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Summary. 
An approximate analytical method is developed for the solution of a fourth order, non-linear equation 

of motion from which the frequency and amplitude of a sustained oscillation may be derived. The 
criterion for the existence of the limit cycle is a modified form of Routh's discriminant, its sign, and the 
sign of its derivative with respect to the square of the instantaneous amplitude. Comparisons at spot 
points show excellent agreement with 'exact' digital computations. 

The method has been applied to the lateral motion limit cycle encountered at low speeds on the HP 115 
aircraft, and comparisons with the results of wind tunnel dynamic simulations show that the onset and 
nature of the sustained oscillation is predicted very satisfactorily. 
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Detachable Abstract Cards 

1. Introduction. 
In Ref. I an account was given of a simulation exercise on the HP 115 aircraft at low speed and high 

incidence conditions which in full scale flight produced a sustained oscillation in the Dutch roll mode. 
This exercise put to the test a novel simulator facility in which part of the aerodynamic loads--the forces 
and moments due to the angle between the body and flight-path axes--was supplied in an analogue 
form directly from a wind tunnel balance, thereby eliminating the mathematical modelling of these 
terms. The simulation reproduced the flight behaviour, showing a normal convergent Dutch roll at 
moderate angles of attack, and at higher angles the sustained oscillations, of an amplitude increasing 
with angle of attack. 

There was some weak coupling between the longitudinal and lateral modes; for example, there was 
some excitation in pitch around the trim angle of attack, which itself produced a cyclic change of the 
Dutch roll amplitude. But these effects were small enough to suggest that the motion should be amenable 
to analytic treatment by consideration of a fourth order system in which due allowance is made for 
non-linearities, viz 

d4x d3A(x) d2B(x) dC(x) 
t - ~ + ~ + - - - 7 7 - - + D ( x )  = 0. (1) 

dt 4 a t t a r - a t  

In Ref. 2 an approximate method of treating second order systems of the type 5/+ F(x, :~) = 0 was 
given. The approximation produces a solution, not of x(t), but of the frequency and amplitude damping 



envelope as a function of the amplitude. The difficulties escalate as the order of the equation is increased. 
But to offset this, many of the awkward terms disappear in the special case of a steady sustained oscilla- 
tion, and so the method seemed to offer a powerful way of formulating the conditions under which such 
oscillations could occur. 

The Report develops the method and applies it to the particular case of the HP 115 slender aircraft. 

2. Method. 
2.1. General. 

We are concerned with non-linear dynamic systems with an autonomous response similar in type to 
that of a linear system, viz an identifiable (but not necessarily constant) frequency and an amplitude 
varying with time. It is logical therefore to look for an approximate solution consisting of a summation 
of terms with separable real and imaginary parts, reflecting the time dependence of the amplitude and 
frequency respectively, viz 

x = Y. O(t) e iea(O . (2) 

The parallel with the special case of the linear system is then clear inasmuch as in this case O(t) = 0 o e at 
and ¢(t) = bt where a and b are constants. If some terms in the summation have no imaginary part we 
have the equivalent of divergent and convergent modes. 

For an 'm'th order system in which differentials up to d"/dt" appear, we choose that there are 'm' 
terms in the summation for x, again in parallel with the linear solution. Up to this point no generality 
has been lost, because, by virtue of the fact that superposition of solutions does not apply for non-linear 
equations, the terms in the summation of equation (2) may be mutually dependent. 

We now introduce the approximation that we may disregard any transfer of energy between the 
various modes so that the solution may be regarded as a summation of mutually independent terms, 
the number being appropriate to the order of the differential equation, which are unknown functions 
of time. 

Then, if we write 

0 
O' 

~ o = ¢ ,  

and Z = 2 + ico 

we have 

X = ~ O n ei ~n 

1 

2 = ~ O. e i*~ Z.  

l 

2~ = ~ O. e i4'~ (Z~ + R 2.) 

! 

d~x ~ O. e ~ ( Z; + R~.) 
dt" 

1 

(3) 



where R2 = ), 8 Z' 

R 3 = 2 8 [ 2 Z ' + 2  0 Z"+(2 '  0+2)  Z']  etc. 

d 
the primes denoting ~-~. 

R 2 corresponds to the form of solution adopted in Ref. 2 for a second order system. 
Since we have disregarded any periodic energy interchange between modes, a steady state exists only 

when 2, = 0, i.e. R, = 0, in which case equation (3) takes a particularly simple form. The divergent/ 
convergent modes will have reached a constant value and the oscillatory modes a sustained amplitude. 

2.2. Specific Application. 
We now consider the application to a fourth order system representing the lateral stability equation 

for a particular aircraft in which we prescribe that there is the usual one oscillatory mode (the Dutch 
roll) and two first order modes (i.e. the spiral and roll subsidence modes), so that 

X = [81 + 0 2 ]  (t) cos 49(t)+83(t)+84(t ) . 

In Section 3.3.2 the full expressions corresponding to equation (3) have been used to investigate the 
growth of the dutch roll amplitude, but the main body of the present report is concerned with conditions 
only in the terminal state. In this condition 

0 3 + 8 4 = constant = ®o, s a y  

whence 

8t + 02 = constant = ® , say 

x = O cos ~b + ®o 

:~ = - ~o ® s i n  4) 

= - ~ o  2 ® c o s  ~b 

= co 3 0  s i n  4' 

(4) 

dt 2"+1 (2n+ 1)x2" Ix] 

d2 p ~ 1)x z"- I 
dt 2 - P2,+ 1 (2n + [2n(~) 2 + x 2] 

d3p 
V 1 1) x2"-2 dr3 -L_aP2"+ (2n+ [2n(2n-  1) (~)3+6n x :~ 5~+x 2 ~'] 

(5)  

'X" = ~04 O cos ¢ .  

