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Summary

A method for calculating the incompressible potential flow about two particular aerofoil sections is
presented. The potential flow about two lifting circles is calculated by the method of images, and the two
circles are mapped conformally on to two aerofoils by a double application of the Karman-Trefftz
transformation. The results for the test cases are then compared with those from a numerical method,
which uses a surface distribution of sources.
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1. Introduction

At present, the plane incompressible potential flow about two lifting acrofoils is calculated by numerical
methods. These methods can be applied to aerofoils of arbitrary shape. However, no exact analytic
solution is generally available to evaluate the accuracy of these methods. This Report presents a method
of calculating an exact solution for particular configurations. The potential flow about two lifting circles
is calculated, and the circles are then transformed conformally on to two aerofoils.

Previously, the potential flow about two lifting circles had been calculated by a method due to M.
Lagally'. The region outside the two circles was transformed conformally on to a rectangular region.
The complete flow was then determined by developing the image system in the sides of the rectangle.
H. Strassl? transformed two circles on to two aerofoils, by a double application of the Karman-Trefitz
transformation>.

The method for the calculation of the flow about two circles was very complex, involving the use of
elliptic functions. E. C. Maskell* indicated that the inherent symmetry of two circles could be used to
establish a simpler solution in the plane of the two circles. This method for calculating the potential
flow about two lifting circles is presented here. In fact, it was found subsequently, that W. Miiller® had
used a similar method to calculate the potential flow of a uniform stream about two nonlifting circles.

The two circles are then transformed on to two aerofoils and, by suitable choice of parameters, these
may be made to resemble the wing-flap configurations used in the current work on high-lift devices®.
Such configurations provide the desired test case, and thig is illustrated by a comparison with the results
of the numerical method of A. M. O. Smith”. The opportunity has been taken to examine the behaviour
of solutions with large and small distances between the aerofoils. At either extremity, solutions for the
limiting case can be obtained from single aerofoil theory, and these are used as a check on the given
method. h

]

2. Flow About Two Lifting Circles

The equations governing a potential flow are linear, thus solutions can be superposed. The flow around
two lifting circles is calculated in three components : a streaming flow past both circles, a flow with a unit
circulation around the first circle, and one with a unit circulation around the second circle.

2.1. The Streaming Flow

A uniform stream of unit speed is represented at the complex point z, by a complex potential,
w = z exp (— in), where « is the angle of incidence of the stream to the line joining the centres of the circles
(Fig. 1). The circle theorem® states that if a circle, |z| = g, is introduced into a flow, represented by the
complex potential, w = f(z), then the complex potential becomes

_a?
W= 1)+ f(;). M)
Thus the complex potential for the flow about a circle, |z| = a, in a uniform stream is

2 .
w = zexp(—ix) + a_e_x_p_(a_oc).

2
: @
The image system is a doublet of strength a® at A, the centre of the circle, which is the inverse of the
point at infinity with respect to the first circle.
Now the second circle, |z — f| = b, is introduced into the flow. The circle theorem is again applied to
all singularities lying outside the second circle (see Appendix I). The complex potential becomes

a’exp (i)  b*exp(in) a’b? exp (—ior)

z z—f) A= (f =01

3

w = zexp(—ix) +



The additional terms can be interpreted as the image system which is formed by the reflections of the
doublets outside the second circle. The reflection of the doublet at infinity is a doublet of strength b? at
B, the centre of the second circle and the reflection of the doublet of strength a?, at the centre of the
first circle, is a doublet of strength a?b*/f? at A’, the inverse point of the centre with respect to the
second circle.

Now the first circle is not a streamline, thus the circle theorem is again applied to all the singularities
outside the first circle, giving the complex potential

B . a’exp (i) b2 exp (ia) a’b? exp (—io)
MR R T T T P -
3 b%a? exp (—ia) N a’b?a? exp (ix) @

fHz=af) [ = VI — @/ = P

This produces two new doublet images, which are the reflections of the images produced in the second
circle by the previous step. This process is repeated and after each step either the first or the second circle
is a streamline. Each reflection entails the addition of two image doublets. The set of images can be split
into two groups; the first group being formed by repeated reflections of an object doublet at the centre of
the first circle, and the second group originating from an object at the centre of the second circle. The
strengths of the doublets in the first group are a?, a?b?/ 2, a’b*a*/f(f — b*/f)?, ..., whilst the second
group consists of doublets strength b2, b%a?/ f2, b%a*b?/ f(f — a®/f), .. ..

