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Summary.

An approximate analytical method is developed for the solution of a fourth order, non-linear equation
of motion from which the frequency and amplitude of a sustained oscillation may be derived. The
criterion for the existence of the limit cycle is a modified form of Routh’s discriminant, its sign, and the
sign of its derivative with respect to the square of the instantaneous amplitude. Comparisons at spot
points show excellent agreement with ‘exact’ digital computations.

The method has been applied to the lateral motion limit cycle encountered at low speeds on the HP 115
aircraft, and comparisons with the results of wind tunnel dynamic simulations show that the onset and
nature of the sustained oscillation is predicted very satisfactorily.

LIST OF CONTENTS

1. Introduction

2. Method
2.1.  General
2.2.  Specific application

3. Application to Simulation of HP 115 Aircraft
3.1.  Equations of motion
3.2.  Physical implications
33. Comparison with experimental values

3.3.1. Damping index at small amplitudes

Fl prem e e

s g b
L g ©

*Replaces R.A.E. Tech. Report No. 70085—-A.R.C. 32 345.



LIST OF CONTENTS——continued

3.3.2. Amplitude and frequency of the steady oscillation
3.4. Digital solution

4. Representation of Yawing Moment Due to Sideslip
4.1. Representation by two straight lines

42.  Higher order polynomial representation
5. Conclusions
List of Symbols
References
Appendix A Amplitudes and phase angles of rates of roll and yaw
Appendix B Second order system with discontinuous coefficients
Table Numerical values used in calculations
Ilustrations—Figs. 1 to 14

Detachable Abstract Cards

1. Introduction.

In Ref. 1 an account was given of a simulation exercise on the HP 115 aircraft at low speed and high
incidence conditions which in full scale flight produced a sustained oscillation in the Dutch roll mode.
This exercise put to the test a novel simulator facility in which part of the aerodynamic loads—the forces
and moments due to the angle between the body and flight-path axes—was supplied in an analogue
form directly from a wind tunnel balance, thereby eliminating the mathematical modelling of these
terms. The simulation reproduced the flight behaviour, showing a normal convergent Dutch roll at
moderate angles of attack, and at higher angles the sustained oscillations, of an amplitude increasing
with angle of attack.

There was some weak coupling between the longitudinal and lateral modes; for example, therc was
some excitation in pitch around the trim angle of attack, which itself produced a cyclic change of the
Dutch roll amplitude. But these effects were small enough to suggest that the motion should be amenable
to analytic treatment by consideration of a fourth order system in which due allowance is made for
non-linearities, viz

d*x d*A(x) d’B(x) dC(x)
g Dix)=0. 1
datt  de? + dt? + dt + Dix) ()

In Ref. 2 an approximate method of treating second order systems of the type ¥+ F(x, x) = 0 was
given. The approximation produces a solution, not of x(t), but of the frequency and amplitude damping




envelope as a function of the amplitude. The difficulties escalate as the order of the equation is increased.
But to offset this, many of the awkward terms disappear in the special case of a steady sustained oscilla-
tion, and so the method seemed to offer a powerful way of formulating the conditions under which such
oscillations could occur.

The Report develops the method and applies it to the particular case of the HP 115 slender aircraft.

2. Method.
2.1. General.

We are concerned with non-linear dynamic systems with an autonomous response similar in type to
that of a linear system, viz an identifiable {but not necessarily constant) frequency and an amplitude
varying with time. It is logical therefore to look for an approximate solution consisting of a summation
of terms with separable real and imaginary parts, reflecting the time dependence of the amplitude and
frequency respectively, viz

x = Z0(t) 40 2)

The parallel with the special case of the linear system is then clear inasmuch as in this case 6(t) = 6, e*
and ¢(t) = bt where a and b are constants. If some terms in the summation have no imaginary part we
have the equivalent of divergent and convergent modes.

For an ‘m’th order system in which differentials up to d"/dt™ appear, we choose that there are ‘m’
terms in the summation for x, again in parallel with the linear solution. Up to this point no generality
has been lost, because, by virtue of the fact that superposition of solutions does not apply for non-linear
equations, the terms in the summation of equation (2) may be mutually dependent.

We now introduce the approximation that we may disregard any transfer of energy between the
various modes so that the solution may be regarded as a summation of mutually independent terms,
the number being appropriate to the order of the differential equation, which are unknown functions
of time.

Then, if we write

6
L=
9’
w=4¢,
and Z = l+iw
we have m 7
X == Z Hn eidm
T
JZ = Zgn eidm Zn
; # 0
%= Z 0, € (Z3 + Ry
T
d'x ;
7 = Hn gn Z;+Rm
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where R, = 1602

Ry =A0[2Z'+10Z"+(¥ 0+14) Z'] et.

. . d
the primes denoting 0

R, corresponds to the form of solution adopted in Ref. 2 for a second order system.

Since we have disregarded any periodic energy interchange between modes, a steady state exists only
when 2, = 0, ie. R, = 0, in which case equation (3) takes a particularly simple form. The divergent/
convergent modes will have reached a constant value and the oscillatory modes a sustained amplitude.

