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Summary. 
A review is presented of the shear buckling of isotropic and orthotropic plates with a detailed con- 

sideration of the latter. An extensive bibliography is given and the details of the analyses in these papers 
are also discussed briefly in order to illustrate the development of theoretical and analytical technique. 
The relevant theoretical information for shear buckling and for the determination of buckling under 
combined stress systems including shear is presented graphically in the form of data sheets. 
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I. Introduction.  

There is now a considerable body of literature on the subject of shear buckling of plates and it is the 
purpose of this paper to review briefly this literature, and to present a suitable set of design charts for 
buckling criteria for various panel configurations, boundary conditions, loading cases, etc. 

Isotropic panels are considered initially since it was for this type of panel that the original early analyses 
were performed. Charts will be presented for buckling under shear alone and for shear in combination 
with other stress systems. 

Whilst an appropriate anisotropic plate theory has been available for some years very few studies of 
the shear buckling of other than 'special orthotropic' plates appear to have been published. For such 
plates the principal elastic axes are orthogonal to the plate geometric axes. Charts will be presented for 
buckling under shear alone and for shear in combination with other stress systems. Some studies of 
'general ortholropic' plates will also be discussed. 

No claim is made for completeness in this review but sufficient papers are reviewed to i llustrale the 
development of theoretical formulations and analytical technique. 

2. Shear Bucklin9 o f  lsotropic  Plates.  

The first exact solution for the shear buckling of an infinitely long isotropic plate was given in Ref. 1, 
from the governing differential equation 

ra4w [ a~ ] D U&a_+2 w °4w] 2 a2w +-57A +  de- 7=o (1) 

By assuming a modal form for the buckling displacements of 

W = Y~y) exp ( ikx/b) (2) 

where Y is an unknown function in the transverse (y) direction which satisfies the boundary conditions 
on the long edges, it was possible to obtain by an iterative technique an exact solution for the critical 
shear stress to,. and the critical longitudinal wavelength parameter k. 

Results were given in Ref. 1 for simply supported and clamped long edges and the respective buckling 
coefficients K s were 5.35 and 8.98, where 

% = K s 7~2D/db 2 = (N~y),,,./d 

N,y = shear stress resultant 

d = plate thickness 

b = plate width (in y direction) 

D = Ed3/12(1 - v 2) = plate rigidity 

(3) 



Ref. 2 developed the analyses of Ref. 1 to allow for plates having equal elastic restraints against rotation 
along the long edges and Fig. 1 shows the dependence of K, on 2/b, the ratio of the buckle half wavelength 
to the plate width, b, for various values of the edge restraint parameter ~;. The values e = 0 and e = oc 
correspond respectively to the extreme cases of simply supported and clamped long edges. The curves 
shown in Fig. 1 were obtained from a few exact results supplemented by those resulting from an alternative 
energy method of analysis, e = 4 So b/D where So is the stiffness per unit length of the elastic restraining 
medium or the moment required to rotate a unit length of the medium through one-fourth of a radian. 

For situations in which the value of e is dissimilar along opposite long edges Ref. 2 proposed the 
approximate formula 

Ks = (4) 

where K~ and K z are the values of Ks for equal values of el and e2 respectively. Thus when one long 
edge is clamped and the other is simply supported equation (4) yields Ks = 6.92 whereas the exact value 
is 7.07. 

For a rectangular plate of finite length with equal restraints along all four edges Ref. 2 presents some 
approximate curves--Fig. 2--tbr e = 0 and e = oc for plate aspect ratio (b/a) from 0 to 1 (i.e. infinitely 
long to square). The two curves were obtained from numerical values given in Refs. 3 and 4 and although 
not exact were believed to give good engineering approximations. For intermediate values of ~ it was 
suggested that the e = 0 curve be used as it offers a small, but acceptable, degree of conservatism. 

Ref. 5 contains a study of the shear buckling of finite length isotropic plates with simply supported 
edges. An energy type analysis was adopted which showed the differences resulting from the assumption 
of symmetric or antisymmetric buckle patterns. This subject has been examined in much greater detail 
in Ref. 6 and has shown the importance in energy type analyses of proving convergence of the results. 
The results confirmed that whilst symmetric buckling is usually critical antisymmetric buckling can be 
more critical in the range of plate aspect ratios (b/a) of 0-3 to 0.5 (approx.). 

Ref. 7 showed how the Lagrangian multiplier method could be used to ensure that the boundary 
conditions at the plate edges could be satisfied exactly by an assumed buckling mode. The method also 
enabled upper and lower bounds to be obtained for the critical buckling stress and in Ref. 8 results 
were presented for a plate clamped on all four edges. Thus the method enables a realistic assessment 
to be made of the accuracy of the results. 

Ref. 9 gives fairly complete numerical results for finite plates with clamped edges. The method adopted 
was to substitute into equation (1) a linear combination of modal deflection functions which satisfy 
the boundary conditions. All the terms in equation (1) are then expanded into a Fourier series and by 
examining the coefficients of like terms stability criteria were obtained. 

Using an energy method Ref. 10 presents results for a finite plate with one pair of opposite edges 
clamped and the other pair simply supported. Ref. 11 discusses this case and others and comparisons 
are drawn with the results of Refs. 9, 10. The significance of symmetric and antisymmetric modes is 
again noted. 

Ref. 11 actually provides results for a plate with all edges simply supported, for the case of all edges 
clamped, for a plate clamped on two opposite edges and simply-supported on the other pair, and for 
the case of one edge clamped and the remaining three edges simply supported. These results and others 
are presented in Fig. 3 which was given in Ref. 12. 

3. Buckling of Isotropic Plates Under Combined Stress Systems Including Shear. 
Ref. 4 gave results for the buckling of a rectangular plate with simply supported edges when subjected 

to combined shear and bending stresses. Curves were plotted for values of a/b within the range 0.5 to 
1.0 and it was shown that a close approximation to these curves is given by the interaction curve 

+ = 1 

where Rs = r/rc~, Rb = ab/~rb.¢r 
(5) 



For combined shear and normal stress Re]'. 13 presents results for a plate with simply supported edges 
and, for a square plate, the corresponding interaction curve is 

R 2 +Re = 1 (6) 

where R~ = er~/ac.c~ 

In equations (5) and (6), R~ is defined as the ratio of the critical shear in a combined stress system 
to the critical shear load considered separately and Rs,, Rc have similar definitions. 

Further consideration to the combined effects of shear and compression in infinitely long plates with 
various boundary conditions is given in Ref. 14. This paper is one of a series in which it is shown how 
a set of dimensionless stability functions can be used to analyse the local buckling of a variety of typical 
thin walled structures in combined compression and shear. These stability functions are obtained by 
considering the relative rotations and edge moments (distributed sinusoidally) along the edges of an 
infinitely long plate. One significant result shown in Ref. 14 is that equation (6) is correct to within 0.2 
per cent for all values of Rs and R ,  It was also found that the axial buckle half-wavelength 2 varies ahnost 
linearly with a~ and the equation 

= 2s[1-R~]+2~Rc (7) 

has an error less than 0.7 per cent. 
For combined shear, bending and transverse compression Ref. 15 presents results for rcctangular 

simply supported panels of infinite length. The curves obtained are shown as Fig. 4. Ref. 16 also deals 
with this topic and Ref. 17 lists references and results for a number of edge conditions. 

