoil thickness are also predicted consistently. 
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To obtain the local lift coefficients and local aerodynamic centres for the thick wings, it is necessary to evaluate 
the integrals 

and 

ao --~-L + (' d~ 

(35) 

by numerical integration. The experimental values of CLL/O~ and 

~ac -- CmL. / CL-L 
c( / ~ (36) 

in Tables 2 and 3 are derived from the measurements of Cp at 28 chordwise positions when ~ = _ 2.08 °, the 
results for the three Reynolds numbers again being averaged. Suppose that the theoretical values of Czz/~ for 
the thick wings are first calculated from the formula 

CLL 7~ v-  1 ACp(~v) sin w 
- 2--V ~'1: c( V- (37) 

with V = 8 and then with V = 16. Equation (37) would imply that ACp = 0(4 ½) as ~ ~ 0, which is unrepresenta- 
tive. Instead we take 

CLL-- 2 ( -~ )0~  V=16 - [CL[I , O[ ly=8 = LV ~--1 / --~-[-7~V-1ACp(~v) Sin?]v=16,O~ (38) 
(odd) 

a formula that is consistent with the exact integrations for the thin wing in Table 2 and is thought to give 
accuracy within _ 1 per cent for the thick wings. The local pitching moment about the leading edge is directly 
obtainable from the summation 

CmLo~ -- ~_Vv~= y- 1 ACp(~v [#v + ~,(~)S (2)(~J] sin VTrv (39) 

with V = 16, ~v from equation (16), (t and S (2) from Table 5 with scaling factors lOt/c. 
At first sight the resulting spanwise distributions of lift and aerodynamic centre in Fig. 14 are disappointing. 

For  example, allowance for thickness takes the theoretical curves of both CLL/a and ~ac further from most of 
the experimental points; moreover, although the predicted influence of the change of aerofoil thickness is 
fairly small, its sign sometimes differs from experiment. It is well-known, however, that in two dimensions both 
lift and aerodynamic centre are subject to opposing effects of thickness and viscosity, so that larger corrections 
for viscosity would be expected on the thicker wing. A closer examination of the discrepancies over the untapered 
region t / <  0.616 is possible with the aid of the semi-empirical charts in Figs. 1 to 3 of Ref. 16 for two-dimensional 
incompressible flow. While the relevant aerofoil section is that in the streamwise direction with its thickness 
scaled by the factor sec A = 2, it is questionable whether the effective Reynolds number should be taken 
streamwise or normal to the lines of constant 4. The latter, involving a factor cos 2 A = 0.25 on Reynolds number, 
would appear to indicate excessive scale effect : even the former predicts greater viscous losses with the higher 
sweepback on account of the effective increase in trailing-edge angle. The following table shows that for the 
geometric mean of the three streamwise Reynolds numbers, R --- 2.2 x 10 6, coupled with a representative 
rearward boundary-layer transition at ~ = 0-6, the estimates from Ref. 16 correlate remarkably well with the 
evidence in Fig. 14. The ratios of experimental to theoretical lift and the corresponding differences in local 
aerodynamic centre can thus be reconciled within the order of the experimental scatter. 

Nearer the curved tip the pattern of the comparison changes so that the theoretical influence of thickness on 
local lift grows while the discrepancies between measurement and calculation become smaller. Although the 
theoretical fall in CLL/a with increasing q is much the same for t/c = 0 and 0-05, it is dramatically reversed 
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Scaled aerofoil 10% R.A.E. t01 18% R.A.E. 101 

Cr.L 
Discrepancy 1 (~ .~)r -  ~ 

(CLL) r (CLL)r 

q = 0-195 0.163 0-011 0-203 0.024 
r/ -- 0-383 0.147 0.007 0.170 0.019 
q = 0.556 0.137 0.004 0.172 0.025 

Average 0.149 0-007 0-182 0.023 

Ref. 16 0.133 0.007 0.185 0.024 

CLL 
1 (~o~)~- ~oc 

close to the tip when t/c = 0.09. The striking results at q = 0.981 are supplemented by experimental da ta  in 
Table 11, which records large non-linear effects of incidence that become insignificant at the other pressure- 
plotting stations until higher incidences are reached. For  the thinner wing there is clear evidence of a leading- 
edge vortex at ~ = 4.16 degrees, but up to this incidence there is a progressive non-linear trend of a different 
nature. This latter trend is more pronounced on the thicker wing and introduces a growing disparity between 
the measured and calculated centre of pressure; however, over the range 2.08 ~< ~ (degrees) ~< 6.24 the 
measured local lift slope is remarkably consistent with the 40 per cent calculated increase due to thickness. 
Whilst it is recognized that with a leading-edge sweep factor sec A = 6.76 the aerofoil theory of Ref. 10 is 
being applied far beyond its valid range t/c <~ 0.2, say, the fact remains that the influence of thickness is exceed- 
ingly large. Moreover, it is suggested that in regions of appreciable trailing vorticity the induced cross-flow near 
the trailing edge may help to free the wing from local viscous losses. Indeed, the experimental increases in 
CLL/~ and ~,c near the curved tip in Fig. 14 then become easier to understand. 

The remaining results for the two sections r /=  0.383 and 0.831 are presented in Figs. 15 and 16 respectively 
as chordwise distributions of ACp/CLL, which automatically has an average value of unity. The approximate 
theoretical allowance for aerofoil thickness in equation (28) goes a long way towards the prediction of the loading 
for a given local lift. Furthermore, the spanwise loadings in Fig. 14 indicate that the present method would have 
similar success in predicting the distribution of load for a given total lift under steady conditions of attached 
incompressible flow. 

5. Applications and Extensions 

The underlying philosophy behind equations (20) to (24) is that the aerodynamic wing loading can be expressed 
with sufficient generality to permit flexible adjustment of the component functions. Thus, of the six quantities 
S~(i = 1 to 5) and A', three have been chosen to take account of some aspect of three-dimensional theory, 
while S ~2~, S ~3) and Scs) have been retained in equation (26) as the original functions of ~ for the streamwise 
aerofoil. The same framework might be used in a more general context than that of steady inviscid incompressible 
flow, or with more rigour in that limited field. Let us first consider the elements of equation (28) from the stand- 
point of the present application and then discuss how the scope of the approximate method might be enlarged. 