2.2. Specific Application.

We now consider the application to a fourth order system representing the lateral stability equation
for a particular aircraft in which we prescribe that there is the usual one oscillatory mode (the Dutch
roll) and two first order modes (i.e. the spiral and roll subsidence modes), so that

x = [0, +0,] (1) cos p(t)+05(t) -+ 0,(1) .

In Section 3.3.2 the full expressions corresponding to equation (3) have been used to investigate the
growth of the dutch roll amplitude, but the main body of the present report is concerned with conditions
only in the terminal state. In this condition

03+ 0, = constant = @, say

0,+0, = constant = © ,say

whence
x =0@cos Pp+0, )
X = —wOsing¢
= —w*@cos¢ g 4

X = w*@sin¢

% =w"@cos¢.

o

Let the general term in equation (1) be P(x) and a polynomial in x, so that P(x) = X p, x". Then because
of the lateral symmetry of the aircraft, the coefficients of even powers of x are zero, and we are therefore
concerned with repeated time derivatives of polynomials of the form Z p,, ., x*"*1, ie.

N 3
P(x) = sznn x2nt1
[4]
dP .
o =Zp2n+1 @n+1)x2 1] >
(5)
a:p
el =ZP2,.+1 @n+1) x>~ [2n(%)* + x £]
dsP 2n-2 3 . e 2 s
P Poan+t1 @n+1)x*"72 [20n2n—1) (X)* +6nx % ¥ +x2 X7



Substituting for equation (4) in (5) we may rewrite equation (1) as:

®* O cos ¢+
+w*@sin ¢ T ay,,, (2n+1)(O cos ¢+ O,y)2n 2 [(@ €08 ¢+ @)’ + 6n @ cos ¢ (O cos ¢+ O ) —

— 021 (2n— 1) sin2 ¢—’—
~@0? @ Zby,pq (2n+1)(® cos p+O)*" 1 [21O sin? ¢ +(O cos ¢ +0g)cos ¢+
~wOsing Xy, n+1)(0cos p— Oy +

+Z d2n+ 1 (@ cos ¢+®0)2n+1
=0. 6)

We next make use of the fact that if = f(sin ¢, cos ¢) = 0, then
2r 27
Jf.sinp(j)d([) =0= ff.cos"qﬁdqb.
(1] 0

In Ref. 2, the two equations corresponding to p = 1 were used which were sufficient to solve fulty
the second order system for the knknown A and w. Here by analogy we use p = | and 2 to derive the

necessary and sufficient equations. Taking firstly p = 2, we have,

CH {“wZsznH @n+1) K3 )+ Zd,,. K, (2"+1)} =0,

and n=1 n=0
90{ w2§P2n+1(2”+1)K3(”)+ ?()ciz,,+1K2(2n+l)}=0,
where
‘ ®2n—21®21
Ki(m) = —(2n)! g
3 () = —Cn) Z(2n+1—21)!(l~1)!(l+1)!22’"2
I=1
- 2n—21 2f
K1(2n+1)=(2n+1)!Z ©:" "0
£4@n+1-2D1(+1)! 1127
D 2@t 1))
K,(2n+1) = 2n+1)! 0 :
2(@ntl) = @n+1) Z(2n+1—2z)!(/+1)11!221
I=0
so that either G,=0 (7
®%n—21®21
o zdz"“(zn“)! Gnyi—apinee = 0 @®
n=0 =0



It is found that the frequency resulting from equation (8) for the particular aircraft under consideration
is imaginary so that only equation (7) is a valid solution.

This effects a considerable simplification of equation (6) which, after the subsequent integrations using
p = 1, leads to the following :-

wz{al—{- ElaznﬂX(")@z"} =C+ 2_:102"+1X(”)®2" 9
and
w4—w2{b,+ 2221 bant1 X(n)@z"} + {d1+ %1 dspyq X(n) ®2”} =0 (10)
2n+1)!
where X(n) = EWE—_I—T)_'

Equations (9) and (10) suffice to determine the frequency and amplitude of the sustained oscillation,
and the conditions under which the latter occurs. Eliminating w? from equations (9) and (10) enables
the expression for the amplitude to be written in the form:

~[ey+Z ey X(n) @)%+
1

+[C1+Z Cans1 X(n) ®2n] [b1+2 bans1 X(n) 92"] [al +Z A2p4 1 X(”l)®2"]_
1 1 1

—[‘11‘*‘2 Aan+1 X(n)®2n]2 [dl +Zdyueq X(0) ®2"] =0, (1
1 1

that is, Routh’s discriminant for an equivalent linear system formed by replacing a,, b,, etc., applicable
to the linear case by [a, +Z az,4 X(n) ®*"],[by +Z by, X(n) ©*"], etc. The amplitude of the sus-
1 1

tained (non-linear) oscillation is then given by the condition that the equivalent linear system is neutrally
stable.

In Ref. 2 it was shown that for a non-linear second order system of the type considered there exists
an equivalent linear system, (the equivalence being a function of amplitude), which has the same frequency

2n

. & . | .
and damping. The cquivalent stiffness, S, is the dynamic mean defined by S = Ejv S(x)sin? ¢ d¢p. The

0

physical significance of the replacement terms, [a, +Z a,,., X(n) ®*"] etc., in Routh’s discriminant is
1

that they arc the dynamic means of the slopes of A(x), B(x), etc. similarly obtained.

