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Summary 

Some of the more important practical implications to pilot's control, flight test analysis, and stability 
augmentor performance of classical longitudinal stability theory are discussed. The distinction between turns 
and pull-ups is re-emphasized and the differences quantified. Angular momentum of the engines is shown to 
make a contribution which can be significant with S.T.O.L. aircraft, being destabilizing in turns in one direction 
but stabilizing in the opposite direction. 

* Replaces R.A.E. Technical Report 72068--A.R.C. 34 020. 
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1. Introduction 

The theory of longitudinal stability and control would appear to be such a well documented and understood 
subject, that little could be added to the material presented in the many authoritative text books covering 
aircraft mechanics (e.g. Ref. 1). Indeed this has been the case since an exhaustive and rigorous analysis was 
established by Gates and Lyon in their classical study 2 in 1944. The principal concepts emerging from their 
work and that of their predecessors, such as the ideas of manoeuvre margin, static margin and CG margin, 
and a distinction between turns and pull-ups have become part of the standard equipment of the flight control 
specialist. However, there are certain refinements contained in the complete formulation of Gates'  and Lyons'  
theory which have received much less attention or have become blurred by the passage of time. This may in 
part be due to ,the fact that they were quantitatively insignificant for the aircraft of the day and therefore then 
of mere academic interest. The one exception, perhaps, was Ref. 3 when, in recognition of the possible pitfalls 
in a too superficial treatment of manoeuvre stability, an appropriate flight test procedure was proposed for 
the measurement of longitudinal manoeuvre characteristics. This suggests that tests should only be carried 
out in pull-ups near level flight in the vertical plane so avoiding the complications of analysis which arise 
when tests are made in steady turning flight. 

However, the phenomena which are recognised to upset or complicate analysis of flight data obtained in 
turning manoeuvres have consequences to other aspects of flight control as well, especially with the modern 
aircraft. It would seem appropriate, therefore, to re-examine the implication of Gates'  and Lyorrs" complete 
theory and to establish the areas where they may be of practical significance. We shall consider in particular 
the aircraft which derives part of its longitudinal stability from artificial pitch-rate damping. 

2. Theoretical Background 

The longitudinal control requirements for steady or quasi-steady manoeuvres are defined by equilibrium 
of pitching moments:  

- M , r l  = Mo + M~e + Mqq + (C - A)rp - Her  cos eE -- HE sin en (1) 

when principal inertia axes are used to define r, p, C and A. In addition to the usual aerodynamic terms this 
equation also allows for the gyroscopic moments generated by the aircraft and by the angular momentum of the 
engine H E. H E is the angular momentum of all engines and is positive for engines rotating clockwise about 
the direction of flight, e E is the inclination of the engine rotor  axis with respect to the airframe reference axes in 
which r and p are measured. (In the following analysis we shall use principal inertia axes.) It should also be 
noted that H E will be zero if an even number of engines is installed in 'handed' pairs. 

We shall be interested also in cases when pitch damping is augmented by automatic elevator control of the 
form 

~s = kqq. (2) 

Introducing this term into equation (1) we get 

--Mntlp = M o + M ~  + (Mq + M~kq)q + (C - A)rp - HE(r cos ee + p sin ee) , (3) 

, where qp is now to be treated as that part of the actual elevator deflection commanded by the pilot. Assuming 
linear control circuit characteristics ,/p will be directly proportional to stick force or deflection. 

In order to be able to analyse equation (3), we require additional relationships between the motion variables 
appearing on the right-hand side and a parameter defining the manoeuvre under consideration. Usually normal 
acceleration is taken as most relevant for longitudinal control, although bank angle ~b may be of equal interest 
when discussing steady turns. 

The kinematic and dynamic relationships from which the motion variables can be derived in the general 
case are mathematically extremely involved so that we shall restrict our attention to only two specific manoeuvres 
in which they become more manageable, namely co-ordinated level flight turns and longitudinal manoeuvres 
purely in the vertical plane. These happen to be the two classes of greatest practical interest. 

It should be noted that of all possible manoeuvres onty the turn where the aircraft's path is a helical spiral, 
can be strictly considered as ~teady when all physically significant motion parameters, i.e. ~, p, q, r, fl and speed 
can be maintained constant. As we shall see later such a condition cannot be satisfied, e.g. in vertical manoeuvres. 