For a rectangular plate under combined biaxial compression, bending and shear Ref. 18 presents a 
novel method of analysis based on an approximate variational method. Results are presented for values 
of a/h = 1, 2 and 3 with boundary conditions of simple support, rigid clamping and an intermediate 
situation in each case along the edges y = o, b, but with simple supports at x = o, a. Due allowance is 
taken of the flexural and torsional stiffness of the edge members at y = o, b. For a simply supported 
square plate on all four edges Fig. 5 presents typical interaction curves which follow the approximate 
relationship 

R2~+RZ+Rc = 1 (8) 

This compound result could be deduced from equations (5), (6). 
Ref. 19 presents corresponding results for a simply supported rectangular plate under combined 

biaxial compression, bending, shear and a uniaxial sinusoidal direct stress distribution which is assumed 
to represent the in-plane thermal stresses in the plate. 

Results of buckling tests for combined shear and uniaxial compression are given in Ref. 20. 

4. Shear Buckling of lsotropic Plates Stiffened by Discrete Transverse Stiffeners. 
It is seen from Figs. 2 and 3 that the value of K~ increases as a/b decreases. Therefore, the buckling 

strength of an isotropic plate can be increased by dividing it into a number of smaller panels by means of 
transverse stiffeners. Similarly, longitudinal stiffeners have an equivalent effect by reducing the effective 
width b of each sub-panel (Ref. 21). Thus in equation (3) zcr increases as b decreases. 

Ref. 22 considers the problem of a long panel of total width b = (N + 1)b supported at its longitudinal 
edges y = o, y = b and also at a series of N intermediate equidistant simple supports distance/5 apart 
under compression and shear. Using the stability functions derived in Ref. 14 results are obtained for 
three different combinations of boundary conditions on the edges y = o, b, viz. both edges clamped, 
both edges simply supported, one edge clamped and the other simply supported. From all three sets 



of edge conditions the criterion for buckling can be generalised as a function of a parameter r where 
r = N, a, 2N + 1 respectively for the above three sets of edge conditions. The results which confirmed 
equations (6) and (7) are summarised below. 

r 1 2 3 4 5 6 7 8 cc 

"c = 0; ac,. 5"41 4"71 4'42 4"27 4"19 4"14 4"I 1 4"09 4"00 

a = 0; ~c,. 7'07 6'20 5'85 5"67 5"57 5"51 5"47 5"44 5"34 

The increases in buckling stress of an infinitely long plate when subdivided into an array of smaller 
panels has been studied by many authors, e.g. Refs. 23-27 and Ref. 12 contains a useful review of this 
particular problem. 

The theoretical results of Ref. 23 have shown the fallacy of the assumption that continuous plates 
having equal finite bays buckle in shear as if each bay were simply supported at the intermediate supports. 
In fact, the increase in buckling stress due to continuity at the supported edges of square sub-panels 
is of the order of 25 per cent of that increase which would have resulted by clamping the edges. The 
increase appears to be maximum for square sub-panels and negligible for sub-panels of very small or 
very large aspect ratio. 

Ref. 24 presents a solution based on the Lagrangian multiplier method for the case of transverse stif- 
feners with zero torsional stiffness whereas Refs. 26 and 27 remedy this deficiency. 

The analyses of Ref. 24 for transverse stiffeners of low bending stiffness recognise that the buckling 
behaviour of the combined plate plus stiffeners may be considered to correspond to that of an ortho- 
tropic plate. Curves are presented which compare well with experimental data. 

Few analyses have been noted in the literature of finite difference approximations of the governing 
differential equation for shear buckling; or of finite element analyses. One example of the latter is con- 
tained in Ref. 28. The isotropic plate was divided into only four panels per side, each panel being assumed 
to have constant torque. Thus the twisting moment distribution which should have been a smooth 
curve was represented by four 'steps'. In view of the close association between panel twisting and shear 
buckling it is hardly surprising that the calculation was, in fact, inaccurate. Clearly, however, an improved 
accuracy should result from a much smaller mesh size. 

5. Shear Buckling of Orthotropic Plates. 
The theory and differential equations of bending of anisotropic plates were established by Huber 29 

and the governing differential equation for shear buckling of a 'general orthotropic' plate is 

O4W ~*W ~4W ~2W 04W O'4W - 0 
Dt ~-2-x4 + 2D30x-~f-~y2+Dz -~y4 + 2Nxr 0--~y + 4D13 ~x~--~y + 4D23 ~.xOy3 

(9) 
where the last two terms are a measure of the orthotropic coupling resulting from the fact that the principal 
elastic axes are not orthogonal with the plate geometric axes. 

For a 'special orthotropic' plate D13 --- D23 = 0 and this is the case which has received, quite naturally, 
the most attention. 

The problem of the stability of orthotropic plates due to shear was apparently first examined by 
Bergmann and Reissner 3°. who considered a plate infinilely long in the x-direction and they also neglected 
the bending rigidity in that direction. The governing differential equation used was, 

~4 W ~4" W 02W 
2D3ox-~y2+Oz~y4+2Nxy ~ = 0 " D  t ,  = 0  (10) 



and using a similar method of analysis to Ref. 1---see Section 2--the following exact solution was obtained 
for a plate simply supported along the long edges. 

N~yb 2 4(D2D3)~-= 11.71 (11) 

A similar analysis was presented in Ref. 31 with D3 = D1 and with D1 :/: 0. The corresponding results 
for simply supported and clamped edges as D1--*0 are 

N : , y b 2 / 4 ( D t  D 3 2 )  k -'-= 8"3 (simply-supported) 

= 15'2 (clamped) 

(12) 

The full differential equation for a special-orthotropic plate was used in Ref. 32 and the method of Ref. 1 
followed. If the assumed mode has the form 

4 

W = exp (ikx/b) Z Cr exp (ih.y/b) (13) 

then substitution into the equation (9) with D13 = D 2 3  = 0 results in the following characteristic equation 
in h, for which there are four roots, 

with 

h4+2/~ k 2 h 2 - 2  ~1 k h + p  k 4 = 0 

# = D3/D2, p = D1/D 2, zl = Nxyh2/D2 

(14) 

Seyde132 presents a general method of solution allowing for elastic rotational restraint along the long 
edges of the plate at y = o, b but only presents results for the two extreme cases--fully clamped and 
simply supported. These are reproduced in Table 1 below and in Fig. 6 with 

Ks = 4Ca~ 7r2 or Ks = 4Cdzr 2 

It should be noted that a plasticity factor q is included in Fig. 6 to allow for inelastic stresses at buckling 
This factor which is included also in later figures will be discussed more lully in Section 7. 