Thus, at least in systems such as that presently considered in which there is only one sustained oscil-
lation, the existence, frequency and amplitude of this oscillation may be determined directly merely by
formulating the modified Routh’s discriminant, R, using the dynamic mean of cach of A(x), B(x), etc.

8R
Then, since R = Ry_ o+ ©®? ———) +....=0
0=° (6@2) s=0
—R
2 o
'~ x| (12)
H(©?)



The existence is determined by the range of © for which R and ——: are of opposite sign.

6(@)2)

3. Application to Simulation of HP 115 Aircraft.

The model of the HP 115 aircraft tested in the wind tunnel/flight dynamics simulator, to investigate
its lateral behaviour, was also free to respond longitudinally, but the resulting change in angle of attack
was regarded as sufficiently small for the longitudinal response to be neglected in the basic theoretical
treatment. However, due account has been taken of the effect of this cross-coupling back onto the lateral
behaviour where necessary, e.g. Sections 3.3.1 and 3.3.2.

The lateral equations of motion of an aircraft, flying at a given speed (or angle of attack), are usually
expressed in terms of perturbations in sideslip velocity, roll rate and yaw rate, with aerodynamic forces
and moments approximated by their first derivatives with respect to the perturbations. In the simulation
of the motion of the HP 115 aircraft in the wind tunnel, the forces and moments due to roll rate and
yaw rate were represented in this manner, but the sideforce, rolling moment and yawing moment due
to sideslip velocity were obtained directly from wind-tunnel measurements. Examination of the static
wind-tunnel tests shows that the sideforce and rolling moment are almost linearly dependent on sideslip
velocity, but that the yawing moment is distinctly non-linear.

Representation of the yawing moment coefficient, C,, in the form C, = n; 6+n3 o> gave good agree-
ment with the experimental values, where n, and n; are dependent on the angle of attack, and were
calculated to give the best mean curve through the data. A comparison of the sideforce and moments
due to sideslip and their approximate values at a relatively high angle of attack, w = 0-25, is shown in
Fig. 1, and the variation of y,, L, n, and ns with angle of attack is shown in Fig. 2.

3.1. Equations of Motion.

The lateral equations of motion, when the yawing moment due to sideslip is non-linear, may be written
as

LR tr—Jp = pSV? iy, By, 2 ‘
dt p an - m yv yp V er
d d V2
Eltz“xd_: ="SI S(z,,mz B V)
x L (13)
dr dp pSV3s ps 1S
dt—}—ez—ét— = I, nlv+n3v +H,— a7 +n,— 'y
do
P—EE =0 J

By elimination of p, r and ¢, the differential equation for 7 is obtained in a form similar to that of
equation (1), viz:

d*5 d3A@) d*B@) dC()

s T g TPO=0

where

A@D)=a, 0

pSV 1 I, n, ewn, e, | |_
= (227 - ) Gy 14
( m )I:y"+(1—exez){ix+i, I O (14)




B@) = b, 5+by0°
_(PSVY [ 1 bom ey el _
"( m) [ix P Upmemnpb)byey P ==
L —ni(v_v+e)+ —e + ———(1+e w)y—y, +e, vﬁ—
i, ] pSs Ve Iy i, Ve €x o j(1—e, e)

pSV ny o>
+( m> [p (1+e,w)— yr+exy”}i,(l—exez) (15)

C(E) = C1 5+CZ 53

- —(#5Y SIS L
= (m ) [v(lpn, n,l)- l,,{pss(np+wn,+zz 2)+yp y,np}+
P LY P A Lyt W — 2%
1Y pss\ P T T e )T e T I 0 T e )

pSVN3[ m _ C, n353
(m > [pss<lp+wl, iy, 2)+ypl y,lp}l Tl-c.c) (16)

D) =d,o+dy

pSV\* m C, v
:w(*m_> pSsZ(ln nll)l i, (1— 5+
(17)
(pSV *mC, ILnyd?
! fnT) PS5 2 ii(l-ere)
. . I, xz xz
As is customary, i, = e etc., e, = 1 e, = A and C, =~ ! VZS for the range of W currently

considered. The coefficients a,, a, etc. are shown in Fig. 3 for the range of W, and the values of the inertias
etc. are given in the table.
The equivalent coefficients introduced in equation (11) are thus given by:
a* = a,
b* = b, +3by ©°
c* = ¢ +3c; O

& = dy+3d, 0

(18)

where the coefficients b3, ¢; and d5 are each proportional to the non-linear contribution n;. The equivalent
Routh’s discriminant, R* = a* b* ¢* —q*? d* —c*? = 0, then leads to a quadratic for ®2, which has
the approximate solution,

[ci—a;byci+aid,]

02 x
$laibycs+aybycy—af dz—2¢, c3]

(19)



and from equation (9),

w? = c*/a, . (20)

Alternatively, ® may be eliminated to give a quadratic for w?,

w4(1_?ﬂ)_wz<bl_bi?1_@1)+d1_dzcl =0, @1)

C3

which is independent of the magnitude of non-linearity nj, for n;=0 because of the proportionality
referred to above.

