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Summary 

A method for calculating the incompressible potential flow about two particular aerofoil sections is 
presented. The potential flow about two lifting circles is calculated by the method of images, and the two 
circles are mapped conformally on to two aerofoils by a double application of the Karman-Trefftz 
transformation. The results for the test cases are then compared with those from a numerical method, 
which uses a surface distribution of sources. 
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1. Introduction 

At present, the plane incompressible potential flow about two lifting aerofoils is calculated by numerical 
methods. These methods can be applied to aerofoils of arbitrary shape. However, no exact analytic 
solution is generally available to evaluate the accuracy of these methods. This Report presents a method 
of calculating an exact solution for particular configurations. The potential flow about two lifting circles 
is calculated, and the circles are then transformed conformally on to two aerofoils. 

Previously, the potential flow about two lifting circles had been calculated by a method due to M. 
Lagally 1. The region outside the two circles was transformed conformally on to a rectangular region. 
The complete flow was then determined by developing the image system in the sides of the rectangle. 
H. Strassl 2 transformed two circles on to two aerofoils, by a double application of the Karman-Trefftz 

transformation 3. 
The method for the calculation of the flow about two circles was very complex, involving the use of 

elliptic functions. E. C. Maskell 4 indicated that the inherent symmetry of two circles could be used to 
establish a simpler solution in the plane of the two circles. This method for calculating the potential 
flow about two lifting circles is presented here. In fact, it was found subsequently, that W. Mtiller s had 
used a similar method to calculate the potential flow of a uniform stream about two nonlifting circles. 

The two circles are then transformed on to two aerofoils and, by suitable choice of parameters, these 
may be made to resemble the wing-flap configurations used in the current work on high-lift devices 6. 
Such configurations provide the desired test case, and thi~ is illustrated by a comparison with the results 
of the numerical method of A. M. O. Smith v. The opportunity has been taken to examine the behaviour 
of solutions with large and small distances between the aerofoils. At either extremity, solutions for the 
limiting case can be obtained from single aerofoil theory~and these are used as a check on the given 
method. 

p 

2. Flow About Two Lifting Circles 

The equations governing a potential flow are linear, thus solutions can be superposed. The flow around 
two lifting circles is calculated in three components:  a streaming flow past both circles, a flow with a unit 
circulation around the first circle, and one with a unit circulation around the second circle. 

2.1. The Streaming Flow 

A uniform stream of unit speed is represented at the complex point z, by a complex potential, 
w = z exp ( - i~), where a is the angle of incidence of the stream to the line joining the centres of the circles 
(Fig. 1). The circle theorem 8 states that if a circle, [zl = a, is introduced into a flow, represented by the 
complex potential, w = f ( z ) ,  then the complex potential becomes 

Thus the complex potential for the flow about a circle, [z[ = a, in a uniform stream is 

(1) 

a 2 exp (i~) 
w = z exp ( - i~) + (2) 

Z 

The image system is a doublet of strength a 2 at A, the centre of the circle, which is the inverse of the 
point at infinity with respect to the first circle. 

Now the second circle, [z - f l  = b, is introduced into the flow. The circle theorem is again applied to 
all singularities lying outside the second circle (see Appendix I). The complex potential becomes 

a 2 exp (i~) b 2 exp (i~) a2b 2 exp ( -  i~) 
w = z exp ( - i~) + + (3) 

z (z - f )  f 2 ( z  - ( f  - ba / f ) ) "  
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The additional terms can be interpreted as the image system which is formed by the reflections of the 
doublets outside the second circle. The reflection of the doublet at infinity is a doublet of strength b 2 at 
B, the centre of the second circle and the reflection of the doublet of strength a 2, at the centre of the 
first circle, is a doublet of strength a2b2/f 2 at A', the inverse point of the centre with respect to the 
second circle. 

Now the first circle is not a streamline, thus the circle theorem is again applied to all the singularities 
outside the first circle, giving the complex potential 

a 2 exp (ic 0 b 2 exp (ia) aZb 2 exp ( - ia) 
w = z e x p ( - i c  0 + + 

z (z - f f 2 ( z  - ( f  - b 2 / f ) )  

bZ a 2 exp ( -  ia) aZb2 a 2 exp (ie) 

- f Z ( z  _ a 2 / f )  + f 2 ( f  _ b2 / f )2 ( z  _ ( a 2 / ( f _  b2 / f ) ) )  • (4) 

This produces two new doublet images, which are the reflections of the images produced in the second 
circle by the previous step. This process is repeated and after each step either the first or the second circle 
is a streamline. Each reflection entails the addition of two image doublets. The set of images can be split 
into two groups; the first group being formed by repeated reflections of an object doublet at the centre of 
the first circle, and the second group originating from an object at the centre of the second circle. The 
strengths of the doublets in the first group are a 2, a 2 b 2 / f  2, a 2 b Z a Z / f 2 ( f  - b 2 / f )  2 . . . .  , whilst the second 
group consists of doublets strength b 2, b Z a Z / f  2, b 2 a 2 b 2 / f z ( f  - a 2 / f ) 2 , . . . .  

The strength of a doublet is changed by a factor ( a / ( f  - t,)) 2 for reflections in the first circle and by a 
factor ( b / ( f  - s,)) 2 for reflections in the second circle, where s, and t, are the nth convergents of the con- 
tinued fractions representing the distance of an object doublet from the centre of the first and second 
circles respectively (see Appendix III). Firstly, considering only reflections in the first circle, the object 
doublet lies inside the second circle, thus 

t, < b, 

therefore 

a a 

( f -  t.) f -  b 
(5) 

The circles do not overlap, thus 

f - b > a ,  

therefore 

Similarly it can be shown that 

a 

f----~ < 1. (6) 

b b 
- - <  - - < 1 .  
f - s ,  f - a  

After 2n reflections, the strength of a doublet from the first group is less than a2{aZ / ( f  - b)2}" × 
{ b Z / ( f -  a)2} .. 

Now 

ima2 [(f_---L-~J [ ( f _  a)ZJ = O. (7) 



The strength of the doublets, which are added after each .reflection, is monotonic decreasing and 
approaches zero. After several reflections, the new image doublets will only slightly change the complex 
potential of the system. This establishes a necessary condition for the series to converge to the complex 
potential for the streaming flow past two circles. The proof of a sufficient condition for convergence is 
given in Appendix III. 