Let the general term in equation (1) be P(x) and a polynomial in x, so that P(x) = E p, x". Then because 
of the lateral symmetry of the aircraft, the coefficients of even powers of x are zero, and we are therefore 
conccrned with repeated time derivatives of polynomials of the form Z P2,+t x2"+ 1, i.e. 

N 

P(x) = )' .p2,+1 x 2"+a 
l.,,.--d 

0 



Substituting for equation (4) in (5) we may rewrite equation (1) as: 

cog ® cos 4, + 

azn+ 1 (2n + 1) (O COS 4, + 0o) 2"- z I( O COS 4, + 0o) 2 + 6n ® cos 4, (® cos 4, + 0 o ) -  + o) 3 O sin 4, E 

- 022n (2n - 1) sin2 4,] 

_ o)2 O Z b 2, + 1 (2n + 1) (O cos 4, + 0o) 2"- x [2n® sin 2 4, + (® cos 4, + 0o) cos 4,] + 

- w  ® sin 4, E c2,+1 (2n+ 1) (0 cos 4 , -  ®n)z"+ 

+2~ dzn+l  (® COS 4,"~- ®o) 2n+l 

= 0 .  

We next make use of the fact that if f = f(sin 4,, cos 4,) = O, then 

2 ~  2 n  

f f sinP 4, d4, = o = f f cosP 4, d4, . 
o o 

(6) 

In Ref. 2, the two equations corresponding to p = 1 were used which were sufficient to solve fully 
the second order system for the knknown 2 and ~o. Here by analogy we use p = 1 and 2 to derive the 
necessary and sufficient equations. Taking firstly p = 2, we have, 

G 0 {--(.02~'b2n+1(2n"~l)K3(~)-~ Ed2,+,K,(2n+l)}=O, 
and , = 1 ,, = o 

/ -  

( 2 . + ,  ( . )+  d2°+  = o,  0o  
( n = l  n = 0  J 

where 

02. -2 l  02z 
K 3 (/I) = -(2n)! (2n+ 1-21)! ( I -  1)! (l+ 1)! 22/-2 

~, 0 2 . -  21 02~ 
KI (2n+l)  = (2n+l)!  (2n+1-21)!(1+ 1)!I!22t 

/ = 0  

so that either 

or  

n 

V ®2"-zl ®zl (21+ 1)! 
K2 (2n+ 1) = (2n+ 1 ) ! /  ,(2n-7i 7 -2~  0-+1 i! 1-~22t 

1=0 

~ o  ~-.~. 0 

n 

Z X 2,o2, d2"+1 (2n+ 1)! (2n+1_21)!1!1!22~-~ 
n=0 l=0 

= 0 .  

(7) 

(8) 



It is found that the frequency resulting from equation (8) for the particular aircraft under consideration 
is imaginary so that only equation (7) is a valid solution. 

This effects a considerable simplification of equation (6) which, after the subsequent integrations using 
p = 1, leads to the following :- 

~ 2 ~ a 1 +  Y. a2n+lX(n)O zn } = c l + E  C2n+lX(n) O 2n (9) 
( n = l  n = l  

and 

where 
(2n+ 1)! 

X(n) - 22 n rt! (rt+ 1)!" 

Equations (9) and (10) suffice to determine the frequency and amplitude of the sustained oscillation, 
and the conditions under which the latter occurs. Eliminating co 2 from equations (9) and (10) enables 
the expression for the amplitude to be written in the form" 

- [ c  i + :c c 2 .  + ~ x ( n )  0 2"] 2 + 
1 

+ [c, + Z  c2,+, X(n)O z"] [b, + Z  b2,+, X(n) O 2"] [a, + Z  a2,+, X(n) O 2"] - 
1 1 1 

- -  [ a  1 -~ '~~. a 2 n + l  X ( n ) o 2 n ' ]  2 [ d  1 --1- ~"~ d 2 n + l  X(H) O 2hI = 0 ,  
1 1 

(11) 

that is, Routh's discriminant for an equivalent linear system formed by replacing a 1, bl, etc., applicable 
to the linear case by [a~ + Z  a z n  + 1X(/'0 oZn], [b1-1-~ b2n+ 1 X(n) o2n],  etc. The amplitude of the sus- 

1 1 
tained (non-linear) oscillation is then given by the condition that the equivalent linear system is neutrally 
stable. 

In Ref. 2 it was shown that for a non-linear second order system of the type considered there exists 
an equivalent linear system, (the equivalence being a function of amplitude), which has the same frequency 

and damping. The equivalent stiffness, S, is the dynamic mean defined by S' = -nl f S(x) sin 2 ~b dq~. The 
0 

physical significance of the replacement terms, [a~ + Z  a2n+tX(n)O 2hI etc., in Routh's discriminant is 
1 

that they are the dynamic means of the slopes of A(x), B(x), etc. similarly obtained. 
Thus, at least in systems such as that presently considered in which there is only one sustained oscil- 

lation, the existence, frequency and amplitude of this oscillation may be determined directly merely by 
formulating the modified Routh's discriminant, R, using the dynamic mean of each of A(x), B(x), etc. 