The corresponding amplitudes of the roll rate, p, and yaw rate, r, and the phase relationships with the
translational velocity, #, are given in the Appendix A.

It may also be shown that the discarded solution, i.e. @3+ ®, # 0, given by equation (8), would lead
to imaginary values of the frequency for the present example,

3.2. Physical Implications.

The advantage of an analytical approach such as the foregoing is that, in contrast to specific computer
solutions, it provides a physical insight. For example, it is apparent from the approximate solutions
(equations (12) and (19)) that the signs of the numerator and denominator define the type of motion
which will arise in a particular case. A limit cycle can occur (i.e. @ is real) only if numerator and denomina-
tor have the same sign, both expressions being determined at the steady flight angle of attack. The de-
nominator, given approximately by

a_R~3_n§_ 1 _p_ﬂ ¢ (&_}_EE_F _|_n" l_l’ Z+% _l.lZ +ﬁ +
a®2 ~ 4 pSS m \ix iz yu yv iz ix iz .ix-yv v iz
2 2
+~m~[2.n'.{—‘3<y,,+f—'>—wl.—“ {(ﬁ) + (l’f) +yu<?+£‘> H} : (22)
pSS L, I, L, Iy [ L Iy 1 I

can be shown to be positive throughout the range of angle of attack covered in the experiments (Fig. 3b).
The numerator is Routh’s discriminant, R, for the stability polynomial evaluated as if the non-linearities
were absent, and for the HP 115 at low speeds this is shown in Fig. 3a. This changes sign at # = 0-19,
so that for it below this value a normal convergent oscillation can be expected, and above. an oscillation

5
will occur of a sustained amplitude which depends upon the magnitudes of (;{@—RZ) and R. The linear

= (), so that the motion is either convergent (® = 0) or

. . 0R
system is a degenerate case for which 307
divergent (® = o), depending only on the sign of R.

It will be noted from equation (22) that, because for the HP 115 the non-linearity is confined effectively
to one term only, viz. the yawing moment, ®* is inversely proportional to n5.

The following two sections compare the predictions of this analytical method, firstly with experimental
data (Section 3.3) and secondly with spot checks from digital computations (Section 3.4).

3.3. Comparison with Experimental Values.
3.3.1. Damping index at small amplitudes.

The responses obtained on the model of the HP 115 in the wind tunnel/flight dynamic simulator
(Fig. 13c of Ref. 1) appear, at first sight, to be near zero damping at an angle of attack of 0-14, which is
appreciably lower than the value of W & 0-19 given by the theory with non-linearities neglected. How-
ever. it is noticeable that the amplitude of ¢ varies with the changes in # arising from a low frequency



cross-coupling oscillation, and so a simple approximate method of extracting the damping for a constant
angle of attack is required. The theoretical value of the damping index (k), at small amplitudes where
the non-linearity in C, () can be neglected. is almost linear with w (Fig. 4) so that the amplitude of the
dutch roll oscillation was taken to be proportional to ¢ **™ with k() linear in w. The logarithmic
plot of the peaks of & could then be correlated with the variation of W in the experiments, to give k at
mean values of w.

Analysis of published! and unpublished records from the wind tunnel/flight dynamic simulator
shows that zero damping occurs at about w = 0-195, and that theoretical and experimental values of
damping index agree well (Fig. 4).

3.3.2. Amplitude and frequency of the steady oscillation.

A dectailed examination of the apparently steady amplitude oscillations in Ref. 1 and unpublished
results showed that the amplitude was still increasing very slightly because of the finite duration of the
tunnel tests. Before comparing the steady state amplitudes with the theoretical predictions it was there-
fore necessary to extrapolate the measured values to the true terminal values.

A method of predicting the amplitude growth rate was needed, and a more general solution to equation
(13) was developed. again from the method in Section 2 but without the constraint of 2 = 0. The inter-
mediate amplitude during the growth to the asymptotic value, ©, is denoted here by . For the particular
form of the non-linearity assumed, viz. C, = n, i+ n, o>, the equations corresponding to equations
(9) and (10) are:

w? {a, +~3~%362+4/1} =430, 02424(b +3b30%)4+32% (a, +% a;y 0%+ 423 (23)

o*—? (b +3b30%7+30(a, +2 a3 60)+6A2 —{d, +2d5 0*+ A (¢, +5c302)+
+22(by+2 by 02+ 23 (a, +8 a5 01 +1%) = 0. (24)

These yield a sextic relating A and 8% which for the parameters appropriate to the HP 115 aircraft may
be approximated by a quadratic in A. The relationship between 4 and 67 is shown in Fig. 5a where the
results for different angles of attack are collapsed by plotting /4, against 02/®2, A, being the damping
at zero amplitude (1o = —k). From this the time, 7, for the amplitude to grow from 0, to 0,

9
[ do
=170
04

(25)

may be determined by numerical integration, as shown in Fig. 5b, where it is compared with a computer
solution (Section 3.4).
In Ref. 2 it was shown that the present technique gives for the limit cycle appropriate to the van der

Pol equation a variation in A of
2] 2
A=Al ==} |

This much simpler relationship between A and 6 has also been plotted in Fig. 5a where it is seen to be
in remarkably close agreement with the present solution. It has the advantage that when inserted in
equation (25), T is obtained in a closed form, viz.