The strength of a doublet is changed by a factor (a/(f — 1,))* for reflections in the first circle and by a
factor (b/(f — s,))* for reflections in the second circle, where s, and t, are the nth convergents of the con-
tinued fractions representing the distance of an object doublet from the centre of the first and second
circles respectively (see Appendix III). Firstly, considering only reflections in the first circle, the object
doubilet lies inside the second circle, thus

t, <b,
therefore
a_ ___a )
(f—t) f-b
The circles do not overlap, thus
f—b>a,
therefore
a
1
7~ < (6)
Similarly it can be shown that
b < b <1
) f " f —a .
: After 2n reflections, the strength of a doublet from the first group is less than a*{a?/(f — b)*}" x
B — a2}
Now
a2 n bZ n
lim a? } { } =0. 7
e @>W T=a )



The strength of the doublets, which are added after each reflection, is monotonic decreasing and
approaches zero. After several reflections, the new image doublets will only slightly change the complex
potential of the system. This establishes a necessary condition for the series to converge to the complex
potential for the streaming flow past two circles. The proof of a sufficient condition for convergence is
given in Appendix IIL

2.2. The Circulating Flow

A flow with unit circulation around the first circle is constructed by placing a unit vortex at A4, the
centre of the first circle (Fig. 2). The second circle is now introduced into the flow and is made into a
streamline by use of the circle theorem (see Appendix I) which gives the complex potential

b2
z_( ¥

w=ilogz + ilog(z — f) — ilog 7

) . ®)

where (f — b%/f), A', is the inverse of the centre of the first circle with respect to the second circle.
The image system consists of a vortex, strength — 1, at the inverse point and a vortex, strength + 1, at the
centre. Thus there is no circulation around the second circle.

Now the first circle is not a streamline and the circle theorem is again applied to all the singularities
outside the first circle, giving the complex potential

a2

z—a;)-l—ilog(z—“—*—), ©)

2
w=i10gz+ilog(Z—f)—ilog(Z_( _?—))—ilog f—=b%f

f

where a?/f, B, is the inverse of the centre of the second circle with respect to the first circle and
a*/(f — b%/f)is the inverse of (f — b*/ f) with respect to the first circle. The image system consists of a
vortex, strength +1, at a?/(f — b?/f); a vortex, strength —1, at a?/f and two vortices of opposite
strength at the centre, which cancel each other out.

This process is repeated, alternatively making the first and second circles streamlines. Unfortunately
the strength of the vortices does not diminish after each reflection. However, each reflection effectively
entails the addition of two vortices of opposite sense at inverse points in one of the circles. In Appendix I,
it is shown that the set of inverse points in a circle converges on to the complementary inverse point.
Thus the image system which is added after each reflection, approaches a vortex doublet, for which the
complex potential is zero. This constitutes a necessary condition for the complex potential of the above
system to converge to the complex potential for a flow with unit circulation around the first circle. A proof
of sufficiency is given in Appendix I'V. A similar method is used to determine the complex potential for
a flow with unit circulation around the second circle. The series for the streaming and circulating flows
converge rapidly, and in all the calculations the series are truncated, when the variation in the complex
potential, due to the addition of the next term, is less than 107 8. The resulting values represent a good
numerical approximation to the exact value of the complex potential. The numerical approximation can
be made as close to the exact value, as is desired, by increasing the number of terms in the truncated part
of the series.

2.3. The Combination Flow

The complete flow around the two circles is a linear combination of the three component solutions. The
coefficients of the linecar combination, the circulations, are determined by considering the velocities at
the points T, and T,, where T, and T, are the points on the two circles which transform on to the trailing
edges of the two aerofoils. The velocities at these points are given by

V(T = Vo(Ty) + Ty Vi (T) + T (Th) (10)



and
V(Tz) = Vo(Tz) + r1V1"1(T2) + errz(Tz), (11)

where ¥, is the velocity due to the stream flow,
V¢, is the velocity due to a unit circulation around the first circle,
I, is the velocity due to a unit circulation around the second circle,
I', is the circulation around the first circle and
I', is the circulation around the second circle.
To avoid infinite velocities in the final solution, the points T, and T, must be stagnation points. Thus the
circulations are given by,

VedTOV(T) — Ve (T)Vo(Th)

. =
VTV (T) = Ve (T)Ve(T,)

(12)

and

_ M (MW(T) — N (B)V(Th)

I, = . 13
2 = Y TVATy) = Ve (TVel(Ty) (13)

In the calculation of the component flows, the line joining the centres of the two circles is an axis of
symmetry. The calculations are performed relative to this line. The flow about the two circles, relative to
the coordinate system which is used for the conformal mappings, is calculated by the introduction of a
virtual angle of incidence, é (see Section 3.2).

3. The Conformal Transformations
3.1. Karman-Trefftz Profiles

The conformal transformation

{—nc z—c|"
= 14
{+ nc z+c¢)’ (14)
maps a circle in the z-plane on to a Karman-Trefftz profile® in the {-plane (Fig. 3). The critical points
M(—c, 0) and N(c, 0) transform on to M'(—nc, 0) and N'(nc, 0) respectively. The point P, which subtends

an angle ¢ to the line M N, transforms on to the point P’, which subtends an angle n¢ to the line M'N".
The centre of the circle is

X = asinf, y=acosf —c,

where a is the radius of the circle,
¢ is the arbitrary length defining scale and
f is the angle between the radius, ON, and the x-axis.
The camber of the aerofoil is determined by the angle, §, and the thickness by the ratio, a/c. The trailing-
edge angle, 7, is (2 — m)r radians. Thus the Karman-Trefftz profile is completely defined by the para-
meters 8, k(= a/c), n.