2.2. The Circulating Flow 

A flow with unit circulation around the first circle is constructed by placing a unit vortex at A, the 
centre of the first circle (Fig. 2). The second circle is now introduced into the flow and is made into a 
streamline by use of the circle theorem (see Appendix 1) which gives the complex potential 

w = i l o g z  + i l og ( z  - f )  - i log (z - ( f - f ) ) ,  (8) 

where ( f  - b2/ f ) ,  A', is the inverse of the centre of the first circle with respect to the second circle. 
The image system consists of a vortex, strength - 1, at the inverse point and a vortex, strength + 1, at the 
centre. Thus there is no circulation around the second circle. 

Now the first circle is not a streamline and the circle theorem is again applied to all the singularities 
outside the first circle, giving the complex potential 

a 2 

s b2js). (9) 

where a2/ f  B', is the inverse of the centre of the second circle with respect to the first circle and 
a2/ ( f  - b 2 / f ) i s  the inverse of ( f  - bZ/ f )  with respect to the first circle. The image system consists of a 
vortex, strength + 1, at aZ/(f  - bZ/ f ) ;  a vortex, strength - 1 ,  at a2 / f  and two vortices of opposite 
strength at the centre, which cancel each other out. 

This process is repeated, alternatively making the first and second circles streamlines. Unfortunately 
the strength of the vortices does not diminish after each reflection. However, each reflection effectively 
entails the addition of two vortices of opposite sense at inverse points in one of the circles. In Appendix II, 
it is shown that the set of inverse points in a circle converges on to the complementary inverse point. 
Thus the image system which is added after each reflection, approaches a vortex doublet, for which the 
complex potential is zero. This constitutes a necessary condition for the complex potential of the above 
system to converge to the complex potential for a flow with unit circulation around the first circle. A proof 
of sufficiency is given in Appendix IV. A similar method is used to determine the complex potential for 
a flow with unit circulation around the second circle. The series for the streaming and circulating flows 
converge rapidly, and in all the calculations the series are truncated, when the variation in the complex 
potential, due to the addition of the next term, is less than 10 -8. The resulting values represent a good 
numerical approximation to the exact value of the complex potential. The numerical approximation can 
be made as close to the exact value, as is desired, by increasing the number of terms in the truncated part 
of the series. 

2.3. The Combination Flow 

The complete flow around the two circles is a linear combination of the three component solutions. The 
coefficients of the linear combination, the circulations, are determined by considering the velocities at 
the points T~ and T 2, where T~ and T 2 are the points on the two circles which transform on to the trailing 
edges of the two aerofoils. The velocities at these points are given by 

V(T,) = Vo(T1) + r ,  VrI(TO + r2vr2(T ~) (10) 



and 

V(Tz) = Vo(T2) + F1Vr~(T2) + F2Vr~(T2), (11) 

where V 0 is the velocity due to the stream flow, 
Vr~ is the velocity due to a unit circulation around the first circle, 
Vr2 is the velocity due to a unit circulation around the second circle, 
Ft is the circulation around the first circle and 
F 2 is the circulation around the second circle. 

To avoid infinite velocities in the final solution, the points Tt and T z must be stagnation points. Thus the 
circulations are given by, 

and 

r l  = ~ ( L ) ~ ( ~ ) -  ~ ( ~ ) ~ ( ~ )  (12) 

VrI(TOVo(T2)- Vr~(T2)Vo(TO 
r2 = vrfr~)vr2(T0 Vr,(T,)VF2(T~)" (13) 

In the calculation of the component flows, the line joining the centres of the two circles is an axis of 
symmetry. The calculations are performed relative to this line. The flow about the two circles, relative to 
the coordinate system which is used for the conformal mappings, is calculated by the introduction of a 
virtual angle of incidence, 6 (see Section 3.2). 

3. The Conformal Transformations 

3.1. Karman-Trefftz Profiles 

The conformal transformation 

~ - n c  _ ~ z  - c ~ "  

+ nc [z - -~cJ  ' (14) 

maps a circle in the z-plane on to a Karman-Trefftz profile 3 in the ~-plane (Fig. 3). The critical points 
M ( -  c, 0) and N(c, 0) transform on to M'( - nc, 0) and N'(nc, 0) respectively. The point P, which subtends 
an angle q5 to the line M N ,  transforms on to the point P', which subtends an angle n~b to the line M'N' .  
The centre of the circle is 

x = asinf l ,  y = acosf l  - c, 

where a is the radius of the circle, 
c is the arbitrary length defining scale and 
fl is the angle between the radius, ON, and the x-axis. 

The camber of the aerofoil is determined by the angle, fl, and the thickness by the ratio, a/c. The trailing- 
edge angle, z, is (2 - n)Tr radians. Thus the Karman-Trefftz profile is completely defined by the para- 
meters fl, k(= a/c), n. 

3.2. Transformation of  Two Circles 

Two circles in the z-plane are transformed conformally on to two aerofoils in the ~-plane in the 
following manner. The first circle, radius a, has its centre at the point (c 1 - a cos 1~1, a sin riO, whilst the 



second circle, radius b, has its centre at the point 

( x 2 , Y 2 )  = ( fcos  6 + c l - a c o s ~ l , f s i n 6  - asin/~ 1) 

where 3 is the angle of declination of the centre of the second circle to the centre of the first circle (see 

Fig. 4). 
The first circle is transformed on to a Karman-Trefftz profile for which the parameters of trans- 

formation are/~1, kl and nl. The shape of the second circle is almost unchanged, since the Jacobian and 
the area magnification factor of the transformation are nearly constant in this region. 

The angle of flap deflection in the final configuration is required to be ~/, thus the profiles are rotated 
about the centre of the second circle, through an angle ~/, before the second circle is transformed on to a 
Karman-Trefftz profile, with transformation parameters /~2, k2 and n 2. The two aerofoils are then 
transformed so that the leading edge of the first aerofoil is at the origin and the chord of the first aerofoil, 
which is scaled to unity, lies along the ~-axis. 