1 02 (©%—6%)
=g 02@ =00
T, 08 [ef (@)2—65)] @7

10



This is also plotted in Fig. 5b, showing it to be a close approximation to the present formal solution.
But it also has the important advantage that it enables the steady state amplitude to be specified in
terms of points on the growth curve, in particular the point of inflection, ;. For this simple variation
of A with 6,

®=./36,. (28)

When checked against the formal theoretical solution (Fig. 6) this is found to apply equally, and hence
it provides the necessary means for extrapolating the experimental results (Fig. 7).

This study of the growth rate to the final limit cycle amplitude is useful and interesting in its own
right, but since it is required here only for this extrapolation, it has not been pursued further.

The estimated experimental values of the steady amplitude ©, although significantly larger than the
maximum values during the tests, are still smaller than the theoretical values, although the character
of the variation with W is similar, as shown in Fig. 8. Reducing the range of & over which C, is fitted
tends to decrease the theoretical value of ®, but not sufficiently to give good agreement. However, there
are a number of possible causes of disagreement, which can affect the fine balance on which the amplitude
clearly depends, and it is encouraging to find that the theory predicts the character of the response as
closely as it does. The effects of changing the representation of C,(7) are discussed further in section 4.
It is also noticeable that the departure of C,(9) from the assumed linear variation is in the correct sense
to reduce the theoretical value of ®, and hence to reduce the discrepancy, but it was not thought worth-
while to evaluate the more complicated algebraic expressions which arise.

The frequency of the oscillations at large amplitude could be determined from the experimental
responses directly, and good agreement is obtained between theoretical and experimental values, as
shown in Fig. 8b. It is interesting to note that the increase in frequency due to the non-lincar C,, pre-
dicted by theory (see Fig. 10 for example) does occur.

One of the experiments described in Ref. | was undertaken to examine the effect of reduction in the
value of the rolling moment due to sideslip, and so corresponding calculations were made, the results
being shown in Fig. 9. The mean angles of attack for the three tests were 0-25, 0-255 and 0-245 for the
100 per cent, 90 per cent and 75 per cent of C,(3) respectively, so a mean value of w = 0-25 was assumed
for the theoretical calculations. Again, the frequency agrees well, but the theoretical amplitude is about
twice that indicated in the experiment, although the general trend is correct.

3.4. Digital Solution.

In order to check the present theory with an ‘exact’ solution, the equations of motion, equations (13),
were solved numerically for specific cases, using available subroutines to perform the integrations on
the ICL 1907 digital computer. The resulting amplitudes and frequencies at w = 0-225 and 025 are
shown in Fig. 10, and are seen to be almost identical to the values given by equations (11) and (19). Similar
good agreement was obtained for the amplitudes of the oscillations in rates of roll and yaw, and for the
phases between the responses. The formulage, in terms of ® and w are given in Appendix A, together
with a comparison of the results.

The digital computations also demonstrated that the steady oscillation is a true limit cycle for the
constrained flight condition with constant angle of attack, in that an initial disturbance greater in mag-
nitude than the steady value converged to the steady value. The peak values of the responses in ¥ and
p have been plotted in Fig. 11, as a function of peak number after the initial disturbance, for various
initial conditions.

The general agreement between the exact (i.e. digital computer) solutions and the approximate analytic
solutions is very encouraging, and gives confidence in the extension of the method of Ref. 2 to higher
order systems, at least in the case where only one sustained oscillatory mode is present.

4. Representation of Yawing Moment Due to Sideslip.
In the foregoing the representation of the non-linearity in the yawing moment of HP 115 has been

11



confined to a cubic term. The form of the solutions obtained suggest that the balance, particularly in
the amplitude of the sustained oscillation (which, but for the non-linearity, would tend to become infinite,
Section 3.2) might be rather fine and depend critically on the form assumed for the non-lincarity. It was
therefore decided to investigate this further for the representations in the following sections.

4.1. Representation by Two Straight Lines.

The experimental values of yawing moment due to sideslip were approximated by two straight lines,
that is n, is assumed to change value at a particular angle of sideslip. This type of representation is often
more convenient than a continuous functional dependence in computer studies, and has been used in
many flight simulators. The resulting equations of motion may be treated in a similar way to that for
the functional dependence described in Section 2, and the use of the technique for equations with dis-
continuous coefficients has been confirmed by comparison with exact results for a second order equation
in Appendix B.

For the HP 1135 aircraft, we write

C0)=n, v for0 < |o| < B,,

C,o) = n,, 0+y, ford>1v, (29)
and Cp)=n, b—y, ford < —3,
where y, = (n,, —n,,) ¥ for continuity at & = +#&,. The equations of motion then reduce to a fourth
order differential equation with coeflicients A(¢) ... D(#) lincar in o, but discontinuous at © = +v,, and

with one additional constant term if |5| > 7,.
For the approximate solution, we again write

7 =0cos¢,withs, = Ocos¢,, 30

and integration over one cycle of ¢ gives finally that

ay0? =y +(cia—cyy) 2P —sin 2¢,)/n (31)
and

1 . .
w*—by, a)2+d11 = o [CUZ (b12—b1) 2, +5sin2¢)—(dy2—d, ) 2p, —sin 2¢,)] (32)

The coefficients a, , ... d, are given by the expression for a, ... d; in equations (14) to (17) with n, = n
and similarly a,, ... d;, withn, = n,,.