TABLE 1 

Shear Buckling Factors for Infinitely Long Plates 

0 

1/5 

1/2 

1 

2 

3 

5 

10 

20 

40 

OC 

Simple Support 

Ca Cb 

I 
~: 11.71 I 

26.4 111.8 

1 1 2 . 2  17.25 I 

113.17 113.17 

110.8 15.25 
I 

I 9"95 17"2 

i I 20.65 I 9-25 I 

I 8.7 I 27.45 

i 8.4 37.65 
I 

i 8.25 I 52.25 
I 

8.125 
I 

Fully Clamped 

Ca 

I 
I 

I 42.15 

I 28.15 
I 

r 
I 22.151 

i 
I 18.75: 

I 17"55 i 
I 

i 
I 1 6 " 6  I 
i 

15'851 
i 

I 
i 15.45 I 

I 15.25 ~ 
I 

i 
I 15.07 

i 
i 

C b 

I I 
18.59 

I I 
I 18-85 I 

1 1 9 " 9  I 

26.55 

30.45 

37.1 

50.05 

69.1 

96.5 

0 = (D1 D2)~/D3 

If the 0 values of the orthotropic plates of infinite length lie between 0 and 1 the critical shear load is 
found from the formula 

Nxrb2/4(D2 D3) ~ = C b 

and the appropriate values of C b are shown enclosed in a box in Table 1. 
If the 0 values lie between 1 and oc the critical shear load is found from the formula 

(15) 

Nxyb2/4(D1 3-'- D2) ~ = C a (16) 

and the appropriate values of Ca are shown enclosed in a box in Table 1. 
It should be noted that the assumption of Ref. 31, viz. D3 = D1 leads to 0 ~ a s  D~-~0 and the cor- 

responding values for Ca from Table 1 are 8"125 (simply supported) and 15.07 (fully clamped) whereas 
the results from Ref. 31 are somewhat higher viz. 8.3 a~d 15.2. 

Ref. 33 contains further discussion by Seydel of the shear buckling of infinite length orthotropic plates 
and he also suggests simple formulae to calculate the values of D1, D2, D3 for a simple sine-wave type 
of corrugation. Results of experimental investigations when compared with the tabulated results of 
Table 1 justify the use of the simple formulae 

D1 = (Io/s) (Ed3/12 (1 - v2)) 

D2 = EIo- 

D 3 = (silo) (Gd3/6) 

(17) 



where/o is the subtended length of a half sine wave of actual length s and I~ is the second moment of 
area per unit length in the direction of the corrugation. 

Ref. 34 presents an extension to Ref. 5 to give the buckling of a simply supported rectangular ortho- 
tropic plate and there is further discussion in Ref. 35. 

Thus if, 

[~. : ( b / " a ) ( O l / D e )  ¼ ~ l a n d  0 >~ 1 (18) 

the critical shear load is again given by (7. where C. is now dependent on 0 and [3. as is shown in Fig. 
7. These curves are only approximate and are based on the results of Ref. 33 which showed various 
stability curves for different modal assumptions and suggested a lower bound based on these curves. 
1/0 is plotted to enable a linear interpolation as 0 varies between 1 and e. If the given plate should yield 
ft. > 1 the notation for the two rectangular sides should be exchanged and the appropriate value of 
ft, should be taken, i.e. by putting/)'~ -= D 2, D 2 = D~, h' = a, a' = b and equation (17) becomes 

Nx,, (b')z/4(Dt IDa]3)  ¼ = Ca {16a) 

For  0 < l one takes 

fib = (b/a) (D3/D2) ~ (19) 

and the critical shear load is again given by C b. No results are given by Seydel. 
It should be noted that a Galerkin type modal analysis was made in Ref. 34 as distinct from the 'exact '  

analyses of previous papers. Modes of the form 

W = E, £A , , , s i n (m  rc x/a) sin(n rc y/b) (20) 
tn n 

were used and to examine the convergence characteristics an increasing number of modes m, n are taken. 
Thus for an isotropic plate (0 = 1) the following convergence was shown to the exact solution for an 
infinitely long plate, viz. C, = 13.17 (Table 1) 

D1 

3 

4 

5 

5 

5 

9 

Ca ~o error  

14.68 11'65 

14"15 7"5 

13"90 5'6 

13'28 0"88 

13'23 0-53 

13"22 0"41 

The problem of stability of orthotropic plates has been treated in Ref. 36 and Ref. 37 and provide 
useful summaries of available knowledge up to 1935. 

In Ref. 38 approximate solutions are obtained for the buckling of clamped edged finite plates and 
infinite strips oforthotropic  material under shear, using the Rayleigh-Ritz method. The same approximate 
deflection functions are assumed as in Ref. 9, viz. 

w = ~_ ~ A . , . X . , , y ,  (21) 
m 71 



where 

\ a /  \ a /  a \ a /  _] mn  a 

and 11, is similar. 
Smith 3s considers his energy method to be more accurate than Iguchi's (Ref. 9) series method although 

his preliminary algebra is more tedious. Analyses are made with m, n as variables and it is shown that 
solutions only exist in two distinct ranges, i.e. when (m+n) even and (re+n) odd. Ref. 38 states that the 
case when (re+n) is even gives the lower critical shear loads. That this may not necessarily be true in 
general has been shown in Ref. 6 for isotropic panels where m+n < 10. In Ref. 38 m+n < 6. 

If the results of Ref. 38 are presented in the notation of Seyde134"35 the curves of Fig. 8 are obtained. 
The accuracy of these results appears to be reasonable since Ref. 38 has demonstrated convergence by 
evaluating stability determinants of various orders. 

Ref. 39 is a most comprehensive report on the present subject. A general orthotropic theory is developed 
and an application to a plywood plate is discussed. The differential equation (9) is analysed for an in- 
finitely long plate by the method of Ref. 1 for simply supported and fully clamped edges. The equations 
which result for the general orthotropic plate under shear are quoted and seen to be only slightly more 
complicated than for the special-orthotropic plate. 

An alternative, approximate method of solution based on minimum energy considerations is also 
given in Ref. 39 for the infinitely long orthotropic plate. The assumed buckle modes are : 

W = A sin (n y/b) sin ( n [ x -  (9 y]/L) (23) 

for simply supported longitudinal edges, and 

W = B [1 - c o s  (2 n y/b)] [sin (n I x - ( a  y]/L)] (24) 

for clamped longitudinal edges. 
These functions represent infinitely long buckled surfaces with the half wave length L, whose straight 

nodal lines run diagonally to the longitudinal axis x and form an angle with the y axis, the tangent of 
which is ,;b. The critical shear load is minimised with respect to the two free values L, ~b. 

Although in general the nodal lines are not straight, sufficiently exact buckling loads were expected 
for the infinitely long, general-orthotropic plate. 

The results for several important cases of 'general-orthotropic' plates were presented particularly for 
an angle of 45 degrees between the principal axes and geometric axes. It was shown that by suitable 
orientation of this angle a substantial increase in the critical shear load can be obtained. 

Ref. 40 gives elastic constants for corrugated core sandwich plates which are typical orthotropic 
structures. 