The coordinates of the points T~ and T 2, which transform on to the trailing edge of the main aerofoii 
and flap respectively, are given below 

T2 

X c 1 

y 0 

x2 + b cos ( -/~2 - ;/) 

Y2 + b s in(- f l2  - F/) 

If qz is the speed at a point in the z-plane, then the speed, q~, at the corresponding point in the plane 
of the two aerofoiis is given by 

qz (15) 
q; = Idm/dzl Id~/dml 

where m is the complex variable in the intermediate plane, 
[dm/dzl is the Jacobian of the first transformation and 
[d~/dml is the Jacobian of the second transformation. 

The pressure coefficient, Cp, at the point is then calculated by the relationship, 

Cp = 1 - q~. (16) 

The forces normal and parallel to the axis, CN and Ca respectively, are calculated by integrating a 
linear approximation of the pressure distribution. 

4. Results 

In all the following cases, the parameters of the two Karman-Trefftz transformations were kept con- 
stant, since these parameters produced the required shapes. A different choice could have been used to 
generate different shapes. The parameters for the transformation are given in Table l(a). The first circle 
was placed at the origin and had a radius of 1.096. The definition of the configuration was then com- 
pleted by the specification of the position and radius of the second circle and the flap deflection. 

4.1. Test Cases 

The flow around two circles, for which the geometry is specified in Table l(b), was calculated. The 
position of the stagnation points fixed the circulation around the two circles and the values are given in 
Table l(c). The pressure distributions for a flow at zero angle of incidence are shown in Figs. 5 and 6. 



Figure 7 shows the streamlines about the two circles, which were determined by extensive calculation 
of the stream function. Figure 8 gives configuration A, which results from a transformation of these 
circles, associated with a flap deflection of 30 degrees. The pressure distributions about the main wing and 
flap are given in Figs. 9 and 10. The coordinates and pressure coefficients are also given in Table 2(a). 

To derive a configuration with a flap deflection of 10 degrees, two new stagnation points were specified 
(see Table l(d)). This produced the configuration B, of Fig. 8. The pressure distributions about this 
configuration are given in Figs. 11 and 12. The coordinates and pressure distributions are again given in 
Table 2(b). 

The forces and circulations for the two configurations are given below. The total drag is zero, which is 
consistent with the assumption of potential flow. 

Main aerofoil Flap 

CL Co F CL Co F 

Configuration A 
30 ° flap 2-9065 - 0-3839 1 . 3 9 0 9  0-8302 0.3838 0.4784 

Configuration B 
I 0 ° flap 1-6915 - 0.0898 0.8400 0.3366 0.0897 0.1745 

4.2. Comparison with A. M. O. Smith Method 

By way of an illustration of the use of these test cases, the flows around configurations A and B have 
been calculated by the numerical method of A. M. O. Smith with 121 points on the main aerofoil and 
61 points on the flap. The points were selected, at regular spacing around the aerofoil, by a cubic spline 
interpolation 9. Comparisons of the pressure distributions are given in Figs. 9, i0, 11 and 12, whilst the 
forces and circulations are compared in Table 3. The comparisons for flap angles of 20 degrees and 
40 degrees are also given. The pressure distributions around two circles are compared with the test cases in 
Figs. 5 and 6. 

The agreement with the exact solution is very good for the two circles; whereas the discontinuities in 
slope and curvature at the trailing edges of both aerofoils cause small errors in the A. M. O. Smith method. 
However, the errors are small enough for the A. M. O. Smith method to be used for the calculation of 
potential flow about two aerofoils. 

4.3. Variation of the Distance Between the Aerofoils 

The nature of the solution at very large and very small separations was studied. In both situations, the 
solutions for the limiting cases could be obtained from single aerofoil theory. The separation between the 
aerofoils was measured by the parameter d, the minimum distance between the perimeters of the circles. 

The distance between the aerofoils was increased and the flow at 10 degrees incidence calculated. 
In Fig. 13, the lift is plotted against the inverse of the parameter, d. It can be seen that the force on the wing 
increases as the separation between the two aerofoils is decreased, whilst the force on the flap decreases 
with the separation. The reduction in the force on the flap implies a reduction in adverse pressure gradient 
on the flap. This will provide some compensation for the increased interference between the viscous 
wake of the wing and the viscous layer on the flap, which was noted in some recent experiments 6. The 
flow about the single aerofoils was calculated by the Karman-Trefftz method 3. In both cases this provided 
the limiting value of the lifts obtained by the two aerofoil solution. At large separations one aerofoil does 
not influence the flow around the second aerofoil, thus the result is trivial. However it provided a useful 
means of checking the computer program developed for the method. 



The distance between the aerofoils was reduced and the flow at 0 degrees incidence calculated. In 
Fig. 14a it can be seen that the stream functions on both aerofoils approached the same limiting value 
smoothly. The total lift on the two aerofoils also attained a maximum value before they touched (Fig. 14b). 
The aerofoil shapes corresponding to d = 0-038 were faired together, producing a single stream surface. 
The exact flow about this single aerofoil was calculated by the method due to Catherall, Foster and 
Sells 1°. The fairing was not expected to change the flow field greatly, since Fig. 14a indicated that the 
streamline pattern would not be appreciably changed. The change in the flow field was reflected in a 
small difference in total CL, but this comparison was still considered to be a useful check on the computer 
program. 

5. Conclusion 

The transformation of two circles, by a double application of the Karman-Trefftz transformation, 
produced satisfactory profiles. The flow about the two circles could be expressed analytically in the form 
of an infinite series, which converged rapidly. A numerical approximation to any required degree of 
accuracy was obtained:by considering a sufficiently large number of terms from the series. The flow about 
two particular configurations was calculated and these could be used as test cases for numerical methods. 
The solution by the A. M. O. Smith method was compared with the exact solutions. The agreement was 
good, confirming that the numerical method of A. M. O. Smith can be used for the calculation of potential 
flow about two arbitrary aerofoils. 