Then, since R = R 0 = o + O 2 (  ~ 2 ) ) 0 = o  + . . . . .  0 

0 ~ ~ ~ • (12) 



OR 
The existence is determined by the range of ® for which R and ~ are of opposite sign. 

v t ~ j  

3 .  Application to Simulation of l iP 115 Aircraft. 
The model of the HP 115 aircraft tested in the wind tunnel/flight dynamics simulator, to investigate 

its lateral behaviour, was also free to respond longitudinally, but the resulting change in angle of attack 
was regarded as sufficiently small for the longitudinal response to be neglected in the basic theoretical 
treatment. However, due account has been taken of the effect of this cross-coupling back onto the lateral 
behaviour where necessary, e.g. Sections 3.3.1 and 3.3.2. 

The lateral equations of motion of an aircraft, flying at a given speed (or angle of attack), are usually 
expressed in terms of perturbations in sideslip velocity, roll rate and yaw rate, with aerodynamic forces 
and moments approximated by their first derivatives with respect to the perturbations. In the simulation 
of the motion of the HP 115 aircraft in the wind tunnel, the forces and moments due to roll rate and 
yaw rate were represented in this manner, but the sideforce, rolling moment and yawing moment due 
to sideslip velocity were obtained directly from wind-tunnel measurements. Examination of the static 
wind-tunnel tests shows that the sideforce and rolling moment are almost linearly dependent on sideslip 
velocity, but that the yawing moment is distinctly non-linear. 

Representation of the yawing moment coefficient, C,, in the form C,, = n~ ~+ na ~3 gave good agree- 
ment with the experimental values, where n~ and na are dependent on the angle of attack, and were 
calculated to give the best mean curve through the data. A comparison of the sideforce and moments 
due to sideslip and their approximate values at a relatively high angle of attack, ~ = 0.25, is shown in 
Fig. 1, and the variation ofyv, l~, nl and na with angle of attack is shown in Fig. 2. 

3.1. Equations of Motion. 
The lateral equations of motion, when the yawing moment due to sideslip is non-linear, may be written 

as :--  
d~ _ g pSV 2 f ps rs'~ 

- d t w p + r - v  G° - m ~Yv v+Yp~+Y~~)  

dp. dr pSVZs iv~+ip~+l_~ 
~--+-e~ ~ - Ix (13) 

dr dp P SV2s [" -a ps rs'~ 
~ + G  dt iz ~nl fJ+n3 - -  - v +np-~+n,-~) 

do 
= 0  

By elimination of p, r and q~, the differential equation for ~ is obtained in a form similar to that of 
equation (1), viz" 

d4~ daA(f~) dZB(b) dC(b) . . . .  
dt 4 I - - - ~ - + - - ~ + ~ - - + D { v )  = 0 

where 

A(O) = a 1 

= - Yo-~(1-exez) ix t= iz iX)_l 
(14) 



B(~) = bl v + b 3  ~)3 

(pff~__)2 [~_~.~ {lp n,. e~np ezl,. } 
= (Ipn~-nvl,)+yv _ 4 _  : -- 

lx Iz iz Ix 

~l-p~s(~+e=)+yp-e=y~ +T: l ~ s  ( +ez~)-yr+exyp (l_-e~e=)t- 

+ ~Ss ( l+exf f ' ) -y '+exye iz(1-exe~) 

C(O) = c~ ~+c2~3 

m Cz "~ + 
=-(pSV~alY"( lpn"-npl")- - l"{~(np+wn"+iz-2)+YPn"-Y"np\m/  

J 

m . C z 

y, lp ix i~ (1 - ex ez) 

m _ C z 
 ,'pl .°3 

ix i~ (ll--exe~) 

(15) 

(16) 

D(b) = d a v + d  3 ~3 

= _ ( , , S V _ ' ? m q  
\ m J pSs 2 (lvn'-n*l') ixi~(1-exe=) 

SV~ 4 m C~ I, n3 ~3 
+ \  m / pSs 2 ixiz(1-exe~)" 

(17) 

Ixz lxz mg 
As is customary,  ix = __Ix etc., e x - , e z - and Cz ~"~ for the range of ~ currently ms 2 Ix I~ l p V 2 S  

considered. The coefficients a~, a3 etc. are shown in Fig. 3 for the range offf~, and the values of the inertias 
etc. are given in the table. 

The equivalent coefficients introduced in equat ion (11) are thus given by:  

a *  = a 1 -) 

1 b* = bt + ¼ b3 ® 2 

c* = c~ +¼ c3 0 2 

d* = d l + 3 d 3  0 2  

(18) 

where the coefficients b3,  C a and d 3 a r e  each propor t ional  to the non-l inear  contr ibut ion n 3. The equivalent 
Routh 's  discriminant, R* = a* b* c * - a  .2 d * - c  .2 = 0, then leads to a quadrat ic  for ®2, which has 
the approximate  solution, 

[ c ~ - a ,  bl ct + a  2 d l ]  (19) 
0 2  ~" 3 [a, b, c3+a, b3 c , - a  2 d3-2c,  c3] 



and from equation (9), 

co 2 = c * / a l .  (20) 

Alternatively, O z may be eliminated to give a quadratic for co z, 

094 1 - b  1 _co2 bl Ca Ca ) ca ' 

which is independent of the magnitude of non-linearity n3, for n3@0 because of the proportionality 
referred to above. 

The corresponding amplitudes of the roll rate, p, and yaw rate, r, and the phase relationships with the 
translational velocity, ~, are given in the Appendix A. 

It may also be shown that the discarded solution, i.e. 03  + ®4 4= 0, given by equation (8), would lead 
to imaginary values of the frequency for the present example. 