At a given angle of attack, the equations of motion are linear when |#| < v,, and so the dutch roll
oscillation is convergent or divergent according as Routh’s discriminant for the coefficients a,, ... d;
is positive or negative. If R(n, ) > 0, it is found that equations (31) and (32) have no solution, as would
be expected for a damped oscillation, but as the angle of attack is increased the condition for neutral
stability, R(n,,) = 0, is reached, and equations (31) and (32) give ¢p; = 0. At the angle of attack corres-
ponding to R = 0 the response from the linear equations of motion would be a sustained oscillation
with amplitude dependent on the initial conditions, but if the initial value of & is greater than 7, then the
non-linear contribution fixes the amplitude at ® = #,. This contrasts with the solution for the cubic
representation of C, where the amplitude of the sustained oscillation is zero at a similar angle of attack.

As the angle of attack is increased further, R(n,,) becomes increasingly negative, and if R(n,,) remains
positive, equations (31) and (32) give one solution for ¢, in the acceptable range 0 < ¢, < #/2, and so
the variation of ® with w may be obtained. However, R(n,,) may also become negative as the angle of
attack is increased further, and then either two or no solutions for ¢, exist, dependent on the magnitude
of | R(n,,)|.

vy
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In physical terms, if the inner portion of the oscillation (]3| < #,) is stable the kinetic energy will be
dissipated and there will be no sustained oscillation. If this inner portion is neutrally stable, (R(n,,) = 0)
there will be no loss of kinetic energy for |#| < #,, but the positive damping outside this range will result
in a sustained oscillation of amplitude v,. If the inner portion is unstable, kinetic energy will be acquired
in traversing the range +o,, which in the equilibrium state will be dissipated by the positively damped
outer portion. The sustained oscillation amplitude will thus be greater than v,.

For the HP 115 aircraft, the range of angle of attack for which one solution of the equations exists
is 0194 < W < 0221, the values of n,, n,, and 7, being obtained using a least-squares fitting technique
on the experimental data for C,{7). The results for ® and w are shown in Fig. 12, together with the experi-
mental values. In the range 0221 < w = 0234, two values of © exist and for w > 0-234, theory gives
no possible solutions for a sustained oscillation.

Numerical integration of the equations of motion confirms the predicted amplitudes and frequency.
Thus it appears that the representation of C,(5) by two straight lines could lead to responses of quite a
different character from those obtained using a continuously varying function. In addition, of course,
the responses have discontinuities in slope at & = #,, which are not present in a more complete simulation
of the motion.

4.2. Higher order Polynomial Representation.
Because of this sensitivity to the form of the non-linearity, some alternative representations of C,(7)
were considered briefly.
The experimental data for C,(8) does exhibit some scatter about the mean cubic representation (see
Fig. 1), and so a quintic term was also considered, viz

Cn= n11_7+n3 53+n5 55. (33)

The coefficients n,, n; and ns were again obtained by a least-squares fitting technique using experimental
values of C, for # < 015 for each #, but the extrapolation of C, up to the amplitudes given by equation
(11) led to an unrealistic variation of C, with &, negative values of 8C,/0 occurring.

The simpler quintic representation of C, by n, 5+ns & avoids such difficulties, and leads to smaller
values of ® (at the larger angles of attack) than the cubic representation of C,, see Fig. 13, but they are
still larger than the experimental values. The frequencies are almost identical for both representations,
because the values of n, are not very different. Since the theoretical values of ® are beyond the range
of v for which C, was fitted, it is necessary to consider the extrapolated values of C, up to & = ©. A com-
parison between the cubic and the simple quintic representations of C,, and the experimental data, is
given in Fig. 13b for w = 0-25. It may be seen that neither extrapolation agrees with the measured value
of C, at & = 0-175, but it does not seem worthwhile to search for alternative polynomials which would
give perfect quantitative agreement between experimental and theoretical values of ©.

It is clear that the predicted amplitude of the sustained oscillation is sensitive to the analytic form
assumed for the non-linearity, and that it is important to be able to define this reliably over the amplitude
of the oscillation.

5. Conclusions.

(1) An extension of the analytical method of Ref. 2 to the treatment of fourth order, non-linear systems
has been shown to predict very closely the conditions in which sustained oscillations were obtained in
the dutch roll motion of the HP 115 aircraft.

(2) The approximation method has been checked against solutions from a digital computation of the
full non-linear differential equations and found to give convincing agreement. The analytical form of the
approximation, however, has the advantage of giving insight into the physical nature of the problem,
and shows, for example, that the criterion for the eixstence of such sustained oscillations is a non-linear
analogue of Routh’s stability discriminant.

(3) Non-linearity with sideslip of one parameter—n,—accounts qualitatively and quantitatively for the

13



behaviour. The incidence for the onset of the sustained oscillations is predicted together with the variation
of frequency as the incidence is further increased to values at which, but for the non-linearity, the motion
would be divergent. There is, however, some disparity between the predicted and experimental amplitudes
in this condition.