A 

A' 

15l 

B 

B' 

b 

C 

Ca 

Co 

CL 

CN 

Cp 

d 

f 

k 

M 

M' 

m 

N 

N' 

gt 

P 

p, 

P 

q 

q{ 

qz 

F 

S 

S 

(s,,} 
Sco 

T 

t 

LIST OF S~Y'IV[BOLS 

Centre of first circle 

Inverse of A with respect to the second' circle 

Radius of first circle 

Centre of second circle 

Inverse of B with respect to the first circle 

Radius of first circle 

Arbitrary length defining scale 

Integrated force parallel to axis 

Integrated force parallel to direction of stream 

Integrated force normal to direction of stream 

Integrated force normal to axis 

Pressure coefficient 

Minimum distance between circles 

Distance between the centres of the two circles 

a/c 

Critical point of Karman-Trefftz transformation 

Transformed critical point, M 

Complex variable of intermediate transformation plane 

Critical point of Karman-Trefftz transformation 

Transformed critical point, N 

2 - ~/n 

Point on circle 

Point on Karman-Trefftz profile 

Arbitrary positive integer 

Point outside circle 

Speed at a point in the ~-plane 

Speed at a point in the z-plane 

Radius of circle 

Complementary inverse point of first circle 

Distance of S from centre of first circle 

Sequence of inverse points in first circle 

Limit of sequence {s.} 

Complementary inverse point of second circle 

Distance of T from centre of second circle 



{t.} 
t~  

T~(i = 1, 2) 

U n 

v. 

V 

Vo 
vr, 

v< 

w 

XI 

x', 

x1 

x, y 

x2 ,  Y2 

z 

6 

g 

Fi(i = 1, 2) 

T 

LIST OF SYMBOLS (Contd.) 

Sequence of inverse points in second circle 

Limit of sequence {t.} 

Point on circle which transforms onto the trailing edge 

nth term in a series 

pth partial sum of a series 

Combination velocity 

Velocity due to stream flow 

Velocity due to a flow with unit circulation around the first circle 

Velocity due to a flow with unit circulation around the second circle 

Complex potential 

Point inside first circle 

Inverse of X 1 with respect to the second circle 

Distance of X 1 from centre of first circle 

Cartesian coordinates in the plane of the two circles 

Centre of second circle 

x + i y  

Angle of incidence 

Angle determining camber of Karman-Trefftz profile 

Declination of centre of second circle with respect to the centre of the first circle 

Arbitrarily small positive number 

Circulation around circle 

Angle of deflection of the flap 

+ itl, complex variable in physical plane 

Trailing-edge angle 

Angle subtended at point P by line MN 

10 



No. Author(s) 

1 M. Lagally . . . .  

2 H. Strassl . . . .  

3 H. Glauert . . . .  

4 E.C. Maskell . . . .  

5 W. Miiller . . . .  

6 

10 

D. N. Foster, .. 
H. P. A. H. Irwin 

and B. R. Williams 

7 J .L.  Hess and 
A. M. O. Smith 

8 L .M.  Milne-Thomson 

9 J .M.  Freeland 

D. Catherall, D. N. Foster 
and C. C. L. Sells 

11 G.H.  Hardy . . . .  

• . 

REFERENCES 

Title, etc. 

Die eibungslose Str6mung im Aussengebiete zweier Kreise. 
Z.A.M.M. Vol. 9 (1929)• 
(Translated in N.A.C.A.T.M. 626.) 

Die ebene Potentialstr6mung um ein Flfigelprofil mit Vorfliigel. 
Jahrbuch 1939 der deutschen Luftfahrtforschung. 

A generalised type of Joukowski aerofoil. 
A .R .C .R .  & M. No. 911 (1924)• 

Private communication• 

Systeme von Doppelquellen in der ebenen str6mung, insbesondere 
die str6mung um zwei Kreizylinder. 

Z.A.M.M. Vol. 9 (1929). 

The twodimensional flow around a slotted flap• 
A.R.C.R. & M. No. 3681 (1970)• 

Calculation of potential flow about arbitrary bodies. 
Progress in Aeronautical Sciences Vol. 8, Pergamon Press, London 

(1966)• 

Theoretical hydrodynamics. 
Macmillan & Co. Ltd. (1955)• 

Cubic spline fitting. 
R.A.E. Math Computing Notes, Series C335 (1965). 

Twodimensional incompressible flow past a lifting aerofoil. 
R.A.E. Technical Report 69118, A.R.C. 31545 (1969). 

A course of pure mathematics. 
Cambridge University Press (1948)• 

11 



A P P E N D I X  I 

Image of a Doublet and a Vortex in a Circle 

The circle theorem is used to obtain the image systems of a doublet  and a vortex in a circle. The circle 
may, without loss of generality, be taken to have its centre at the origin and radius r. 

Image of a Doublet 

The complex potential  of a doublet  of unit strength and inclination, ~, at a point  q, outside the circle is 

exp (is) 
w - - -  (I.1) 

z - q  

On in t roduct ion of the circle, Izl = r, the complex potential becomes 

exp (is) exp ( -  is) 
w -  ( z -  q) + r-ZTz ~ q "  (I.2) 

The complex potential is only defined to within a constant,  thus it may be written 

exp (i~) exp ( - ic~) 1 
w -- (z - q~) + (r2/z - q) + q e x p ( - i ~ )  

exp,, , {, 
(z - q) + exp(- ic~)  (rZ/z _ q) + 

exp (ic~) y2 

qz qt 
The inverse point, q', is defined such that r 2 = qq'. 

exp (ic~) r z exp ( -  icQ 
w -  ( z - q ~  q2 ( z - q ' )  (I.3) 

The image is a doublet  of strength r2/q 2 and inclination, -c~, at the inverse point. 

Image of a Vortex 

The complex potential  of a unit vortex at a point, q, outside the circle, is 

w = / log(z  - q). 

On introduct ion of the circle, ]z] = r, the complex potential  becomes 

w =  i log (z - q) -- i log ( ~ -- q) 

= i l o g ( z - q ) +  i l o g ( r 2  z zq) 

= i l o g ( z - q ) + i l o g ( z ) - i l o g ( z - ~ )  + c o n s t .  (I.5) 

The image system is a vortex of opposite sense at the inverse point  and a vortex of the same sense at 
the centre. 

12 



A P P E N D I X  II  

The Geometry of Two Circles 

Consider two circles with their centres at A, the origin, and B(f, 0). Let their radii be a and b respec- 
tively (see Fig. 1). Two points are defined as inverse points with respect to a circle, if the product of their 
distances f rom the centre is the square of the radius. Thus the points X t and X'  1 are inverse points with 
respect to the second circle, because their distances from the centre a r e f  - xl and b2/ ( f  - x l )  respectively. 