3.2. Physical Implications. 
The advantage of an analytical approach such as the foregoing is that, in contrast to specific computer 

solutions, it provides a physical insight. For example, it is apparent from the approximate solutions 
(equations (12) and (19)) that the signs of the numerator and denominator define the type of motion 
which will arise in a particular case. A limit cycle can occur (i.e. ® is real) only if numerator and denomina- 
tor have the same sign, both expressions being determined at the steady flight angle of attack. The de- 
nominator, given approximately by 

+ LT t ,.j k d  • 
(22) 

can be shown to be positive throughout the range of angle of attack covered in the experiments (Fig. 3b). 
The numerator is Routh's discriminant, R, for the stability polynomial evaluated as if the non-linearities 
were absent, and for the H P  115 at low speeds this is shown in Fig. 3a. This changes sign at ~ = 0.19, 
so that for ~ below this value a normal convergent oscillation can be expected, and above, an oscillation 

c~R 
will occm: of a sustained amplitude which depends upon the magnitudes of ~ and R. The linear 

OR 
system is a degenerate case for which ~3(®2----j = 0, so that the motion is either convergent (® = 0) or 

divergent (® = co), depending only on the sign of R. 
It will be noted from equation (22) that, because for the H P  115 the non-linearity is confined effectively 

to one term only, viz. the yawing moment, O 2 is inversely proportional to n 3. 
The following two sections compare the predictions of this analytical method, firstly with experimental 

data (Section 3.3) and secondly with spot checks from digital computations (Section 3.4). 

3.3. Comparison with Experimental Values. 
3.3.1. Damping index at small amplitudes. 

The responses obtained on the model of the HP  115 in the wind tunnel/flight dynamic simulator 
(Fig. 13c of Ref. 1) appear, at first sight, to be near zero damping at an angle of attack of 0.14, which is 
appreciably lower than the value of ~ ~ 0.19 given by the theory with non-linearities neglected. How- 
ever. it is noticeable that the amplitude of ~ varies with the changes in ~ arising from a low frequency 

9 



cross-coupling oscillation, and so a simple approximate method of extracting the damping for a constant 
angle of attack is required. The theoretical value of the damping index (k), at small amplitudes where 
the non-linearity in C, (/;) can be neglected, is almost linear with ~ (Fig. 4) so that the amplitude of the 
dutch roll oscillation was taken to be proportional to e k ~ ,  with k(~) linear in ~. The logarithmic 
plot of the peaks of fJ could then be correlated with the variation of N in the experiments, to give k at 
mean values of ~. 

Analysis of published ~ and unpublished records from the wind tunnel/flight dynamic simulator 
shows that zero damping occurs at about f~ = 0.195, and that theoretical and experimental values of 
damping index agree well (Fig. 4). 

3.3.2. Amplitude and frequency of the steady oscillation. 
A detailed examination of the apparently steady amplitude oscillations in Ref. 1 and unpublished 

results showed that the amplitude was still increasing very slightly because of the finite duration of the 
tunnel tests. Before comparing the steady state amplitudes with the theoretical predictions it was there- 
fore necessary to extrapolate the measured values to the true terminal values. 

A method of predicting the amplitude growth rate was needed, and a more general solution to equation 
(13) was developed, again from the method in Section 2 but without the constraint of 2 - 0. The inter- 
mediate amplitude during the growth to the asymptotic value, (9, is denoted here by 0. For the particular 
form of the non-linearity assumed, viz. C, = nl f~+n3 ~3, the equations corresponding to equations 
(9) and (10) are: 

. 3a3 } 092 tll "1--4 02 +42 = Cl +3 C3 02 + 22 (b~ +9 b3 02)+ 322 (al + ~  a3 02)+423 (23) 

c~4-w 2 {b~ +3 b3 02+ 32 (aL +9 23 02) + 6). 2 } - {all +3d3 02 +~, (el +9 e3 02)+ 

+)(2 (b 1 _t27_ b3 02)+,23 (a 1 + ~ a 3  02)+).4} = 0. (24) 

These yield a sextic relating 2 and 02 which for the parameters appropriate to the HP 115 aircraft may 
be approximated by a quadratic in 2. The relationship between 2 and 02 is shown in Fig. 5a where the 
results for different angles of attack are collapsed by plotting 2//lo against 02/0 2, 2o being the damping 
at zero amplitude (2o = -k) .  From this the time, r, for the amplitude to grow from 01 to 02 

(i 01 

(25) 

may be determined by numerical integration, as shown in Fig. 5b, where it is compared with a computer 
solution (Section 3.4). 

In Ref. 2 it was shown that the present technique gives for the limit cycle appropriate to the van der 
Pol equation a variation in 2 of 

This much simpler relationship between 2 and 02 has also been plotted in Fig. 5a where it is seen to be 
in remarkably close agreement with the present solution. It has the advantage that when inserted in 
equation (25), ~ is obtained in a closed form, viz. 

z = 2)~o log L0 ~ (®2 _ 0~)_ l • (27) 

10 



This is also plotted in Fig. 5b, showing it to be a close approximation to the present formal solution. 
But it also has the important advantage that it enables the steady state amplitude to be specified in 
terms of points on the growth curve, in particular the point of inflection, 0 i. For this simple variation 
of 2 with 0, 

19 = x/~ 0,. (28) 

When checked against the formal theoretical solution (Fig. 6) this is found to apply equally, and hence 
it provides the necessary means for extrapolating the experimental results (Fig. 7). 

This study of the growth rate to the final limit cycle amplitude is useful and interesting in its own 
right, but since it is required here only for this extrapolation, it has not been pursued further. 