Not only is it then impossible to maintain speed but even at constant speed, pitch rate will change when normal 
acceleration is held constant and vice versa. Nevertheless we shall treat manoeuvres in the vertical plane under 
the assumption that such changes (e.g. those in pitch rate) are slow enough to allow at least portions of the 
manoeuvre to be treated as quasi-steady. 

2.1. Manoeuvres  in the Vertical Plane 

We shall only consider co-ordinated flight with zero sideslip, and in this case in a purely vertical manoeuvre 
(pull-up or push over) rates of yaw and roll will be zero. This eliminates the gyroscopic terms from equation (3). 
If aeroelastic effects are ignored or alternatively if changes in M o.with normal acceleration due to aeroelasticity 
are expressed as an equivalent change in M~, M0 is irrelevant to manoeuvre stability and will therefore also be 
ignored. 

This then leaves only three terms to be balanced by pilot's control, namely: 

- M d l  p = M~e + Mqq + Mnkqq (4) 

where e and t/p are increments from 1 g flight values. 
We recognise immediately that in the absence of the last term representing the pitch autostabilizer contri- 

bution, the right-hand sid~ of equation (4) is clearly related to the manoeuvre margin of the aircraft. Also we 
note that artificial pitch rate damping will simply add to the natural rnq contribution and therefore enhance 
the effective manoeuvre margin.* 

In non-dimensional terms equation (4) reads: 

l 
-rn,lrlp = m~,o~ + mqq~ + mnkqq. (5) 

The two motion variables on the right-hand side are related to normal acceleration through 

W 
~o = n ( o c d a , ) ( p / 2 v ~ s ) ,  

(6) 

where c% is now total effective incidence and n the absolute load factor, and 

g cos y) (7) = V ( n  - 

provided e = const, ~2 = q = (g/V)(n - cos ~). The latter expression has been plotted in terms of Vq in Fig. 1. 
Differentiation of equation (7) with respect to time gives 

dq g__ldn ) 
- V ld t  + ~'sin~'o . (8) 

This expression tells us that a manoeuvre in the vertical plane can only be steady, i.e. dq/dt = 0when dn/dt = 0, 
if sin Y0 = 0, that is when y0 = 0 degrees or 180 degrees. In all other cases, the treatment of manoeuvre stability 
in a quasi-steady sense is strictly not permissible. This observation prompted Lyons Ref. 3 to suggest re- 
stricting flight tests for manoeuvre stability to pull-ups near level flight. 

Sufficiently close to level flight, when cos ~, = 1, equation (7) takes the form 

g n 1) = g A (9) q = v (  - V n 

* This is of course only true if this signal is not transientized. With washout the steady manoeuvre stability 
of this aircraft will not be so affected. 



and interpreting a as incremental from the trimmed condition, equation (6) becomes 

W 
Ao~ = An (acL/oct)(p/2V2S), (10) 

and with these expressions equation (5) can be transformed into 

t3C,. mq m~ V k I --m,iAn p = An ~-~L + - -  + - -  /~ I~ 7 q] C L° ' (11) 

with CLo = W / ( p / 2 V 2 S )  = trimmed level flight CL and A% the increment in pilot-applied elevator deflection. 
The term in brackets is the effective manoeuvre margin Hm ; without artificial pitch damping (kq = 0) it 

reduces to the basic aerodynamic manoeuvre margin of the aircraft ((OCJBCL) + mJ#).  Equation (11) is only 
valid as a small perturbation approximation near level flight and this applies equally to any deductions we wish 
to make with respect to such quantities as elevator angle per g or stick force per g. 

In manoeuvres starting from or taking the aircraft to a pitch attitude significantly different from zero, we 
must exercise caution. Also we must distinguish between these two cases. From Fig. 1 or equation (7) we note 
that as pitch attitude increases up to 180 degrees the pitch rate associated with a given normal acceleration 
increases, having its maximum in inverted flight. As a consequence the contribution to manoeuvre stability 
from mq and also from kq increases :and an appropriately larger elevator angle has to be applied by the pilot 
to maintain a given value of normal acceleration. With equation (7) for q, the pitching moment equation then 
takes the general form: 

--m,lAnt, = C~.o~-d-~L(n -- 1) + (n -- cos 7) 7 + ka (12) 

Of course the difference from the simple linearized expression given by equation (11) is significant only if the 
pitch damping contributions are not negligible by comparison to the static margin OC~/OCL i.e. equation (111 
is valid generally if: 

t m. 
+ # ~l  I << OC---/" (131 

The particular effects considered in equation (12) are only important if we consider large perturbation 
manoeuvres from trimmed level flight. Small perturbation manoeuvres on the other hand from any trimmed 
steady condition would still appear to be governed by the conventional manoeuvre margin, since the rate of 
change of q with An is the same for all y (see Fig. 1). However, we recall equation (8) which suggests that such 
manoeuvres are not strictly conceivable as quasi-steady unless sin Y0 = 0. 