The points S and T are called complementary inverse points, if S is the inverse of T with respect to the 
first circle and T is the inverse of S with respect to the second circle. For this situation 

a 2 

= s (II.1) 
f -  b2 / ( f  - s) 

where s is the distance of S from the centre of first circle. Hence 

and 

f s  2 - -  ( a  2 - -  b 2 - f 2 ) s  + a2f = 0 

S = 
(a 2 _ b 2 + f2)  ___ x/(a 2 _ b 2 + f2)2 _ 4a2fZ 

2f 

The roots define the distances of S and T from the centre of the first circle. 
Consider the set of inverse points inside the first circle, which are defined by the repeated reflections 

of the centres of the two circles (see Section 2.1). Let this sequence be {s,}, where 

a 2 a 2 a 2 

sl = 7 '  s 2 = f _ b 2 / f ,  s 3 = f _ (b2/( f  _ a2/ f ) )  . . . . .  01.3) 

The terms s2. are reflections of an object at the centre of the first circle and the terms $2n+1 originate 
from the centre of the second circle. 

All the inverse points lie inside the first circle, therefore 

Now 

therefore 

i.e. 

Similarly 

s. < a. (11.4) 

b 2 

f - - f <  f 

a 2 g2  

f f -  b Z / f  

S 1 ~ S  2 • 

S 2 ~ S 3 

13 



and, in general, 

hence 

and 

A P P E N D I X  II  (Contd.) 

s, < s,+ x . (II.5) 

The sequence is monotonic increasing and bounded above, thus it converges to a limit, so~. 
The infinite continued fraction may be written in the following form 

a 2 

s~o = f _  b2/( f _ so°) , (II.6) 

f s ~  - (a z - b z + f Z ) s ®  + a 2 f  = O 

(a 2 _ b 2 + f a )  _+ , , / (a  z _ b 2 + f2)z _ 4aZfa  

so°= 2 f  

By comparison with equation (I1.2), it can be seen that the sequence of inverse points in each circle 
will converge to a limit, which is the complementary inverse point for that circle. 

14 



A P P E N D I X  III 

Convergence of the Series for the Streaming Flow 

The  series for the complex potential  of the streaming flow is 

a 2 exp (icO b 2 exp (ie) a2b 2 exp ( -  ie) 
w = z exp ( -  ie) + + z (z - f )  f2[z  - ( f -  b2/f)] 

bEa2b 2 exp (ie) b 2 a 2 exp ( -  ioO a2 b2 a 2 exp (icO 

f 2 (  z f ) + f 2 ( f  - b 2 ' 2 1  a 2 + _ ( f  - ? a 2 / f ) )  7"] I z f _ - - b 2 / f )  f 2 ( f  - a 2 1 2 l  b2 
- 71 ? 

a2b2a2b 2 exp ( -  i~) 

: ; ~ / y J  ~ - y - y - rag~C?- b=/,)l < ( 
Let 

(Il l . l)  

and 

a 2 a 2 a 2 
(III.2) 

sl = 7 '  s2 - f -  b 2 / f  ' s3 = f -  [b2/(f - a2/f)] . . . .  

b 2 b 2 b 2 
(III.3) 

t 1 = - f ,  t2 = f -  a2 / f  ' ta = f -  [ a 2 / ( f -  b2/f)] ' 

where s, represents an inverse point  inside the first circle and t n represents an inverse point  inside the 
second circle. In Appendix II, it was proved that the sequences {s,} and {tn} tend to the limits s and t, the 
complementary  inverse points. 

The  series may  be rewritten as 

a 2 b 2 a2b 2 

Iwl ~< Izl + I-~ + ~ + f21(z - ( f  - tl))l 
b2a 2 o2b2a 2 

+ f21(z - sl)l + f 2 ( f _  q)21( z _ s2)l 

b2a2b2 a2b2a2b 2 1 

+ + . . . .  (III.4) 
-~ f 2 ( f  _ sl)Z[(z _ ( f  _ t2)) [ f 2 ( f  _ t l )E(f  _ s2)2 I(z - ( f  - t3))l 

Now 

Similarly 

lal laL 
- -  < - -  < 1 (see Section 2.1). 
I f  - t~l I f  - bl 

Ibl [b___~l < _ _  < 1 
I f -  s.[ I f  - al 

15 



APPENDIX III (Contd.) 

therefore 

a 2 b 2 a2b 2 b2a 2 

Iwl ~l~i + ~ + ~ + f - ~  + f ~  + 
a2b2a 2 1 b2a2b 2 1 

f 2 ( f  _ b)2 ]z] + f 2 ( f  _ a)2 Iz-[ + 

a2b2a2b 2 1 

+ f 2 ( f  _ b ) 2 ( f _  a)2 Iz-/+ . . . .  (III.5) 

Now Dirichlet's theorem states that the sum of a series of positive terms is the same in whatever order 
the terms are taken, thus rearranging 

a 2 a2b 2 a2b2a 2 1 cl2bZa2b 2 1 

[w[ ~ [z[ + ~ + f ~  + f 2 ( f  _ b)2 ]z[ + f z ( f  _ b)2(f _ a)2 [z-[ + " "  

b 2 b2cl 2 b2cl2b2 1 

+ ~ + f ~ ]  + f 2 ( f  _ a)2 ]z I + . . . .  (III.6) 

This series is convergent by the ratio test. Thus, by comparison, the series for the complex potential 
of the stream flow is absolutely convergent. 

16 



APPENDIX IV 

Convergence of Series for the Circulating Flow 

The series for the complex potential of a flow with unit circulation around the first circle is 

a 2 f 
w = + . . . .  + - i ]z + i logz  i log(z f )  i l og{z  ( f  f ) }  / l og{z  ( f - - ' ~ Z / f ) } - -  log__ - - f }  . . . .  

(iv.i) 

This series may be rewritten as 

w = i l o g z + i l o g ( z - f ) - i l o g ( z - ( f - t l )  ) + i l o g ( z - s 2 ) - i l o g ( z - s l ) + . . .  

where 

l i m ( f - t , ) = f - t  
n---~ GO 

and 

lim s, = s (see Appendix III). 
n - . +  oo 

In general, the modulus of terms in this series do not approach zero. Thus the series is not absolutely 
convergent (Abel's theorem~a). The series is either conditionally convergent or absolutely divergent. 
A conditionally convergent series can always be so rearranged as to converge to any sum whatever, or to 
diverge. By reference to the physical definition of this series, the terms must be grouped in the following 
fashion 

w = i logz  + {ilog(z - f )  - i log(z - ( f -  tl)) } + {ilog(z - Sz) - ilog(z - sl) } + . . . ,  (IV.3) 

where each grouping represents the addition of one set of images. This series may be expressed more 
concisely as 

+ ~ ilog + ilog . (IV.5) w = i logz  + /log z -5-( 7 -  tl)  ,=1 z - s 2 , - a J  ~z - ( f  - t2n+l 

Now 

and 

lira ~z----s2~.'~ = 1  
n~co { Z  - -  S 2 n _ 1 )  

(IV.5) 

J" z - ( f - t 2 .  ) "[ lim 1. (IV.6) 
, .o0 [ z  - ( f  - t2n + 1)J 

In general, the modulus of the terms in this series approaches zero. This is a necessary condition for 
convergence. 