3.2. Transformation of Two Circles

Two circles in the z-plane are transformed conformally on to two aerofoils in the {-plane in the
following manner. The first circle, radius a, has its centre at the point (¢, — acos §,, asin 8,), whilst the



second circle, radius b, has its centre at the point

(x5,¥,) = (fcosd + ¢, —acosf, fsind — asin f,)

where § is the angle of declination of the centre of the second circle to the centre of the first circle (see
Fig. 4).

The first circle is transformed on to a Karman-Trefftz profile for which the parameters of trans-
formation are 8,, k, and n, . The shape of the second circle is almost unchanged, since the Jacobian and
the area magnification factor of the transformation are nearly constant in this region.

The angle of flap deflection in the final configuration is required to be 7, thus the profiles are rotated
about the centre of the second circle, through an angle #, before the second circle is transformed on to a
Karman-Trefftz profile, with transformation parameters f,, k, and n,. The two aerofoils are then
transformed so that the leading edge of the first aerofoil is at the origin and the chord of the first aerofoil,
which is scaled to unity, lies along the £-axis.

The coordinates of the points T, and T,, which transform on to the trailing edge of the main aerofoil
and flap respectively, are given below

Tl TZ
x ¢, x, + bcos(—f, — #)
y 0 Yy, +bsin(—f, —7)

If g, is the speed at a point in the z-plane, then the speed, g,, at the corresponding point in the plane
of the two aerofoils is given by

B a,
U= {amidz| \dCjdm]

where m is the complex variable in the intermediate plane,
|dm/dz| is the Jacobian of the first transformation and
|d{/dm| is the Jacobian of the second transformation.

(1)

The pressure coefficient, C,, at the point is then calculated by the relationship,
C,=1-4q4. (16)

The forces normal and parallel to the axis, Cy and C 4 respectively, are calculated by integrating a
linear approximation of the pressure distribution.

4. Results

In all the following cases, the parameters of the two Karman-Trefftz transformations were kept con-
stant, since these parameters produced the required shapes. A different choice could have been used to
generate different shapes. The parameters for the transformation are given in Table 1(a). The first circle
was placed at the origin and had a radius of 1-096. The definition of the configuration was then com-
pleted by the specification of the position and radius of the second circle and the flap deflection.

4.1. Test Cases

The flow around two circles, for which the geometry is specified in Table 1(b), was calculated. The
position of the stagnation points fixed the circulation around the two circles and the values are given in
Table 1{(c). The pressure distributions for a flow at zero angle of incidence are shown in Figs. 5 and 6.



Figure 7 shows the streamlines about the two circles, which were determined by extensive calculation
of the stream function. Figure 8 gives configuration A, which results from a transformation of these
circles, associated with a flap deflection of 30 degrees. The pressure distributions about the main wing and
flap are given in Figs. 9 and 10. The coordinates and pressure coefficients are also given in Table 2(a).

To derive a configuration with a flap deflection of 10 degrees, two new stagnation points were specified
(see Table 1(d)). This produced the configuration B, of Fig. 8. The pressure distributions about this
configuration are given in Figs. 11 and 12. The coordinates and pressure distributions are again given in
Table 2(b).

The forces and circulations for the two configurations are given below. The total drag is zero, which is
consistent with the assumption of potential flow.

Main aerofoil Flap
C, Cp r C, Cp r
Configuration A
30° flap 2:9065 —0-3839 1.3909 0-8302 0-3838 0-4784
Configuration B
10° flap 1-6915 - 00898 0-8400 0-3366 00897 0-1745

4.2. Comparison with A. M. O. Smith Method

By way of an illustration of the use of these test cases, the flows around configurations A and B have
been calculated by the numerical method of A. M. O. Smith with 121 points on the main aerofoil and
61 points on the flap. The points were selected, at regular spacing around the aerofoil, by a cubic spline
interpolation®. Comparisons of the pressure distributions are given in Figs. 9, 10, 11 and 12, whilst the
forces and circulations are compared in Table 3. The comparisons for flap angles of 20 degrees and
40 degrees are also given. The pressure distributions around two circles are compared with the test cases in
Figs. 5 and 6.

The agreement with the exact solution is very good for the two circles; whereas the discontinuities in
slope and curvature at the trailing edges of both aerofoils cause small errors in the A. M. O. Smith method.
However, the errors are small enough for the A. M. O. Smith method to be used for the calculation of
potential flow about two aerofoils.

4.3. Variation of the Distance Between the Aerofoils

The nature of the solution at very large and very small separations was studied. In both situations, the
solutions for the limiting cases could be obtained from single aerofoil theory. The separation between the
aerofoils was measured by the parameter 4, the minimum distance between the perimeters of the circles.

The distance between the aerofoils was increased and the flow at 10 degrees incidence calculated.
In Fig. 13, the lift is plotted against the inverse of the parameter, d. It can be seen that the force on the wing
increases as the separation between the two aerofoils is decreased, whilst the force on the flap decreases
with the separation. The reduction in the force on the flap implies a reduction in adverse pressure gradient
on the flap. This will provide some compensation for the increased interference between the viscous
wake of the wing and the viscous layer on the flap, which was noted in some recent experiments®. The
flow about the single aerofoils was calculated by the Karman-Trefftz method?. In both cases this provided
the limiting value of the lifts obtained by the two aerofoil solution. At large separations one aerofoil does
not influence the flow around the second aerofoil, thus the result is trivial. However it provided a useful
means of checking the computer program developed for the method.