The estimated experimental values of the steady amplitude 19, although significantly larger than the 
maximum values during the tests, are still smaller than the theoretical values, although the character 
of the variation with ~ is similar, as shown in Fig. 8. Reducing the range of g over which C, is fitted 
tends to decrease the theoretical value of 19, but not sufficiently to give good agreement. However, there 
are a number of possible causes of disagreement, which can affect the fine balance on which the amplitude 
clearly depends, and it is encouraging to find that the theory predicts the character of the response as 
closely as it does. The effects of changing the representation of C,(O) are discussed further in section 4. 
It is also noticeable that the departure of Cy(~) from the assumed linear variation is in the correct sense 
to reduce the theoretical value of 19, and hence to reduce the discrepancy, but it was not thought worth- 
while to evaluate the more complicated algebraic expressions which arise. 

The frequency of the oscillations at large amplitude could be determined from the experimental 
responses directly, and good agreement is obtained between theoretical and experimental values, as 
shown in Fig. 8b. It is interesting to note that the increase in frequency due to the non-linear C,,, pre- 
dicted by theory (see Fig. 10 for example) does occur. 

One of the experiments described in Ref. 1 was undertaken to examine the effect of reduction in the 
value of the rolling moment due to sideslip, and so corresponding calculations were made, the results 
being shown in Fig. 9. The mean angles of attack for the three tests were 0.25, 0.255 and 0.245 for the 
100 per cent, 90 per cent and 75 per cent of Ct(~) respectively, so a mean value of ~ = 0.25 was assumed 
for the theoretical calculations. Again, the frequency agrees well, but the theoretical amplitude is about 
twice that indicated in the experiment, although the general trend is correct. 

3.4. Digital Solution. 
In order to check the present theory with an'exact'  solution, the equations of motion, equations (13), 

were solved numerically for specific cases, using available subroutines to perform the integrations on 
the ICL 1907 digital computer. The resulting amplitudes and frequencies at ,~ = 0.225 and 0.25 are 
shown in Fig. 10, and are seen to be almost identical to the values given by equations (11) and (19). Similar 
good agreement was obtained for the amplitudes of the oscillations in rates of roll and yaw, and for the 
phases between the responses. The formulae, in terms of 19 and ~o are given in Appendix A, together 
with a comparison of the results. 

The digital computations also demonstrated that the steady oscillation is a true limit cycle for the 
constrained flight condition with constant angle of attack, in that an initial disturbance greater in mag- 
nitude than the steady value converged to the steady value. The peak values of the responses in g and 
p have been plotted in Fig. 11, as a function of peak number after the initial disturbance, for various 
initial conditions. 

The general agreement between the exact (i.e. digital computer) solutions and the approximate analytic 
solutions is very encouraging, and gives confidence in the extension of the method of Ref. 2 to higher 
order systems, at least in the case where only one sustained oscillatory mode is present. 

4. Representation of Yawing Moment Due to Sideslip. 
In the foregoing the representation of the non-linearity in the yawing moment of HP 115 has been 

11 



confined to a cubic term. The form of the solutions obtained suggest that the balance, particularly in 
the amplitude of the sustained oscillation (which, but for the non-linearity, would tend to become infinite, 
Section 3.2) might be rather fine and depend critically on the form assumed for the non-linearity. It was 
therefore decided to investigate this further for the representations in the following sections. 

4.1. Representation by Two Straight Lines. 

The experimental values of yawing moment due to sideslip were approximated by two straight lines, 
that is n~, is assumed to change value at a particular angle of sideslip. This type of representation is often 
more convenient than a continuous functional dependence in computer studies, and has been used in 
many flight simulators. The resulting equations of motion may be treated in a similar way to that for 
the functional dependence described in Section 2, and the use of the technique for equations with dis- 
continuous coefficients has been confirmed by comparison with exact results for a second order equation 
in Appendix B. 

For the HP 115 aircraft, we write 

and 

C,(0) = n~, 0 

C,(0) = n~ 0 + ? 1 

C,(0) = n,~ 0 -  7 t 

f o r O <  I~[ < v l ,  

forO > 01 

forO < - 0 l  

(29) 

where 7~ = (nv,-nv,) ~1 for continuity at ~ = +/~. The equations of motion then reduce to a fourth 
order differential equation with coefficients A(P)... D05) linear in ~, but discontinuous at /~ = _+~,, and 
with one additional constant term if I~] > 01. 

For the approximate solution, we again write 

0 = O cos (b, with vl = O cos q~l, (30) 

and integration over one cycle of q5 gives finally that 

all ~o 2 = cll  + ( c t z - c t O ( 2 4 ) t - s i n  2490/Tc (31) 

and 

~n~_bt 1 coZ+dl 1 = 1_ [o2 (b12_bl l ) (2~al+sin2~l)_(d ,2_dt l ) (2~l_s in2dpl)  ] (32) 

The coefficients aLL . . .  d tl are given by the expression for a 1 . . .  d l in equations (14) to (17) with n t = n~,, 
and similarly axz . . .  dt2 with nt = n~2. 

At a given angle of attack, the equations of motion are linear when 10] < v~, and so the dutch roll 
oscillation is convergent or divergent according as R outh's discriminant for the coefficients a~l -. .  d lx 
is positive or negative. If R(nvl) > 0, it is found that equations (31) and (32) have no solution, as would 
be expected for a damped oscillation, but as the angle of attack is increased the condition for neutral 
stability, R(n,,,) = 0, is reached, and equations (31) and (32) give q~l = 0. At the angle of attack corres- 
ponding to R = 0 the response from the linear equations of motion would be a sustained oscillation 
with amplitude dependent on the initial conditions, but if the initial value of 0 is greater than 01, then the 
non-linear contribution fixes the amplitude at ® = 01. This contrasts with the solution for the cubic 
representation of C. where the amplitude of the sustained oscillation is zero at a similar angle of attack. 