We note from equation (8) that with n = const there will be a pitching acceleration proportional to pitch 
rate q = ~ i.e. 

dq _ g 
dt ~ q  sin Yo- (14) 

We can account for the associated inertia reaction by adding to the basic pitching moment equation (5) a 
term 

- q p / 2 V Z S  1 = qiBp -~ ~ s i n  ~o 

giving 

I OCm rnq m. l Ig . ) 
-m"Arl"  = AnCL°Iff-C7 + --P + 7 -~kq - i n ~ s , n  ],o . (15) 

The terms in the bracket then represent a general form of an apparent manoeuvre margin valid for manoeuvres 



which only involve small Changes in flight path from any initial datum value 70. It is readily seen that the air- 
craft inertia term can only become significant at very low speed and is stabilising in climbing flight and vice 

versa. 

2.2. Steady Turns 

The only form of non-rectil inear flight that can be treated as strictly steady is the steady turn in which the 
aircraft 's path forms a helical spiral about  an axis aligned with the gravity vector. The level flight turn is a 
particular ease of this general family of manoeuvres.  Since in a turning manoeuvre  the lateral mot ion  para- 
meters r and p are also involved, equat ion (3) must be considered in full. To  do  so we require the relevant 
kinematic relationships between all the variables involved. As this leads to e laborate  algebra, this analysis is 
presented in the Appendix. Here we repeat only the final results.  

If y is the inclination of the flight path with respect to the horizontal ,  the resultant angular velocity ~ of the 
turn (measured in earth axes) is 

/ 
f~ = _ V ~ / l c ° s y ]  - 1. (16) 

The  f l ightpath  bank angle ~b,, i.e. the angle through which the aircraft has to be rolled about  the flight path 
vector is given by 

sin q~, = 1 - , (17) 

and the corresponding ordinary bank angle, which for clear identification we shall describe as Euler-bank 
angle, is 

tan ~b - sin ~b~ 1 . (18) 
cos a cos q~, - tan y tan 

The three components  of aircraft angular velocity measured in body axes, which are assumed to be at an 
incident a with respect to the flight path are:  

g ( n  c°s2 ?) (19) 
q = v  n 

cos y) 
PB = - - ' ~  g ( -1- ~ / n  2 - -  COS 2 y) tan y cos a + sin e + n (20) 

[ cos ~ 
cos r)  n r B = -~ cos a - tan 7 sin a].  (21) 

The product  rBp B required for the inertia cross coupling terms is 

pBr~ = - (n 2 - cos 2 ~) (cos 2 ~ - sin 2 a) + sin a cos ~/ ~-7 - - -  tan2 7)}- (22) 

In level flight with ? = 0 these reduce to 

/ 1 
s i n e .  = sin~b = . ]1  

n2 ,  , q  
(23) 



P B ~ - ~ s i n a  ± 1 -  , (25) 

and 

re=-~cos0~ + 1 -  (26) 

pnrn = - sin ct cos • 1 - . (27) 

If~ = 0 the body axes angular velocities Pn and ra become identical to wind axes values p, and r~, q is as given 
by equation (19) and 

g + x / n  2 cos2y) tany, (28) PB = P, = - V ( 

g ± ~/n2 r) cos ~, r B = r . = f f (  - c o s  ~ - -  (29) 
n 

and 

p~r n = p~r a = - n 
n 

g 
- =qBsiny. (30) 

V 

Where alternative signs (+)  are indicated in these equations, the positive root is associated with turns to 
starboard and the negative sign with turns to port. In Figs. 2-5 these relationships are presented graphically. 
The results for roll and yaw rate according to equations (20) and (21) are complex functions of ~t and y and 
only the special cases with ct = 0 and y = 0 i:espeetively have been selected for presentation in Figs. 4 and 5. 
The values shown refer to starboard turns, they change sign for corresponding port turns. 