Ref. 41 presents results of analyses to determine the buckling under combined stresses of orthotropic 
plates formed from flat plates with integral waffle-like stiffening. The theory of Ref. 35 was used and the 
input data of the effective flexural rigidities D1, Ds, D3 were calculated for a wide range of waffle stiffening 
configurations including many in which the waffle was skew to the plate axes. Correlation with experi- 
ment was good and gave confidence in the theory. Theoretical results are given for finite plates with the 
short edges clamped and the long edges 'simply supported in a form identical to that of Figs. 7 and 8--  
see Fig. 9. 

A comparison of the relative effectiveness of the various stiffening configurations showed that the 
- 60 ° + 60 ° pattern is the most effective for shear but that a - 45 ° + 45 ° orientation has the most universal 
application. 

Ref. 42 contains a direct application of previous papers and is largely based on Ref. 35. The paper 



contains results of analyses for combined stress systems. For combined compression and shear, for a 
variety of orthotropic configurations the result obtained was approximately R c +R~ = 1 as originally 
obtained for isotropic plates in (6). 

The results of an experimental investigation are reported in Ref. 43 for multiweb beams with corru- 
gated webs with two types of connection between the web and the skin. It was established that this con- 
nection affects the structural efficiency of the corrugated web beams. 

The effect of restrained warping on the buckling load of corrugated webs (i.e. of orthotropic plates) 
is discussed in Refs. 44, 45. Ref. 44 gives criteria for long clamped corrugated webs with complete restraint 
against warping along the edges. The calculations were made for a specific corrugation shape (square 
wave) and they indicate that the effect of restrained warping on buckling may be considerable. The 
analyses of Ref. 45 are simple extensions of Ref. 44 in which edge support conditions along the edges 
are allowed to vary between the extremes of fully clamped and simply supported. The appropriate 
governing differential equation used in Refs. 44, 45 is (cf. equation (9)). 

~4W (~4W 04W O6W N O2W 
D 1 ~ - +  2D 3 ~ x 2 - ~ y 2 + D 2  0 ~ x - - E  F~x~y4+ 2 Xy~x0y- 0 (25) 

Values of Co (see equation (16)) are plotted in Fig. 10 against the wavelength parameter 2/b for various 
values of the edge restraint parameter e = 4Sob/D 2 and are seen to be similar to those obtained in Ref. 
2 and plotted in Fig. 1. 

= (2/b)(D2/DO ~ . 

Fig. 10 was obtained assuming that D 3 = F = 0. Fig. 11 shows the effect on the buckling coefficients of 
changes in the bending-torsion parameter 4EF/b 2 (D1 Dz) + for both clamped and simply supported edge 
conditions, together with typical values of F for three common types of corrugations. Considerable 
increases in Ca are indicated with increases in the above parameter particularly for clamped plates. For 
the i = 0 curve the increase in C a is associated with the restrained warping within the plate due to variable 
torque, since the imposed boundary conditions are such that for simply supported edges in-plane warping 
along the edges is u~rc~trained. For the clamped edges/: = oc both effects are present yielding a larger 
increase in Ca. 

A comprehensive review of buckling of orthotropic plates for various geometries, loading cases, etc., 
is contained in Ref. 46. 

For shear buckling charts are given in terms of Ks = 4Ca~ 7c2 or  4Cb/rc 2, for 

1) Infinitely long simply supported plates: 
(Results as in Table 1--Fig. 6) 

2) Infinitely long clamped plates 
(Results as in Table 1--Fig. 6) 

3) Finite length simply supported plates 
(Results as in Fig. 7) 

4) Finite length plates simply supported on long edges ; 
clamped on short edges. (Results as in Fig. 9). 

The interpretation of these charts for the case offla > 1 was described earlier (equation (16a)). 
Ref. 46 also suggests formulae to calculate values of D 1, D2, D3 for arbitrary configurations of corru- 

gated orthotropic plate. The results for D 1, O 2 agree with those in equation (17) but a quite different 
expression is obtained for D3 viz. 

Fv l° l° + s - 1  Ed3 (26) 
D3 = L s +  21o(l+v)'_] 12 

10 



Refs. 47 and 48 contain details of analyses for sandwich panels, employing some of the previously 
quoted references. The many charts presented include some in which account is taken of the shear rigidity 
of the core. 

Ref. 49 presents formulae by which the elastic constants of corrugations may be determined. 
Ref. 50 presents formulae based on a minimum energy procedure, for the instability of 'general ortho- 

tropic' plates under biaxial compression, shear and the dynamic aerodynamic forces of a fluttering 
panel. Pronounced effects of the angle of orthotropicity were shown for flutter (in the absence of external 
in-plane loads). Similar results for in-plane loads are not presented but comparable effects are anticipated. 

The Kantorovich method as applied to the static stability of orthotropic plates in the presence of 
lateral static aerodynamic forces is discussed in Ref. 51. Unfortunately, the method as presented cannot 
be applied to shear buckling problems as the corresponding integrals with the N~y term have zero value. 
However, an alternative approach using the Galerkin Method is described. 

Ref. 52 gives a brief review of previous work relevant to the shear buckling of general orthotropic 
plates and attempts to apply the method of Refs. 7, 8 to rectangular plates with various combinations 
of edge boundary conditions. It was hoped that upper and lower bound results would be obtained for 
all combinations. Whilst satisfactory results were obtained for isotropic plates, and for some particular 
general orthotropic plates, with at least three clamped edges, only upper bound loads could be found 
for other edge conditions (e.g. simply supported edges). 

It should perhaps be mentioned that Ref. 53 found an exact series solution to the buckling of a rec- 
tangular plate with clamped edges which resulted in a lower bound when the series was truncated and 
Ref. 54 has demonstrated the convergence of this technique. The technique of Ref. 7 has been shown 
however, to yield a more rapidly converging method. 

Refs. 55-58 have also contributed to the understanding of orthotropic plate buckling. 

6. Bucklin9 of Orthotropic Plates under Combined Stress Systems. 
Whilst very few analyses appear to have been made of this topic there is every reason to anticipate 

that the approximate interaction formulae deduced for isotropic plates will also apply to orthotropic 
plates. In fact, results quoted in Section 5 from Ref. 42 confirm this, at least for combined compression 
and shear. 

In order to make this present review as complete as possible and because Ref. 46 in particular does 
not appear to have had a wide publication the opportunity is taken to include from Ref. 46 and else- 
where a full set of curves for compression and bending for various boundary conditions to supplement 
those already included for shear. See Figs. 12-15. 

It is suggested that the overall interaction formula to be used should be the same as for isotropic 
plates, viz. equation (8), 

2 2 Rs + Rb + Re = 1. 

7. Plasticity Effects. 

Ref. 46 recommends that the plasticity coefficient t /=  ET/E be inserted into the buckling criteria for 
direct and shear stresses as in Fig. 6 et al where E T is the tangent modulus although for shear there is 
some evidence that the secant modulus should be used, i.e. r/s = Es/E. 