(4) There is evidence that for conventional simulations some care is needed in the representation of the
non-linear aerodynamic terms if this type of essentially non-linear dynamic motion is to be reproduced.
The customary representation by a series of straight lines may be inadequate.

(5) Inasmuch as the wind tunnel (FDS) technique has reproduced the flight behaviour, and the present
analytical approach has produced good agreement with the experimental data, the relevance and accuracy
of the wind tunnel simulation technique is regarded as having been fully demonstrated.

LIST OF SYMBOLS

A(x) ]
g:z L Polynomials in basic differential equation (1)
D(x) J
a, Coefficient of x" in A(x)
b, Coefficient of x" in B(x)
Ch Coefficient of x" in C(x)
d, Coefficient of x" in D(x)
C, Rolling moment coefficient, #/pV2Ss
C, Yawing moment coefficient, 4" /pV2Ss
C, Sideforce coefficient, Y/ApV2S
C, Normal force coefficient, Z/4pV?2S
ey Product of inertia ratio, —I,,/1,
e, Product of inertia ratio, —1,/I,
F(x, x) Function in differential equation, Section 2
g Acceleration due to gravity
I, Moment of inertia in roll
I, Moment of inertia in yaw
) Product of inertia
iy Normalised moment of inertia, I,/ms*
i Normalised moment of inertia, I,/ms?
K, K, K, Functions used in Section 2
k Damping index
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LIST OF SYMBOLS—continued

—ki,k, Damping indices for second order systems, Appendix B
& Rolling moment
i Rolling moment derivative due to sidesli 102
v g me P 0Vss b
) Rolling moment derivative due to rate of roll ! 0;?
r & > pSVs? op
l Rolling moment derivative due to rate of yaw 0%
r g yaw, pSVs? or
m Mass of aircraft
N Yawing moment
) . 1 oN
n, Yawing moment derivative due to rate of roll, ey R
pSVs* op
, . 1 &
n, Yawing moment derivative due to rate of yaw, —————
pSVs? or
Ryp> My, Slopes of C,(D) in straight line representation
Ny, N3, Ns Coefficients of 5, 3, #° respectively in polynomial representation of C,(?)
P Rate of roll
r Rate of yaw
R Routh’s discriminant
. . A . .
R, Residual term associated with I defined in Section 2
h) Wing area
s Wing semi-span
t Time
Vv Forward velocity

Sideslip velocity/V; (angle of sideslip)

w Normal velocity/V, (angle of attack)
X Variable in basic differential equation
Xy Particular value of x, Appendix B
X(n) Coefficient defined after equation (10), X(n) = 2—2,%1'—_(';1%—'1—)—'
Sideforce
Z At+iw
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LIST OF SYMBOLS—continued

Vo Sideforce coefficient due to rate of roll, p“SlT/&s %}:
. . oY
Ve Sideforce coefficient due to rate of yaw, mé;
. - D 1 2y
Vo Sideforce coefficient due to rate of sideslip, pS—VZE
Z Normal force
Y1 Particular value of # defined in equation (29)
£, Phase angle of p relative to ¢
€, Phase angle of r relative to §
0 Amplitude of ¥
0, Amplitude of & at point of inflection of f(r)
0,,0,,0, Amplitudes of various possible modes of &
e Amplitude of steady oscillation in §
0, Amplitude of steady oscillation in p
Q, Amplitude of steady oscillation in r
yl 6 6 (Section 3.3.2)
A, Value of 4 at zero amplitude (Section 2)
i = 0,/0, (Section 2)
p Air density
T Time for amplitude growth
® Bank angle
¢ Defined in equation (5)
¢, Particular value of ¢, Section 4.1
w = ¢, equivalent to frequency
Wy, O, Undamped frequencies of second order systems, Appendix B
Vi, Vs, . Frequencies of second order systems, Appendix B
Superscript

* Equivalent value
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APPENDIX A
Amplitudes and Phase Angles of Rates of Roll and Yaw.

Analogous expressions for roll rate and yaw rate may be used in equations (13) to that defined for
sideslip velocity in equation (5), and they may be written as

p=0,cos(d+e,)

r=0,cos(¢p+s,)

where § = © cos ¢.
The values of ®, etc. are obtained by substitution of & into the first two equations of (13), to give:

0} ny (pSV\*[@* I +&7 (i, &% +j)° JF
m (b3(02—‘d3)2+C%u)2

P (1—e,e,) si i,

©  ny (pSV\ [k, & =k} +0" (i, 0*—j) T
(1—e.e,) si i\ m by 0*—d3)* +c2 w?

@, =

| 557 @ bs=d9) (. 02+ + 0P ek,
tan Ep = 5 p’n
pth/— (@? by—d3) k,—c5 (i, @ +J,)
) m . .
¢3 (@ kp—k)——ﬁ; (@? by —d3) (i, & +j,)
tane, = @ p -
&2 ¢5 (i, B* +jp)+p57 (w? by—d3) (B? k,—k)

where the following symbols have been introduced,

kr = lr—"ixz yw‘ kp = lp'l'ixyv
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m
.r = lu+ vlr_ rlv
= es bt yoh =y

m

jp'_psslvw'l_yplv_lpyv
m C,
k=ﬁ—2‘lu
T pSV

The numerical results obtained for w = 0-225 are compared in the table below with the values obtained
for the numerical integration of the equations of motion,

0, o, g, g,
Equations 0-047 0-0021 —68-7° 47-2°
Numerical integration | 0-047 00023 —69° 42°
APPENDIX B

Second Order System with Discontinuous Coefficients.