At the outset A is assumed to be the local angle of sweepback as defined by the direction of the locus of 
constant ~. This definition should be modified close to the central crank, and experience with a modified sweep 
angle (A*) in the R.A.E. standard method lz is likely to give a lead. Where there is large taper, attention should 
be paid to an alternative treatment of sweepback, in which an effective aerofoil section is concocted by applying 
the factor sec A to each local ordinate (,. Although the use of A' = A,,, rather than A' = A is well justified in 
Fig. 10, it may be wondered, for example, whether similar success would be achieved with the simpler formula 
(29) if S ~3~ sec A were replaced by the two-dimensional S ~3) for the concocted aerofoil. The two schemes could 
usefully be applied to a highly tapered swept wing. 

Although the principle of determining the generalized quantity ~1) from equation (25) seems well-founded, 
it is desirable either to calculate Cp~ theoretically or to use the approximation to ~cl) in equation (30). Such 
calculations by means of Ref. 14 might shed some new light on the comparisons close to the curved tip, as 
exemplified in Fig. 14. The present expedient of using measured values of Cpt is dependent upon extensive 
pressure plotting and could become problematical for a twisted or cambered wing. 
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Doubts concerning the thin-wing loading (ACp)t=o near the central crank, or as influenced by a fuselage, 
simply reflect the limitations of Ref. 7. While these are not thought to be important in the present study, higher 
demands on lifting-surface theory are often encountered. Moreover, second-order theory 13 is strictly necessary 
to validate the use of scaled two-dimensional values of S TM. In respect of the wing root and the treatment of 
S TM, knowledge and understanding might be gained by appealing to solutions by a more elaborate theoretical 
method such as Ref. 17 (Labrujere et al. 1971). 

Although the present method is primarily directed towards the prediction of aerodynamic loads rather than 
individual surface pressure distributions, a simple extension would be to use equation (24) with the appropriate 
quantities (ACp)~=o, gt1) and A' from equations (11), (30) and (32), and with S (2), S (3) and S (5) corresponding to 
equations (19). The individual pressures on the upper and lower surfaces could then be estimated. There are, 
of course, more accurate methods of tackling this problem. 

The application to subcritical compressible flow is envisaged in Appendix A. It would be instructive to 
establish how well the effect of Mach number is represented in equation (A-15). The scaling factor sec A is 
augmented by compressibility to become 

sec A 
T = (1 - Mo 2 cos 2 A) ~" (40) 

Thus compressibility amplifies thickness effect and may restrict the range of application on that account. 
Perhaps a more serious limitation is that second-order effects of compressibility cannot readily be included, 
as the factor analogous to equation (40) would then differ on the upper and lower surfaces. 

At the end of Appendix B there are suggestions regarding the direct use of equation (B-6) in place of equation 
(28). In-future application s it may be advantageous to exploit the full potential of first-order theory by calculating 
the individual components of velocity due to thickness and lift. This procedure would avoid approximations 
in equations (B-8), which became questionable where there are strong root or tip effects, without too much 
complication. With the aid of the approximation to the second-order streamwise velocity perturbation due to 
lift in equation (B-7) with A' = Amt, some calculations of equation (B-6) at r /= 0.924 have been carried out. 
Equations (30) and (B-14) have been evaluated for the curved-tipped wing with R.A.E. 101 section by Ledger, 
using the computer program of Ref. 14: equation (B-16) has been evaluated from the numerical solution in 
Table 1. Thus the long broken curves of modified chordwise loading in Fig. 10 are obtained for both thicknesses. 
Although there are significant differences between these results and the computations from equation (28) 
with A' = Amt, the available experimental data offer no clue as to which of them should be preferred. However, 
it should be pointed out that, since neither of the transverse components of velocity in equation (B-6) vanishes 
at the trailing edge and since there is a finite trailing-edge angle, the calculated ACp is non-zero and the modified 
loading becomes infinite at the trailing edge. The fictitious negative loading for positive c~ arises from the 
failure to satisfy the Kutta condition to better than first order. 

Consideration could also be given to the real viscous flow by adjustments to the various component functions 
consistent with boundary-layer theory. The simplest approach would be to modify semi-empirically the quanti- 
ties c~ and S <4) in equation (22). Some treatment of this kind would be necessary to improve on the results in 
Figs. 15 and 16, and more particularly to determine the local lift coefficients CLL that are greatly overestimated 
in Fig. 14. 

As envisaged at the end of Section 1, it is feasible to advance the theoretical techniques in unsteady flow by 
means of equations (28), (29) or (33). In the case of oscillatory wing motion, the quantity (ACp),= o becomes 
complex and can be chosen to be consistent with the appropriate solution from Ref. 7, for example. Although 
other known effects of frequency might be incorporated in the remaining functions S (~, especially in S ~3), a 
first step would be to leave these unchanged. The present investigation has shown how the influence of aerofoil 
thickness can be subdivided into a qualitative redistribution of load coupled with a quantitative increase in 
lift that is illusory on account of the boundary layers. With due attention to this approximate representation of 
the true conditions in steady flow, it is considered that the evaluation of unsteady generalized forces in elastic 
modes of deformation can be brought closer to reality. 

6. Conclusions 

(1) The curved-tipped planform is one of the most difficult to treat by lifting-surface theory, primarily on 
account of the combination of very high local sweepback and moderately high aspect ratio. Although the use 
of recent theoretical techniques and increased artificial rounding of the central crank are shown to improve 
the convergence, a particularly large number of spanwise terms seems necessary. Even with 31 such terms there 
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is residual waviness in the distribution of local aerodynamic'centre and inaccuracy of the order 2 per cent ir 
the loading near the curved tip, which, however, is acceptable for the present purposes. 

(2) The simple formula in equation (28) is derived for the approximate theoretical load distribution on 
thick wing in incompressible flow. Its applications to the two curved-tipped wings of 5 per cent R.A.E. 101 
and 9 per cent R.A.E. 101 streamwise sections show qualitative improvements in the estimation of both chord- 
wise and spanwise loading, when the calculations without and with allowance for thickness are compared with 
experiment. Quantitative differences, which are probably attributable to the boundary layers, are substantially 
reduced by considering the results for given lift coefficient. 