As the angle of attack is increased further, R(n~,) becomes increasingly negative, and if R(n~) remains 
positive, equations (31) and (32) give one solution for ~b 1 in the acceptable range 0 ~< ~bt ~< n/2, and so 
the variation of O with ~ may be obtained. However, R(n~) may also become negative as the angle of 
attack is increased further, and then either two or no solutions for q~ exist, dependent on the magnitude 
of] R(n~)]. 
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In physical terms, if the inner portion of the oscillation ([ ~1 ~< ~)  is stable the kinetic energy will be 
dissipated and there will be no sustained oscillation. If this inner portion is neutrally stable, (R(nv,) = O) 
there will be no loss of kinetic energy for [~1 ~</~1, but the positive damping outside this range will result 
in a sustained oscillation of amplitude vl. If the inner portion is unstable, kinetic energy will be acquired 
in traversing the range _+~1, which in the equilibrium state will be dissipated by the positively damped 
outer portion. The sustained oscillation amplitude will thus be greater than Vl. 

For the HP 115 aircraft, the range of angle of attack for which one solution of the equations exists 
is 0.194 < ~ < 0.221, the values of nv~, no~ and ~ being obtained using a least-squares fitting technique 
on the experimental data for C,(~). The results for ® and e) are shown in Fig. 12, together with the experi- 
mental values. In the range 0.221 < if, = 0.234, two values of ® exist and for ~ > 0-234, theory gives 
no possible solutions for a sustained oscillation. 

Numerical integration of the equations of motion confirms the predicted amplitudes and frequency. 
Thus it appears that the representation of C,(fi) by two straight lines could lead to responses of quite a 
different character from those obtained using a continuously varying function. In addition, of course, 
the responses have discontinuities in slope at ~ = 01, which are not present in a more complete simulation 
of the motion. 

4.2. Higher order Polynomial Representation. 
Because of this sensitivity to the form of the non-linearity, some alternative representations of C,(g) 

were considered briefly. 
The experimental data for C,(fi) does exhibit some scatter about the mean cubic representation (see 

Fig. 1), and so a quintic term was also considered, viz 

C,, = nl v+na v3-t-n5 ~5. (33) 

The coefficients nl, n3 and n5 were again obtained by a least-squares fitting technique using experimental 
values of C,, for ~ ~< 0.15 for each ~, but the extrapolation of C, up to the amplitudes given by equation 
(11) led to an unrealistic variation of C, with ~, negative values of OC,/OO occurring. 

The simpler quintic representation of C, by nl fi+ n5 g5 avoids such difficulties, and leads to smaller 
values of (9 (at the larger angles of attack) than the cubic representation of C,, see Fig. 13, but they are 
still larger than the experimental values. The frequencies are almost identical for both representations, 
because the values of nl are not very different. Since the theoretical values of (9 are beyond the range 
of 0 for which C, was fitted, it is necessary to consider the extrapolated values of C, up to ~ = ®. A com- 
parison between the cubic and the simple quintic representations of C., and the experimental data, is 
given in Fig. 13b for ~ = 0.25. It may be seen that neither extrapolation agrees with the measured value 
of C, at 0 = 0.175, but it does not seem worthwhile to search for alternative polynomials which would 
give perfect quantitative agreement between experimental and theoretical values of O. 

It is clear that the predicted amplitude of the sustained oscillation is sensitive to the analytic form 
assumed for the non-linearity, and that it is important to be able to define this reliably over the amplitude 
of the oscillation. 

5. Conclusions. 

(1) An extension of the analytical method of Ref. 2 to the treatment of fourth order, non-linear systems 
has been shown to predict very closely the conditions in which sustained oscillations were obtained in 
the dutch roll motion of the HP 115 aircraft. 
(2) The approximation method has been checked against solutions from a digital computation of the 
full non-linear differential equations and found to give convincing agreement. The analytical form of the 
approximation, however, has the advantage of giving insight into the physical nature of the prob!em, 
and shows, for example, that the criterion for the eixstence of such sustained oscillations is a non-linear 
analogue of Routh's stability discriminant. 
(3) Non-linearity with sideslip of one parameter--nv--accounts qualitatively and quantitatively for the 
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behaviour. The incidence for the onset of the sustained oscillations is predicted together with the variation 
of frequency as the incidence is further increased to values at which, but for the non-linearity, the motion 
would be divergent. There is, however, some disparity between the predicted and experimental amplitudes 
in this condition. 
(4) There is evidence that for conventional simulations some care is needed in the representation of the 
non-linear aerodynamic terms if this type of essentially non-linear dynamic motion is to be reproduced. 
The customary representation by a series of straight lines may be inadequate. 
(5) Inasmuch as the wind tunnel (FDS) technique has reproduced the flight behaviour, and the present 
analytical approach has produced good agreement with the experimental data, the relevance and accuracy 
of the wind tunnel simulation technique is regarded as having been fully demonstrated. 