17 



APPENDIX IV (Cont.) 

The series may be rewritten as 

w = / l o g z + / l o g  z - - ( f - - - t i )  + /log 1 + + 
n = l  Z - -  S 2 n _  1 .~ 

b __ 
~, /log 1 + _ ( f _ t z , + l ) J "  

+ 
n = l  Z 

(IV.7) 

It can be shown that the series Z~=o log (1 + u,) converges absolutely i~ and only if, the series ~ lu.I is 
convergent 11. 

Let 

and 

S 2 n -  1 - - S 2 n  

Z - -  S 2 n _  1 
- u .  ( I V . 8 )  

Now for the region outside the first circle 

p 

vp = ~ u.. (IV.9) 
n = l  

Iz - s,[ > la - sl, 

therefore 

. . . . .  IS2,-1 - s2J S2"-I -- S2" < (IV.10) 
z - s2._ 1 la - sl 

There exists a positive integer N, such that for all values of n ~> N and for all positive integer values ofp 

[Vp+, - V,[ <~ s2("+P)--1--s2('+P)a_ s + sz("+P-1)-la-s-S2(n+p-1) + " ' "  + S2n-l-a-- S---- S2" . (IV.11) 

Now {s.} is convergent, thus for all [(a - s)e/p I > 0, where e is an arbitrarily small positive number, 
and for all n/> N 

(a - s)g 
Is.+ t - s,[ < - -  (IV.12) 

P 

Thus equation (IV.11) becomes 

- s ) e  1 
IVo+, - V,I < p(a P (a - s---~ = e. (IV.13) 

The sequence of partial sums of the series ~ [Un[ is convergent, therefore the series ~ lu.I is convergent. 
Similarly it can be proved that 

/ log f l  + t2¢---- t-2"+L 
.=i z - ( f  - t 2 n + t ) J  

is convergent and it follows that the series (IV.7) is convergent. In summary, the rearrangement of the 
series for the circulating flow, which is suggested by the physical definition of the problem, is absolutely 
convergent. 
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TABLE 1 

(a) Parameters for transformations 

First transformation 0.001 
Second transformation 0.08725 

k 

1.096 
1.15 

T 

0.17279 
0-17279 

(b) Geometry of circles 
First circle Second circle 

Centre { X 

Radius 

0.0 
0.0 
1-096 

1.9 
-0.4 

0.5 

(c) Configuration A: 30 ° flap 

Stagnation points {X 

Circulation 

1.0727 
0.2247 
5-169 

2.4015 
--0.1963 

1.778 

(d) Configuration B: I0 ° flap 

Stagnation points IX  
Y 

k 
Circulation 

1.0727 
0.2247 
3.154 

2.4409 
-0.0271 

0.655 
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T A B L E  2(a) 

C o n f i g u r a t i o n  A :  M a i n  A e r o f o i l  

~l Cp 

0-99931 
0.99417 
0-98434 
0-96975 
0.94998 
0.92461 
0.89358 
0-85728 
0-81639 
0-77169 

0.72396 
0.67396 
0.62240 
0.56993 

0.51716 
0.46466 
0.41297 

0-36259 
0.31398 
0-26759 
0.22381 
0.18304 
0.14563 
0.11190 
0.08214 
0.05663 
0.03560 
0.01927 
0.00783 
0.00143 
0.00017 

0.00612 
0.00748 
0-00903 
0.00941 
0.00766 
0.00361 

-0 .00236  
-0-00965 
-0 .01771 
-0 -02612  

-0 .03451 
-0.04261 
-0 .05018  

-0 .05699  
-0 .06287  

-0 .06766  
-0 .07214  

-0 .07350  
-0 .07438  
-0-07386 
-0 -07194  

-0 -06866  
-0 .06409  
-0 .05833  
-0-05151 
-0-04378 
-0 -03530  
-0 .02625  
-0 .01681 
-0 .00714  

0.00264 

-0 .04022  
0-23687 
0.50061 
0.67369 
0.75477 
0.77689 
0.76914 
0-74766 
0.72058 
0.69205 
0.66437 

0.63898 
0.61699 
0.59936 

0.58708 
0.58115 

0.58264 
0.59271 
0.61252 
0.64327 
0-68596 
0-74118 
0.80830 
0.88385 
0-95724 
0-99969 
0.93296 
0-53705 

-0 .79779  
-4 .20249  
-8 .34989  

t/ Cp 

0.00409 
0.01311 
0.02707 
0.04582 
0~6914 
0.09681 
0.12857 
0-16414 
0.20321 
0.24543 

0.29044 
0.33785 
0.38724 
0.43814 

0.49010 

0.54258 
0.59507 
0.64697 

0.69769 
0.74656 
0.79290 
0.83597 
0.87501 
0.90929 
0-93815 
0-96122 
0-97850 
0-99043 
0.99753 
1.00000 

0.01242 
0.02211 
0.03155 
0.04056 
0.04898 
0.05663 
0.06335 
0.06902 
0.07352 
0.07678 

0.07875 
0.07942 

0.07881 
0.07700 

0.07408 
0.07019 

0.06550 
0.06020 
0.05453 

0.04870 
0.04293 
0.03743 
0.03232 
0.02762 
0-02323 
0.01893 
0.01458 
0-01041 
0-00718 
0-00590 

- 8.73166 
-7 .14534  
- 5.73037 
- 4.73940 
- 4.05084 
- 3.55471 
-3 .18166  
- 2.88974 
- 2.65315 
- 2.45564 

- 2-28674 
- 2.13965 
- 2.00992 
- 1.89477 

- 1.79260 

- 1.70272 
- 1.62525 

- 1.56109 
- 1.51204 

- 1 . 4 8 1 0 6  

- 1.47265 
- 1.49342 
- 1.55225 
- 1.65810 
- 1.80900 
- 1.95727 
- 1.95374 
- 1.60169 
-0 .02119  

1 . 0 0 0 0  
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TABLE 2(a) (Contd.) 