(3) Simpler alternatives to equation (28) have been discussed, but comparisons with experiment seem to 
justify the slight complication of setting A' equal to the sweepback of the line of maximum thickness rather than 
the local sweepback. However, the triple product in equation (33) would often provide a close approximation 
to the loading at sufficient distance from the leading edge. Another possibility, the direct use of equation (B-6), 
is shown to merit further investigation. 

(4) The calculated chordwise loadings at the innermost pressure-plotting station (I/ = 0-195) and in the tip 
region differ in opposite senses from what would occur in two dimensions. The contrast is heightened by the 
extra-large thickness effect due to the high local sweepback over the forward portion of the curved tip. Very 
close to the tip (q = 0-981) there is a predicted increase in sectional lift of 40 per cent due to the 9 per cent 
R.A.E. 101 aerofoil, which is remarkably matched by experiment. 

(5) Inboard of the curved tip (q = 0-616) the discrepancies in local lift and aerodynamic centre, as measured 
and calculated for the two wings, can be reconciled with known two-dimensional characteristics. The percentage 
deficit in lift and the difference in aerodynamic centre are both consistent with predictions for the aerofoil 
section normal to the sweep line in association with the streamwise Reynolds number. 

(6) The simple formula (28), regarded as a versatile theoretical framework, should be capable of improvement 
within, and extension beyond, the field of steady inviscid incompressible flow. Indeed, a direct semi-empirical 
approach to problems of unsteady viscous compressible flow is envisaged in Section 5. 
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LIST OF SYMBOLS 

Factor controlling number of spanwise integration points 

Aspect ratio of planform; 2s/6 

First-order compressibility factors in equations (A-8) 

Local chord 

Geometric mean chord; S/2s 

Aerodynamic mean chord in equation (4) 

Root chord 

Lift coefficient; lift/(½Po U~S) 

Lift per unit span/(½P0 U~c) in equations (13) and (35) 

CLL from theory (where the distinction is necessary) 

Pitching moment about x I per unit span/(½PoUZc 2) in equation (35) 

Pressure coefficient; (p - po)/(l po U~) 

Local Cp due to thickness only 

Function in equation (A-4) 

Function in equation (A-6) 

Non-dimensional chordwise loading at section t / =  t/r 

Number of collocation sections 

Number of spanwise integration points in equation (9) 

Mach number of stream 

Number of chordwise terms 

Local pressure, stream pressure 

Factor in Ref. 4 (analogous to a) 

Reynolds number; UoUV 

Semi-span of wing 

Area of planform 

Functions of ~ for streamwise aerofoil in equations (19) 

Generalization of the two-dimensional quantity S ('~ 

Thickness of aerofoil 

Thickness scaling factor in equation (40) 

Streamwise velocity perturbation in equation (30) 

Local velocity, stream velocity 

Local velocity due to thickness only 

Velocity on upper, lower surface of wing 

Number of chordwise stations in aerofoil theory 

Ordinate in streamwise direction measured from xz(0) 

Value of x at aerodynamic centre of wing 

Ordinate of leading edge 
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LIST OF SYMBOLS---cont inued 

Ordinate in starboard direction 

Ordinate in upward direction 

Ordinate of camber surface 

Local semi-thickness of wing 

Incidence of wing (in radians unless otherwise stated) 

Ratio of specific heats of air ( = 1.4) 

Spanwise loading coefficients (q = 1 to N) 

Value of Fq at ~/= tt, in equation (11) 

Lower-surface Cp minus upper-surface Cp in equation (5) 

ACp from thin-wing theory in equation (11) 

Non-dimensional ordinate of camber surface; zs/c 

Non-dimensional local semi-thickness in equation (18); zt/c 

Non-dimensional spanwise ordinate; y/s 

Extent of artificial central rounding in equation (8) 

Collocation section in equation (10) (r = 1 to m) 

Artificial rounding parameter; ~//the 

Local angle of sweepback in equation (31) 

Arbitrary angle of sweepback 

Modified angle of sweepback in Ref. 12 

Value of A at position of maximum aerofoil thickness 

Parameter in equation (A-2) 

Value of # due to thickness only 

Kinematic viscosity of stream 

Local chordwise variable in equation (6) 

Value of ~ at local aerodynamic centre in equation (14) 

~c from theory (where the distinction is necessary) 

Chordwise location in equation (16) (v = 1 to V) 

Density of stream 

Angular chordwise parameter in equation (12) 
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APPENDIX A 

Equation (28) with First-Order Compressibility Corrections 
To allow for compressibility, we first consider Bernoulli's equation from equation (90) of Ref. 12. Thus the 

pressure coefficient Cp and the ratio U/U o of local to stream velocity are related by 

Cp - yM 2 1 + ½(~ - I)M 2 1 - /~oo / j l  - 1 , (A-l) 

where V = 1.4 is the ratio of the specific heats of air and Mo is the stream Mach number. Let 

/ ~ = M  1 -  (A-2) 

so that equation (A-I) becomes 

U 2 
(A-3) 

where 

F(#) = 2 [ { 1  + ½#(~-  1)} ~/(v-~) - 1]. (A-4) 

To first order the non-dimensional loading due to an incidence c~ (or likewise a mode of camber and twist) is 

U _  2 
2JOCP-I - -2c~G(#)O[  1 -  ( o )  ]~=o hCp = I ~ 1==o ~ ' 

(A-5) 

where Cp_ and U_ correspond to the lower surface of the wing and 

G(p) = F(#) + #F'(/~) = {1 + ½#(y - 1)} ~!'~-a) (A-6) 

relates to the condition ~ = 0. 
The velocity ratio is formulated from equation (1) of Ref. 12 in much the same way as equation (24) is based 

on equation (3) of Ref. 12. Thus to first order in incidence and on the lower surface 

{ = sin z A 1 - 

1+ 
1 t 1 + 1 S(2~ S(5)] 2 + _ ~S (2) - St5)]2 

[ X -j j L B j 

I ( $ ( 1 )  cOs A' I x 1 + B' ~(ACv)t= o 1 + - -  

{$ (~) sin A' A' I + ' B' - ~ACp),=otan 1 + - -  

1}2 
B' cos A; 