Perhaps the most generally important of these results is the relationship between pitch rate and normal 
acceleration shown in Fig. 2, or more particularly, the difference between this and the corresponding linear 
relationship applying in purely vertical manoeuvres (Fig. 1). These differences are most marked within the 
range of small normal acceleration increments and for better clarity they are compared at an enlarged scale 
in Fig. 6. We note that at a given value of n the consequent pitch rate in a turning manoeuvre is always greater 
than that resulting from a purely vertical manoeuvre. It can be readily shown that near the origin the rate 
of change of q with n for turning manoeuvres is exactly twice that observed in pull-ups. The relative difference 
between the two conditions tends to diminish with increasing n. 

If we consider now the particular condition of level flight turns, we can write equation (3) as: 

- m . t l p  = C l , o ~ - ~ L ( n  --  1) + n --  n] L # + --It - f k q  - (ic - ZA)-~ -~ sin ~COS~ 

m l V ~ - ' ~  ~-~ cos~coseE(1 - tanataneE) . (31) 

Only in V/S.T.O.L designs with lifting engines installed in unconventional alignment can eE be large enough 
to justify cos eE --# 1, normally e E will be small and since the range of incidence of practical interest is also 
small we can simplify equation (31) to 

 ac. (n ic ,32, - m . t l p  = C r o ~ - ~ L ( n  --  1) + -- +--p  n V - " 



All the contributions to equations (31) and (32) are independent of the direction of the turn with the exception 
of the engine momentum term HE which therefore must be expected to be stabilizing or destabilizing depending 
on the sense of the turn manoeuvre. 

An observation of more general significance is that of the terms considered, only that associated with the 
C.G. margin OC,,,/OC r is linear with respect to n. As a consequence the simple concept of relating pilot's control 
r/p directly to the manoeuvre margin of the aircraft is not valid in turning manoeuvres. As with a similar situa- 
tion described in the earlier discussion of vertical manoeuvres, these nonlinear effects are only of practical 
significance, if the terms other than OC,,/OCr in equation (31) are not numerically negligible by comparison 
with it. This will normally be true for the mq contribution and--if  applicable--for the autostabilizer term kq. 
The gyroscopic terms associated with the aircraft inertia distribution (i c - iA) and with engine momentum 
H E can be significant only at low speeds, since they vary with 1 IV  2 or 1 / V  respectively. They could therefore 
play an important role in S.T.O.L. aircraft. The (i c - iA) term is also proportional to sin c~, the incidence of 
the principal inertia axis which will always be small in the type of manoeuvre under consideration. 

We shall now discuss the practical significance of the relationships derived in this section, in particular 
we shall consider pilot control, flight testing and automatic control. 

3. Pilot's Control 

The immediate consequence of the results of the above analysis is that the concept of a simple and linear 
relationship between the aircraft manoeuvre margin and such control parameters as stick force per g is strictly 
only valid within a very restricted range of manoeuvres, namely those in the vertical plane close to normal 
level flight. In every other case, such as in banked turns and in manoeuvres involving large pitch attitude, 
more sophisticated analysis is required to predict elevator control requirements. The additional terms as 
defined in equations (12), (15) and (21) are additive, with the exception of the engine gyroscopic reactions H e 
in (21) which can have either sign. Hence the amount of pilot's control required to maintain such manoeuvres 
will generally be greater than that suggested by simple linear analysis based on the concept of the manoeuvre 
margin. 

Manoeuvres involving large pitch attitude changes belong to the realm of aerobatics. O f more general interest, 
however, are turning manoeuvres where due to the larger pitch rates associated with a given An, the pitch 
damping contribution will be amplified and lead to an apparent increase in manoeuvre stability. The magnitude 
of this effect depends on the proportion of the basic aircraft manoeuvre margin that is provided by pitch 
damping. This is illustrated in Fig. 7. The range covered in this diagram extends to the extremes when pitch 
damping gives more than 100 per cent of the manoeuvre margin H m i.e. to cases where the aerodynamic C.G. 
margin is negative. It is also seen that these effects become less powerful as n increases, i.e. they arc more 
important within the modest manoeuvre envelope of a transport aircraft than for fighter aircraft. 