Configuration A: Flap 

rl C v 

1-31360 
1.31121 
1-30635 
1-29886 
1-28864 
1.27564 
1.25995 
1.24177 
1.22146 
1.19948 
1.17640 
1.15285 
1.12944 
1.10676 
1.08535 
1.06565 
1.04799 
1.03263 
1.01972 
1.00930 
1.00134 
0-99572 
0.99226 
0.99073 
0-99087 
0-99242 
0.99508 
0.99864 
1.00295 
1.00797 
1.01372 

-0.20335 
-0.20083 
-0.19598 
-0.18893 
-0.17996 
-0.16939 
-0.15765 
-0.14518 
-0.13243 
-0.11982 
-0.10766 
-0.09619 
-0-08553 
-0.07572 
-0 .06674 
-0.05854 
-0.051O5 
-0.04423 
-0-03807 
-0.03258 
-0.02781 
-0.02381 
-0.02065 
-0.01835 
-0.01686 
-0 .01604 
-0.01571 
-0.01569 
-0.01582 
-0.01598 
-0.01607 

0.61683 
0.62318 
0.64997 
0.67827 
0.70420 
0.72668 
0.74560 
0.76122 
0.77401 
0.78457 
0.79358 
0-80184 
0-81022 
0-81976 
0-83159 
0-84699 
0.86722 
0.89341 
0.92597 
0.96308 
0.99520 
0.98154 
0.71658 

- 1.17476 
- 5.75997 
-2.85918 
-1.43049 
-0.89891 
-0.70367 
-0.68332 
-0 .77990 

1.02027 
1.02768 
.03600 
.04527 
.05548 
.06658 
.07852 
.09119 
.10447 
.11824 
-13235 
.14667 
.16103 
.17532 
-18938 
.20310 
.21637 
.22907 

1-24112 
1.25245 
1.26298 
1.27267 
1.28147 
!-28934 
1.29624 
1.30214 
1.30697 
1-31064 
1-31303 
1.31389 

-0.01609 
-0.01606 
-0.01610 
-0.01631 
-0.01684 
-0-01785 
-0.01946 
-0.02181 
-0-02499 
-0-02909 
-0.03415 
-0.04020 
-0.04725 
-0.05525 
-0.06416 
-0.07391 
-0.08439 
-0.09548 
-0.10704 
-0.11891 
-0 .13090 
-0.14281 
-0-15440 
-0-16544 
-0-17566 
-0-18476 
-0-19245 
-0.19840 
-0-20226 
-0.20363 

-0.96299 
-1.20757 
-1-48844 
-1.78052 
-2.06103 
-2.31124 
- 2.51744 
-2.67093 
- 2.76751 
-2.80664 
- 2.79067 
-2.72396 
- 2.61232 
-2.46235 
- 2.28112 
-2.07571 
-1.85307 
- 1-61970 
-1-38159 
-1.14405 
-0.91168 
-0.68829 
-0-47687 
-0-27961 
-0-09789 

0.06777 
0.21788 
0.35456 
0.48483 
1.0000 
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T A B L E  2(b) 

C o n f i g u r a t i o n  B :  M a i n  A e r o f o i l  

q Cv 

0.99909 
0.99238 
0.97992 
0.96239 
0.94007 
0.91295 
0.88103 
0.84454 
0.80395 
0.75984 
0.71287 

0.66372 
0.61304 
0.56146 
0.50955 
0-45790 
0-40701 
0-35739 
0.30950 
0.26377 
0.22062 
0.18042 
0-14353 
0.11026 
0.08092 
0.05576 
0.03503 
0.01894 
0.00767 
0.00138 
0-00018 

- 0.02602 
- 0.02395 
- 0.02084 
- 0.01796 
- 0.01646 
- 0.01692 
-0 .01938  
- 0.02353 
- 0 . 0 2 8 9 2  
- 0.03509 
- 0.04167 

- 0.04828 
- 0-05463 
- 0.06045 
- 0.06551 
- 0.06936 
- 0.07266 
- 0-07447 
- 0.07499 
-0 .07418  
- 0.07204 
- 0.06859 
- 0.06390 
- 0 . 0 5 8 0 6  
- 0.05120 
- 0.04346 
- O.O35O I 
- 0.02601 
- 0.01664 
- 0 . 0 0 7 0 6  

0-00260 

0.58198 
0.67724 
0.75444 
0.78703 
0.77650 
0.73463 
0.67631 
0.61326 
0.55202 
0.49525 
0.44372 

0.39755 

0-35678 
0.32161 
0-29245 
0.26996 
0.25500 
0.24869 
0.25236 
0.26767 
0.29658 
0.34148 
0.40522 
0.49105 
0-60201 
0.73856 
0.88939 
0.99722 
0.83680 

-0 -22489  
- 2-28898 

Cp 

0.00409 
0.01303 
0.02687 
0.04543 
0.06852 
0-09589 
0-11111 
0.14445 
0.18139 
0-22162 
0-26478 
0-31051 

0.35839 
0-40798 
0.45884 
0.51048 
0.56237 
0.61396 
0.66469 
0.71393 
0.76106 
0.80541 
0.84632 
0.88315 
0.91535 
0.94252 
0.96450 
0.98131 
0.99297 
0.99916 
1.0000 

0.01226 
0.02179 
0.03106 
0.03989 
0.04811 
0.05554 
0.05892 
0.06489 
0-06972 
0-07332 
0.07563 

0.07660 
0.07623 
0.07457 
0.07168 
0.06765 
0.06263 
0.05676 
0.05023 
0.04321 
0.03587 
0.02837 
0.02081 
0.01325 
0.00567 

- 0 . 0 0 1 9 7  
-0 -00956  
-0 -01669  
-0 -02249  
-0 -02586  
-0 -02632  

- 3-28388 
- 3 . 1 3 6 4 8  
- 2.77164 
- 2-45446 
- 2-20772 
- 2-01489 
-1 -93332  
- 1.79172 
-1 .67118  
-1 .56525  
- 1 . 4 6 9 7 6  

- 1 . 3 8 2 0 2  
- 1 . 3 0 0 3 8  

- 1 . 2 2 3 9 2  
- 1 . 1 5 2 2 6  
- 1 . 0 8 5 4 2  

- 1.02376 
-0 .96791 
- 0 . 9 1 8 7 6  
-0 .87738  
- 0 . 8 4 4 9 4  
- 0 . 8 2 2 2 4  
-0 .80861 
-0 -79910  
-0 -77853  
-0-71361 
-0 -55677  
-0 .28615  

0.05224 
0.39390 
1.0000 
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TABLE 2(b) (Contd.) 