B' cos A' 
(A-7) 

where (ACp), = o is the thin-wing loading from Ref. 7, say, and there are first-order compressibility factors 

B = (1 - Mo 2 cos 2 A) ¢ ]  
• (A-8) 

and B' (1 M 2 cos 2 A') ~) 

The substitutions S iS) = 0 and (ACp)t= o = 0 in equation (A-7) give the value of (U/Uo) 2 corresponding to the 
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local pressure coefficient Co, due to thickness. Hence by equations (A-2) and (A-3)' 

where 

Cp, - M~'~F(/.t,), 

#, = ME cos 2 A - 1 + LB~STXosAj / cos ~ A + 

(A-9) 

c o s A  
2"~°)B, + . (A-10) 

Equation (A-10) is readily inverted to give 

,.~(t} 
1 + - -  - s e c  A'  

B' cos A' 
G,/ CptlF S TM 12"~½ 

c°s2A - F(#,) l L~c--gTXsAj j ' (A-11) 

where by equations (A-2) to (A-4) 

Cp, #, 2 
£,AAr2/'' ~ (~ ' -1 ) /7 -  1}. (A-12) {(1 + 2z" o'-'po F(~,) Mo ~ M ~ ( ; , -  I) 

If for simplicity we suppose that S ~5) and (ACp),= o are proportional to ~ (or some arbitrary mode)i then 
equation (A-7) yields 

U 2 -1  ~[l-(U~o) ],=o = (i + m ~  j F  s'2) 12) (ACp)'=°[I+~ B' ,(1)cos A ~ ]  [1+ B;~os S'3) A;J ] - 

( F S'2) 12) -2 2S'2'S(5) ( 2,("cosA ' F,S")12/ 
- 1 + LBc-70TXs A j ~(~ ~ ~ 2  C°s2 A -t- B' 4- L B'J 1 

With the aid of equations (A-9) to (A-I 1) we eliminate S ~a) from equation (A-13) to give 

(A-13) 

0 [ (U-) 2] 2S(2)S(S) ( [  S(2) 121-' ( Cp,] 
a~ 1 - ~ ~:o - m(B cos A) 2 1 + LK -TLI ! cos 2 A - F(#,)] + 

(AO, o I r s,2; [ l + 11 + Ls AJ } l+B, cos<.l secA'x 

x {(cos2A ' -  CP'I ( Cp'IF S(2, 12} }. (A-14) 
F(#,)] + c°s2A - F(I.Q] LFGKX] 

The first term of equation (A-14) can be ignored unless the wing has large leading-edge camber; with this proviso, 
the second term combines with equation (A-5) so that 

ACp = (ACp)t= o [ 1  + - -  

X {(COS2A ' - -  

B' cos A' 1 + L~G-d-Xj  ] G(#,) sec A' x 

F(#,)] F(#,)] LB~os AJ (A-15) 

Equation (A-15) is the required generalization of equation (28). It should be noted that the quantity Cp#F(#,) 
can be divorced from the auxiliary variable/g as in equation (A-12), and similarly we can manipulate equation 
(A-6) to obtain 

1- ~ - 2 , " '  "Lll)' G(H,) = (1 + 7yW, ot~pd . (A-16) 

There is considerable simplification if we can write A' = A, and the resulting multiple product 

Cpt sec a A 1½ 
F(tq) ] (A-17) 
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is the equivalent of equation (29) with first-order compressibility corrections• Similarly, to correspond to 
equation (33) when A' takes its recommended value Am, and the non-linear terms in S TM can be neglected, 
equation (A-15) reduces to 

[ s~a) ] ( Cp, secZA,../½ 
AC, = (AC,),=0 1 + B,m cos Aml G(#t) 1 F-~,) ] (A-18) 

where 

Bin, = (1 - M 2 cos 2 Am,) 6. (A-19) 

Unfortunately there is limited practical scope for extending equation (A-15) to include second-order com- 
pressibility corrections in accord with equation (87) of Ref. 12 or as further discussed by Lock 18, because the 
factors B and B' become functions of local pressure and differ on the upper and lower surfaces. Under restricted 
conditions of negligible camber and twist and not too near the centre section we may use Ref. 18 tc~ replace 
equations (A-8) by 

and B = {1 - M2(cos2 A - M°Cp"c°sA)}~ ? 1 , (A-20) 

B' {1 M2(cos2 A ' -  MoCvacosA')}~] 

where Cpa is the pressure coefficient due to thickness in incompressible flow. In general, it would be hazardous 
to use equations (A-20) to extend the use of equation (A-15) to high Mach number or thickness. For this reason 
it is sufficient to approximate to equations (A-12) and (A-16) by the expansions 

and 

Cpe Cp~(1 ~ 2 O(M,~) 1 F(I~,) = - -4M°Cpr) + 

1 2 O(M~)  G(/zt) = 1 + CMoCpt + 

(A-21) 

C[ 

f 
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APPENDIX B ~ 
,! 

Approximate Derivation of Equation (28) f~'om Second-Order Theory 

The argument leading to equation (28) in Section 3 is far from rigorous and leans heavily on the 'R.A.E. 
standard method '~ 2, which is itself approximate. On the other hand, Weber ~ 3 has produced a rigorous theory 
for three-dimensional incompressible flow to second order in the velocity perturbations. It is therefore desirable 
to use Ref. 13 as a starting point and to examine what further approximations are needed to derive equation (28). 