For the shear case, Ref. 46 suggests, on the basis of Ref. 59, that the critical shear stress is equivalent 
to a compressive stress given by 

O'e//7 ~--- "~ X//~//~ ; O" e = "C N/ /3  (27) 

Therefore for a given value of zcfft/the corresponding value of ~re/t 7 enables both cre and r/to be found. 
From this value of cre the design value of zcr is obtained from equation (27). The applicability of this ap- 
proach to orthotropic panels of differing geometries is uncertain but thought to be adequate for design 
purposes. 
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Ref. 4 refers to experimental results for aluminium alloy plates whicfi showed good agreement with 
theory for shear buckling if the plasticity reduction factor Gs/G is used (Gs = secant shear modulus). 

Ref. 60 quotes results which show that the plasticity reduction factor is best given by Es/E taken at 
a = r ,j33 as in equation (27). This approach is however slightly optimistic. Ref. 61 adopts this approach 
in a modified Ramberg-Osgood equation 

e = ( f /E) +(fu/ME)(.f/.fN ~ (28) 

o r  

 /Es = (,/E)[1 + ( ,fi/fN  ' / M ]  (29) 

8. Related Topics. 

There are various engineering applications of orthotropic plates in the form of corrugated structures, 
e.g. aircraft wing webs; decking, wall sheeting and roofing members of buildings, etc., and there is con- 
sequently a growing body of literature related to various problems such as shear stiffness of such struc- 
tures, optimum design under various loadings, etc. In particular the application of corrugated structures 
in aircraft wings to attempt to relieve thermal stresses has necessitated significant research and develop- 
ment programmes to analyse, manufacture and test these structures for quite complex loadings and 
environments. 

These topics are considered in Refs. 61 68 and the importance of a correct knowledge of the buckling 
characteristics to some of these studies is clear. An optimum design study in Ref. 61 for shear buckling 
of a particular triangular corrugation panel shows an optimum vertex angle of about 97 ° 32'. This in- 
creases as the shear stress at buckling failure becomes plastic. 

9. Conclusions. 

It can be deduced from the various graphs presented in this review that 

1 For infinitely long plates in compression the buckling stress is independent of the orientation of 
the 'special orthotropic' axes with respect to the geometric axes of the plate. 

II For short plates in compression a higher buckling stress is obtained with the larger flexural rigidity 
in the direction of the load. 

IlI For plates under shear higher buckling stresses result when the larger flexural rigidity is in the 
the direction of the shorter side than when it is in the direction of the longer side. 

It is concluded from this review that the problem of shear buckling of orthotropic plates has a con- 
siderable literature and that the main cases, e.g. various boundary conditions, structural configurations, 
have been analysed. 

12 



LIST OF SYMBOLS 

a 

b:~ 

C., Ca 

d 

D 1, 0 2 ,  D~ "l 

Dla,/)23 J 

e 

E 

f 
G 

h 

H 

k 

Ks 

K1, K2 
lo 
L 

I~I'I, I~ 

M 
N X V  

F 

Rb ; R~ ; R s 

s 

So 
W 

X, y 

X,., Y. 

Z~T I 

Gb ~ (7 c 

Plate length 

Plate width ; sub-panel width (Section 4) 

Shear buckling coefficients (equations (15)) and (16) = n 2K J4) 

Plate thickness 

f Isotropic plate rigidity = Ed3/12 (1 - v 2) 

Orthotropic plate rigidities 

(equation (9)) 

Direct strain (equation (28)) 

Youngs modulus 

Direct stress (equation (28)) 

Shear modulus 

Buckle parameter (equation (13)) 

Corrugation dimension (Fig. 11) 

Second moment of area per unit length (equation (17)) 

Longitudinal wavelength parameter (equations (2) and (13)) 

Shear buckling coefficients (equation (3)) 

Values of K s corresponding to e~, e 2 different values of e 

Subtended length of a half sine wave of developed length, s 

Half-wave length (equation (23) and (24)) 

Number of buckle half waves in x, y directions (equation (20)) 

Ramberg-Osgood parameter (equations (28) and (29)) 

Shear stress resultant = zd 

Parameter in Section 4 

adab.c,.; crc/ac.,:,.; "c/Z,:r. 
Developed length of half sine wave 

Stiffness per unit length of the elastic restoring medium (Sections 2, 5) 

Plate transverse deflection 

Plate co-ordinate axes 

Assumed deflection functions (equations (21) and (22)) 

Edge restraint parameters = 4Sob/D ; 4Sob/D 2 
Shear stress, NxSd;Nxyb2/D2 (equation (14)) 

Direct stress due to bending ; compression 

13 



LIST OF SYMBOLS--continued 

2;], 

0 

P 

q 

/L;/~b 

V 

4~ 
F 

Suffices 
b 

C 

S 

S 

T 

cr 

Buckle half wave-length; ~,[D2/D 1] 3 

[D1 D2]¢/D3 

D3/D2 

D 1/D2 

Plasticity factor (Section 7) 

(b/a) (D x/D z) ~ ; (b/a) (D 3/D 2) 4 (equations (18) and (19)) 

Poissons ratio 

Angle of nodal lines to y axis 

Warping restraint parameter (Section 5) 

Bending 

Compression 

Shear 

Secant 

Tangent 

Critical 

No. Author(s) 
1 R.V. Southwelland .. 

S. W. Skan 

2 E.Z.  Stowell . . . .  

3 H.L.  Cox . . . .  

4 S. Timoshenko and .. 
S. S. Gere 

5 S. Bergmann and .. 
H. Reissner 

6 M. Stein and J. Neff . .  

LIST OF REFERENCES 

77tle, etc. 
On the stability under shearing forces of a flat elastic strip. 
Proc. Roy. Soc. A. Vol. 105, No. 733:582 (May, 1924). 

Critical shear stress of an infinitely long flat plate with equal 
restraints against rotation along the parallel edges. 

NACA Report 3K12 or WRL-476. (1943). 

Summary of the present state of knowledge regarding sheet metal 
construction. 

A.R.C.R. & M. No. 1553 (1933). 

Theory of elastic stability. 
2nd Edition, McGraw Hill Co. (1961). 

Neuere problems aus der flugzeugstatik. Uber die knickung yon 
rechteckigen platten bei schubbeansprughung. 

ZFM Bd. 23, Heft 1:6 (1932). 

Buckling stresses of simply supported rectangular flat plates in 
shear. 

NACA. TN. 1222 (1947). 

14 



No. Author(s) 

7 B. Budiansky and P. C. Hu 

8 B. Budiansky and 
R. W. Connor 

9 S. Iguchi .. 

10 D. Leggett . . . .  

11 I.T. Cook and. .  
K. C. Rockey 

12 K.C. Rockey .. 

13 S.B. Batdorfand M. Stein 

14 W.H. Wittrick and 
P. L. V. Curzon 

15 A.E. Johnson and 
K. P. Buchert 

16 W.H.  Wittrick 

17 G. Gerard and H. Becker 

18 K.I. McKenzie .. 

19 J. Webber and . . . .  
D. S. Houghton 

20 R. Peters . . . .  

LIST OF REFERENCES--continued 

Title, etc. 

The Lagrangian multiplier method of finding upper and lower 
limits to the critical stresses of clamped plates. 

NACA TR. 848 (1946). 