The distance between the aerofoils was reduced and the flow at 0 degrees incidence calculated. In
Fig. 14a it can be seen that the stream functions on both aerofoils approached the same limiting value
smoothly. The total lift on the two aerofoils also attained a maximum value before they touched (Fig. 14b).
The aerofoil shapes corresponding to d = 0-038 were faired together, producing a single stream surface.
The exact flow about this single aerofoil was calculated by the method due to Catherall, Foster and
Sells'®. The fairing was not expected to change the flow field greatly, since Fig. 14a indicated that the
streamline pattern would not be appreciably changed. The change in the flow field was reflected in a
small difference in total C, , but this comparison was still considered to be a useful check on the computer
program.

5. Conclusion

The transformation of two circles, by a double application of the Karman-Trefftz transformation,
produced satisfactory profiles. The flow about the two circles could be expressed analytically in the form
of an infinite series, which converged rapidly. A numerical approximation to any required degree of
accuracy was obtained by considering a sufficiently large number of terms from the series. The flow about
two particular configurations was calculated and these could be used as test cases for numerical methods.
The solution by the A. M. O. Smith method was compared with the exact solutions. The agreement was
good, confirming that the numerical method of A. M. O. Smith can be used for the calculation of potential
flow about two arbitrary aerofoils.
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LIST OF SYMBOLS
Centre of first circle
Inverse of 4 with respect to the second circle
Radius of first circle
Centre of second circle
Inverse of B with respect to the first circle
Radius of first circle
Arbitrary length defining scale
Integrated force parallel to axis
Integrated force parallel to direction of stream
Integrated force normal to direction of stream
Integrated force normal to axis
Pressure coefficient
Minimum distance between circles
Distance between the centres of the two circles
a/c
Critical point of Karman-Trefftz transformation

Transformed critical point, M

Complex variable of intermediate transformation plane

Critical point of Karman-Trefftz transformation
Transformed critical point, N

2 —1/m

Point on circle

Point on Karman-~Trefftz profile

Arbitrary positive integer

Point outside circle

Speed at a point in the {-plane

Speed at a point in the z-plane

Radius of circle

Complementary inverse point of first circle
Distance of § from centre of first circle
Sequence of inverse points in first circle

Limit of sequence {s,}

Complementary inverse point of second circle

Distance of T from centre of second circle
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LIST OF SYMBOLS (Contd.)
Sequence of inverse points in second circle
Limit of sequence {t,}
Point on circle which transforms onto the trailing edge
nth term in a series
pth partial sum of a series
Combination velocity
Velocity due to stream flow
Velocity due to a flow with unit circulation around the first circle
Velocity due to a flow with unit circulation around the second circle
Complex potential
Point inside first circle
Inverse of X, with respect to the second circle
Distance of X, from centre of first circle
Cartesian coordinates in the plane of the two circles
Centre of second circle
X + iy
Angle of incidence
Angle determining camber of Karman-Trefitz profile
Declination of centre of second circle with respect to the centre of the first circle
Arbitrarily small positive number
Circulation around circle
Angle of deflection of the flap
¢ + in, complex variable in physical plane
Trailing-edge angle
Angle subtended at point P by line MN
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APPENDIX I

Image of a Doublet and a Vortex in a Circle

The circle theorem is used to obtain the image systems of a doublet and a vortex in a circle. The circle

may, without loss of generality, be taken to have its centre at the origin and radius r.

(I.1)

Image of a Doublet
The complex potential of a doublet of unit strength and inclination, «, at a point g, outside the circle is
W= exp (zcx)'
z—4q

On introduction of the circle, |z| = r, the complex potential becomes

_exp(in) | exp(—in)
z—q) rz—q’

The complex potential is only defined to within a constant, thus it may be written

_exp (i)  exp(—in)
-9 (Pz-9

1
+ —exp{—ix
Py )

_eXp (i)

. 1 z
C—g T PEME T e

_exp (ia) . r? }
= T + exp( zoc){(——r2 g

The inverse point, ¢/, is defined such that r* = gq'.

_exp(io)  r*exp(—iv)
-9 ¢ -9

The image is a doublet of strength r?/g% and inclination, — =, at the inverse point.

Image of a Vortex

The complex potential of a unit vortex at a point, g, outside the circle, is

w=ilog(z — q).

On introduction of the circle, |z| = r, the complex potential becomes

7'2
w:ilog(z—q)—ilog(-—q)
)4

=ilog(z — q) + ilog(r2 i zq)

2
=ilog(z — q) + ilog(z) — ilog (z — %) + const.

(1.2)

(1.3)

(1.5)

The image system is a vortex of opposite sense at the inverse point and a vortex of the same sense at

the centre.