We take equation (69) of Ref. 13 in spite of the fact that for high sweepback and taper certain third-order 
terms may not remain negligible, so that the local resultant velocity is given by 

~oo = 1 + OxxsecA c o s ~ +  v~ zl+~xxl  3x] + + 

+ {(1 +/)~11)tanA+~rt,  ~Ox] J" (B-I) 

Here z(x, y) denotes the wing surface and in the notation of Ref. 13 the velocity components /)(21 /)111 ,(1} and X ~ y ~ ~x t  

v~ ~, normalized with respect to Uo, are to be calculated in the plane z = 0 containing the sources and doublets. 
The streamwise velocity perturbation to second-order accuracy, v~ ), and the first-order transverse velocity, 
v~ ~1, are written in terms of their separate contributions due to thickness and lift 

a n d  (B-Z) /)!., = ,~ . )  + , , . / ~ '  
~yt  - -  ~yl  ) ¥ 

where the positive and negative signs correspond to the upper and lower surfaces respectively. In equation 
(B-I) we let A be the local sweepback instead of the leading-edge sweepback as used in Ref. 13, which does not 
alter the accuracy of the result. If we also write similarly to equation (18) 

z = z~(x, y)  + z , (x ,  y), (B-3) 

then equation (B-l) becomes 

= l + a x +  × - r x )  soc cos  + + + Z, r x ) ;  + 

0 i  Oz, z O Z s ] ~ I 2  (D{I) *,-yt ,,( 1)]2 
+_ ivan) + Ux[zs~ + 'oxlJ] + + ~ "  + 

+{(1 + x, j t a n A +  + (B-4) 
/)" } /0x - El  A 

Although the camber shape will influence-~z) - ca) and vy t , it is now assumed that the terms in z~ can be neglected Uxl 

in equation (B-4). This approximation is not very restrictive, but it does preclude cases of large nose droop. 
The wing loading becomes 

= 4  l + ~?xj sec2A cosc~+v(Z)+~xx / 'OxlJ T M  ,,~1,,,~1)-1 

Only the first-order terms need to be retained in the curly bracket that multiplies (2) vx~, so that equation (B-5) 
may be replaced by 

( ~ ]  r,( 1),,,(2} ,,( 1),,(1 ,'] A C v = 4  1 + sec 2A [(1 + ~:,~j~t + ~y~'~ytJ. (B-6) 
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The - .  (2) evaluation ot ~xt strictly involves two solutions by lifting-surface theory, the first-order one giving Vx~" ca) 
and the incremental one corresponding to the upwash velocity in equation (60) of Ref. 13. However, to avoid 
such a complication, we approximate by taking 

v(Z) v~] ) [1 + S TM sec A'] 

= ~ACp),=o[1 + S ~3~ sec A'], (B-7) 

which is known to suffice for an infinite sheared wing; with S t3) from equation (19) for the streamwise aerofoil 
and with a suitable choice of sweep angle A' as in equation (32), equation (B-7) is expected to provide a good 
approximation over most of the wing. Likewise, in accord with theory for an infinite sheared wing, the transverse 
components of velocity are approximated by the relations 

_ .(1) (1) tan A' ] ~yt ~ 1)xt 

and l . (B-8) 
(1) ~) tan A' ~ ,  (2) tan A' - -  l.)y! l)x! ~xl 

We also make the substitutions 

=z~Z = S(2) as in equation (19) ~| 
Ox 

and ~ . (B-9) 

as in equation (30) J (1) ,~(1) A' Vxt : COS 

Then by equations (B-6) to (B-9) 

ACp = (ACp),=o [1 + .~m sec A'] [1 + S c3) sec A'] 
1 + [S (2) see A] 2 

(B-IO) 

which is consistent with equation (26) when Scs) = Ozs/~3x is set to zero. 
If numerical values of v~ ) were available by means of Ref. 14, say, equation (B-10) would serve our present 

needs. Otherwise we approximate to S ~I) by relating it theoretically to the measured pressure coefficient Cp, 
due to thickness only. With lift and camber terms omitted equation (B-4) gives 

 Vo! 3 ox, 0xl 'ax/J 

v,,,,2/0z, 2l + { ( l + v ~  ) t a n A +  . ,  ~ S x l  j .  (B-11) 

Apart from the Riegels factor in the first bracket and the last term in the square bracket, which are essential 
near the leading edge, second-order terms in equation (B-11) may be omitted, if so desired ; the last curly bracket 
simplifies after the approximation in equation (B-8) with A' = A, and thus 

( -~o)  " Y' ' + (Oz'/Sx)2 tan2 A Cp, 1 U, 2 (I + v~)) 2 + (v cl)~2 
= - = 1 - 1 + (OzffOx) 2 see 2 A 

cosZA + 2,~ ~1) cos A' + [Sm] 2 
= cos 2 A - 

1 + IS c2) sec A] 2 
(B-12) 

by means of equations (B-8)and (B-9). Since equations (B-12) and (25) are identical, it simply remains to eliminate 
S c~) from equations (B-10) and (B-12) to obtain the desired approximation 

A C p  = 
( A C p ) t =  0 [1 --~ S (3) s e e  A'] 

1 + [S c2) see A] z 
sec A' {(cos z A' - Cp,) + (cos 2 A - Cp,)[S TM sec A]2} .¢, (B-13) 

namely equation (28). 
In so far as ACp can be calculated directly from equations (B-6) and (B-7), the approximations in equation 

(B-8) can be avoided and the formulation in terms of C~, becomes an unnecessary complication. Thus v~ ) is 
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identified with u/Uo in equation (30) and similarly 

v , t ,=  1 f f  Oz, y - y '  
yt f~ Ox' [(x - x') 2 T (y - y,)2]~ dx' dy', (B-14) 

S 

both of which may be evaluated by means of Ref. 24. As in equation (B-7), we identify v~ ) with ~(ACv)t = 0, and 
it follows at once that 

~z ''~" = ~ -  v~?(x', y) clx' 
oy Lax, 
1 [drz(~b x~ dVq~sin(q 1)+ 

(B-~5) 

VII S l  
+ .(i) tan A, (B-16) 

when the linearized loading is given by equation (11). Sample calculations by this procedure are included in 
Fig. 10 and discussed in Section 5. Furthermore, there is experience with the R.A.E. standard method 12 to 
commend the use of an empirically modified sweepback A* in the neighbourhood of the wing root, so that 
equation (B-7) is replaced by 

vC2) v~)[1 + S ~3) see A*] x l  ~ (B-17) 

In future applications these refinements could remove some of the restrictions implicit in equation (B-13) or 
(28). 
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TABLE 1 

Solution for Load Distribution on Curved-Tipped Wing of Zero Thickness 
at Uniform Incidence (Ref. 7 with M o = 0 and N, m, a = 4, 31, 4) 

0 
0.09802 
0.19509 
0.29028 
0.38268 
0.47140 
0-55557 
0-63439 
0.70711 
0-77301 
0.83147 
0.88192 
0.92388 
O.95694 
0-98078 
0-99518 