Buckling stresses of clamped rectangular flat plates in shear. 
NACA. TN. 1599 (1948). 

Die knickung der rechteckigen platte durch schubkafte. 
Ing. Archiv. Bd. 9, Heft 1:1. 
Buckling of rectangular plates clamped on all four sides by shear 

stresses. 
Proc. Phys. & Math. Soc. Japan, Vol. 20:814 (1938). 

The buckling of a square panel under shear when one pair of 
opposite edges is clamped and the other pair is simply supported. 

A.R.C.R. & M. No. 1991 (1941). 

Shear buckling of rectangular plates with mixed boundary con- 
ditions. 

Aero. Quart. Vol. 14, March (1963). 

Shear buckling of thin-walled sections. Chapter of "Thin Walled 
Structures". 

Ed. A. E. Chilver; Chatto & Windus (1967). 

Critical combinations of shear and direct stress for simply-sup- 
ported rectangular flat plates. 

NACA. TN. 1223 (1947). 

Stability functions for the local buckling of thin flat-walled 
structures with the walls in combined shear and compression. 

Aero. Quart. Vol. 19, p. 327, November (1968). 

Critical combinations of bending, shear and transverse compres- 
sive stresses for buckling of infinitely long flat plates. 

NACA. TN. 2536 (1951). 

Buckling of an infinite simply-supported strip under combined 
longitudinal compression, bending and shear. 

Australian C.S.I.R. Aero. Res. Labs. (Melbourne) Rep. SM 234. 

Handbook of structural stability, Part 1; Buckling of flat plates. 
NACA. TN. 3781 (1954). 

The buckling of a rectangular plate under combined biaxial com- 
pression, bending and shear. 

Australian C.S.I.R. Aero. Res. Labs. (Melbourne) Rep. SM 301 
(1965). (See also Aero. Quart. August 1964). 

Spar web buckling of a supersonic aircraft. 
Aircraft Engineering (December 1963). 

Buckling tests of flat rectangular plates under combined shear and 
longitudinal compression. 

NACA. TN. 1750 (1948). 

15 



No. Author(s) 

21 H. Crate and H. Lo 

22 W.H.  Wittrick and 
P. L. V. Curzon 

23 B. Budiansky, R. W. Connor.  
and M. Stein 

24 M. Stein and . . . .  
R. W. Fralich 

25 K.C.  Rockey and 
I. T. Cook 

26 I.T. Cook and . .  
K. C. Rockey 

27 I. T. Cook and . .  
K. C. Rockey 

28 J.R. Stoker . . . . . .  

29 M.T.  Huber . . . .  

30 S. Bergmann and .. 
M. Reissner 

LIST OF REFERENCES--continued 

Title, etc. 

•. Effect of longitudinal stiffeners on the buckling load of long flat 
plates under shear. 

NACA. TN. 1589 (1948). 

Buckling of a long flat panel with a series of equidistant longitu- 
dinal supports in combined longitudinal compression and shear. 

Aero. Quart. Vol. 20. p. 17, February (1969). 

Buckling in shear of continuous flat plates. 
NACA. TN. 1565 (1948). 

Critical shear stresses of infinitely long simply-supported plates 
with transverse stiffeners. 

NACA. TN. 1851 (1949). 

Shear buckling of clamped and simply-supported infinitely long 
plates reinforced by transverse stiffeners. 

Aero. Quart. Vol. 13, February, May, August (1962). 

Influence of the torsional rigidity of transverse stiffeners upon the 
shear buckling of stiffened plates. 

Aero. Quart. Vol. 15, May 1964). 

. .  Shear buckling of clamped infinitely long plates--influence of 
torsional rigidity of transverse stiffeners. 

Aero. Quart. Vol. 16, February (1965). 

Notes on the use of the Matrix Force Method for elastic stability 
problems. 

Paper: Loughborough Symposium on "Structural Stability and 
Optimisation" (March, 1967). 

.. Theory of Plates (in Polish) LVOV (1922). 

.• Neure problems aus der Flugzeugstatik Uber die knickung von 
well blechstreifen bei schubbeanspruchung. 

Z.F.M. Bd. 20, Heft 18:475 (1929). 
Z.F.M. Bd. 21, Heft 12:306 (1930). 

Das ausknicken versteifter bleche unter schubbeanspruchung. 
Z.F.M. Bd. 31 (1930). Heft 3:61. 
(Translated : The buckling of stiffened plates in shear: U.S. Model 

Basin 31 (1936))• 

31 C. Schmieden . . . . . .  

32 E. Seydel 

33 E. Seydel 

. .  Beitrag zur frage des ausbeulens-versteiften plattern bei schub- 
beanspruchung. 

195 :DVL Berecht. Luftf--Forschg. Bd. 8, Heft 3:71 (DVL Jb :235) 
(1930). 

(Translated: Wrinkling of reinforced plates subjected to shear 
stresses. NACA. TM. 602). 

. .  Schubknickversuche mit well blechtafeln, 230 D.V.L. Bericht 
(D.V.L. Jb: 233) (1931). 

16 



No. Author(s) 
34 E. Seydel . .  

35 E. Seydel . .  

36 C. Schmieden ..  

37 O.S. Heck and 
H. Ebner 

38 R . C . T .  Smith . . . .  

39 W. Thielemann ..  

40 C. Libove and R. Hubka 

41 N. Dowet  al . . . .  

42 H. March . . . .  

43 A. Frazer . . . .  

44 G.E.  Smith . . . .  

45 J. Peterson and M. C a r d  

46 

47 

LIST OF REFERENCES--continued 

Title, etc. 

•. Uber das ausbeulen von rechteckigen, isotropen oder orthogonel 
--anisotropen platten bei schubbeanspruchung. 

Ing. Archiv. Bd. 4. Heft. 2:169 (1933)• 

.. Ausbeul-Schublast rechteckigen platten (Zahlen beispele und 
Versuchsergebnisse) ZFM. Bd 24, Heft. 3:78 (1933)• 

Translated : The critical shear load of rectangular plates• NACA. 
TM. 705)• 

. .  Das ausknicken eines platten streifens unter schub und druck- 
kraften. 

Z. angew. Math. Bd. 15 (1935). 

•. Formulae and methods of calculation of the strength of plate and 
shell structures in aeroplane construction. 

(Translation from Luftfahrt Forschung No. 8). NACA. TM. 786 
(1935). 

•. The buckling of plywood plates in shear. 
Australian C.S.I.R. Aero. Res. Labs. (Melbourne) Rep. SM 51 

(1946)• 

•. Contribution to the problem of buckling of orthotropic plates with 
special reference to plywood• 

NACA. TM. 1263. (1950). 

•. Elastic constants for corrugated core sandwich plates. 
NACA. TN. 2289. (1951)• 

•. Elastic buckling under combined stresses of flat plates with integral 
waffle-like stiffening. 

NACA. TN. 3059 (1954)• 

•. Buckling of flat plywood plates in compression, shear or combined 
compression and shear. 

Forest Products Lab! Rep. 1316 (1956)• 

•. Experimental investigation of the strength of muitiweb beam with 
corrugated webs. 