12



APPENDIX II
The Geometry of Two Circles

Consider two circles with their centres at A, the origin, and B(f, 0). Let their radii be a and b respec-
tively (see Fig. 1). Two points are defined as inverse points with respect to a circle, if the product of their
distances from-the centre is the square of the radius. Thus the points X, and X'| are inverse points with
respect to the second circle, because their distances from the centre are f — x, and b2/(f — x,) respectively.

The points S and T are called complementary inverse points, if S is the inverse of T with respect to the
first circle and T is the inverse of S with respect to the second circle. For this situation

a2

—f———b—z/—(ﬁ—s—) =S (Hl)

where s is the distance of S from the centre of first circle. Hence
f?—(@—-b*—fHs+a*f=0

and

@ = b + f3) + /(@ — b + 2 — 4d*f?
2f '

§ =

The roots define the distances of S and T from the centre of the first circle.
Consider the set of inverse points inside the first circle, which are defined by the repeated reflections
of the centres of the two circles (see Section 2.1). Let this sequence be {s,}, where

2 2 a2
§y =

f=®Nf = a*/f)

a

7‘,

_ a
Cf=vf

The terms s,, are reflections of an object at the centre of the first circle and the terms s,,, , originate
from the centre of the second circle.
All the inverse points lie inside the first circle, therefore

s, = SN R Y O — (I1.3)

s, < a. (I11.4)
Now
bz
f—=<7f
/
therefore
a? a?
— < e
f o f=-pv/f
ie.
5, < 8.
Similarty
5, < S3

13



APPENDIX II (Contd.)

and, in general,
S, < Spiq- (IL.5)

The sequence is monotonic increasing and bounded above, thus it converges to a limit, s .
The infinite continued fraction may be written in the following form

aZ

* T T 0 — 5.) (116

S

hence

fsE—@ —-b*+ s, +af=0

K0

and

(az — b2 4 fZ) + \/(az — b+ f2)2 _ 4a2f2
0 2f N

By comparison with equation (I1.2), it can be seen that the sequence of inverse points in each circle
will converge to a limit, which is the complementary inverse point for that circle.

14



APPENDIX III
Convergence of the Series for the Streaming Flow

The series for the complex potential of the streaming flow is

a®exp (i) b2 exp (ia) a*b? exp (— io)

-  Slz—-( =N

w = zexp(—ix) +

b2a® exp (— i) a*b*a? exp (i) b2a’b? exp (i)
a2 + b2\ 2 a2\ 2 B2 -
= fz( =

a*b%a’b? exp (—io)

———pm 7 - P (11L1)
/ (f“ 7) (f ~F bZ/f) ( - (f e bz/f)]))
Let
a* a? a?
R A 7 A Sy (2
and
b? b2 b?
h=F LETTap BT e (t13)

where s, represents an inverse point inside the first circle and ¢, represents an inverse point inside the
second circle. In Appendix I1, it was proved that the sequences {s } and {t,} tend to the limits s and ¢, the
complementary inverse points.

The series may be rewritten as

‘w| < |Z| N a_z N b2 . a2b2 N b2a2 2b2 2 N
- 2 lz—f1" fAe = =t Uz = s))l T =0 - )

+ bt o e ! + (11L4)
FU=sPie ==t U =0 = s 1z = (f = 1)) -
Now
|f|f| i < [flil b <1  (see Section 2.1).
Similarly

|b| |5}
< <1
If—sd |f—d
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APPENDIX IIT (Contd.)
therefore
a*>  b*  a*h*  bid? a*b?a® 1 b*a*h? 1
MSE G = - et
a*b*a’b? 1

TS —arid

(11L.5)

Now Dirichlet’s theorem states that the sum of a series of positive terms is the same in whatever order
the terms are taken, thus rearranging

a’>  a*h? a*h?a® 1 a’b?a’b? 1
W <zl +— +

A T - - —ar T

N b? N b%a? N b%a?h? 1 N
14 Sz fAS -l

This series is convergent by the ratio test. Thus, by comparison, the series for the complex potential
of the stream flow is absolutely convergent.

(I11.6)
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APPENDIX IV
Convergence of Series for the Circulating Flow

The series for the complex potential of a flow with unit circulation around the first circle is

w=ilogz +ilog(z— f)—ilo {z——( —b—z)}+ilo {z-(—-—i——)}—ilo {z—a—2}+
=ilogz g g 7 2 75T g 7
(Iv.1)

This series may be rewritten as

w=ilogz + ilog(z — f) —ilog(z — (f — t;)) + ilog(z — 5;) — ilog(z —s;) + ...
where

lim (f —t)=f—t

n—+co
and

lim s, = s (see Appendix III).

n—ro

In general, the modulus of terms in this series do not approach zero. Thus the series is not absolutely
convergent (Abel’s theorem''). The series is either conditionally convergent or absolutely divergent.
A conditionally convergent series can always be so rearranged as to converge to any sum whatever, or to
diverge. By reference to the physical definition of this series, the terms must be grouped in the following
fashion

w=ilogz + {ilog(z — f) —ilog(z — (f — t)))} + {ilog(z — s,) —ilog(z — s;)} + ..., (IV.3)

where each grouping represents the addition of one set of images. This series may be expressed more
concisely as

s . Z—f - . Z — Sn . Z"“(f_th)
w=ilogz+ ilog {————————Z — 7 tl)} + n; |:zlog {—————~Z — SZn—l} + ilog {——Z = t2n+1}i|. (IV.5)