Another case needing careful consideration is the S.T.O.L. aircraft operating at low speed with substantial 
rotating engine machinery, i.e. large HE. This term changes sign with the direction of the turn. We illustrate 
by a numerical example. Assume an aircraft with 90 000 kg mass (200 000 lb weight) having two fan engines 
of the type used on the airbus project, H e = 430 000 kg m 2 s- 1 (320 000 lb ft s) angular momentum. Using 
the mean chord as the reference length [ = 6-5 m, at V = 80 kn the resulting change in the effective manoeuvre 
margin--depending on the direction of the turn--is a function of applied normal acceleration: 

normal  g A H m  due to H e 
1-1 -+7.4% of reference chord 
1-25 +4-370 
1.5 _+2.770 

If the engines are rotating clockwise in the direction of flight (H E > 0) the + sign is associated with turns to 
starboard and vice verse. In a turn to port the aircraft will appear--as far as elevator control is concerned-- 
as if it had its manoeuvre margin reduced by the amounts shown in the table above. In gentle manoeuvres this 
this may mean that the stick has to be pushed forward to stabilize a banked turn. In turns to starboard the 
opposite effect would occur, substantial stick pull being required for quite modest manoeuvres. At a typical 
approach incidence the contribution in this case from the aircraft inertia term (i c - i a) would be of the order 
of AHm = + 2 per cent, always in the stabilizing sense, reducing to about + 1 per cent for more severe man- 
oeuvres. It should be noted that these contributions to what we defined as an ef fect ive manoeuvre margin are 
only relevant in the context of control of steady manoeuvres, they do not  affect the proper manoeuvre margin 
defining dynamic longitudinal stability. The arguments developed in this report are not  relevant to stability 

as such. 



4. Flight Test Analysis 

The area in which the implications of the results given in Section 2 of this Report are perhaps most widely 
appreciated is that of flight testing for the determination of longitudinal manoeuvre stability. In Ref. 3 it is 
suggested that complications and possible errors in the analysis of flight data are best avoided by making 
measurements in straight pull-ups ,close to horizontal flight. On the other hand, steady turns are clearly more 
attractive in allowing stabilized flight to be maintained for a substantial period of time, thereby offering a 
more secure basis for data acquisition. The technique is perfectly permissible if the analysis takes full account 
of the terms on the right-hand side of equation (3). It will be necessary, however, in this case to have prior 
knowledge of the aerodynamic derivative rnq as well as of the inertia parameters (i c - iA). In modern aircraft- 
design practice it can generally be assumed that this data will be known at the flight test stage with an accuracy 
sufficient for the purpose of  such analysis. 

One may note that the difference between the proper manoeuvre margin, ((OC,,/OCr.) + mq/l~), and the more 
complex and nonlinear relationship defining elevator control in steady turns tend to diminish with increasing g, 
so that they can perhaps be ignored when testing near the extremes of the manoeuvre envelope of fighter type 

I , . 

aircraft. Within the range ofg's appropriate for transport aircraft, such short cuts are, however, not permissible. 

5. Automatic Control 

The kinematic and dynamic effects analysed in this Report have important consequences to automatic 
control. One instance when this was encountered is reported in Ref. 4, discussing the development of a take-off 
director. A flight director can be seen as equivalent in general principle to an automatic control, using the 
human pilot as a servo actuator, and in this sense the design requirements for a director are identical to those 
of a fully automatic system: The pitch control channel of the device described in Ref. 4 was designed as a pitch 
rate demand system, using pitch attitude, air speed, horizontal acceleration and vertical velocity signals to 
direct the pilot towards a safe and efficient climbout. When an aircraft banks either inadvertently or in a 
deliberate manoeuvre, a pitch rate is generated according to equation (17) without there being any change in 
pitch attitude. This would be sensed by the director and give rise to a nose-down control demand. In order to 
avoid this undesirable response, a bank compensation term was provided, designed to subtract Aq = 
(g/V) tan q~ sin q~ (or rather an approximation to this law) from the measured aircraft pitch rate. This technique 
is well-known to the autopilot designer. 