C o n f i g u r a t i o n  B :  F lap  

F1 C v 

1-33316 
1-33007 
1.32393 
1.31469 
1-30236 
1.28708 
1.26907 

-0.13394 
-0.13261 
-0.13013 
-0.12671 
-0.12259 
-0.11808 
-0.11347 

0.48606 
0.46862 
0.48011 
0.49580 
0.50996 
0.52043 
0.52623 

1.24868 -0.10904 
1.22636 -0.10504 
1.20264 -O.lO161 
1.17808 -0.09883 
1.15326 -0.09667 
1.12872 -0.09504 
1.10495 -0.09379 
1.08240 -0-09273 
1.06141 -0-09169 
1.04227 -0-09049 
1.02520 -0-08902 
1.01037 -0.08718 
0-99789 -0-08495 
0.98782 -0-08235 
0-98017 -0.07947 
0-97490 -0.07642 
0.97194 -0.07335 
0-97114 -0.07039 
0-97228 -0.06766 
0.97506 -0.06525 
0.97917 -0.06323 
0.98428 -0.06159 
0.99013 -0.06027 
0.99653 -0.05914 

0-52686 
0.52209 
0.51182 
0-49604 
0-47483 
0-44837 
0-41696 
0.38108 
0.34141 
0-29886 
0.25460 
0.21011 
0.16732 
0.12944 
0.10470 
0.12388 
0.30980 
0.80403 
0.99609 
0.88061 
0.76871 
0.69482 
0.64346 
0.59892 

q Cp 

.00337 

.01064 

.01840 

.02675 

.03580 

.04565 
-05637 

1.06798 
1-08046 
1-09377 
1-10781 
1.12249 
1-13766 
1.15321 
1.16897 
1.18481 
1.20056 
1.21610 
1-23126 
1.24592 
1.25994 
1.27319 
!.28553 
1.29683 
1.30696 
1.31575 
1.32303 
!.32861 
1.33223 
!-33352 

-0.05808 
-0-05692 
-0-05560 
-0.05407 
-0.05237 
-0.05058 
-0.04885 
-0.04730 
-0.04611 
-0.04540 
-0.04531 
-0.04594 
-0.04737 
-0.04963 
-0.05276 
-0.05673 
-0.06152 
-0.06704 
-0.07322 
-0.07992 
-0.08700 
-0.09429 
-0.10161 
-0-10873 
-0.11544 
-0-12149 
-0.12663 
-0-13061 
-0.13318 
-0.13408 

0.54813 
0.47988 
0.38539 
0.25970 
0.10305 

-0.07900 
-0.27669 
-0.47804 
-0.67091 
-0.84461 
-0.99080 
- 1 . 1 0 3 8 8  
- 1.18089 
-1.22115 
-1-22586 
-1-19765 
- 1 - 1 4 0 1 6  
-1-05764 
-0-95469 
-0-83600 
-0-70610 
- 0.56925 
- 0.42927 
- O. 28945 
-0.15242 
-0.02002 

0.10702 
0.23002 
0.35684 
1.0000 
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TABLE 3 

Exact 
Y/= i0,~ = 0 
AMOS 

Exact 
Y / =  1 0 , ~ =  10 
AMOS 

Exact 
0 = 2 0 , ~ = 0  
AMOS 

Exact 
7/ = 3 0 , ~ = 0  
AMOS 

Exact 
q = 30,~ = 10 
AMOS 

Exact 
= 4 0  °, ~ = 0 

A.MOS 

Main aero~il Flap Total 

r cA r 

1.6915 

1.6710 

3.0849 

3.0515 

2.3119 

2-2859 

2-9065 

2-8700 

4.2207 

4.1751 

3.4442 

3.4006 

-0-08979 

-0-0891 

-0.7120 

-0-7047 

-0-2125 

-0.2093 

-0.3839 

-0.3752 

-1-2625 

-1.2425 

-0-5951 

-0.5791 

1.6915 

1-6710 

3.1617 

3-1275 

2.3119 

2-2859 

2.9065 

2.8700 

4.3758 

4-3274 

3.4442 

3.4006 

0.8400 

0.8322 

1.5521 

1.5440 

1.1233 

1-1143 

1-3909 

1.3777 

2.0687 

2.0558 

1-6332 

1.6169 

0-3366 

0.3148 

0.4043 

0.3812 

0.5936 

0.5649 

0-8302 

0-7984 

0.8392 

0.8080 

1.0481 

1-0260 

0-08965 

0-0831 

0-0967 

0.0893 

0.2124 

0.1966 

0.3838 

0-3559 

0-3703 

0-3423 

0.5948 

0.5629 

0.3366 

0-3148 

0-3814 

0-3583 

0-5936 

0-5649 

0.8302 

0-7984 

0-7622 

0-7363 

1-0481 

1.0260 

0.1745 

0-1723 

0-2203 

0-2189 

0.3301 

0-3274 

0.4784 

0.4737 

0-5015 

0-4975 

0-6142 

0-6688 

* Based on integration of pressures. 
** Based on overall circulation round the two aerofoils. 

2-0290 

2.0092 

3.5448 

3.5259 

2.9068 

2.8835 

3.7386 

3.7029 

5.1404 

5.1065 

4-4948 

4.4515 
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a Fi rs t  r¢ f l¢c t ion  

b Second reflection 

C Third re f lec t ion  

FIG. 2a-c. Vortex image system. 
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FIG. 5. Pressure distribution for first circle. 
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FIG. 7. Streamlines around two liftiflg circles. 
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FIG. 8. Configuration A and B. 
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Pressure distribution for main aerofoil of configuration A. Flap deflection 30 °. Incidence 0 °. 
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