Now
Jim {—Z—l} —1 (IV.5)
n—w (Z = Sy,-1
and
: zZ— (f - th) }
lim {—————=% % =1, V.6
S (V6)

In general, the modulus of the terms in this series approaches zero. This is a necessary condition for
convergence.
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APPENDIX IV (Cont))

The series may be rewritten as

W:i]ogz+i10g{z;f)} + Z ilOg{l-{—Szn_l _SZn} +
1

Z_(f_t n=1 Z = S5
+§n%*+—ﬁi@ﬁ—} (IV.7)
n=1 zZ— (f - t2n+1)
It can be shown that the series ) *_ log (1 + u,) converges absolutely if, and only if, the series Y lu is
convergent!?!,
Let
San-1 T Son __ u, (IV.8)
Z — Sap-1
and
P
v,= ) U, (Iv.9)

Now for the region outside the first circle

|Z_Snl>|a_s|a

therefore

Sap—1 — Sa4 < 'SZn—l - SZﬂl (IV 10)
la—s '

z = SZn— 1
There exists a positive integer N, such that for all values of n = N and for all positive integer values of p

S2m+p—1)—1 ~ S2tn+p-1)
a—s

San+p)-1 — S200+p)
a—s

Soan—1 " 52
a —

Woin — Vil < + + ...+ (Iv.1n)

Now {s,} is convergent, thus for all [(a — s)¢/p] > 0, where ¢ is an arbitrarily small positive number,
and foralln = N

mﬂ—m<m;m. Iv.12)

Thus equation (IV.11) becomes

(a—sk 1
@5 °

|V

pt+n

- V] <

fl

(IV.13)

The sequence of partial sums of the series ) |u,| is convergent, therefore the series Y |u,| is convergent.
Similarly it can be proved that

Z llog {1 + th - t2n+1 }

n=1 z—(f — tane1)
is convergent and it follows that the series (IV.7) is convergent. In summary, the rearrangement of the

series for the circulating flow, which is suggested by the physical definition of the problem, is absolutely
convergent.
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TABLE 1

(a) Parameters for transformations

B k T
First transformation 0-001 1.096 | 0-17279
Second transformation 0-08725 1-15 017279

(b) Geometry of circles
First circle Second circle

X 00 1.9
Centre { Y 00 _04
Radius 1-096 05

(¢) Configuration A: 30° flap

Stagnation point X 1.0727 24015
ghation pomnts 4 y 0-2247 —0-1963

Circulation 5-169 1.778

(d) Configuration B: 10° flap

Stagnation point X 1.0727 2:4409
£ pomnts 4y 02247 — 00271

Circulation 3.154 0-655
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TABLE 2(a)

Configuration A : Main Aerofoil

¢ n ¢,
099931 000612 | —004022
099417 000748 023687
098434 0-00903 0-50061
096975 000941 067369
094998 000766 075477
092461 000361 077689
089358 | —0:00236 076914
085728 | —000965 074766
081639 | —0-01771 072058
077169 | —0-02612 0-69205
072396 | —003451 0-66437
067396 | —0.04261 063898
062240 | —005018 0-61699
056993 | —005699 0-59936
051716 | —006287 0-58708
046466 | —0.06766 0-58115
041297 | —007214 0-58264
036259 | —007350 0-59271
031398 | —0-07438 061252
026759 | —007386 064327
022381 | —007194 0-68596
0-18304 | —0-06866 074118
014563 | —006409 0-30830
011190 | —005833 0-88385
008214 | —005151 095724
005663 | —0-04378 099969
003560 | —0-03530 093296
001927 | —002625 0-53705
000783 | —001681 | —079779
000143 | —000714 | —4.20249
000017 000264 | —8-34989

g n Cp
000409 001242 | —8.73166
001311 002211 | —7.14534
002707 003155 | —573037
004582 004056 | —4.73940
0:06914 004898 | —4.05084
009681 005663 | —3:55471
012857 006335 | —318166
0-16414 006902 | —2:88974
020321 007352 | —265315
024543 007678 | —2:45564
029044 007875 | —2:28674
033785 007942 | —2:13965
038724 007881 | —2.00992
043814 007700 | —1-89477
049010 007408 | —1-79260
054258 007019 | —1.70272
0-59507 006550 | —162525
0-64697 006020 | —1-56109
0-69769 005453 | —1:51204
074656 004870 | —148106
079290 004293 | —147265
083597 003743 | —149342
087501 003232 | —155225
090929 002762 | —165810
093815 002323 | —1-80900
096122 001893 | —1.95727
097850 001458 | —195374
099043 001041 | —1-60169
099753 000718 | —002119
1-00000 000590 1:0000
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TABLE 2(a) (Contd.)
Configuration A: Flap