NACA. TN. 3801. (1956). 

Elastic buckling in shear of infinitely long corrugated plates with 
clamped parallel edges. 

Thesis : Cornell University (1957). 

Investigation of the buckling strength of corrugated webs in shear• 
NASA. TN. 13--424 (1966). 

Buckling of orthotropic plates (corrugated plate applications). 
Bell Aerosystems Rep. 7-60-9410~01 (1961). 

Sandwich construction for aircraft• 
Chaps• 3-5 ANC 23 Pt. II. Material properties and design criteria. 

17 



No. Author(s) 

48 A. Krivetsky .. 

49 W.J .  Stroud ..  

50 J. M. Calligeros and 
J. Dugundji 

51 D.J.  Johns .. 

52 H.R.  Fraser and 
R. E. Miller 

53 G. I .  Taylor . .  

54 S. Levy . . . .  

55 P. Shulesko .. 

56 F. Chang .. 

57 S.G.  Lekhnitskii 

58 W.H.  Wittrick 

59 F. Bleich ..  

60 J .H.  Argyris and 
P. C. Dunne 

61 A.W. Kitchenside 

62 T . E . H .  Lemon 

LIST OF REFERENCES--continued 

Title, etc. 

. .  Composite construction for flight vehicles• M I L  HBK-23 Pt. III. 
Design procedures. 

Chap. 3. Design of flat rectangular sandwich panels under edge- 
wise shear load. 

Elastic constants for bending and twisting of corrugation-stiffened 
panels• 

NASA. TR. R-166 (1963)• 

Supersonic flutter of rectangular orthotropic panels with arbitrary 
orientation of orthotropicity. 

MIT. ASRL. Tech. Rep. 74-5, OSR Tech• Rep. No. AFOSR 5328 
(1963)• 

Static instability of rectangular orthotropic panels subjected to 
uniform in-plane loads and deflection dependent lateral loads• 

A.R.C.R. & M. No. 3569 (1967). 

• .  Bifurcation-type buckling of generally orthotropic clamped plates• 
AIAA Jnl. Vol. 8, No. 4, pp. 707-712• April (1970). 

•. The buckling load for a rectangular plate with four clamped edges. 

Zeitschrifi [fir An qewandte: Mathematik und Mechanik, Vol. 13, 
No. 2, pp. 147-152. (April 1933). 

Also The Scientific Papers of G. 1. Taylor, Vol. 1, Mechanics of 
Solids, Ed. G. F. Batchelor, C.U.P. (1958). 

•. Buckling of rectangular plates with built-in edges. 
Jour. App. Mechanics, Vol. IX, pp. A171 A174 (1942)• 

•. Reduction method for buckling problems of orthotr'opic plates. 
Aero. Quart. Vol. 8, pp. 145-156. May (1957). 

•. Bending of the clamped edged anisotropic rectangular plates. 
Scientia Sinica Vol. 7, No. 7, pp. 716-729 (1958). 

. .  Anisotropic plates, contribution to the metallurgy of iron and 
steel No. 50, American Iron & Steel Institute. (June 1956). 

.. Correlation between some stability problems for orthotropic and 
isotropic plates under biaxial and uni-axial direct stress. 

Aero. Quart. Vol. 4, pp. 83-92 (1952). 

•. Bucklin9 strength of metal structures. " 
McGraw-Hill Book Co., 1st Edition (1952). 

•. Structural principles and data handbook of aeronautics No. 1. 
The New Era Publishing Co. Ltd. 

The design of corrugated shear webs having optimum properties 
and single-sided attachment• 

BAC (Weybridge) Report S.O.R. (W)6 (1968). 

•. The development of corrugated shear web structures• 
BAC (Bristol) Report R el'. R41W/30/NEW/LWS. (April 1968). 

18 



No. Author(s) 

63. D. Williams ..  

64 K. I .  McKenzie 

65 E.R.  Bryan and 
W. M. E1-Dakhakhni 

66 E.R.  Bryan and 
W. M. E1-Dakhakhni 

67 E.R.  Bryan and 
P. Jackson 

68 D. Richards . .  

LIST OF REFERENCES--continued 

Title, etc. 

. .  Spar web design in relation to thermal stresses: the corrugated 
web. 

RAE Tech. Note Structures 299. A.R.C. 23 172 (1961)• 

•. The shear stiffness of a corrugated web. 
A.R.C.R. & M. No. 3342 (1962)• 

•. Shear of thin plates with flexible edge members• 
Proc. A.S.C.E. Structural Division, (August 1964)• 

•. Shear flexibility and strength of corrugated decks• 
Proc. A.S.C.E. Structural Division, (November 1968). 

•. The shear behaviour of corrugated steel sheeting. 
Proc. Symposium on thin walled steel structures. Crosby Lock- 

wood & Son Ltd. (1968). 

.. Optimum design of fibre-reinforced corrugated compression 
panels• 

College of Aeronautics Rept. Aero. 209, (1969)• 

19 



2 ii , 

1 0 ~  

Ks 9 - 

8 - -  

7 

6 m  

pF°J-si Or'i,9~" 
5'2 i 

• 4 "6  -8  

LCr'= Ks &~. 
9 

L _ _ _ _  

I ' 0  

, I 
1.0 1.2 X 1-4 1.6 1.8 2.0 

FIG. 1. Chart giving values of K s in equation for critical shear stress for an infinitely long flat plate 
with equal restraining loads along the parallel edges. (b = plate width). (Ref. 2). 

20 



t o -  

1"8 

1"61--- 

K 

1"4 I--- 

1"2 t--- 

I"OL 
0 

/< 
l<'s ('ct= c~o) 

All edges fixed. 

All 

0-2 0.4 0"6 
..Width of plate 
Length of plate cL 

edges simply 
supported. 

(=o 

0 .8  1"0 

FIG. 2. Variation of K with ratio b/a (Ref. 2). 



Ks 

16 

1 4 - -  

1 2 - -  

1 0 - "  

8 

6 

4 - - -  

2 D 

b 

e . h  e ~ 

- - J - - A l l  e d g e s  c lamped.  
....... ~--2 long edges  c lamped.  

4 - - ~  I long edge c lamped.  
-= A - - A - 2 shor t  edges  clamped, 

- - - - - - -  1 s h o r t  edge clamped. 
~ ¢ ' - - - " - - ~ A I I  e d g e s  S.S. 

0 0.2 0"4 0"6 0"8 1"0 
b/o 

FIG. 3. Shear buckling parameter for isotropic plates with various edge support conditions. (Ref. 12). 

22 



I ' -o 
t..q, 

71,"/1' 
0 -2 -4 -6 -8 1-0 0 "2 -4 -6 "8 -1.0 1-0 -8 -6 -4 -2 0 

Rs Rs Rc 

Y 

__. L_ .  ~ 

I 
O'C o" 

'- f -  t - - l - - t - t -  
X 

FIG. 4. Interaction curves for long S.S. flat plates under various loading conditions. (Ref. 15). 



to  
4~ 

t 
Rcy 

Rcx = 1 

7 

\ 0,,~ Rcx 

)-2 

Rs2 ._..~. 