A(x) 

B(x) 
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I z x  
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K~,K2, K3 
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LIST OF SYMBOLS 

Polynomials in basic differential equation (1) 

Coefficient of x" in A(x) 

Coefficic~at of x" in B(x) 

Coefficient of x" in C(x) 

Coefficient of x" in D(x) 

Rolling moment coefficient, ~ / p  VZSs 

Yawing moment coefficient, ,IC/pVZSs 

Sideforce coefficient, Y/½pVZS 

Normal force coefficient, Z/½pVZS 

Product of inertia ratio, - Izx/I * 

Product of inertia ratio, - lzx/lz 

Function in differential equation, Section 2 

Acceleration due to gravity 

Moment of inertia in roll 

Moment of inertia in yaw 

Product of inertia 

Normalised moment of inertia, I jms 2 

Normalised moment of inertia, I~/ms 2 

Functions used in Section 2 

Damping index 
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lv 

Ip 

lr 

m 

X 

np 

nv~.~ nv 2 

HI , / / 3 ,  /'/5 

P 

r 

R 

Rm 

S 

S 

t 

V 

X 

Xl 

X(n) 

Y 

Z 

Damping indices for second order systems, Appendix B 

Rolling moment 

1 0& ° 
Rolling moment derivative due to sideslip, pV2S s OO 

1 0~e 
Rolling moment derivative due to rate of roll, pSVs 2 Op 

Rolling moment derivative due to rate of yaw, pSVs a Or 

Mass of aircraft 

Yawing moment 

1 0~4 r 
Yawing moment derivative due to rate of roll, pSVs 2 Op 

1 ? . U  
Yawing moment derivative due to rate of yaw, pSVs z Or 

Slopes of C.(0 in straight line representation 

Coefficients of ~, ~a, ~5 respectively in polynomial representation of C.(~) 

Rate of roll 

Rate of yaw 

Routh's discriminant 

• d m 
Residual term associated with ~-~, defined in Seclion 2 

Wing area 

Wing semi-span 

Time 

Forward velocity 

Sideslip velocity/V, (angle of sideslip) 

Normal velocity/V, (angle of attack) 

Variable in basic differential equation 

Particular value of x, Appendix B 

(2n+ 1)! 
Coefficient defined after equation (10), X(n) - 22" n! (n + 1)! 

Sideforce 

2+iw 
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® 
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P 

~p 
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a 
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Superscript 

1 0Y 
Sideforce coefficient due to rate of roll, pSVs ~3p 

1 0Y 
Sideforce coefficient due to rate of yaw, pSVs Or 

1 0Y 
Sideforce coefficient due to rate of sideslip, pSV2 Of~ 

Normal force 

Particular value of ~ defined in equation (29) 

Phase angle of p relative to 

Phase angle of r relative to 

Amplitude of 

Amplitude of ~: at point of inflection of O(t) 

Amplitudes of various possible modes of 

Amplitude of steady oscillation in 

Amplitude of steady oscillation in p 

Amplitude of steady oscillation in r 

0 0 (Section 3.3.2) 

Value of 2 at zero amplitude (Section 2) 

= t0./0 . (Section 2) 

Air density 

Time for amplitude growth 

Bank angle 

Defined in equation (5) 

Particular value of qS, Section 4.1 

= q~, equivalent to frequency 

Undamped frequencies of second order systems, Appendix B 

Frequencies of second order systems, Appendix B 

Equivalent value 
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APPENDIX A 

Amplitudes and Phase Angles of Rates of Roll and Yaw. 

Analogous expressions for roll rate and yaw rate may be used in equations (13) to that defined for 
sideslip velocity in equation (5), and they may be written as 

• p = Op cos (4~ + ~p) 

r = ®r cos (q~ + ~r) 

where ~ = ® cos 4. 
The values of ®v etc. are obtained by substitution of ~ into the first two equations of (13), to give: 

®" = (1 Z e~ e=) " Six iz L -J 77P-r 4 A 

®r = (1--exe=)'sixi= L (b3°92-d3)e d-c2 °)2 J 

Ira2 ] 1 ~ (___~ ba - d3) (ix~ 6) 2 + j r ) +  c02 c3 kr 

t a n e p = ~ [  m (co2 (i:,~ 6)2 +jr) J 
Lp- ~ .  ba-d3)kr-ca 

tan®, = 6 ) [  c3(6)2kp-k)-pm-sv(CO2b3-d3)(ix6)2+JP)] 

[ 6)2 ea (i~ 6)z +j,)+ ?-SV gO2 b3-d3) (6)2 kp-k) j 

where the following symbols have been introduced, 

k,. = lr-ixzyv, kp= Ip+i xyo 

17 



m 
jr  ~- ~ - ~ l v - } - y v l r - y r l v  

m 
j p  = ~ I v w -F yp l v - lp y.  

k - m C~ I~ 
pSs 2 

m 
d~ = p ~ 0 3  

The numerical  results obtained for ~ = 0.225 are compared  in the table below with the values obtained 
for the numerical  integrat ion of the equat ions  of mot ion,  

Equat ions  

Numer ica l  integrat ion 

•p Or ,gp g,. 

0'047 0'0021 

0.047 0'0023 

_ 68.7 ° 

- 6 9  ° 

47.2 ° 

42 ° 

A P P E N D I X  B 

Second Order System with Discontinuous Coefficients. 

The validity of using the approx ima te  method  for equat ions with discont inuous coefficients has also 
been checked by solving the piece-wise linear equat ions analytically rather than numerically.  In order  
to reduce the algebra, a second order  system has been considered, which is similar to the oscillatory 
mode  of the fourth order  system analysed in the main par t  of this Report ,  i.e. 