¢ n ¢,
131360 | —020335 061683
131121 | —0-20083 062318
130635 | —0-19598 064997
129886 | —0-18893 067827
128864 | —0-17996 070420
127564 | —0-16939 072668
125995 | —015765 074560
124177 | —014518 076122
122146 | —0-13243 077401
119948 | —0-11982 078457
117640 | —0-10766 079358
1115285 | —009619 0-80184
112944 | —0-08553 081022
110676 | —007572 0-81976
108535 | —006674 083159
106565 | —0-05854 0-84699
104799 | —005105 086722
103263 | —004423 089341
101972 | —003807 092597
100930 | —003258 096308
100134 | —002781 099520
099572 | —002381 098154
099226 | —002065 071658
099073 | —001835 | —1.17476
099087 | —001686 | —575997
099242 | —001604 | —285918
099508 | —001571 | —1.43049
099864 | —001569 | —0-89891
100295 | —001582 | —070367
100797 | —001598 | —068332
101372 | —001607 | —077990

21

¢ n c,
102027 | —001609 | —096299
102768 | —001606 | — 120757
103600 | —001610 | —1-48844
104527 | —001631 | —1.78052
105548 | —001684 | —206103
106658 | —001785 | —231124
107852 | —001946 | —2:51744
109119 | —002181 | —267093
1110447 | —002499 | —276751
111824 | —002909 | —280664
[-13235 | —003415 | —2.79067
114667 | —004020 | —272396
116103 | —004725 | —2:61232
1117532 | —005525 | —2:46235
118938 | —006416 | —228112
120310 | —007391 | —207571
121637 | —008439 | —185307
122907 | —009548 | —161970
124112 | —0-10704 | —1-38159
125245 | —0-11891 | —1-14405
126298 | —0-13090 | —091168
127267 | —0-14281 | —068829
128147 | —0-15440 | —0-47687
128934 | —0-16544 | —027961
129624 | —0-17566 | —009789
130214 | —0-18476 006777
130697 | —0-19245 021788
131064 | —0-19840 035456
131303 | —020226 048483
131389 | —0:20363 10000




TABLE 2(b)

Configuration B: Main Aerofoil

¢ n ¢,
0-99909 —0-02602 0-58198
0-99238 —0-02395 0-67724
0-97992 —0-02084 0.75444
0-96239 —0-01796 0-78703
094007 | —0-01646 0-77650
091295 | —0.01692 0-73463
0-88103 | —0.01938 067631
0-84454 1 —0.02333 061326
0-80395 | —0-02892 0-55202
075984 | —0.03509 0-49525
071287 | —0-04167 0-44372
066372 | —0-04828 0-39755
061304 | —0-05463 0-35678
0-56146 | —0-06045 0-32161
0-50955 —0-06551 0-29245
045790 | —0-06936 0-26996
0-40701 —-0-07266 0-25500
035739 | —0.07447 0-24869
0-30950 —0:07499 0-25236
0-26377 —0-07418 0-26767
0-22062 —0-07204 0-29658
0-18042 —0:06859 0-34148
0-14353 | —0-06390 0-40522
0-11026 | —0-05806 0-49105
0-08092 | —0-05120 0-60201
0-05576 —0-04346 0-73856
0-03503 —0-03501 0-88939
001894 | —0-02601 0-99722
000767 | —0-01664 0-83680
000138 | —000706 | —0-22489
0-00018 000260 | —2-28898

22

¢ n C,
0-00409 001226 | —3-28388
001303 002179 | —3-13648
0-02687 003106 | —2-77164
0-04543 003989 | —2-45446
0-06852 004811 | —2.20772
009589 005554 | —2.01489
011111 005892 | —1.93332
0-14445 0-06489 | —1.79172
0-18139 006972 | —1-67118
0-22162 007332 | —1.56525
0-26478 007563 | —1-46976
0-31051 007660 | —1.38202
0-35839 007623 | —1.30038
0-40798 007457 | —1.22392
0-45884 007168 | —1.15226
0-51048 006765 | —1.08542
0-56237 006263 | —1-02376
0-61396 005676 | —0-96791
0-66469 005023 | —0-91876
071393 004321 | —0-87738
0-76106 003587 | —0-84494
0-80541 002837 | —0-82224
0-84632 002081 | —0-80861
0-88315 001325 | —0-79910
091535 000567 | —0.77853
094252 | —0:00197 | —0-71361
096450 | —0-00956 | —0-55677
098131 | —0-01669 | —0-28615
099297 | —0-02249 0.05224
0.99916 | —0-02586 0-39390
1-0000 —0:02632 1-0000