0.31841 
0.32300 
0.33257 
0-34162 
0.34740 
0.34925 
0.34600 
0.33710 

-0-10364 
-0-07510 
-0-03224 
-0.01302 
-0.00414 
+0.00312 

0.01050 
0.01359 

+0.01289 
-0-00402 
-0-01123 
-0.00458 
-0.00317 
-0.00255 
-0.00143 
+0.O0006 

- 0.00471 
+ 0.00304 
+ 0.00036 
- 0.00079 
- 0.00030 
- 0.00039 
- 0.00053 
+0.00010 

0.32199 
0.30062 
0-27292 
0.23925 
0-19999 
0.15567 
0.10682 
0.05446 

0.01462 
0.01536 
0.01595 
0.01571 
0.01419 
0.01131 

-0-00062 
-0-00059 
-0.00103 
-0.00049 
-0.00104 
-0.00369 

0.01086 
0.01059 

-0.00383 
+0.00224 

0.00011 
0-00017 
0.00014 
0.00027 
0.00082 
0.00006 

-0.00040 
+0.00137 

TABLE 2 

Local Lift Coefficients from Thin-Wing Theory 7 and Thick-Wing Experiment 1 

Values of CLL/C~ (rad - ~) 

q Thin-wing theory with N, m, a = Thick-wing experiment 

3 ,31,4  5,15,8 5 ~ R.A.E. 101 9~  R.A.E. 101 

0 
0.098 
0.195 
0.290 
0-383 
0.471 
0-556 
0-634 
0.707 
0.773 
0.831 
0.882 
0.924 
0.957 
0.981 
0.995 

2-3215 
2-3563 
2-4269 
2.4922 
2.5345 
2.5478 
2.5242 
2.4605 
2.3870 
2.3165 
2.2471 
2.1778 
2-1076 
2-0354 
1-9593 
1.8780 

2-3142 

2-4376 

2.5325 

2.5287 

2.3854 

2-2509 

2-1067 

1-9601 

4 ,31 ,4  4 ,15,8  

2.3244 2.3143 
2.3579 
2.4278 2.4382 
2-4938 
2.5360 2-5336 
2-5495 
2-5258 2-5298 
2.4623 
2.3886 2-3868 
2.3179 
2.2478 2.2511 
2.1781 
2.1081 2.1045 
2.0371 
1.9616 1.9569 
1.8795 

2-4053 2-4062 

2-22 

2.41 

2.48 

2.40 

2.275 
2.22 
2.285 
2.19 

2.20 

2.41 

2.435 

2.39 

2-35 
2-36 
2.34 
2.46 
2.81 

Cz/~ = 2.4039 2.4057 2.31 2.32 
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TABLE 3 :: 

Local Aerodynamic Centres from Thin-Wing Theory 7 and Thick-Wing Experiment 1 

q 

3,31,4  

0 0.3305 
0.098 0.3080 
0.195 0-2741 
0.290 0-2593 
0.383 0-2528 
0.471 0-2476 
0.556 0.2423 
0.634 0.2398 
0-707 0.2386 
0-773 0.2373 
0.831 0-2357 
0.882 0-2340 
0.924 0-2318 
0.957 0.2288 
0.981 0.2231 
0-995 0.2137 

xac/~ = J 

Values of ~ac 

Thin-wing theory with N, m, a = Thick-wing experiment 

4, 31, 4 4, 15, 8 5, 15, 8 5~o R.A.E. 101 9~  R.A.E. 10I 

0-3314 
0.3081 
0.2742 
0.2595 
0.2530 
0.2478 
0.2424 
0-2399 
0.2386 
0-2372 
0-2354 
0.2336 
0.2323 
0.2318 
0.2246 
0-2014 

0.3328 

0.2772 

0.2508 

0-2438 

0.2374 

0.2369 

0.2293 

0.2301 

0.3327 

0-2769 

0.2507 

0.2440 

0.2378 

0.2383 

0-2303 

0-2218 

0-264 

0.247 

0.239 

0.244 

0.249 
0-244 
0-254 
0.259 

1.869 Y 

0.259 

0.246 

0.229 

0-233 

0.247 
0.251 
0.251 
0.275 

1-886 

 'gq.o3 a,t o6 

TABLE 4 

Theoretical Chordwise Loadings on Thin Curved-Tipped Wing at q = 0.9239 

Values of ACJ~  (rad -1) tom Ref. 7 with N, m, a = 

0.9904 
0.9619 
0-9157 
0.8536 
0.7778 
0-6913 
0-5975 
0.5000 
0.4025 
0.3087 
0.2222 
0.1464 
0.0843 
0.0381 
0-0096 

3 ,31 ,4  4 ,31 ,4  

0.098 0.098 
0.201 0.202 
0.315 0-318 
0.446 0.451 
0-598 0.607 
0.779 0.788 

4 ,15,8  5,15,8 

0.097 0-096 
0.198 0.197 
0.309 0.308 
0.435 0-433 
0-583 0.580 
0.759 0.756 

0-995 
1.257 
1-582 
1.996 
2-552 
3.350 
4.632 
7.124 

14-458 

1.002 
1.259 
1.576 
1.982 
2.531 
3-329 
4.621 
7.138 

14.536 

0.973 
1.236 
1.564 
1.986 
2.551 
3.362 
4.661 
7.178 

14.577 

0.972 
1.242 
1.583 
2-022 
2.599 
3.408 
4-677 
7.117 

14-312 
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T A B L E  5 

B a s i c  F u n c t i o n s  f o r  S y m m e t r i c a l  1 0  p e r  c e n t  R . A . E .  1 0 1  A e r o f o i l  

(t S(I) S(21 S(3) 

0.9904 
0.9619 
0.9157 
0.8536 
0.7778 
0.6913 
0.5975 
0.5000 
0.4025 
0.3087 
0-2222 
0.1464 

0.0843 
0-0381 
0-0096 

0.000859 
0.003404 
0.007536 
0.013097 
0.019872 
0.027570 
0.035508 
0.042670 
0.047907 
0.049993 
0.047613 
0.041842 