The validity of using the approximate method for equations with discontinuous coefficients has also
been checked by solving the piece-wise linear equations analytically rather than numerically. In order
to reduce the algebra, a second order system has been considered, which is similar to the oscillatory
mode of the fourth order system analysed in the main part of this Report, ie.

d A(x)

X+
dt

+B(x) =0 (B.1)

where 0 < |x] < x;, A(x) = — 2k, x, B(x) = w? x
X > Xy, AX) = 2k* x—x; (2k,—2k,), B(x) = w3 x—x, (0% —w?)
X < —xq, A(x) = 2k, x+x, 2k, —2k,), B(x) = w3 x+x, (03 —w?)

and k, and k, are both positive.

The solutions in the time intervals, illustrated in Fig. 14a, ¢, < ¢t < t, when x > x,¢, < t < t; when
|x| < xy,t3 <t <t, when x < —x, and ¢, < t < t5 when |x| < x,, may be obtained in terms of the
value of X (= X, say) at t = t,, with the solutions matched at t = ¢,,¢5,... The condition for a steady
oscillation to exist is that X; = —X; (= %), and this is sufficient to determine the time intervals t, —¢,
(=t,—t3)and t;— 1, (= t5—t,), and also the value of %,.
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The condition for a continuous value of X at ¢ = ¢, gives that

. 2
X3 wy Va ~ka(ta=1y)
—=——5<{——=—Jcosv, (t;—t)—e 2]k
Xy @3 {sm v, (tz—-tl)[ 2 (l2=t) 1=k,
Y1 —k1 (t3—t2)
=ky———————[cos vy (t3—t,) +e F1 3702 (B.2)
1 Slnvl (t3—“t2)[ 1(3 2) ]
and for X, = — X3, then

. 2
X w v
X1 - _1_{_:____4_[8’(2 (tz"tl)___,cos vy (tz—-tl)]—kz}

X, o2 |sinv,(t,—t,)
=k +——1—e"‘ =12 1 cog v, (t3—t5) (B.3)
1 Sin Vl (t3""t2)
where w? = v +k? and w3 = vi+k3. (B.4)
These may be solved graphically for v, (z,—t;) and v, (t3—t;) in terms of the parameters k/v,, k,/v,
and k,/k,.
The amplitude of the steady oscillation is given by
_@_ =1 +£Uj __.vz—[l — ek 2ty (t —t )+32kz (tz-u)]% e ke (Tl""l)__ 1 } (B.5)
X4 w3 | w,sin v, (t; —t,) R

where

vy [€ 2710 —cos v, (t,—1,)] —ky sin v, (E,—14)

T, —t) = B.6
tan v, (T —t,) vy sin vy (t,—ty)+k, [e2 027 —cos v, (t,—t,)] (B:6)

and the frequency of the oscillation may be written as
o = n/[(t,—t)+(t3—1)]. (B.7)

0
These equations (B.5) to (B.7) may be arranged to glve — and k_ in terms of k,/v,, k,/v, and k,/k,.
2

The approximate solution for the amplitude and.frequency of the steady oscillation has been obtained
by assuming that x = © cos ¢, with ® = 0 and ¢ = w. If cos ¢, = x,/@, then the integrations over
one cycle give that

® = x;sec¢, where 2¢,—sin2¢, = nk,/k,+k;) (B.8)

and
COZ = (k2 w% +k1 w%)/(kl +k2) . (Bg)
The exact and approximate values of amplitude and frequency, expressed as ®/x, and w/k,, are
shown in Figs. 14b and c for the two general cases (i) k,/v, = 01, k,/v, = 02 and (i) k, /v, = k,/v, = 10,
over the range of k,;/k, from 0 to co, and for a particular case, close to the frequencies and dampings

associated with the HP 115, w? = 6'5, w3 = 7:0 and k, = 005 for varying k,. The exact values of the
amplitudes for all cases collapse on to the one approximate curve, which depends only on k,/k,, with
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small errors arising as k,/k,—0 when ®— 0. The frequencies also agree remarkably well, even for the
large damping factors of 1-0.

It is also possible to show that the exact solution tends towards the steady oscillation when started
from an arbitrary initial condition, by considering the relationships between the values of X at x = +x,
and x = — x, throughout the transient response.

TABLE
Numerical Values Used In Calculations.

Mass and inertias

m 2154 kg
i, 0109
i, 127
i, 00806

Representative length s = 305m

Representative area S = 40-18 m?

Air density p = 0906kg/m?

Derivatives due to rate of roll and rate of yaw

yp = 0014+0-505 w—0474 w*
I, = —0132+008w

n, = 00125w—0938 %

vy =0

I, = 00064-054w

n, = —0351-0089 w
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