~ + ~ + B ( x )  = 0 (B.I) 

where 0 < [x] < xl ,  A(x) = --2kl  x ,B(x)  = 032 x 

X > Xl, A(X)  = 2k 2 x - x  l (2k 2 - 2 k l )  , B(x )  = 03 2 x - x  1 (0322-032) 

x < - x l ,  A(x) = 2k2 x + x l  (2k2 - 2 k 0 ,  B(x) = 032 x + x l  (032 _032) 

and kt and k 2 are both  positive. 
The solutions in the time intervals, illustrated in Fig. 14a, tl < t < t 2 when x > xl ,  t2 < t < t 3 when 

Ixl < x l, t 3 < t < t 4 when x < - x l ,  and t4 < t < t5 when Ixl < xl ,  may  be obtained in terms of the 
value o f  2 ( =  2~ say) at t = t~, with the solutions matched  at t = t2, t 3 . . . .  The condit ion for a s teady 
oscillation to exist is that .~ = - 2  3 ( =  -~5), and this is sufficient to determine the t ime intervals t 2 - t  1 
( =  t ~ - t 3 )  and t 3 - t 2  ( =  t s - t 4 ) ,  and also the value of:t~. 
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The condition for a continuous value of 2 at t = t 2 gives that 

x12-2 = 0)-~21 { o 2  z sin v2 v2(t2_ tt) [c°sv2(t2--tl)--e-k2(t2-tO]--k2} 

= k l  v~ 
sin v 1 (G-t2) [cos vl ( ta-t2)+e -k' (~3-t2~] (B.2) 

and for 2 ~ = - 2a, then 

xt~---L~---c°~ ~0)2 ( sin v2 VE(t2 _ tl) [ek2(t2_tt) COSV2(t2_tl)]_k2 } 

1 
= kl -~ sin v 1 (t 3 -t2) ek' (t3-t2)qc°s vl ( t3- t2)  (B.3) 

where 0)21 = v21 + k~ and 0)22 = v2 z + k 2 . (B.4) 
These may be solved graphically for v2 ( t 2 - t l )  and v I (t 3 - t 2 )  in terms of the parameters k~/vt, kz/v2 

and kx/k2. 
The amplitude of the steady oscillation is given by 

-0- - 1 + 0 ) - ~ { x l  0)22 o) 2 sin 1221/2(t 2_ t l ) [1-2e~2( t2- t ' )cOsv2( tz- t l )+e2k202- tO]~:e-k2cr ' - t ' ) - l}  (B.5) 

where 

tan v2 (T1 - t l )  = vz [e k~ u=-~)-  cos v2 ( tz- tO] -k2  sin v2 ( t z - tO 
v2 sin v2 ( t2- t l )+k2 [e k: ~t2-tO-- COS 1)' 2 ( t 2 -  tl)] 

(B.6) 

and the frequency of the oscillation may be written as 

0) = n/[( t2-tO+(ta-t2)] .  (B.7) 

These equations (B.5) to (B.7) may be arranged to give O-O-xl and ~22 in terms of k~/v~, k2/v 2 and kl/k 2. 

The approximate solution for the amplitude and frequency of the steady oscillation has been obtained 
by assuming that x = ® cos ~b, with (9 = 0 and ~ = co. If cos q~ = Xl/®, then the integrations over 
one cycle give that 

® = xl secq~l where 2~bl-sin2~bl = nkl/(kl+k2) (B.8) 

and 

0)2 = (k2 0)~ +k~ ~)/ (k ,  + k g .  (B.9) 

The exact and approximate values of amplitude and frequency, expressed as ®/xt and 0)/k2, a re  
shown in Figs. 14b and c for the two general cases (i) lq/va = 0'1, k2/v2 = 0'2 and (ii) lq/vl = k2/v 2 = 1.0, 
over the range of k~/k 2 from 0 to o% and for a particular case, close to the frequencies and dampings 
associated with the H P  115, o)21 = 6.5, co 2 = 7.0 and k 2 = 0"05 for varying k~. The exact values of the 
amplitudes for all cases collapse on to the one approximate curve, which depends only on kt/k2, with 
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small errors  arising a s  k2/kl-~O when ® ~ .  The  frequencies also agree r e ma rka b ly  well, even for the 
large damp ing  factors of  1.0. 

It is also possible  to show that  the exact solut ion tends towards  the s teady osci l la t ion when s ta r ted  
from an a rb i t ra ry  initial condi t ion ,  by cons ider ing  the re la t ionships  between the values of  ~ at x = + X l 
and x = - x l  t h roughou t  the t ransient  response. 

Mass  and inert ias  

T A B L E  

Numerical Values Used In Calculations. 

m 2154 kg 

i:, 0'109 

iz 1 "27 

ix= 0.0806 

Representa t ive  length s = 3.05 m 

Representa t ive  area  S = 40.18 m 2 

Air  densi ty  p = 0.906 kg/m 3 

Der iva t ives  due to rate  of  roll  and  rate  of  yaw 

yp = 0.014+0.505 ~ - 0 - 4 7 4  ~2 

lp = - 0 . 1 3 2 + 0 . 0 8  

np = 0'0125 ffJ-O'938'~z 

Yr = 0 

Ir = 0'006 + 0 ' 5 4 , ~  

nr = - 0 ' 3 5 1 - 0 " 0 8 9  
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0.05 O.lO 0-15 o.~.o 9 o,;~s 
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- - O . O ~ S  

FIG. 1. Approximations to Cy, Ct and C, at N = 0.25. 
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Ftc. 2. Variation with angle of attack of sideslip derivatives, I v and y~, and coefficients in 
cubic representation of C,(~) = nl ~5+n3 ~53 (HP 115 aircraft model). 
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FIG. 3a & b. Coefficients applicable to HP 115. 
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FIG. 12a & b. Comparison between experimental and theoretical values of 
amplitude and frequency for C.(~) represented by two straight lines. 
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FIG. 14a-c. Comparison of exact and approximate values of amplitude 
and frequency of steady oscillation in second-order equation : 

Ixl < x, ,  x - 2 k t ' ~ + o ) ~  x = o 
[xJ > x , ,  Si + 2k2 5c +(.02 x = +_xt ((.027-co~). 
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