The same kinematic phenomenon also affects the operation of the pitch demand of a stability augmentation 
system, although here the consequences are of an entirely different nature and not so widely appreciated. 
Pitch rate is the feedback signal most commonly used to improve short period dynamics. Pitch rate may be used 
directly (untransientized) to drive the elevator or it may be transientized through an appropriately-chosen 
washout circuit. In some designs both types of signal are used simultaneously. What we want to discuss here 
applies strictly to an untransientized pitch damping signal, although the presence of a transientized signal will 
also have some effect in manoeuvres maintained only for short periods. If pitch rate damping is applied through 
a control law 

qs = kqq, (33) 

and the autostabifizer is allowed authority over + r/° elevator, the system will saturate if pitch rate exceeds 

q ~> ~q. (34) 

We see from Fig. 6 that in steady flight, a given pitch rate is associated with different values of normal acceleration 
depending on the nature of the manoeuvre. In steady turns, such a system will saturate at much lower values of 
normal accelerations than in a straight pull-up. Let us consider a pitch damper operating with a gain of 1 degree 
elevator per degree/second pitch rate, i.e. kq = 1, having authority over +_ 2 degree elevator. It will saturate 
therefore when q > 2 degrees/second. From Fig. 6 we note that at V = 400 kn ( q V  = 800) this device will 
saturate at n = 1.43 g in turns but at n = 1.72 in vertical manoeuvres. The corresponding limits at V = 200 kn 
would be 1-2 g and 1.37 g respectively. Therefore in turning manoeuvres the pilot will lose the benefit of the 
autostabilizer much sooner than in vertical manoeuvres. This can be embarrassing if the aircraft depends 
critically on stability augmentation for safe handling and is only marginally controllable in its unaided condition. 
If the difference between vertical and turning flight is not properly anticipated an aircraft equipped with a pitch 



autostabilizer having just sufficient authority to cover its manoeuvre envelope in plain vertical manoeuvres, 
assuming q = (g /V)(n  - 1), will find itself insufficiently covered during turns. 

The early saturation in turns is due to the fact that the autostabilizer reacts to total pitch rate, only part 
of which is associated with longitudinal motion proper, i.e. change in q with n at ~b = const. The excess elevator 
it applies in response to the additional pitch rate generated by bank angle is unnecessary, providing, in fact, an 
excess in manoeuvre stability. Assuming cos 0 = 1 we can calculate this 'false' pitch rate as 

With equation (26) this can be reduced to 

(35 

tan( )  
If Aq, generated from the terms defined above, is subtracted from measured pitch rate to provide a correctec 
input to the pitch damper, the autostabilizer will then respond only to proper longitudinal motion and saturat~ 
at the same value of n irrespective of the nature of the manoeuvre. 

6. Dynamic Stability 

We had already made the observation that the phenomena discussed here as relevant to manoeuvre stabilit) 
do not influence directly dynamic longitudinal stability, or more specifically the role of the manoeuvre margir~ 
in the short period oscillation. Dynamic stability analysis is concerned with small perturbation disturbance~, 
within the plane of symmetry of the aircraft. In this plane, increments in normal accelerations (or incidence) wil2 
always command a linearly proportional increment in pitch rate (i.e. Aq = (g/V)An) without change in yaw oJ 
roll rate; in consequence the classical manoeuvre margin as defined in equation (11) always applies. 

It may in fact be said that the manoeuvre margin Hm, popularly thought of as a universal longitudinal 
control parameter, is much more closely related to dynamic stability and that its relationship with elevatol 
control is far,less direct. 

7. Conclusions 

The practical implications of classical manoeuvre stability theory (Ref. 2) are re-examined. Particular atten- 
tion is given to certain requirements contained in Gates' and Lyon's theory, which are usually ignored and ma) 
become significant for instance with S.T.O.L. designs. In addition the case is considered when artificial pitch 
damping is used to supplement the natural longitudinal stability of the aircraft. In this study the distinction in 
control between turning manoeuvres and pull-ups in the vertical plane is re-emphasized and the differences are 
quantified. An effect particularly significant for S.T.O.L. flight is that generated by the angular momentum of the 
engines which changes sign with the direction of the turn. In aircraft flying with a small manoeuvre margin, 
turns to starboard may require the pilot to push the stick for coordination in sustained manoeuvres, whereas in 
the equivalent turn to port an unexpectedly large amount of pull may be needed. 

Implications of these findings are discussed in relation to pilot's control, flight test analysis and automatic 
control design. 