0.033565 
0.023421 
0-012025 

- 0 . 0 9 7 0 4  
-0 .05583  
- 0 . 0 2 9 4 0  
-0 -00773  
+ 0 ~ 1 2 9 3  

0-03688 
0.06324 

0-09088 
0-11878 
0-14542 

0.14789 
0.14801 

0.14788 
0.14796 

0.14778 

-0 .08999  
- 0 . 0 8 9 6 4  
-0 .08922  
-0 .08927  
-0 .08924  
-0 .08794  
-0 .08022  
-0 .06510  
-0 .04009  
+0-00093 

0-05220 
0.10255 

0.17044 
0-28914 

0.61611 

-0 .19822  
-0 .13993  
-0 -10454  
-0 -07760  
- 0 . 0 5 3 7 4  
-0 -02766  
+O-00072 

0-03087 
0-06220 
0-09382 
0.10199 
0.10617 

0.10890 
0.11093 
0.11160 

T A B L E  6 

I n t e r p o l a t e d  E x p e r i m e n t a l  C h o r d w i s e  D i s t r i b u t i o n s  o f  C p t  o n  5 p e r  c e n t  R . A . E .  1 0 1  C u r v e d - T i p p e d  W i n g  

a t  Z e r o  L i f t  

0.9904 
0.9619 
0-9157 
0.8536 
0-7778 

0-6913 
0.5975 
0.5000 
0.4025 
0.3087 
0.2222 
0.1464 
0-0843 
0.0381 
0.0096 

0.195 

0.027 
0.023 

0.016 
0.007 

- 0 . 0 0 5  

- 0 . 0 1 9  
- 0 . 0 3 3  
- 0 . 0 4 8  
- 0.064 
- 0 . 0 8 0  
- 0 . 0 7 7  
- 0:069 
- 0 . 0 5 5  
- 0.027 
+0.052 

0.383 

+ 0.002 
-0 .001  

- 0 . 0 0 6  
- 0 . 0 1 2  
- 0.020 

- 0.030 
- 0.041 
- 0 . 0 5 4  
- 0-068 
-0 .081  
-0 .081  

- 0.075 
- $ . 0 6 4  

- 0.042 
+ 0.024 

0.556 

- 0.003 
- 0.008 
- 0 . 0 1 2  
- 0 . 0 1 8  
- 0.025 

- 0.035 
- 0.048 
- 0.062 
- 0.078 
- 0.092 
- 0.089 

- 0.084 
- 0 . 0 7 8  
- 0-064 
+ 0.002 

0-707 

0.006 
0.003 

-0 .001  

- 0 . 0 0 8  
- 0.020 

- 0 . 0 3 3  
- 0 . 0 4 8  
- 0 . 0 6 3  
- 0 . 0 7 8  
-0 .091  
- 0.090 
- 0.087 
-0 .081  
- 0 . 0 5 9  
- 0.008 

0.831 

0-018 
0.014 
0-007 

- 0-002 
- 0 - 0 1 2  
- 0-026 
- 0.040 
- 0-054 
- 0.070 
- 0-084 
- 0.085 

- 0-081 
- 0.071 

- 0-050 
+ 0-009 

0-924 

0.022 
0.019 
0.015 

0.008 
-0 .001  
- 0 . 0 1 2  
- 0 . 0 2 6  
- 0.042 
- 0-058 
- 0.069 
- 0.070 

- 0 . 0 6 9  
- 0.060 
- 0.042 
- 0.002 

0.981 

0.026 
0.028 
0.030 
0.030 
0.018 

0.004 

- 0 - 0 1 0  
- 0.024 
- 0-034 
- 0 . 0 4 1  

- 0.042 

- 0 . 0 3 7  
- 0.030 
- 0.020 
+0.005 
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TABLE 7 

Interpolated Experimental Chordwise Distributions of Cpt on 9 per cent R.A.E. 101 
Curved-Tipped Wing at Zero Lift 

0.9904 
0.9619 
0.9157 
0.8536 
0.7778 
0.6913 
0.5975 
0.5000 
0.4025 
0.3087 
0-2222 
0.1464 
0-0843 
0-0381 
0-0096 

0.195 

0.048 
0.042 
0.030 
0.014 

-0 .005  
-0 .028  
-0 .056  
-0 .088 
-0 .118 
-0-147 
-0 .140  
-0-126 
-0-096 
-0-037 
+0-106 

0.383 

0.028 
0-018 
0.005 

-0-008 
-0-023 
-0-040 
-0-062 
-0 .089 
-0 .118 
-0-148 
-0-146 
-0-130 
-0.101 
-0 .048 
+0.088 

0.556 

0-016 
0.010 
0.002 

-0 .009  
-0 .022  
-0 .040  
-0 .065  
-0 .098 
-0-132 
-0 .159  
-0 .155 
-0 .144  
-0 .120  
-0-066 
+0-073 

0.707 

0.030 
0.024 
0.015 
0.002 

-0 .014  
-0 .035  
-0.061 
-0 .095 
-0 .128 
-0 .156  
-0 .152  
-0 .143 
-0 .122  
-0 .065 
+0.057 

0-831 

0-048 
0-038 
0-024 
0-010 

-0 .007  
-0-025 
-0 .048  
-0 .078  
-0-115 
-0 .142  
-0 .142  
-0 .130  
-0 .105 
-0 .055 
+0.042 

0.924 

0.058 
0.049 
0.038 
0.024 
0.008 

-0 .010  
-0 .033 
-0 .059  
-0 .096  
-0 .117  
-0 .117  
-0 .103 
-0.081 
-0 .040  
+0.015 

0.981 

0.062 
0.056 
0.048 
0.038 
0.025 
0.009 

-0 .013  
-0.O40 
-0 .063  
-0 .078  
-0 .072 
-0 .057  
-0 .038 
-0 .020  
-0 .009  

TABLE 8 

Calculated Chordwise Distributions of ACJ~ for Thin Curved-Tipped Wing 
( N , m , a  = 4, 31,4) 

0-9904 
0.9619 
0.9157 
0.8536 
0.7778 
0-6913 
0.5975 
0.5000 
0-4025 
0-3087 
0.2222 
0.1464 
0.0843 
0.0381 
0.0096 