Rcy 

R2= 0-2 

RCX : 6 c x / ~ c ~ c r  Kcx 
Rcy = ~ c y / ~ c y . c r  Kcy 
R b = ~ b / 6  b.cr  K b 
Rs = 1~ / 1~ .c r  Ks 

= 4 " 0  

= 4 " 0  

= 25"53 
= 9"38 

R z 8o 

FIG. 5. Buckling interaction curves for simply supported square plate. (Ref. 18). 



9 

f5 

7 

o 

m 

3 

\ - _ _  " 

I 

_l Ill ~--[--111 t I 

-2 -4 "6 -f5 1.0 2 4 6 8 10 20 4 0  6 0  

FIG. 6. Buckling coefficients for infinitely long orthotropic plates in shear. (Ref. 46). 



10 

z '! 
W 
~ 7 - -  
b_ 
LL 
W6-- 
0 
u ~ 

t/) 
W 
a : 4  
I-- 

L9 3 
Z 
_.1 
, ~ 2  

m 1 

J , l t  

t 

r ~  

lJ 
w . 

~ r ,  / . -  ~W 2 

1.0 

-6 

K ~ _  ,~ 

9~/~9, ~ 
,4 

.2 

0 .2 -4  

8 

FIG. 7. Buckling coefficients for orthotropic plates in shear ~ all edges simply supported. (Ref. 46). 



15 

uo 14 
F- 

z 1 3  lxl 

w 12-- 
t.t. 
kd 
8 1 1 - -  

~ 1 0 - -  
W 

8 - -  
(.9 
z 7 - -  
__1 

U 6 - -  
m 

5 - -  

f- t,' II11 ' l  / 

_ ~ _ t /  q7 "2 

1.0 
D, 

'6 

ks= 4 Co_ ~2 

e -,/D, z~/D~ 

~ ' 2  

0 -2 
4 

• 8 

• 6(~,,}a ./,-.~, 

~ o,J,/1)2 

FIG. 8. Buckling coefficients for orthotropic plates in shear ~ all edges clamped. (Ref. 38). 

0 



b~ 
Oo 

? 
I.-- 
Z 
Ld 

I.t. 
I t .  
UJ 
0 (.) 

tO 
o3 
LIJ 
n,- 
I-- 
U3 

£0 
Z 

_.1. 

(2 
:E) 
rn  

18 L 
16 

1 4 ~  

1 2 ~  

1 0 ~  

8 ~  

S ~  

4 ~  

2 ~  

0 

t ~ 
r_l 

o. i 

~ "  = K's "rr'~ ~.o =,/~v'~;, ~, 
1"6 

1"2 

~ 0 " 8  
,.4 

0"6 
0-4 

0 0"2 (~1 

FIG. 9. Buckling coefficients for orthotropic plates in shear ~ plate clamped along the short edges and 
simply supported along the long edges. (Ref. 46). 

8 



>~ 
X 
Z 

20 

II 

~o,,I ,,q 

~10-- 

E-- zt So~ 
132. 

333=0  

r ' = o  

5F: 
0"5 10 1-5 20  

x ~/D2 
b D1 

FIG. 10. Shear buckling coefficients of infinitely long corrugated plates with non-deflecting edge 
supports of variable torsional stiffness. (Ref. 45). 

29 



2"0 

1"6 

1"2 
Co,. 
Ca. (r,.. o) 

0"8 

0-4 

I I L I I i I I I J I ~ ~ 
0 0.4 0"8 1"2 1-6 2"0 2"4 2"8 

,4El 

FIG. ! la. Effect of restraint of warping on the buckling strength of corrugated plates in shear. 

0-14 

0 -10 

0"06 

0 '02  

2.0 
I I I  i l l l l l l l l l l l l l l i l l l l l l  

2.5 3 '0 -'P 3"5 4.0 4"5 
t't 

Fie,. 1 !b. Bending torsion parameters for three common types of corrugation. (Ref. 45). 

30 



t ~  

t 2 ~  

1 0 - -  

r J  

F- 
Z 
w 8 
(O 
LL 
b_ l • 
Id 

6~ 6 - -  

I r l  
i,i 
0~ 0 4  
F-- lu 
~n ~:~ 4 
O z_ 
/ 

L) 

All edges  S.S. 

[ .  cz - - - ~  

L o a d e d  e d g e s  c lamped.  
and un loaded edges  S.S. 

I I I ! I I ~ 
0.2 0 '4  0-6 0-8 1"0 2"0 

FIG. 12. Buckling coefficients for orthotropic plates in compression. (Ref. 46). 



I I 

I - -  
z 64 
W f 

tO 

U._ 

LLI 
0 ! I 

w 

J 

_J 
' ~ /  ° °  

m 

14[ 
13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

Loaded edqes SS. 
Unloaded edges 
clamped. 

B 

"//'////////////////~, 

=- / I :  = ..////////////////j=... _k 

- I ,  

O~cr_ ~ iT 2 ~ - - ~  

~ A-''~////'///'4"- - 

la= ', 
". /7// / / / / / / / / / / / / / / / /x  

L CL _1 
I - ~ , - )  - I  

I I i I I I I I I 
0"2 0"3 0"4 0"6 0-8 1"0 2"0 3"0 4"0 

FIG. 13. Buckling coefficients for orthotropic plates in compression. (Ref. 46). 



l -  
Z 

U 
b_ 
b_ 
W 
0 

1,1 
n- 

Z 

m 

__ 

_ 

<rcr - ~c ~z 

2 

0.1 

Simply S u p p o r t e d  Edges .  

C l a m p e d  Edges 

I I I I I I I I I I I 
0.2 0"3 0 .4  0"6 0"8 1"0 2-0 3-0 4"0 6"0 8'0 10"0 

FIG. 14. Buckling coefficients for infinitely long orthotropic plates in compression. (Ref. 46). 



4 ~  

bo 

g 

w. 

g 

0 

o "  

> 

~ 4 0  Z 
Ld 

LL 
LL 
W 
0 3 0  
u 

oO 
~O 
I,I 
r'¢ 
~- 2 0  oO 

(.9 
Z 
_J x,d 
o 10  

r n  

O 

0.5 ~, 

.IX 

c÷)@ 

FIG. 15. Buckling coefficients for orthotropic plates under edgewise bending--all edges simply sup- 
ported. (Ref. 46). 



R. & M i No.  3677  

(~ Crown copyright 1971 

Published by 

H IR M aJ I..Sl V'S S'IATIt)NERY OFFICF 

TO be purchased from 
49 High Holborn, London WCIV 6HB 
13a Castle Street, Edinburgh EH2 3AR 

109 St Mary Street, Cardiff CF1 IJW 
Brazennose Street, Manchester M60 8AS 

50 Fairfax Street, Bristol BS1 3DE 
258 Broad Street, Birmingham B1 2HE 
80 Chichester Street, Belfast BTI 4JY 

or through booksellers 

R. & M .  No .  3677  

SBN 11 470417 1 