TABLE 2(b) (Contd.)
Configuration B: Flap

¢ n C,
133316 | —0-13394 0-48606
1-33007 | —0-13261 046862
132393 | —0-13013 0-48011
131469 | —0-12671 0-49580
1-30236 | —0-12259 0-50996
128708 | —0.11808 0-52043
1-26907 | —0-11347 0-52623
1-24868 | —0-10904 0-52686
122636 | —0-10504 0-52209
1-20264 | —0-10161 0-51182
1.17808 | —0.09883 0-49604
115326 | —0:09667 0-47483
1-12872 | —0.09504 0-44837
1-10495 | —0:09379 0-41696
108240 | —0.09273 0-38108
106141 | —009169 0-34141
104227 | —0:09049 0-29886
102520 | —0-08902 0-25460
101037 | —0-08718 021011
099789 | —0.08495 0-16732
098782 | —0.08235 0-12944
098017 | —0.07947 0-10470
097490 | —0.07642 0-12388
097194 | —0.07335 0-30980
097114 | —0.07039 0-80403
097228 | —006766 0-99609
097506 | —006525 0-88061
097917 | —006323 0-76871
098428 | —0.06159 0-69482
099013 | —006027 0-64346
099653 | —0.05914 0-59892

23

¢ 1 o
1100337 | —0-05808 0:54813
101064 | —0-05692 047988
101840 | —0-05560 038539
102675 | —0:05407 025970
103580 | —0:05237 0-10305
104565 | —005058 | —0.07900
105637 | —004885 | —0-27669
106798 | —004730 | —0-47804
108046 | —004611 | —0-67091
109377 | —004540 | —0-84461
110781 | —004531 | —0.99080
112249 | —004594 | —1-10388
1113766 | —004737 | —1.18089
1115321 | —004963 | —1-22115
116897 | —005276 | —1-22586
118481 | —005673 | —1-19765
1220056 | —006152 | —1-14016
121610 | —006704 | —1-05764
123126 | —007322 | —0.95469
124592 | —007992 | —0-83600
125994 | —0:08700 | —0-70610
127319 | —009429 | —0.56925
128553 | —0-10161 | —042927
129683 | —0-10873 | —0.28945
130696 | —0-11544 | —0.15242
131575 | —0-12149 | —0.02002
132303 | —0-12663 010702
1132861 | —0-13061 0-23002
133223 | —0-13318 035684
133352 | —0-13408 1-0000




TABLE 3

Main aerofoil Flap Total
Cy C, C¥ r Cy C, Ct r CE*

I_Exact 1.6915 —0-08979 1.6915 0-8400 0-3366 0-08965 0-3366 0-1745 2:0290
Z\l\zllCl)g =0 16710 —0-0891 16710 0-8322 0-3148 0-0831 0-3148 0-1723 2:0092
Exact 3.0849 —0-7120 31617 1.5521 0-4043 0-0967 0-3814 0-2203 3.5448
nAl\zfl(.l)% =10 3-0515 —0-7047 3-1275 1-5440 0-3812 0-0893 0-3583 0-2189 35259
Exact 2-3119 -0-2125 23119 11233 0-5936 0-2124 0-5936 0-3301 2:9068
ZI\__/[ég =0 2-2859 -0-2093 22859 1-1143 0-5649 0-1966 0-5649 0-3274 28835
l_Exact 2-9065 —0-3839 2.9065 1-3909 0-8302 0-3838 0-8302 0-4784 3-7386
nAI\:/IéOS, =0 2-8700 —0-3752 2-8700 1.3777 0-7984 0-3559 0-7984 04737 3.7029
Exact 4.2207 —1.2625 4.3758 2.0687 0-8392 0-3703 0-7622 0-5015 5-1404
11\7(3)% =10 4-1751 —1.2425 4.3274 2.0558 0-8080 0-3423 0-7363 04975 5-1065
Exact 3-4442 —0-5951 34442 1.6332 1-0481 0-5948 1.0481 0-6142 4.4948
7=40°%0=0
AMOS 3-4006 —0-5791 3-4006 1-6169 1.0260 0-5629 1.0260 0-6688 4.4515

* Based on integration of pressures.
** Based on overall circulation round the two aerofoils.
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a First reflection

b Second reflection

¢ Third reflection

F1G. 2a—c. Vortex image system.
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Fic. 3. Karman-Trefftz transformation.
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FiG. 4a—c. Karman-Trefftz transformations.
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F1G. 7. Streamlines around two lifting circles.

Conflguration A flap deflection 30°
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Configuration B, flap deflection 10°

Fi1G. 8. Configuration A and B.
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F1G. 9. Pressure distribution for main aerofoil of configuration A. Flap deflection 30°. Incidence 0°.

32



£¢

-0

N .
CP - §‘78 X X X
min x
AN
/ \
/ “\
( x
/ x |[AMO Smith solution
| r x - | Exact solution
x \
Vi
3
X
x
x
9 o) 11 -2 X Y- § 5
X
X

bood
x

% b 4 x X X X = ﬁ

[

Fig. 10. Pressure distribution for flap of configuration A. Flap deflection 30°. Incidence 0°.



X [AMQ Smith solubion
- |Exact solubion

\‘\"x\‘
.’Nm\mk‘
T
-1-0 el N "
X~H_
K [oB] 02 03 04 [*4-] (+1"] 07 68 8 {-Q

" s R

LY ol Lol e o
M}’ -th.x—x"kx..h”__ X
o r A
K*\: 5’

K]

FiG. 11.  Pressure distribution for main aerofoil of configuration B. Flap deflection 10°. Incidence 0°
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F1G. 12.  Pressure distribution for flap of configuration B. Flap deflection 10°. Incidence 0°.
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