0-1951 

0-170 
0-346 
0.534 
0.737 
0-958 
1.199 
1.461 
1.749 
2.074 
2-456 
2.943 
3.630 
4.747 
6.985 

13.773 

0.3827 

0.158 
0.321 
0.491 
0.674 
0.874 
1.097 
1.351 
1.647 
2.004 
2.450 
3.044 
3.897 
5.278 
7.991 

16-060 

0.5556 

0.143 
0.289 
0.444 
0-612 
0.799 
1.013 
1.263 
1.563 
1.933 
2.404 
3.034 
3.944 
5.409 
8.271 

16-724 

0-7071 

0.128 
0.260 
0.402 
0.558 
0.733 
0.934 
1.171 
1.455 
1-806 
2.256 
2.863 
3-742 
5.162 
7-931 

16-091 

0.8315 

0'113 
0"232 
0'360 
0"503 
0"667 
0"857 
1"082 
1'354 
1.690 
2.121 
2.702 
3.542 
4.897 
7.536 

15.303 

0"9239 

0'098 
0"202 
0"318 
0"451 
0"607 
0"788 
1 "002 
1"259 
1"576 
1"982 
2"531 
3'329 
4"621 
7'138 

14"536 

CLL/~ = 2"4278 2"5360 2"5258 2"3886 2"2478 2"1081 

~,,c = 0"2742 0"2530 0"2424 0"2386 0"2354 0"2323 
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TABLE 9 

Calculated Chordwise Distributions of ACv/~ for Curved-Tipped Wing with 
5 per cent R.A.E. 101 Aerofoil 

0"9904 
0"9619 
0"9157 
0"8536 
0"7778 
0'6913 
0"5975 
0"5000 
0"4025 
0"3087 
0"2222 
0"1464 
0"0843 
0"0381 
0"0096 

0"1951 

0"128 
0"283 
0"460 
0"668 
0"912 
1"204 
1"551 
1"966 
2"467 
3'087 
3"705 
4"513 
5"735 
7"849 

11"613 

0"3827 

0"126 
0"275 
0"443 
0"633 
0"855 
1"123 
1"454 
1"868 
2"398 
3'085 
3"855 
4"888 
6"467 
9"220 

14"470 

0"5556 

0"115 
0"251 
0'405 
0"582 
0"790 
1"048 
1"377 
1"796 
2"348 
3"076 
3"887 
5"021 
6"775 
9"896 

15"783 

0"7071 

0"099 
0"219 
0"357 
0"520 
0"719 
0"968 
1"287 
1"699 
2"239 
2"947 
3"754 
4"884 
6'615 
9"502 

15"081 

0"8315 

0"081 
0"184 
0'307 
0"457 
0"643 
0"886 
1"200 
1"612 
2"164 
2"902 
3"726 
4"834 
6"458 
9"072 

12"702 

0"9239 

0"060 
0"142 
0"246 
0"381 
0'556 
0"797 
1"122 
1"562 
2"161 
2"940 
3"793 
4"948 
6'501 
8"671 

10"639 

CLL/~ = 2.653 2-824 2.873 2-751 2.589 2-488 

~ac = 0"2754 0"2544 0"2429 0"2391 0"2409 0"2406 

TABLE 10 ~ 

Calculated Chordwise Distributions of ACJ~ for Curved-Tipped Wing with 
9 per cent R.A.E. 101 Aerofoil 

0"9904 
0'9619 
0'9157 
0"8536 
0"7778 
0"6913 
0"5975 
0"5000 
0"4025 
0"3087 
0"2222 
0"1464 
0"0843 
0"0381 
0"0096 

0"1951 

0"097 
0"234 
0"401 
0"608 
0"863 
1"186 
1"601 
2"133 
2"792 
3"621 
4"331 
5"212 
6"385 
7"960 
8"419 

0"3827 

0"095 
0"228 
0"390 
0"582 
0"814 
1"108 
1"495 
2"010 
2"696 
3"618 
4"512 
5"632 
7"152 
9"285 

10"415 

0"5556 

0"088 
0"209 
0"355 
0"529 
0"743 
1"024 
1"405 
1"934 
2"651 
3"593 
4"552 
5"796 
7"527 
9"892 

11"307 

0"7071 

0"073 
0"178 
0"307 
0"467 
0"670 
0"941 
1"310 
1"829 
2"531 
3"476 
4"423 
5"662 
7"367 
9"476 

10'514 

0"8315 

0"054 
0"140 
0"254 
0"401 
0"594 
0"853 
1"216 
1"736 
2"488 
3"485 
4"470 
5'662 
7"166 
8"782 
8"646 

0"9239 

0"029 
0"090 
0"180 
0"309 
0'493 
0'754 
1"141 
1"699 
2"564 
3"667 
4"711 
5"822 
7"024 
7"746 
6"819 

CLL/~ = 2"761 2"902 2"942 2"814 2"683 2"611 

¢,,c = 0"2827 0"2647 0"2539 0"2508 0"2512 0"2509 
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T A B L E  1!1 

Local Lift and Centre of Pressure Measured and ~2alculated near Curved Tip (r/ = 0-981) 

Exper iment  ct = 0-52 ° 
Exper iment  c~ = 1-04 ° 
Exper iment  ~ = 2.08 ° 
Exper iment  ct = 4-16 ° 
Exper iment  ct = 6.24 ° 

Thin-wing  theory 
Thick-wing theory 

5 ~  R.A.E. 101 

R = 3.9 × 106 

CLL/a C,.L 
( r a d -  t) C L L 

2-09 0.272 
2-19 0.288 
2.33 0.294 
3.56 0.485 

1.96 0.225 
2.38 0.243 

9% R.A.E. 101 

R = 2.2 x 106 

C~/~ Cm,. 
(rad - 1) CLL 

2.18 0.317 
2.78 0.333 
3-14 0.362 
2-93 0.407 

1.96 0.225 
2.74 0.250 
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FIG. 1. Arrangement and details of curved-tipped wing in N.P.L. 13 f l x  9 ft wind tunnel. 
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solut ions by 
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FIG. 2. Previous calculations of chordwise loading at r /=  0-1951. 
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FiG. 3. Previous calculations of chordwise loading at r /=  0-9239. 
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