None of the effects discussed have any influence on the stability of the short period oscillations. 
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Level flight lift coefficient 

Pitching moment coefficient 
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Datum pitch attitude 

Relative density 

Air density 

Incidence of the engine rotor axis with respect to the longitudinal aircraft reference axis 

Body fixed axes, normally principal inertia axes 

Flight path axes 

Initial flight condition 
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A P P E N D I X  

Kinematics of Steady Turning Flight 

We consider a steady helical turn with the resultant angular velocity £) and flight path inclination 7. 
The angular  velocity components  about  the three aircraft axes using the aerodynamic  (flight path axes) 

system are 

p. = - f~ sin y, (A- I )  

q. = ~ sin ~b. cos 7 (A-2) 

and 

r a = f~ cos ~b~ cos 7. (A-3) 

Since in the equat ions of mot ion we found it more  convenient to use principal inertia axes we have to t ransform 
these rates to principal inertia axes, being at an incidence ~ with regard to flight path axes, hence 

PB = Pa cos a - rosm a = - f~(sin ? cos a + cos ~b~ cos 7 sin a), 

qB = q~ = f l  sin ~ba cos 7 

and 

(A-4) 

( i - 5 )  

rB = r a COS a + pa sin a = f~(cos q~o cos 7 cos ~ - sin 7 sin a). 

We now require a relationship between f~ and normal  acceleration and /or  bank angle. 
The centrifugal force Z is 

(A-6) 

Z = m R ~  2 (A-7) 

where R is the radius of the helical flight path. 

The relationship between R and f~ involves speed, but the speed V n required is the component  of  airspeed Vin 
the horizontal  plane, i.e. in a plane normal  to the axis of the helix. Since 

V n = V COS 7 

and 

V 
R = ~ cos 7 (A-S) 

hence 

Z = m Vf~ cos 7. (A-9) 

The centripetal componen t  of  lift can only be meaningfully derived by considering the flight path bank angle 
q~a rather than ~b and we get then 

Z = L sin ~b~. (A-10) 

Since 

L cos ~a = WCOS 7 

L cos y 
= n - - -  (A- I  1) COS ¢~a" 
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Equat ing equations (A-7) and (A-10) we get 

m Vf~ cos ~ = L sin ¢~ 

or after division by W 

__Ff~ = cos y n sin ~b,. 
g 

Hence 

~q = n sin ¢ .  g 

cos y V" 
(A-12) 

We can eliminate n by introducing (A-1t)  to get 

g 
t) = V tan ~b,, (A-13) 

or alternatively if we are more  interested in normal  acceleration as the pr imary parameter  with 

cos2 
sin ~b, = + ~ 1  co s2 Ca = + 1 n2 (A-14) 

we can write 

1 g 
ta = ( + x / n  2 - cos 2 r )cos  ~, V (A-15) 

and remind ourselves that the positive root  relates to positive bank, i.e. turns to s tarboard and vice  versa. 

Int roducing (A-15) into (A-5) we get finally 

qB = V(  g + ",~ n2 - cos 2 y) sin ~)a" (A-16) 

The kinematic relationship between the flight path bank angle q~a and the Euler bank angle qb is given in 

Ref. 5 for fl = 0 as 

tan 4) - sin tk~ 1 (A-17) 
cos ~ cos tka - tan ? tan ~' 

For  level flight turns with y = 0 this simplifies to 

tan q~ = .tan 4) a 
COS 0~ 

Introducing equation (A-t7)  into (A-16) gives 

q n  = n cos ~/. (A-18) 

An equivalent process applied to equation (A--4) leads to an expression for roll rate 

PB = - ( + x/n2 - cosZ ~') tan 7 cos a + sin (A-19) 
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and for yaw rate we obtain 

rB = g(_+ ~,/n2 -- cos2 3:)(c--°s°ns-~ cos e - tan 7 sin e ) 

We shall also require for the aircraft inertia reaction terms the product  of p and r, 

PsrB = - -  ( n2 -- COS2 7) (COS 2 e -- sin 2 e) + sin e cos e t 

For  the special case of level turns, 7 = 0 and 

P ~ =  --g(--+X/1 - ~ 2 ) s i n e ,  

- -  COS e 

and 

On the other  hand assuming e = 0 

(A-20) 

--tan2 )t (A-21) 

(g)2(1) 
pnr B = - ~ 1 - ~-~ sin e cos e. (A-22) 

qB = n 

(A-23) 

g 2 PB = - i f ( - - - x / n  - cos 2 3:) tan 7 

g ~ 3:)cos 3: 
r e = ~ ( + , / n  - c o s  2 n 

pBrB = - -  n - -  s i n  7- 
n 

Finally we may  be interested in the relat ionship between bank angle tka and normal  acceleration which from 
(A-11) can be written as 

cos ~ba - cos 7 (A-24) 
n 
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